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Abstract—Microbial Fuel Cell (MFC) power production and
Microbial Electrolysis Cell (MEC) organic production depend
strongly on their dynamic environment conditions, like inlet
substrate concentration, temperature, etc. This work presents
a discrete extremum seeking controller to quickly tune the
MFC and MEC electrical settings in order to achieve maxi-
mum performance irrespective of these dynamic environment
conditions using the successive parabolic interpolation iteration
scheme. The controller converges in about 3.5 days within 5%
of the cell’s maximum performance and in about 5.4 days
within 1% for an established MFC model. The proposed discrete
parabola controller converges 3x faster than the state-of-the-
art controllers without requiring a time-consuming calibration
procedure. Equally fast convergence speed is achieved on a MEC
model.

I. INTRODUCTION

For a true circular economy, it is essential to recover the
otherwise lost energy and chemicals in waste streams. Both
are in an ever increasing rate consumed and only available in a
finite amount. Microbial electrochemical technologies (METs)
are a promising novel technology to process organic waste
water streams. METs generate bio-electricity directly from
organic waste in a microbial fuel cell (MFC) setup. Another
possibility is a microbial electrolysis cell (MEC) configuration.
This configuration uses the extracted energy to produce high-
value organics such as hydrogen gas with a minimal amount
of external energy [1].

The current major drawback of MFCs is their low volu-
metric power density. Therefore, to make MFCs a competitive
renewable technology, a lot of research focuses on the impact
of the bioreactor structure, the used materials for the electrodes
and the microbial community on the volumetric power density
[2]. Recent MFCs achieve volumetric power densities of
225Wm−3, although on a small scale (25ml) and in a well-
controlled lab environment [3].

Similarly to MFCs, state-of-the-art MECs suffer from low
rates of production to volume ratio which has motivated the
community to research improved reactor designs. [4].

Compared to the lab environment, not all operating condi-
tions are observable or controllable in an industrial context.
The wastewater composition typically varies uncontrollably
while it has a major influence on the power generated (MFC)
or the organics produced (MEC). Therefore, both require a

run-time control scheme to automatically and dynamically de-
termine the electrical settings for maximum power production
or optimum organic production [5].

For MFCs, various maximum power point tracking al-
gorithms have been developed [5]. The classic extremum
seeking method uses a perturb & observe scheme to derive the
electrical load for which power is maximized [6]. Although
this method is straightforward to implement, convergence
speed is inverse proportional to accuracy and convergence
takes very long in practical settings. More advanced methods
[7]–[9] adapt the integrator gain based on a priori available
calibration knowledge between the impact of the environment
conditions and the maximum producible power. In [7], a
second order relation is extracted between the inlet substrate
concentration and the maximum power while [8] and [9] use
a neural network (NN). Convergence is remarkably faster
using this calibration knowledge. In practice however, the
relation between the environment conditions and the maximum
producible power is unknown and variable, thus requiring
repetitive time-consuming on-line training.

A totally different method is the multi-unit optimization
[10]. This method requires two or more identical MFCs, who
operate with a minor offset on their operating settings between
each other. From this offset, the gradient of the produced
power is estimated using a finite difference approximation.
Fast convergence occurs because the transients of the systems
are compensated due to the multi-unit setup [11]. In practice
it is however near impossible to have two identical setups.
This mismatch is resolved with a time-consuming calibration
method that characterizes the intrinsic MFC differences [12].
The repetitive time-consuming calibration due to the inherently
slow, nonlinear, time-varying dynamics of MFCs [13] limits
the practical adaptation of these controllers.

There are only a few control methodologies proposed for
MECs [5]. In [14], the classical perturb & observe scheme is
used with the same drawback, i.e. very slow convergence, as
with MFCs. In [15], a proportional integral derivative (PID)
controller is used with adaptive gain to set the electrical
settings. These optimal electrical settings are however derived
from the optimization of a MEC model and thus only valid in
a static environment.

This work presents a new discrete-based extremum seek-
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Fig. 1. Discrete extremum seeking control topology with sampling time (Ts)
for (a) a MFC, recovering electrical power (P) out of the inlet substrate
concentration (S) and (b) a MEC, producing hydrogen gas (H2) out of S
at a certain temperature (T), pH, etc.

ing controller based on the numerical method of successive
parabolic interpolation to automatically derive the optimal
electrical settings for a flexible unimodal optimization function
(Fig. 1). The control scheme treats the system as a black box,
thus not requiring any calibration knowledge, and iteratively
approximates the optimization function with a parabola. With
minimal sampling points, and hence minimal convergence
time, the algorithm converges to the optimum, both for a MFC
or a MEC. Simulation studies show that convergence occurs
3x faster than state-of-the-art extremum seeking controllers
without loss of precision of the optimal settings.

