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Abstract 

In instrumental task contexts, incentive manipulations such as posting reward on 

successful performance usually trigger increased effort, which is signified by effort 

markers like increased pupil size. Yet, it is not fully clear under which circumstances 

incentives really promote performance, and which role effort plays therein. In the present 

study, we compared two schemes of associating reward with a Flanker task, while 

simultaneously acquiring electroencephalography (EEG) and pupillometry data in order 

to explore the contribution of effort-related processes. In Experiment 1, reward was 

administered in a block-based fashion, with series of targets in pure reward and no-

reward blocks. The results imply increased sustained effort in the reward blocks, as 

reflected in particular in sustained increased pupil size. Yet, this was not accompanied by 

a behavioral benefit, suggesting a failure of translating increased effort into a behavioral 

pay-off. In Experiment 2, we introduced trial-based cues in order to also promote transient 

preparatory effort application, which indeed led to a behavioral benefit. Again, we 

observed a sustained pupil-size increase, but also transient ones. Consistent with this, 

the EEG data of Experiment 2 indicated increased transient preparatory effort preceding 

target onset, as well as reward modulations of target processing that arose earlier than in 

Experiment 1. Jointly, our results indicate that incentive-triggered effort can operate on 

different time-scales, and that, at least for the current task, its transient (and largely 

preparatory) form is critical for achieving a behavioral benefit, which may relate to the 

temporal dynamics of the catecholaminergic systems. 
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Introduction 

Reward is ever more recognized as a powerful modulator of cognition and behavior, both 

in terms of learning and in the sense of driving established behavior. As such, recent 

years have witnessed a steep increase in reports of specific task benefits of reward, 

ranging from cognitive control to attention to memory (for reviews, see Botvinick & Braver, 

2015; Krebs & Woldorff, 2017). Although there is a multitude of potential mechanisms 

depending on how reward is administered (e.g., it can also be geared more towards 

perceptual/attentional learning mechanisms; Chelazzi, Perlato, Santandrea, & Della 

Libera, 2013), one important way in which this happens is that reward prospect generally 

invigorates neural operations that are pertinent to the task at hand, which can even 

qualitatively change cognitive processes by promoting a more proactive control mode 

(Botvinick & Braver, 2015; Braver, 2012; Notebaert & Braem, 2015). Importantly, it is 

widely acknowledged that proactive control is effortful and limits the ability to perform 

other tasks simultaneously (Westbrook & Braver, 2015, 2016).  

 Yet, there are numerous ways in which incentives can be associated with a task, 

and it is not clear under which incentive conditions effort is actually increased, and 

furthermore when such effort expenditure really leads to a behavioral benefit in reward-

related tasks. Given that reward effects do not seem to arise ubiquitously (Bonner, Hastie, 

Sprinkle, & Young, 2000), it seems possible that incentives do not always trigger 

appropriate effort adjustments (Camerer & Hogarth, 1999; Jenkins Jr, Mitra, Gupta, & 

Shaw, 1998); in addition, it could also be that sometimes effort is increased but in a way 

that is ultimately not successful at improving performance. Based on the fact that effort is 

inherently aversive, and is usually discounted from the reward that can be obtained in a 

given task (Kool, McGuire, Rosen, & Botvinick, 2010; Shenhav, et al., 2017; Verguts, 

Vassena, & Silvetti, 2015; but see also Inzlicht, Shenhav, & Olivola, in press), a failure of 

translating effort into a benefit (in the broad sense) would seem particularly problematic 

on a theoretical level. Rather, one would expect that effort would usually need to yield 

some benefit in order to compensate for the general aversiveness.  

Importantly, differences in how reward is associated with a task might have 

consequences for how a reward benefit is brought about (Krebs, Hopf, & Boehler, 2016). 
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Most studies employ cues predicting the potential of reward in the upcoming trial (e.g., 

Padmala & Pessoa, 2011; van den Berg, Krebs, Lorist, & Woldorff, 2014), whereas other 

studies directly associate specific task features with reward (e.g., specific rewarded ink 

colors in Stroop tasks; Krebs, Boehler, Egner, & Woldorff, 2011). Yet others have used 

block-wise reward manipulations (e.g., Kouneiher, Charron, & Koechlin, 2009; Locke & 

Braver, 2008; Massar, Lim, Sasmita, & Chee, 2016; Paschke, et al., 2015). In the present 

work, we compared a block-based incentive condition with one that used cues on every 

trial. To this end, we combined pupillometry and EEG measures to gain insights into the 

dynamics of reward- and effort-related processes in these task contexts. 

Pupil size has long been considered as a correlate of mental effort, increasing in 

various contexts of enhanced task difficulty that are largely devoid of any other factors 

that are relevant for pupil size, such as affective aspects (Beatty, 1982b; Kahneman & 

Beatty, 1966; van der Wel & van Steenbergen, 2018). In this context, it is important to 

note that pupil-size modulations arise on different temporal scales, displaying both 

sustained/tonic and transient/phasic changes, both of which have been related to effort 

(Beatty, 1982a; Chiew & Braver, 2013). Pupil size is furthermore linked through a lot of 

evidence to activity in the norepinephrinergic (NE) system, and seems generally related 

to arousal and the autonomous nervous system (for a review, see Eckstein, Guerra-

Carrillo, Singley, & Bunge, 2017). However, direct inferences from physiological 

parameters such as pupil size to a psychological construct such as effort are difficult 

(Richter & Slade, 2017) and, depending on the task and a participant’s reaction to it, other 

arousal-related factors could play a role, such as emotional aspects (Bradley, Miccoli, 

Escrig, & Lang, 2008). 

Concerning EEG activity, we were particularly interested in processes related to 

target selection, reported before as a reward-related ERP difference in the form of relative 

positivities over fronto-parietal areas (Krebs, Boehler, Appelbaum, & Woldorff, 2013; van 

den Berg, et al., 2014). Additionally, in the cuing context, we were interested in processes 

that are triggered by the cue and relate to preparatory effort, in particular the contingent 

negative variation (CNV) event-related potential (ERP) component (van den Berg, et al., 

2014). Additionally, we wanted to explore the role of early sensory processes during task 

stimulus processing. In order to disentangle the processing of the distracters and that of 
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the target, we adopted the paradigm of Appelbaum and colleagues, in which there was a 

200 ms stimulus onset asynchrony (SOA) between the task-irrelevant and task-relevant 

information (Appelbaum, Boehler, Won, Davis, & Woldorff, 2012). Given that hence 

irrelevant (and detrimental information in case of incongruent trials) was consistently 

presented first, we expected that reward would lead to diminished distracter processing 

as reflected by the attentional N1 ERP component (see also Bombeke, Langford, 

Notebaert, & Boehler, 2017).  

In order, to investigate the effects of reward on sustained and transient effort, we 

conducted two separate experiments. Initially, we ran an EEG-pupillometry experiment 

investigating pure block-based effects of reward (Experiment 1). Based on the results of 

this experiment, and in particular the lack of a behavioral reward effect therein, this was 

followed up by an experiment that employed cues to communicate reward availability 

(Experiment 2). Experiment 2 featured reward blocks with trial-based cues predicting 

whether successful performance on a given trial could garner a monetary bonus or not, 

as is typical in this set-up (e.g., Padmala & Pessoa, 2011), and a pure no-reward block 

with cues consistently predicting that no extra bonus could be earned. Therefore, 

Experiment 2 allowed to investigate both block effects (as in Experiment 1), and event-

related ones (reward-related vs. no-reward trials in the reward blocks), as has been 

successfully demonstrated before in this general context (e.g., Chiew & Braver, 2013; 

Jimura, Locke, & Braver, 2010).  

In both experiments, we expected behavioral reward benefits (as already 

previewed, this was ultimately not found in Experiment 1), and assumed that they would 

go together with markers of effort, in particular pupil size, both concerning sustained and 

transient modulations (Chiew & Braver, 2013). Moreover, we expected modulations of 

attentional processing of the distracter- and target-stimulus. Specifically, we hypothesized 

to find that less attention is devoted to the distracter-stimuli under reward, whereas we 

expected enhanced processing of the full stimulus (distracters plus target). Specific to 

Experiment 2, we predicted correlates of preparatory effort to be increased by reward 

information, in particular the cue-related CNV, as well as indications of preparatory effort 

in the pupil-size data, such as cue-locked increases, likely extending into target 

processing. 
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Methods 

EXPERIMENT 1  

Participants. Twenty-three participants (seven men, age M = 22.8, all right-handed) with 

no history of psychiatric or neurological disorders and with normal or corrected-to-normal 

vision took part in Experiment 1. They received a compensation of €25 for a session that 

lasted approximately two hours, plus a variable performance-based monetary bonus of 

up to €5. One participant was excluded from the analysis due to noisy EEG data. Prior to 

the beginning of the experiment all participants gave a written informed consent. The 

study was approved by the ethical committee of the Faculty of Psychology and 

Educational Sciences of Ghent University.  