This paper is organized as follows. Section II describes the
system, the discrete controller architecture and the optimiza-
tion problem. Section III discusses in detail the operation of
the discrete parabola controller. Section IV shows the results of
the simulation study. Finally, section V compares the proposed
technique with the current state-of-the-art.

II. MAXIMIZING MFC POWER AND OPTIMIZING MEC
ORGANIC PRODUCTION

A redox reaction, whereby electrons are transported, occurs
within both a MFC and a MEC. At the biotic anode, the
catalytic activity of micro-organisms oxidizes the carbon of
the organics to CO2. At the cathode of a MFC, oxygen is
reduced hereby releasing electrical power to the surrounding.
At the cathode of a MEC however, no oxygen is present
and, with the aid of a small amount of external power and
possibly micro-organisms, high-value organics are formed.
The most basic setup uses an abiotic cathode to produce
hydrogen gas. An equivalent ion current flows through the

liquid, separated by a membrane, to close the electrical loop.
The generated power (MFC) or chemical production rate
(MEC) strongly depends on the (assumed) controllable electri-
cal settings and (assumed) uncontrollable operating conditions
like inlet substrate concentration, temperature (T), pH, etc.
For each of these conditions, our proposed discrete parabola
controller determines the electrical settings (the load resistance
Rl) for maximum power generation or (the applied external
voltage Ee) for optimal chemical production rate (Fig. 1).
The controller architecture is similar for a MFC and a MEC,
although the optimization function is different.

This optimization problem is further specified based on the
MFC model of [16], used for simulation and comparison. For
a given MFC state x ∈ R4 (substrate, anodophilic microor-
ganisms, methanogenic microorganisms and oxidized mediator
fraction) and input u ∈ R2 (inlet substrate concentration
(S) and load resistance (Rl)), the constrained optimization
problem becomes:

max
u

JMFC(x, u) (1a)

s.t. FMFC(x, u) = 0, (1b)

where JMFC is the optimization function equaling the pro-
duced power (with maximum equaling J∗

MFC) and FMFC is
the system dynamics. This constrained optimization problem
is converted to an unconstrained one with minimal additional
assumptions to guarantee convergence for the proposed itera-
tion scheme. For each practical input u, we assume the system
evolves to an asymptotic stable equilibrium point xeq(u)
resulting in FMFC(xeq(u), u) = 0. Because typically only Rl

is controllable, and S is assumed constant during the extremum
seeking, JMFC simplifies to 1-dimensional and unconstrained
with an (unknown) parameter S:

JMFC(xeq(u), u) = IMFC

(
xeq(Rl, S), Rl, S

)2 ∗Rl, (2)

where IMFC is the produced current of the MFC. The discrete
parabola controller uses this format of JMFC (Fig. 1a).
Although JMFC could have any shape, we further limit Rl to
the interval for which JMFC is unimodal, defined according to
[17] which corresponds with its practical domain for various S
(Fig. 2a). As has shown before in [7]–[9], Rl that maximizes
(2) depends on S.

An analogous derivation results in a similar optimization
problem for a MEC, specified using a model from [18].
For state x ∈ R4 (substrate, anodophilic microorganisms,
hydrogenotrophic microorganisms and mediator oxidized frac-
tion) and input u ∈ R2 (inlet substrate concentration (S)
and applied external voltage (Ee)), the optimization problem
becomes:

max
u

JMEC(x, u) (3a)

s.t. FMEC(x, u) = 0, (3b)

where JMEC is the net power balance (difference between the
produced hydrogen enthalpy and invested input power [19])
(with maximum equaling J∗

MEC) and FMEC is the system
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Fig. 2. (a) Generated output power of a MFC in function of Rl and (b) net
power balance of a MEC in function of Ee for different S [mgL−1]. The
stars indicate the optimum.

dynamics. Making the same assumptions, JMEC simplifies
to:

JMEC(xeq(u), u) = UH2 ∗QH2

(
xeq(Ee, S), Ee, S

)
−

IMEC

(
xeq(Ee, S), Ee, S

)
∗ Ee, (4)

where UH2
is the volumetric energy density of H2, QH2

is
the produced volume H2 per time unit and IMEC is the MEC
current. The discrete parabola controller uses this format of
JMEC (Fig. 1b). The applied external power maximizing (4)
depends likewise on S (Fig. 2b) and increases with a higher
input substrate load.