Stimuli and design. We used a variant of the Flanker task with arrows pointing in four 

different directions (left up, left down, right up, right down). White arrows were presented 

on a gray background with a small fixation dot at the center of the screen. We presented 

the irrelevant distracter arrows 200 ms before the relevant target arrows (Appelbaum, et 

al., 2012), which allowed for a 200-ms analysis window of the EEG with pure distracter 

processing. Two independent variables were manipulated: 1) congruency – trials could 

be either congruent, e.g., distracter stimuli and target-stimulus both pointing upwards left, 

or incongruent, e.g., distracter stimuli pointing downwards left and target-stimulus pointing 

upwards right (we distributed twelve possible pairings of distracter-target evenly); and 2) 

reward – each block was either reward-related or a pure no-reward block. Participant 

responded by pressing one of the QWERTY keyboard’s button: “A” (arrow directed to the 

up left side), “Z” (down left), “K” (up right), and “M” (down right). 

All trials started with the onset of distracters for 200 ms (see Figure 1A). Next, the 

target arrow appeared for 200 ms in the middle of the screen, between the distracters. 

Participants were instructed to respond to the direction of the target arrow as fast and 

accurately as possible. Because of the consistent timing, participants knew that the 

irrelevant arrows would always be presented first. Following target offset, an inter-trial 

interval with just a fixation dot was presented for a variable duration. This duration was 

the sum of the time it took for participants to provide their response with a maximum of 
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1000 ms concerning the duration of this stimulus event (note that this is independent of 

the response deadline, see below) plus an additional randomly-jittered duration of 900-

1200 ms (M = 1050 ms). Importantly, participants were informed that they would get 

additional monetary rewards based on a point scheme (+10 points) for each trial when 

responding fast and accurately in reward-related blocks. In the reward-related blocks, 

cumulative reward feedback in the form of the sum of earned points was presented every 

20 trials. In order to keep this challenging and comparable across participants, an 

adaptive procedure constantly adjusted the time-out of the response-time window. This 

procedure adjusted the response time-out by 20 ms every time the cumulative reward 

rate over the course of the experiment would cross 65% (i.e., extend it by 20 ms when it 

fell below 65%, and decrease it by 20 ms when it exceeded 65%). Ultimately, this 

procedure was successful and yielded very similar reward rates for all participants. 

Reward rates mostly only differed to a minor degree as a function of accuracy (since 

incorrect trials were not rewarded). At the end of the experiment the total number of 

earned points was converted to a monetary bonus. 

Participants completed four fully randomized blocks of 128 trials each (64 

congruent and 64 incongruent trials) half of which could yield reward, while the other half 

could not (RB = reward-related block, NRB = no-reward block). The RB consisted only of 

reward-related trials (RBrew) and the NRB contained only no-reward trials (NRB). The 

presentation order of blocks was counterbalanced across participants (RB-NRB-RB-NRB 

vs. NRB-RB-NRB-RB) in order to minimize the influence of training effects or spill-over 

effects (see Figure 1B). 
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Figure 1. Paradigm. (A) On each trial, participants were instructed to manually respond 

to the direction of the target arrow as fast and accurately as possible. Irrelevant distracter 

arrows preceded the relevant target arrow by 200 ms. At the bottom, the different 

conditions of each experiment are mentioned. (B) In both experiments trials were 

presented in alternating blocks (either RB or NRB) counterbalanced across participants.  

 

Behavioral analysis. For RT analyses, all incorrect and missed responses were 

excluded, and only correct responses within a time window 200-1400 ms were included 

in the analysis (irrespective of the adaptive response time-out procedure employed to 

adjust reward rates). RT and error rates were analyzed with repeated-measures ANOVAs 

(rANOVAs), with factors reward (RB vs. NRB) and congruency (congruent vs. incongruent 

trial). For response-time measures, the RT is reported time-locked to the onset of the 

target arrow. Effect sizes are reported as partial eta squared. 

Pupil measurements and preprocessing. We used a 250 Hz SMI eye tracker (RED250 

mobile system; SensoMotoric Instruments, Teltow, Germany) to continuously measure 

pupil size of both eyes during the experiment. A camera with infrared optics was attached 

to a standard 17-inch computer screen and a chinrest was used to minimize head 

movements and to maintain a fixed distance of 65 cm from the screen. Each block of the 

experiment started with a calibration procedure in which participants had to follow a 

moving red dot with their eyes to nine locations on a grey background, the success of 
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which was validated before continuing. The EEG chamber was dimly lit constantly 

throughout the experiment. Short stretches of missing data points due to blinks or 

recording errors were corrected by means of a linear interpolation procedure. Pupil size 

was initially recorded at a sampling rate of 250 Hz, but then up-sampled to 500 Hz to 

match the sampling rate of the EEG (see below). Trigger codes in both the pupil and EEG 

data were synchronized with the EYE-EEG Matlab toolbox (Dimigen, Sommer, Hohlfeld, 

Jacobs, & Kliegl, 2011). As a first preprocessing step, a raw data inspection was 

performed, excluding stretches with clear artifacts as well as portions of the data with 

significant data loss. This procedure mostly excluded flat stretches resulting from the 

linear interpolation of periods with a lot of blinks. The raw data inspection was done in a 

fashion that was blind towards the specific task conditions, and generally led to only very 

minor data exclusion (less than 3% of the continuous raw data). The data was then 

epoched from -200 ms to 2000 ms, time-locked to the onset of the distracter-stimulus and 

averaged afterwards per participant according to the main experimental conditions 

(keeping only the correct trials). In an analysis targeted at sustained effects, absolute 

pupil size was used, without applying baseline correction. For this, we used a 400-ms 

time-window around the distracter-stimulus onset, starting 200 ms before distracter onset 

and ending with target-stimulus onset, as an estimate of sustained pupil size that was still 

unaffected by the subsequent light reflex and the condition of the trial. In this analysis, we 

additionally used block-order (RB-NRB-RB-NRB or NRB-RB-NRB-RB) as a co-variate to 

account for a block-independent decrease in pupil size over time (see results). To look at 

transient pupil-size modulations above and beyond simultaneous sustained effects, we 

baseline-corrected the data with regard to the pre-distracter-stimulus baseline. This data 

was analyzed in a time-resolved fashion by using adjacent 100-ms time-windows from 

distracter-stimulus onset until 2000 ms thereafter, running a rANOVA in each window with 

factors reward (RB vs. NRB) and congruency (congruent vs. incongruent). Statistical 

significance is reported using both uncorrected p-values as well as by using false-

discovery rate (FDR) correction (Benjamini & Hochberg, 1995). Ultimately, after 

confirming that the data never differed in a significant way across the two eyes, data was 

usually collapsed across both eyes, with few exceptions where the data from one eye had 
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clearly lower data quality (more data loss), in which case information was used only from 

the other eye (three participants in Experiment 1).  

EEG acquisition, preprocessing and analysis. EEG data were collected using a Brain 

Products actiCHamp 64-channel system (Brain Products, Gilching, Germany) with 64 

active scalp electrodes positioned according to the standard international 10-20 system, 

two of which were attached to the left and right mastoids. Signals were recorded in the 

reference-free mode with a sampling rate of 500 Hz. The EEG data was analyzed using 

Brain Vision Analyzer 2 (Brainproducts, Gilching, Germany). During preprocessing, data 

was re-referenced offline to the average of the mastoids, followed by a raw-data 

inspection to exclude stretches of clearly identifiable bad data. Next, a band-pass filter of 

0.02-40 Hz was applied. After that, we removed blinks from the data using independent 

component analysis (ICA). The data were then epoched from -200 ms to 1000 ms, time-

locked to the onset of the distracter-stimulus, and a semi-automatic artifact rejection was 

performed in a fashion that was completely blind to the different experimental conditions. 

Afterwards, the data was again epoched, now with regard to the actual conditions, and 

again limited to correct trials. Afterwards, the data was baseline-corrected using the 200 

ms period preceding distracter-stimulus onset, and the data was averaged per participant.  