III. SUCCESSIVE PARABOLIC INTERPOLATION AS AN
EXTREMUM SEEKING CONTROL ALGORITHM

Extremum seeking control solves (1) and (3) assuming that
the system transients disappear after a finite time. The classi-
cal approach applies a low-amplitude sinusoidal perturbation
signal to the system. The gradient of the optimization function
J is then calculated from the high frequency content of the
system response. This gradient is forced to zero by the integral
feedback controller to maximize (1a) or (3a). The frequency of
the perturbing signal is generally an order of magnitude lower
than the dominant transient system response, which would
otherwise affect this gradient. This is the cause of the slow
convergence of this method [19].

To improve the convergence speed, this work proposes the
successive parabolic interpolation algorithm from numerical
mathematics as a discrete alternative to search u∗. This
approach iteratively improves its estimation of the input to
find the value of Rl maximizing (2), respectively to find
the value of Ee maximizing (4). In every iteration step, the
algorithm calculates a new estimate for which a fitted parabola
through the previous 3 estimates reaches a maximum [17]. The
iteration step ends by evaluating J in this newly obtained input
setting.

Evaluating J is time-consuming because it involves a
measurement on the actual MFC or MEC, for which (1b)
respective (3b) must be fulfilled such that the system is
in its steady state. The required sample time Ts for each
measurement is an upper bound for which |x(t, u)− xeq(u)|
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Fig. 3. Finite state machine of the discrete parabola controller. Solid arrows
indicate a time-consuming transition of Ts. The golden ratio equals φ. During
the Update state, either part A or part B is kept of the search interval.

becomes sufficiently small for each potential u of the search
interval. For linear first order dynamics, Ts = 3..5τ with τ
the dominant system time constant. The major benefit of this
iteration scheme is guaranteed convergence, up to superlinear
as J is sufficiently smooth (J ∈ C2) (Fig. 2). This iteration
scheme thus reduces the required amount of evaluations of J ,
which forms the dominant bottleneck for fast convergence.

The discrete parabola controller is implemented as a finite
state machine (Fig. 3). During the initialization state (state Init
in Fig. 3), the controller requires a bounded search interval
umin and umax with umin < umax such that uopt(S) ∈[
umin, umax] for expected variations of S and an initial

estimate uest ∈
[
umin, umax], the first measurement sample.

Each successive u is applied for a duration of Ts to fulfill (1b)
or (3b) and thus approximate J using (2) or (4).

Golden-section search determines the next two samples
because fitting a parabola requires at least 3 samples. The
controller then goes to the Parabola state and approximates J
with a parabola. If no valid parabola is fitted, a save Golden-
section step is performed. After sampling this new input, the
controller reduces the search interval with the knowledge of
the new sample during the Update state.

The controller moves to the Tracking state if the conver-
gence criterion is met and records the discovered J∗

est. During
this state, the controller keeps the input at u∗ and continuously
re-samples J . If ∆J < tolt, due to an external disturbance, the
controller re-initializes the successive parabolic interpolation
iteration scheme with the same initial search interval but using
u∗ as initial estimator.

IV. SIMULATION STUDY

The first set of simulations studies the iteration scheme of
the discrete controller for a MFC model [16] and a MEC model
[18]. Both models receive an inlet substrate concentration
of S = 750 mgL−1 and contain a full-grown biofilm. The
configurable parameters of the controller with their value are



TABLE I
DISCRETE PARABOLA CONTROLLER PARAMETERS

Iteration Precise Tracking Fast Tracking
System MFC MEC MFC MEC MFC MEC
umin 20Ω 0.40V 20Ω 0.40V 20Ω 0.40V
uest 60Ω 0.70V 60Ω 0.70V 85Ω 0.70V
umax 100Ω 1V 100Ω 1V 100Ω 1V
Ts 1 day 1 day 1 day 1 day 0.6 days 0.5 days
tols 0.5% 0.5% 3.3% 1.3% 8.4% 3.8%
tolt - - 1% 1% 5% 5%
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Fig. 4. (a) Applied Rl and (b) corresponding JMFC for a possible iteration
scheme of a MFC.
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Fig. 5. (a) Applied Ee and (b) corresponding JMEC for a possible iteration
scheme of a MEC.

given in Table I, under column Iteration. The initial search
interval follows from Fig. 2a and Fig. 2b, the initial estimate
uest is chosen near the middle and the sample time Ts and
convergence tolerance tols settings follow from the discussion
of the next paragraph. A typical iteration scheme is shown in
Fig. 4 for a MFC and in Fig. 5 for a MEC. After the controller
has applied a new sampling input, the optimization function
sometimes surpasses the true maximum at the beginning of
the sample interval due to the system transients.