  The EEG data was analyzed with regard to two main components. First, we 

investigated possible N1 modulations related to distracter-stimulus processing. For this, 

we used the average across conditions to determine the most representative channels 

and time-range leading us to average P5, P3, PO3, PO7, P6, P4, PO4, PO8 between 130 

and 200 ms. In addition, we looked at a fronto-central reward modulation; the ROI was 

based on earlier work (van den Berg, et al., 2014) and contained channels FC1, FCz, 

FC2, C1, Cz, C2, on the average of which we performed tests in adjacent 50-ms windows 

between 300 and 700 ms to explore the temporal evolution, similar to the analysis of the 

transient pupil responses, but limiting ourselves to only the factor reward. Once again, 

FDR-corrected p-values are reported in addition to the uncorrected ones. 

 Finally, in an exploratory analysis driven by the results of the planned main 

analyses, we tried to pinpoint block-level reward-related differences in EEG activity that 

would potentially mirror the sustained pupil-size differences that we observed. Based on 

an earlier report that identified such a relationship (Hong, Walz, & Sajda, 2014), we 
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focused on alpha power as an electrophysiological correlate of attentional task 

disengagement prior to a trial (Babiloni, et al., 2006; van Dijk, Schoffelen, Oostenveld, & 

Jensen, 2008). We derived alpha power by using the complex-demodulation function of 

Brain Vision Analyzer 2 (extracting power values averaged between 8 and 12 Hz), which 

we then analyzed in a fashion that was analogous to the analysis of sustained pupil size. 

Specifically, we focused on 500-ms time windows preceding distracter-stimulus 

presentation as an estimate for block-level effects, which we did not baseline-correct, in 

order to identify sustained effects. Based on the average of all conditions, we averaged 

alpha power across POz and Pz where raw alpha power was maximal in both experiments 

(i.e., irrespective of any condition-wise differences; see inserts in Figure 7), and tested 

for condition-wise differences. In addition, given that alpha power tends to increase with 

time-on-task as a function of decreases in vigilance (Cajochen, Brunner, Krauchi, Graw, 

& Wirz-Justice, 1995), we included block order as a covariate into our analyses, 

equivalent to our approach for sustained pupil size.  

 

EXPERIMENT 2 

The paradigm and analysis of Experiment 2 paralleled those of Experiment 1 as best as 

possible. We therefore mostly limit ourselves to aspects that differed across the 

experiments.  

Participants. Twenty-four participants (seven men, age M = 23.5, all right-handed) with 

no history of psychiatric or neurological disorders and with normal or corrected-to-normal 

vision that had not participated in Experiment 1 took part in the Experiment 2. They 

received a monetary compensation of €25 for a two-hour session, with again up to 5€ 

performance-contingent bonus. The first two participants had to be excluded due to the 

technical problems with excessive eye-tracking data loss and with sending port codes, 

respectively.  

Stimuli. We used the same Flanker stimuli and task as in the Experiment 1. In addition, 

three different symbols (“@”, “#”, and “§”) were used to communicate the possibility to 

win reward on each trial. These cues were chosen to not be inherently associated with 

the concept of money. In the counterbalancing procedure across participants each 
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symbol was used as a reward-related cue in the RB, a no-reward cue in the RB, and a 

no-reward cue in the NRB. 

Procedure and design. Each trial started with one of the cues that appeared for 300 ms 

predicting the possibility to earn an extra reward in case of a correct response (see Figure 

1A). The cue was followed by a blank interval randomly varying between 1000 and 1300 

ms during which only the fixation square remained on the screen. Next, the distracters 

appeared for 200 ms followed by the target-stimulus appearing in the center of the screen 

for 200 ms. After, displaying a fixation dot until the participant’s response (or a maximum 

of 1000 ms), the same display was kept for another randomly-varied 900 to 1200 ms.  

The experiment consisted of two reward-related blocks of 128 trials each (64 

congruent and 64 incongruent trials), and two no-reward blocks with 64 trials each. In 

both RB there were 64 reward-related trials (RBrew) and 64 no-reward trials (RBnr). NRB 

blocks consisted of 64 no-reward trials (NRB), hence matching the number of RBrew and 

RBnr trials, respectively. Because we wanted to keep the overall monetary bonus the 

same across the two experiments, and there were only half as many reward-related trials 

in Experiment 2, each reward-related trial was worth more money in Experiment 2 than 

in Experiment 1; however, the use of an independent sample of participants, the 

cumulative nature of the reward feedback, and the indirect link between the point scheme 

and the payout make it unlikely that this played a major role in bringing about differences 

between the two experiments. As in the Experiment 1, the order of blocks was 

counterbalanced across participants (RB-NRB-RB-NRB vs. NRB-RB-NRB-RB).  

Behavioral data acquisition and analysis. The same basic analysis was performed as 

in Experiment 1. Given the complicated set-up of Experiment 2, however, featuring both 

across-block and within-block comparisons, we used three separate rANOVAs, looking 

at: 1) across-block reward effects (NRB vs. RBrew trials as in Experiment 1), 2) at within-

block reward effects (RBrew vs. RBnr trials) and 3) the across-block context effects for 

the different types of no-reward trials (NRB vs. RBnr trials). This general approach has 

been successfully used in related earlier work (Chiew & Braver, 2013; Jimura, et al., 

2010). 
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Pupil measurements and preprocessing. We used the same eye-tracking set-up and 

preprocessing as in the Experiment 1. The pupil data was analyzed in the same way as 

for Experiment 1, with the addition of a cue time-range. There, we extracted epochs with 

the same length (-200 to 2000 ms), but during the analysis excluded data beyond 1600 

ms post-distracter-stimulus to avoid any effect of the subsequent target processing. Data 

quality was comparable across both eyes for all participants, leading us to collapse the 

data across eyes for all participants. 

EEG acquisition, preprocessing and analysis. Data was recorded from the same 64 

active scalp electrodes as in Experiment 1. In contrast to the reference-free recording in 

Experiment 1, the data was now referenced online against a reference channel. For 

different participants, that was either Fz or FCz, which were later recovered back into the 

data during re-referencing to the average mastoids. Note that due to the linear nature of 

the re-referencing procedure, the online reference is rather arbitrary, and the resulting 

datasets all contained exactly the same channels. The basic analysis replicated that of 

Experiment 1, with the addition of the cue time-window. For this, a time-window between 

-200 and 1500 ms around the onset of the cue-stimulus was used. Given that it is unclear 

at which stage processing goes awry in incorrect trials, with only a subset of such failures 

likely directly relating to absent task preparation, for the cue analysis (in contrast to the 

target analysis), all trials were kept irrespective of whether ultimately the target was 

responded to correctly or not.  

The EEG data for the target time-range was analyzed analogously to Experiment 1. In 

addition, we looked at two cue-related components, the P3 and the CNV. The ROIs were 

determined by the average across all conditions (P3, POz, P4 for the P3, and FCz and 

Cz for the CNV). Given that both effects of interest are most visible as differences 

between conditions, we used time-windows of earlier work that have looked at such 

differences. Specifically, we used a time-window between 300 and 500 ms post-cue for 

the P3 (Goldstein, et al., 2006; Schevernels, Krebs, Santens, Woldorff, & Boehler, 2014) 

and a time-window for the CNV that started 700 ms post-cue (Schevernels, et al., 2014; 

van den Berg, et al., 2014) and lasted until the end of the cue-target interval at 1500 ms. 
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Alpha power was analyzed in the same way as in Experiment 1 preceding distracter-

stimulus presentation, but also in an equivalent way preceding cue presentation. 

Across-experiment comparisons. In addition to the within-experiment comparisons, we 

also sought to directly compare results across experiments where possible (Nieuwenhuis, 

Forstmann, & Wagenmakers, 2011). Depending on the exact analysis, this was done by 

including experiment as a between-subjects factor in a rANOVA, or by running a two-

samples t-test. Given power limitations, we combined the data of Experiment 2 across 

corresponding conditions wherever there was no clear difference. 

 

Results 

Whereas we will present the results of the two experiments in sequence, they are 

combined in the same figure where possible, in order to facilitate direct comparisons.  

EXPERIMENT 1 

Behavior 

The left panels of Figure 2 display the behavioral data of Experiment 1. A two-way 

rANOVA with factors congruency (congruent vs. incongruent) and reward (NRB vs. 

RBrew) on the average response times showed a highly significant main effect of 

congruency (F(1,21) = 210.4; p < 0.001; ηp
2= 0.91), but no significant main effect of 

reward (p > 0.8). The interaction between congruency and reward context was also not 

significant (p > 0.6). Accuracy analysis showed a result pattern that was similarly 

dominated by congruency but unaffected by reward. The main effect of congruency was 

again highly significant (F(1,21) = 46.96; p < 0.001; ηp
2 = 0.69), whereas the effect of 

reward (p > 0.75) and the interaction between congruency and reward were not (p > 0.4).  

Pupil size  

Sustained pupillary response. Given the block design of reward-related and no-reward 

blocks, we first interrogated the data for sustained block-level effects using the data 

before baseline correction, and focusing on a 400-ms window around distracter-stimulus 

onset as an estimate of sustained activity independent of the actual events. Since pupil 
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size is very sensitive for time-on-task and tends to decrease globally over the course of 

an experiment (e.g., Massar, et al., 2016), we checked whether there was a block-type-

independent decrease by averaging all events in the first and second half of the 

experiment. This average hence represents the average of an RB and an NRB early and 

late in the experiment, and indeed showed a consistent effect in the expected direction 

with larger pupils in the first than the second half of the experiment (5.62 vs. 5.54 mm 

respectively; p = 0.006). We therefore included block order (RB-NRB-RB-NRB vs. NRB-

RB-NRB-RB) as a covariate into analyses of sustained pupil size (note that transient 

evoked responses showed no such effect across the halves of the experiment).  

Using the 400-ms time-window around distracter-stimulus onset to probe for 

sustained differences in pupil size (see Figure 3A, left panel), pupil-size was clearly 

different across the two block types (RB: 5.65 vs. NRB: 5.49 mm), and a rANOVA with 

factors reward and congruency, as well as the co-variate of block order, yielded a highly 

significant main effect of reward (F(1,20) = 10.96; p=.003; ηp
2 = 0.35). As expected, 

congruency did not play a role at this point, showing neither a main effect nor an 

interaction with reward (both p > 0.25).  

Transient pupillary response. For analyzing transient pupillary effects above and 

beyond sustained block differences, the data was baseline-corrected and interrogated for 

differences in adjacent windows of 100 ms between distracter-stimulus onset and 2000 

ms thereafter, in order to also get insights into the temporal dynamics (see Figure 3B, left 

panel). In those 100-ms windows, we performed a two-way rANOVA with factors 

congruency and reward. The result pattern indicated a consistent absence for the main 

effect of reward (uncorrected p-values between 0.07 and 0.52; all FDR-corrected p > 0.4) 

and for the interaction of reward and congruency (all uncorrected p > 0.15; all FDR-

corrected p > 0.9; interaction not plotted in Figure 3B). In contrast, there were strong 

effects of congruency throughout most of the investigated time-window (uncorrected p-

values between 0.00001 and 0.08; FDR-corrected p-values between 0.0002 and 0.08). 

Interestingly, that included an early effect with four consecutive tests between 0 and 400 

ms being significant (uncorrected p-values between 0.008 and 0.034; FDR-corrected p-
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values between 0.016 and 0.043)1, and a later time-window between 800 and 2000 ms 

(uncorrected p-values between 0.00001 and 0.03; FDR-corrected p-values between 

0.0002 and 0.041). The timing of the very pronounced late effect is consistent with the 

latency of earlier reports of incongruency-related pupil-size changes (Laeng, Orbo, 

Holmlund, & Miozzo, 2011).   

EEG 

Distracter-related effects – N1 

In a first analysis, we looked at attentional effects during the first 200 ms that are 

exclusively related to distracter processing, with a focus on the N1 component (see Figure 

5A). For this we analyzed the data from the channels and the time-range representative 

of the average N1. This revealed no clear significant effect for reward (t(21) = 1.83; p = 

0.08), suggesting that early attentional processing was not clearly modulated by reward. 

Note that congruency is not a factor at this point, since the target arrow is present only 

afterwards. 

Post-target fronto-central reward difference 

We furthermore investigated reward-related differences in a fronto-central ROI 

comprising FC1, FCz, FC2, C1, Cz, C2. In this ROI, comparing RBrew vs. NRB trials in 

adjacent 50-ms windows between 300 and 700 ms with paired-samples t-tests (see 

Figure 6, top panel) yielded significant differences between 500 and 700 ms (uncorrected 

p-values between .001 and .011; FDR-corrected p-values between 0.01 and 0.02).  

Baseline alpha power 

Finally, we investigated whether reward-related block-level differences preceding 

distracter-stimulus processing manifested in the EEG data, akin to the sustained effects 

of pupil size. For this, we investigated alpha power in a 500-ms time window preceding 

                                                           
1 This early modulation by conflict is surprising; given that it starts before congruency is even 

established on a given trial (plus the sluggishness of the pupil response), this (small) modulation 
must reflect some other process. Specifically, it might relate to slight differential overlap from the 
previous trial (e.g., also in a fully random sequence, it could coincidentally happen that e.g., 
incongruent trials are slightly more frequently preceded by incongruent than congruent trials), 
and/or to slight imbalances in trial numbers (due to the exclusion of incorrect trials, there are 
slightly more congruent than incongruent trials in the analysis). 
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distracter onset in both blocks, without baseline-correcting it (Figure 7A). Indeed, we 

observed lower amplitudes of alpha power preceding distracter-stimulus onset in the RB 

vs. NRB blocks (F(1,20) = 11.53; p = 0.003; ηp
2 = 0.37), likely indicating a higher state of 

attention/vigilance globally in the RB blocks.  

 

EXPERIMENT 2 

Behavior 

In order to capture all possible reward effects in this paradigm, we used three separate 

two-way rANOVAs featuring factors of congruency and reward, the latter of which taking 

three different forms. Specifically, separate analyses aimed at looking at the across-block 

reward effects (NRB vs. RBrew), within-block reward effects (RBrew vs. RBnr), and an 

across-block context effects for the different types of no-reward trials (NRB vs. RBnr; see 

e.g., Chiew & Braver, 2013; Jimura, et al., 2010). 

Response times. Probing for across-block reward effects corresponding to Experiment 1 

(NRB vs. RBrew), we again observed a clear main effect of congruency (F(1,21) = 207.26; 

p < 0.001; ηp
2 = 0.91) whereas the main effect reward did not reach significance (F(1,21) 

= 3.17; p = 0.089; ηp
2 = 0.13). Yet, given the two-tailed nature of the test is not fully 

consistent with our directed hypothesis, we still consider this as supporting the presence 

of a reward effect. Finally, the two factors did not interact significantly (p > 0.85). Turning 

to within-block reward effects (RBrew vs. RBnr), clear main effects were found for 

congruency (F(1,21) = 185.7; p < 0.001; ηp
2 = 0.89) and also for reward (F(1,21) = 17.2; 

p < 0.001; ηp
2 = 0.45) were found, but no interaction (p > 0.9). Looking for across-block 

context effects (NRB vs. RBnr) in a corresponding rANOVA revealed a comparable main 

effect of congruency (F(1,21) = 185.9; p < 0.001; ηp
2 = 0.9), but no main effect of reward 

or interaction (both p > 0.9), indicating that the RBnr trials did not profit behaviorally from 

the general reward context when compared to NRB trials. 

Accuracy data. All three rANOVAs yielded significant main effects of congruency (all p < 

0.05), but no main effects of reward or interaction of the factors (all p > 0.4). In sum, the 

behavioral data indicate typical effects of congruency across blocks and conditions, with 

faster and more accurate responses for congruent than incongruent trials. Reward, in 
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contrast, had a specific effect on the response speed in RBrew trials only. Finally, 

accuracy was not affected significantly by reward, suggesting that the effects on response 

speed were not strongly driven by differential speed-accuracy trade-off. 

 

Figure 2. Behavioral results. A) Response-time results for Experiment 1 (left) and 

Experiment 2 (right). Both experiments showed clear effects of congruency, but only 

Experiment 2 displayed a reward benefit. B) Accuracy results. Both experiments showed 

clear effects of congruency, but neither displayed effects of reward. Error bars represent 

the within-subject standard error of the mean (Morey, 2008). 

Pupil size  

Sustained effects. We again first interrogated the data for sustained block-level effects 

using the raw data before baseline correction. As a first step, we checked whether there 

was again a block-type-independent pupil-size decrease over time, by averaging all cue 

and target-stimulus events in the first and second half of the experiment. This average 

indeed showed a consistent effect with larger pupils in the first than the second half of the 
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experiment (5.43 vs. 5.31 mm accordingly), which approached statistical significance (p 

= 0.051). Therefore, and in order to stay consistent with the analysis in Experiment 1, we 

decided to again include block order (RB-NRB-RB-NRB vs. NRB-RB-NRB-RB) as a 

covariate into analyses of sustained pupil size (note that transient evoked responses 

again showed no such effect). Using a simple one-way rANOVA additionally including this 

covariate for the cue time-window (see Figure 3A, right panel), we found strong 

differences between both trial types from the RB and the NRB (RBrew vs. NRB: F(1,20) 

= 26.1; p < 0.00001; ηp
2 = 0.57; RBnr vs. NRB: F(1,20) = 24.68; p < 0.00001; ηp

2 = 0.55), 

whereas the difference between RBrew and RBnr was not significant (p > 0.7). Similar to 

this, there was a strong effect of block type on sustained activity for the target data (see 

Figure 3A, middle panel), again reflected in strong differences of the two RB trial types 

against the data from the NRB (RBrew vs. NRB: F(1,20) = 20.9; p = 0.0002; ηp
2 = 0.51; 

RBnr vs. NRB: F(1,20) = 20.56; p = 0.0002; ηp
2 = 0.51), with no significant difference 

between RBrew and RBnr (p > 0.9). This analysis furthermore included the factor 

congruency, which however showed no significant main effects or interactions (all p > 

0.05), with the exception of a slight interaction between reward and congruency in the 

RBrew vs. RBnr comparison (F(1,20) = 4.5; p = 0.047; ηp
2 = 0.18). Given that congruency 

is not even a factor at this point (the target arrow gets presented after the end of the 

quantified interval), we consider this either spurious or reflecting a slight imbalance in 

previous trial type and/or in trial numbers due to the exclusion of incorrect trials (see also 

footnote 1). In summary, there were very consistent block effects that mostly did not seem 

to interact with the actual conditions in those blocks (i.e., it did not matter whether trials 

in the reward block were actual reward trials or not, as well whether they were congruent 

or not), as one would expect given that this information will only be reflected in the pupil 

with a delay. 
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Figure 3. Pupillometry results. A) Sustained effects before baseline correction for 

target-stimulus in Experiment 1 (left panel), target-stimulus in Experiment 2 (middle 

panel), and cues in Experiment 2 (right panel). Data was quantified between -200 and 

200 ms (dotted box). B) Transient effects after baseline correction. The inserts at the 

bottoms display the results of windowed 100-ms analyses (see dotted boxed; p-values 

on a log10 scale) for a basic 2x2 rANOVA with factors congruency and reward 

(Experiment 1), and for three separate rANOVAs for Experiment 2 (only main effects of 

congruency and reward are displayed; the interaction was never significant in either 

experiment). Uncorrected p-values are plotted, but FDR-corrected p-values showed 

qualitatively the same pattern (see main text). Grey vertical bars indicate the timing of 

events; in addition, the average timing of the subsequent event is displayed.  
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Transient effects - cues. In order to look at transient effects on pupil size following cue 

presentation, we baseline-corrected the data with regard to the respective pre-distracter-

stimulus period, and again used moving 100-ms time-windows starting at distracter-

stimulus presentation. This window ended at 1600 ms, when the light reflex of the 

subsequent stimulus started to arise. Here, we ran separate paired t-tests for the 

comparisons of the following trial types: NRB vs. RBrew, RBrew vs. RBnr, and NRB vs. 

RBnr trials. Throughout the investigated time-range, there were no differences between 

NRB and RBrew (all uncorrected p > 0.25; all FDR-corrected p > 0.6), and none between 

RBrew and RBnr (all uncorrected p > 0.07; all FDR-corrected p > 0.45). In contrast, tests 

between 1000 and 1600 ms revealed significant differences between NRB and RBnr 

(uncorrected p-values between 0.002 and 0.03; FDR-corrected p-values between 0.014 

and 0.05), signifying wider pupils for the NRB than for the RBnr trials. 

Transient effects - targets. For target-stimulus, we again investigated a time-window 

between distracter-stimulus onset and 2000 ms in steps of 100 ms. Similar to the 

behavioral analyses, we did so in three separate two-way rANOVAs with factors 

congruency and reward, with the latter factor differing across analyses (NRB vs. RBrew, 

RBrew vs. RBnr, NRB vs. RBnr) to capture different reward-related aspects. None of 

these analyses ever showed an interaction between congruency and reward (all 

uncorrected p > 0.25; all FDR-corrected p > 0.7). The respective results for the main 

effects are plotted at the bottom middle panel of Figure 3B. This revealed a couple of 

consistent results. Specifically, a main effect of congruency arose in a rather prototypical 

fashion starting around 1000 ms post-stimulus, featuring highly significant results 

throughout the rest of the time-window (uncorrected p-values ranging from 0.0003 to 0.05; 

FDR-corrected p-values between 0.002 and 0.09). In contrast, the main effect of reward 

displayed different time-courses for the different analyses. Specifically, when looking for 

across-block reward effects (NRB vs. RBrew trials, as in Experiment 1), a main effect of 

reward arose after 400 ms and stayed significant for the remaining time-window 

(uncorrected p-values between 0.0003 and 0.02; FDR-corrected p-values between 0.003 

and 0.03). The corresponding comparison aimed at the within-block reward effects 

(RBrew vs. RBnr) yielded an even earlier effect reaching significance already around 100 

ms and staying significant until the end of the time-window (uncorrected p-values between 
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0.005 and 0.03; FDR-corrected p-values between 0.025 and 0.033). Finally, the analysis 

aimed at across-block context effects (NRB vs. RBnr) seemed to display a short period 

between 100 and 300 ms with significant reward effects (uncorrected p-values between 

0.03 and 0.05), which however did not survive FDR correction (all FDR-corrected p > 

0.45), and also the rest of the time-window displayed the lack of significant effects 

throughout (all uncorrected other p > 0.09; all FDR-corrected p > 0.6).  

EEG 

Cue-related effects 

Our a-priori interest concerned the cue-related P3 and the subsequent CNV (see Figure 

4). Given that congruency is not a factor at this stage yet, we ran three separate paired-

sample t-tests to capture the different reward-related aspects. For the P3, this showed 

significant effects for both comparisons of the RBrew trials with the two different types of 

non-reward trials (RBrew vs. NRB: t(21) = 3.7; p = 0.001; RBrew vs. RBnr: t(21) = 2.9; p 

= 0.009), but no difference between NRB and RBnr (p > 0.2), indicating a P3 increase 

that was rather exclusive to RBrew trials. The CNV, in turn, showed significant differences 

for all three comparisons (RBrew vs. NRB: t(21) = 5.5; p < 0.0001; RBrew vs. RBnr: t(21) 

= 2.5; p = 0.019; RBnr vs. NRB: t(21) = 3; p = 0.007). This indicates that, in contrast to 

the P3 effect, the CNV displayed a graded effect across all three conditions (RBrew > 

RBnr > NRB).  

 

Figure 4. Cue-related effects in Experiment 2. A) P3 results time-locked to cue 

presentation. B) CNV results time-locked to cue presentation. In both panels, the time-
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course reflects the average data in the ROI highlighted in the topographic maps (dotted 

elipse). Topographic maps reflect differences across conditions. Note that the scale of 

those maps differs across plots. The quantified time-range is indicated by a dotted box. 

 

Distracter-related effects – N1 

When performing an analysis corresponding to that of Experiment 1 for the visual N1 

component (see Figure 5B), but split for the three different comparisons possible in 

Experiment 2, we found a more negative amplitude for both types of trials in reward blocks 

compared to the non-reward blocks (RBrew vs. NRB: t(21) = 4.1; p = 0.001; RBnr vs. 

NRB: t(21) = 2.6; p = 0.015). In contrast, the two trial types from the reward blocks did not 

differ significantly (RBrew vs. RBnr: p > 0.1). Note that congruency is not a relevant factor 

at this point, since it precedes the presentation of the target arrow. 

 

Figure 5. Distracter-related N1 component. A) Experiment 1. B) Experiment 2. In both 

panels, the time-course reflects the average data in the ROIs highlighted in the 

topographic maps (dotted elipses). The topographic maps reflect the average of 

conditions. The quantified time-range is indicated by a dotted box. 
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Post-target fronto-central reward difference 

We used the same approach as in Experiment 1 to characterize reward differences in the 

same fronto-central ROI using the three different paired-samples t-tests (see Figure 6, 

lower three panels). This yielded consistent differences throughout the 300-to-700 ms 

period for the RBrew vs. NRB comparison (uncorrected p-values between 0.0000007 and 

0.005; FDR-corrected p-values between 0.000006 and 0.005) as well as for the RBrew 

vs. RBnr comparison (uncorrected p-values between 0.0001 and 0.02; FDR-corrected p-

values between 0.0009 and 0.02). In addition, the RBnr vs. NRB comparison yielded an 

early difference between 300 and 450 ms (uncorrected p-values between 0.038 and 

0.043; FDR-corrected p = 0.05) and a late difference between 500 and 700 ms 

(uncorrected p-values between 0.0002 and 0.0005; FDR-corrected p-values between 

0.0007 and 0.001). 

Baseline Alpha power 

In an equivalent analysis to that in the first experiment, we investigated baseline alpha 

power to characterize block-level differences in neural activity (Figure 7B/C). For this, we 

initially turned to the time range preceding the cue-stimulus, again quantifying alpha 

power in a 500-ms time window. In contrast to the distracter-preceding time window in 

Experiment 1, we did not observe a block-based difference (p > 0.1). Turning to a 

corresponding analysis of alpha power preceding distracter onset, we did observed a 

trend-level difference for the RBrew vs. NRB comparison (F(1,20) = 4.17; p = 0.054; ηp
2 = 

0.17) whereas neither the RBrew vs. RBnr nor the RBnr vs. NRB comparison yielded a 

significant difference (both p > 0.1).   
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Figure 6. Fronto-central reward-related differences. A) Experiment 1. B) Experiment 

2. Throughout the figure, dotted lines above the maps indicate the significance level of 

the respective reward comparison. Note that the scale of the topographic maps differs 

across different plots. Uncorrected p-values are plotted, but FDR-corrected p-values 

showed qualitatively the same pattern (see main text). 
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Figure 7. Baseline Alpha power. A) Experiment 1. B) Experiment 2 cue-locked. C) 

Experiment 2 distracter-locked. Differential alpha power is displayed as the average 

signal of Pz and POz (see ellipse in topographic maps for location). The inserts show 

topographic distributions of the average of alpha power in the 500-ms baseline period 

(see dashed boxes) across the respective conditions, illustrating that the chosen ROI 

covered the raw alpha-power maximum in all conditions.  

 

BETWEEN-EXPERIMENT COMPARISONS 

Behavior 

We directly compared the behavioral results from the two experiments. Given power 

considerations in this between-subject context, and the fact that there were no differences 

between the different no-reward trials (NRB vs. RBnr), we averaged those data and 

compared them with the reward-related trials (RBrew) in a two-by-two rANOVA with the 

additional between-subject factor Experiment. This analysis confirmed that in Experiment 

1, participants responded faster in general (F(1,42) = 4.83; p = 0.034; ηp
2 = 0.1), which 

went along with globally reduced accuracy (F(1,42) = 6.62; p = 0.014; ηp
2 = 0.14). 

Importantly, the reward effect on RT was indeed larger in Experiment 2 than (the absent 

effect) in Experiment 1 (F(1,42) = 4.35; p = 0.043; ηp
2 = 0.09).  

 

Pupil size  

Sustained effects. In parallel to the behavioral data analysis, we again collapsed across 

the two types of no-reward trials (NRB and RBnr) in order to increase power and decrease 

complexity given that there was no clear difference between these conditions. We then 

performed a 2x2 rANOVA with the within-subject factors reward and congruency, and the 

additional between-subject factor experiment. For sustained effects, this analysis 
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furthermore included the factor of block-order as a covariate. Comparing the target-

stimulus time-range across experiments, this analysis did not reveal a significant 

interaction with experiment for the main effects of reward, congruency, or their interaction 

(all p > 0.1), indicating comparable modulations of sustained pupil size by reward. 

Transient effects. For transient effects, again analyzed in an equivalent fashion across 

100-ms windows and collapsing across NRB and RBnr trials, results indicated early 

interactions between experiment and congruency (between 0 and 600 ms for uncorrected 

p-values between 0.003 and 0.037, and between 100 and 300 ms for FDR-corrected p = 

0.03). More importantly, experiment interacted with reward throughout the entire time-

window with the exception of the first 100 window (100-2000 ms:  uncorrected p-values 

between 0.0001 and 0.032 and FDR-corrected p-values between 0.001 and 0.034). 

 

EEG 

Distracter-related effects – N1. For this comparison, we collapsed across the two types 

of reward trials in Experiment 2 (RBrew and RBnr) that did not differ, and performed two 

independent-samples t-tests comparing the resulting conditions in the RB block and NRB 

block with their counterparts in Experiment 1. Despite the fact that the N1 amplitudes 

were numerically larger in Experiment 1 then in Experiment 2, the respective differences 

across experiments did not reach statistical significant (both p > 0.5).  

Post-target fronto-central reward difference. Given the differences also between the RB 

conditions, we did not collapse across conditions for the data of Experiment 2, and limited 

ourselves to the same between-block comparison in both experiments. To this end, we 

ran independent-samples t-tests for the resulting across-block reward differences 

(RBrew-minus-NRB) to compare them across experiments. This analysis yielded 

significant differences across the two experiment between 300 and 450 ms (p-values 

between 0.008 and 0.019; FDR-corrected p = 0.05), indicating that there was a stronger 

reward-related fronto-central difference in Experiment 2 than in Experiment 1 in this early 

time-range. 

Baseline alpha power. When comparing the RB vs. NRB block differences in baseline 

alpha power across experiments, we failed to observe significant differences both when 
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comparing the pre-distracter data from Experiment 1 with the corresponding pre-distracter 

data from Experiment 2, as well as when comparing the pre-distracter time range from 

Experiment 1 with the pre-cue time-range of Experiment 2 (both p > 0.1).  

 

Discussion 

In the present report, we compared data from two experiments that associated reward in 

different fashions with a Flanker task, investigating markers of effort to characterize its 

role in bringing about reward-related behavioral benefits. Specifically, we used a pure 

block-based reward manipulation in Experiment 1, with the whole series of targets in a 

block either being reward-related or not. In Experiment 2 we used trial-based cues, while 

still maintaining the general block structure with one block type containing exclusively no-

reward trials, and the other block type containing reward-related and no-reward trials. 

Experiment 1 yielded no behavioral reward benefit, whereas Experiment 2 did. We found 

increased sustained pupil size in both experiments for the reward-related blocks, with an 

additional transient reward-related increase in pupil size only in Experiment 2. Additionally 

comparing the EEG data from the two experiments, the clearest difference was a fronto-

central reward-related difference that arose earlier in the second experiment, likely 

reflecting reward modulations of target selection. The present data therefore converge 

with earlier work suggesting that reward triggers a more proactive control state involving 

enhanced preparatory effort, and indicate that in the present task context a transient form 

of preparatory effort was more relevant for behavior than a sustained form. 

Distinguishing sustained and transient pupil size as markers of effort 

Pupil size has long been considered as a rather specific correlate of mental effort (Beatty, 

1982b; Kahneman & Beatty, 1966), and when it scales with task difficulty, this is assumed 

to reflect recruitment of effort in response to such task demands (e.g., Boehler, et al., 

2011). In addition, it has been shown to reflect both transient (Alnaes, et al., 2014; Laeng, 

et al., 2011) and sustained increases in effort (Cabestrero, Crespo, & Quiros, 2009; 

Massar, et al., 2016), as well as their co-existence (Chiew & Braver, 2013). Moreover, 

empirical data from a task context also involving a reward-based incentive scheme 

suggest that pupil size indeed reflects more closely the effort triggered by reward prospect 
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than the reward value itself (Massar, et al., 2016), although others have argued in a 

comparable context that it might partly also reflect value information and their more 

affective representation (Chiew & Braver, 2013). Given the fact that reward also has an 

affective dimension (Notebaert & Braem, 2015), a clear distinction of effort-related and 

affect-related aspects is not easily possible in reward-related tasks like the present ones. 

Yet, it is important to note that the present tasks do not strongly emphasize the affective 

dimension of reward manipulations, in that reward feedback is only given intermittently, 

and that neither targets nor cues are not directly linked to reward (as would be, e.g., cues 

presented as dollar signs).  

In the present experiments, we found a dissociation between reward modulations 

of sustained vs. transient effects. Specifically, Experiment 1 featured large sustained 

differences in pupil size that were comparable in size to a recent study that linked 

sustained effort-related increases in pupil size to increased performance in a vigilance 

task (Massar, et al., 2016). Yet, in contrast to that study, our results in Experiment 1 did 

not show any signs of a behavioral benefit despite the sizeable sustained pupil size 

difference between the reward-related and the no-reward block. Such a sustained effect 

of pupil size was also observed in our Experiment 2. Importantly, however, this 

experiment furthermore showed clear transient reward effects on pupil size as well (see 

also Chiew & Braver, 2013), which jointly seems to suggest that the transient pupil 

response reflects a process that is more relevant for task performance in the present task. 

This notion is in fact consistent with classic work on pupil size and auditory vigilance 

performance that has also found that transient responses in pupil size were linked to 

behavioral performance, whereas sustained pupil size was not (Beatty, 1982a). Yet, 

whether or not sustained pupil size is related to performance might also be a function of 

the investigated task, with recent data, for example, showing a tight relationship between 

slow fluctuations in pupil size, brain network connectivity states, and task performance in 

an n-back task (Shine, et al., 2016). Still, given the frequent co-occurrence of sustained 

and transient pupil-size modulations, which are not always disentangled (Massar, et al., 

2016), it is not always clear in how far transient pupil-size modulations might not also be 

involved in contexts that are mainly characterized by sustained pupil-size differences.     
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Pupil size has traditionally been linked to activity in the norepinephrinergic system 

(for a review, see Eckstein, et al., 2017; but, see also Reimer, et al., 2016 for a possible 

dissociation between this link for transient and sustained pupil size), with phasic and tonic 

firing modes of this system being reflected in transient vs. sustained pupil size (Aston-

Jones & Cohen, 2005; Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010; Murphy, 

O'connell, O'sullivan, Robertson, & Balsters, 2014; Murphy, Robertson, Balsters, & 

O'Connell R, 2011). While a joint increase in sustained and transient pupil-size as in the 

present Experiment 2 might not be fully consistent with theoretical accounts that often 

suggest an inverse relationship (Aston-Jones & Cohen, 2005), the present results are 

similar to an earlier strongly related report that used a reward manipulation in an AX 

continuous performance task (Chiew & Braver, 2013). What seems more important, in 

the present context, however, is the dissociation across experiments, where Experiment 

2 featured increases in both sustained and transient pupil size related to reward, whereas 

Experiment 1 only showed the former. 

In the context of cognitive effort and pupil size, it is interesting that pupil size has 

been linked most clearly to the NE system, whereas accounts of cognitive effort usually 

emphasize the role of the dopaminergic (DA) system (Shenhav, et al., 2017; Westbrook 

& Braver, 2016). At the same time, the NE and DA system are highly interrelated in their 

function (for a review, see Xing, Li, & Gao, 2016), with recent data suggesting dissociable 

but related functions in the context of effort (Varazzani, San-Galli, Gilardeau, & Bouret, 

2015). Hence, the apparent disconnect between the concepts of cognitive effort, pupil 

size and the NE and DA systems might in fact be overemphasized, but rather point to the 

cooperative functioning of these two key neuromodulator systems in cognitive effort, 

which future research should further disentangle (see also Chiew & Braver, 2013).    

A striking feature of the transient reward effects on the pupil in Experiment 2 was 

their latency, starting more or less simultaneously with target presentation when 

comparing reward-related trials with the no-reward trials from the same blocks, and after 

approximately 400 ms when compared with the no-reward trials from the no-reward 

blocks. This contrasts with the typical latency of (lighting-independent) trial-based pupil-

size effects as well as with that of the congruency effects in the present work. The latter 

started to arise (consistently and strongly) around 1000 ms after stimulus onset, which is 
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very similar to earlier work (Laeng, et al., 2011). In this context it is critical to realize that 

the relevant information for congruency was only available at target presentation, 

whereas all relevant information about reward was available already at cue presentation, 

and hence approximately 1.5 seconds before stimulus onset. Although the cue-locked 

analysis did not show strong transient effects of this kind yet, the target-locked effects are 

clearly related to this reward-related cue information, and we assume that at least the 

early portions of the transient pupil-size differences in the target time-range still relate 

more strongly to the cue information than to the processing of the target. As we will argue 

below, we believe that the temporal set-up of Experiment 2 favors transient increases in 

preparatory effort by reward, which in turn might be critical in bringing about behavioral 

benefits in the present task context.  

 
Transient preparatory effort reflected in the EEG 

Since we believe that the behavioral reward benefit and the transient reward-related 

modulation of pupil size in Experiment 2 both relate to transient preparatory effort 

triggered by the reward cues, it was important to further corroborate the presence of such 

processes. For this, we turned to the EEG data, and in particular the P3 and CNV 

components elicited by the cue-stimuli. P3 modulations are typical in reward tasks and 

likely reflect the registration of and orientation to this relevant information (e.g., Goldstein, 

et al., 2006; Hughes, Mathan, & Yeung, 2013; Schevernels, et al., 2014). Importantly in 

the present context, the P3 was only clearly enhanced for the actually reward-related 

trials, suggesting that this component reflected the registration of reward prospect.  

 Turning to the CNV, classic work has linked it to enhanced task preparation 

(Tecce, 1972), and it has been explicitly linked to preparatory activity in fronto-parietal 

control areas (Grent-'t-Jong & Woldorff, 2007). Reward-related enhancements of the CNV 

have been reported before, and usually go along with a behavioral benefit in the 

subsequent task (Schevernels, et al., 2014; van den Berg, et al., 2014). The study by van 

den Berg et al. (2014), in particular, is closely related to the present Experiment 2, in that 

it combined reward-predictive cues (vs. no-reward cues, and control cues) with a Stroop 

task. Those authors also observed clear enhancements of the CNV for reward, and 

furthermore found a specific relationship to subsequent response speed.  
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Effort is often conceptualized, at least in part, in a way that is related to enhanced 

cognitive control, likely in a manner in which the dopaminergic system plays key roles 

(Braver & Cohen, 2000; Braver, Gray, & Burgess, 2007; Westbrook & Braver, 2015, 

2016). Crucially, it seems that incentives can influence this process and lead to 

performance enhancements based on greater cognitive control (Botvinick & Braver, 2015; 

Notebaert & Braem, 2015), in particular by shifting to a (more effortful) proactive control 

mode (Braver, 2012). In this regard, the enhanced CNV in the present Experiment 2 (and 

earlier related work) fits very well, since it is not just believed to reflect such control 

processes, but because it has also been suggested to be related to activity in the 

dopaminergic system (Linssen, et al., 2011). Due to its non-immediate mode of operation 

(Seamans & Yang, 2004), dopaminergic effects would not be expected to arise 

instantaneously. Consistent with this, it has recently been discussed, how reward-cue 

information would take a couple of hundreds of milliseconds in order to take an effect 

(Chiew, Stanek, & Adcock, 2016; but see also Janssens, De Loof, Pourtois, & Verguts, 

2016), as was possible in the present Experiment 2. 

In this context of task preparation, the absence of an interaction between reward 

and congruency in the present experiments is relevant (concerning behavioral results and 

the majority of pupillometry and EEG results). Such interactions are sometimes found in 

comparable contexts (e.g., Krebs, et al., 2013; Krebs, Boehler, & Woldorff, 2010; 

Padmala & Pessoa, 2011), but not always (e.g., Krebs, et al., 2011; van den Berg, et al., 

2014). It seems likely that this depends on specific task features, related to what kind of 

information can be enhanced or inhibited in order to specifically reduce the size of the 

incongruency effect under reward (discussed in van den Berg, et al., 2014). In a more 

global context, however, and with reference to enhanced proactive control and 

preparatory effort, it seems quite likely that an interaction between reward and 

congruency could arise if both aspects (reward availability and congruency) would be 

cued, rather than just reward, as has been shown before (Chiew & Braver, 2016).   

Finally, we investigated block-level differences in alpha power preceding the task-

relevant stimuli in the two experiments. Alpha power is generally linked to vigilance and 

attention, with lower amplitudes signifying more attentive states (Cajochen, et al., 1995). 

Importantly, in order to characterize event-independent modulations, we did not baseline-
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correct the data. Based on this data, we were interested to find possible 

electrophysiological correlates of the sustained pupil size effect that was consistently 

present in both experiments, and in all phases of the second experiment. This was clearly 

the case in Experiment 1, where we observed a strong attenuation of alpha power 

preceding targets in the reward-related compared to the no-reward blocks. Yet, counter 

to the clear presence of sustained pupil-size modulations by reward also in both trial 

phases in Experiment 2, we observed only equivocal evidence concerning concomitant 

alpha power modulations. Specifically, we did not observe such modulations preceding 

cue-stimuli, but a (trend-level) effect preceding target-stimuli. One could speculate that 

reward led to a more transient form of preparatory effort in Experiment 2 than in 

Experiment 1. Furthermore, the result pattern seems to hint at a dissociation between 

processes related to sustained pupil size (increased by reward throughout both 

experiments) and alpha power (most clearly modulated in Experiment 1). Yet, it is 

important to realize that the present analysis of alpha power was rather post-hoc 

(modeled on the sustained pupil size analysis), and that a direct comparison across 

experiments did not yield strong support for a quantitative difference. More work is 

therefore needed to explore the role of block-level alpha power modulations by reward 

and their relationship to sustained pupil size. 

 
Implementation of a behavioral benefit during target processing 

In the current experiment, we used a Flanker task to present distracter arrows consistently 

200 ms before the target arrows, which was originally intended to specifically look 

exclusively at effects of distracter processing in the first 200 ms dissociated from later 

target processing (Appelbaum, et al., 2012). We hypothesized that in a reward context, 

less attention would be allocated to the distracter arrows, reflected by a decreased 

attention-related N1 component (Hopf, Vogel, Woodman, Heinze, & Luck, 2002; Vogel & 

Luck, 2000). A decrease in attentional allocation was expected based on previous work 

of ours that showed such strategic down-regulation of attention in a conflict-adaptation 

context (Bombeke, et al., 2017).  

Yet, the resulting data pattern was more complicated. Specifically, Experiment 1 

did not show any clear modulations of this early attentional component by reward. 
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Experiment 2, in turn, did, but this was dominated by a block effect, with similarly 

enhanced amplitudes for both trial types in the reward blocks. Hence, the modulation was 

in fact even going in the opposite direction of what we expected. While this is interesting 

from the standpoint of a context effect (Jimura, et al., 2010), it clearly does not map onto 

the behavioral results. Rather, it might represent a within-trial context effect reflecting the 

inability to temporarily down-regulate the processing of a given stimulus that is not task-

relevant when it is rapidly followed by a task-relevant one, which one would want to attend 

to particularly strongly (Langford, Schevernels, & Boehler, 2016; Schevernels, et al., 

2015). 

An additional context effect that is important in the mixed block-event-related 

reward design implemented in Experiment 2 refers to differences between no-reward 

trials from the no-reward vs. from the reward block. Specifically, the latter have been 

shown “profit” from the context of reward trials in different task contexts, which was 

interpreted as indicating increased sustained proactive control in reward contexts (Chiew 

& Braver, 2013; Jimura, et al., 2010). In this regard, the present data were slightly 

inconclusive. Behaviorally, there was no indication of such a block-level context effect, 

and also the transient pupil response showed no such effect. In contrast, the EEG data 

indicated a reward-context effect on the fronto-central P3-like component. Specifically, it 

was more pronounced for RBnr trials than for NRB trials, which, however, apparently had 

no effect on behavior. As such, it is interesting to note that the latency of the pronounced 

part of this effect was comparable to that of the block difference in Experiment 1, which 

also lacked a behavioral reward effect. This raises the possibility that in Experiment 2, a 

block-level reward context effect merely did not manifest behaviorally potential due to task 

dynamics (e.g., the overall high response speed). Still, taking the absent behavioral 

context effect at face value, it is worth speculating about differences of reward association 

to a task, and whether such differences could drive the presence or absence of block-

level reward context effects. Among the many features that can vary between different 

experiments investigating reward (Bonner, et al., 2000; Dambacher, Hubner, & Schlosser, 

2011; Krebs & Woldorff, 2017), the type of reward feedback stands out as a clear 

difference between the present and earlier studies. Specifically, in the present work, as 

well as in other work where we did not find clear indications of reward context effects 
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(Krebs, et al., 2010; Schevernels, et al., 2015), we have used cumulative feedback, 

whereas studies that found such context effects usually provide trial-level feedback 

(Chiew & Braver, 2013; Jimura, et al., 2010). Given the important theoretical role that 

context effects play concerning reward modulations of proactive control (Braver, 2012), it 

will be important going forward to investigate which factors determine whether they arise 

or not.   

Turning to the time-window after the target arrows were presented, in accordance 

with earlier related work (Krebs, et al., 2013; van den Berg, et al., 2014), we also explored 

later modulations that are likely still related to attentional processes, and in this case 

probably with target selection. Specifically, the reward-minus-no-reward difference in 

Experiment 1 yielded a positive modulation over fronto-central sites resulting from a 

stronger positive deflection in reward-related trials, very similar to the respective 

difference described by van den Berg et al. (2014), albeit a bit later. In the present 

Experiment 2, however, the similarity to the results of van den Berg et al. (2014) even 

extended to the latency and duration of the effect. Importantly, that was the case when 

comparing reward-related trials both to no-reward trials within the reward-related blocks 

and to trials from the no-reward blocks. This P3-like (maybe specifically P3a-like) 

component likely reflects enhanced processing of the targets under reward (Goldstein, et 

al., 2006; Polich, 2007). The key aspect here is that this difference arose much earlier in 

Experiment 2 than in Experiment 1, suggesting that it is only relevant to behavior if it 

arises fast enough. Finally, there was a similar modulation also for the comparison of 

different no-reward trials from the two block types, with larger amplitudes for no-reward 

trials from reward blocks, but again relatively late. While again representing a potentially 

interesting context effect, it clearly did not affect behavior.  

The absence of a behavioral benefit in a pure block reward context 

It is important to contextualize the absence of a behavioral benefit in the pure block-based 

context of Experiment 1. While maybe not as consistently as cueing-based approaches, 

block-based reward schemes are nevertheless also known to bring about behavioral 

benefits (e.g., Kouneiher, et al., 2009; Locke & Braver, 2008; Massar, et al., 2016; 

Paschke, et al., 2015). Importantly, such effects could in fact rely on similar mechanisms 

as characterized in the present Experiment 2. Specifically, even under the notion that 
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transient preparatory increases of effort would be needed to achieve a behavioral benefit, 

participants could still have tried to specifically prepare for all trials in the reward-related 

block of Experiment 1 based on the relatively regular trial timing (although the inter-target 

interval was a bit longer than the cue-target interval). Interestingly, this did not seem to 

be the case. In addition, it is important to note that in transforming the logic of Experiment 

1 into a classic cuing experiment for Experiment 2, we additionally included no-reward 

trials, as is customary. Naturally, the presence of no-reward trials could have accentuated 

the actual reward-related trials, and it seems possible that their absence in Experiment 1 

might have contributed to the absent behavioral benefit. Yet, even if one assumes that 

dropping the no-reward trials from the reward-related blocks in Experiment 2 could have 

abolished the behavioral reward effect, we would expect that it would simultaneously 

abolish the transient preparatory effort effects found in Experiment 2, which we consider 

the main result of the present work. 

When considering the differences between Experiments 1 and 2, it is obvious that 

participants in Experiment 2 had a slightly more conservative speed-accuracy tradeoff 

(for a relevant discussion, see Chiew & Braver, 2011). It generally seems possible that 

faster performance in Experiment 1 relates to sustained performance that is not 

interrupted and/or accentuated by other events like cues or feedback. This contrasts with 

the design of Experiment 2, where cue-stimuli constantly interrupted the sequence of 

targets and allowed for reward-trial-specific preparation. Although some studies have 

started to investigate the effect of reward on speed-accuracy tradeoffs (e.g., Dambacher, 

et al., 2011; Hubner & Schlosser, 2010), a fuller understanding of which factors drive such 

differences in speed-accuracy tradeoffs is still needed. At the same time, given the 

numerous aspects that differed meaningfully between the different conditions in 

Experiment 2 (and in comparison with Experiment 1), pertaining in particular markers of 

transient preparatory effort and attentional selection, we do not think that the present 

reward benefit is solely a function of a speed-accuracy tradeoff. In addition, it is important 

to stress that participants were instructed the same way in both experiments, so that one 

might rather consider the speed-accuracy tradeoff differences as an outcome variable of 

the experiments.  
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Conclusion 

In summary, the present data suggest that behavioral reward effects likely depend on 

whether or not participants succeed in ramping up preparatory effort ahead of the task. 

As such, the present work strongly converges with prominent theoretical models that 

suggest that reward triggers enhanced effortful proactive control (Braver, 2012; Braver, 

et al., 2007; Westbrook & Braver, 2016), which have already received significant empirical 

support (e.g., Braver, Paxton, Locke, & Barch, 2009; Chiew & Braver, 2013; Jimura, et 

al., 2010). The present data seem to add that under certain task contexts like the present 

one, transient increases in preparatory effort are more relevant for achieving a behavioral 

benefit than sustained ones.  

Going forward, it will be important to investigate in how far these relationships 

remain intact under various task and reward regimes. In addition, future work should 

attempt to directly link the pupillometry and EEG data, which has significant potential to 

further understand the relationship of the underlying processes (Eckstein, et al., 2017). 

To our knowledge, only very few studies have thus far attempted to directly integrate data 

from these modalities through covariational within-subject analyses (Hong, et al., 2014; 

Murphy, et al., 2011; see also Wolff, Muckschel, Ziemssen, & Beste, 2018). Interestingly 

from the perspective of the current data, this work has related variations of sustained pupil 

size with fronto-central P3 modulations, both of which were individually modulated in the 

present work. Given their promising results, as well as the power of single-trial-oriented 

covariational approaches (Hubner & Schlosser, 2010; Pernet, Chauveau, Gaspar, & 

Rousselet, 2011), a further integration of these complimentary data modalities holds 

significant promise for better understanding the relationship between pupil size, 

motivation, and effort in the future.   
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