The next set of simulations studies the convergence speed
and resulting precision of the discrete controller. Both are
dependent on the initial search interval

[
umin, umax], uest

and Ts. The search interval and the estimate encapsulate the
a priori knowledge about the system and should be taken as
precise as possible. The sample time however influences the
impact of the dynamics of the system on J . Convergence
is guaranteed theoretically, only if Ts → ∞ such that (2)
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Fig. 6. Convergence time (◦, left) and success rate (*, right) of the iteration
scheme for (a) a MFC and (b) a MEC for a linear sweep of initial estimates
in function of Ts.

approximates to (1) and (4) to (3), respectively. In practice,
Ts can be chosen to be smaller at the expense of a loss
in accuracy, which results in a trade-off between speed and
precision. Fig. 6a demonstrates the resulting trade-off for a
MFC and Fig. 6b for a MEC. Every dot on this graph is
obtained by, for a particular Ts, running the parabola controller
for 100 different, linearly varied, initial estimates. All other
controller configuration settings are taken from the parameters
from Table I. The parameter tols is set to stabilize within
1% or 5% of J∗. Depending on the length of Ts and uest,
convergence up to the target precision is now no longer
guaranteed. This can be observed from the success rate curves
in Fig. 6a and Fig. 6b. Very fast convergence, < 3 days for
a MFC and < 2 days for a MEC, is possible, however, at
a cost of a lower likelihood (90%) for the initial estimate to
achieve a precision of ∆J < 5%. The appropriate sample time
should therefore be configured depending on the frequency of
the expected variation of the inlet substrate concentration and
the desired tolerance on the optimization function.

The last set of simulations studies the tracking capabilities
of the discrete parabola controller. The inlet substrate con-
centration is first varied every 10 days with the following
pattern: S[mgL−1] = 500 → 1000 → 500 → 750 →
1250→ 1000→ 500. The tolerance parameters of the discrete
parabola controller are configured to achieve an equivalent ∆J
precision of < 1% (Table I, under column Precise Tracking).
Fig. 7 for a MFC and Fig. 8 for a MEC show the obtained
input determined by the controller focusing on precise tracking
of the inlet substrate variation. After convergence in around
6 days, the controller continuously re-samples J . If J varies
with more than tolt, the iteration scheme restarts with the
previous optimum as initial estimate. Because the controller
has no knowledge of the substrate concentration, it does not
know if the input should rather increase or decrease. Therefore,
Golden-section search determines the first two observed inputs
which could lie in the opposite direction.

In the last simulation, Fig. 9 and Fig. 10, the substrate
variation pattern of the previous simulation is applied every 4
days. The controller parameters are modified to focus on fast
convergence rather than high precision (Table I, under column
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Fig. 7. (a) Applied Rl and (b) corresponding JMFC of a MFC for a S
variation every 10 days with the parabola controller focusing on precision.
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Fig. 8. (a) Applied Ee and (b) corresponding JMEC of a MEC for a S
variation every 10 days with the parabola controller focusing on precision.
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Fig. 9. (a) Applied Rl and (b) corresponding JMFC of a MFC for a
S variation every 4 days with the parabola controller focusing on fast
convergence.

Fast Tracking). The controller now converges in about 3 days
to the optimum, however at the cost of a reduced precision,
∆J < 5%. This convergence speedup (and corresponding loss
of precision) is due to a lower Ts and thus a worse satisfaction
of the constraints (1b) and (3b).

V. DISCUSSION

The benefits of tracking the optimum input compared to
merely applying a static input for dynamic environment condi-
tions is illustrated with the inlet substrate variation example of
the previous section (Table II). The discrete parabola controller
achieves 4% to 11% more performance of the maximum
achievable performance compared to applying the average of
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Fig. 10. (a) Applied Ee and (b) corresponding JMEC of a MEC for
a S variation every 4 days with the parabola controller focusing on fast
convergence.

TABLE II
RELATIVE PERFORMANCE FOR VARIOUS STATIC INPUTS AND THE

TRACKING INPUT OF THE DISCRETE PARABOLA CONTROLLER

Experiment umin umax uavg Tracking
MFC, 10 days ∆S 56% 74% 84% 95%
MEC, 10 days ∆S 20% 81% 91% 97%
MFC, 4 days ∆S 56% 74% 85% 94%
MEC, 4 days ∆S 20% 81% 92% 96%

the optimal inputs. The rather small difference between the
precise configuration and the fast configuration is because the
temporal suboptimal inputs during convergence towards the
new optimum input have a larger impact on the configuration
for precise operation than for fast operation.

Table III compares this work with the state-of-the-art on
extremum seeking control for MFCs. It is important to note
that all reported convergence times in the table are assessed on
the same MFC model, given by [16]. The classical method of
perturb & observe converges extremely slow (±100 days) due
to the inherent slow dynamics of a MFC [9]. This method
however achieves a good precision (< 1%) and does not
require any a priori calibration nor extra sensors besides the
ones for calculating the optimization function J . The stability
condition further limits the integral feedback gain and thus
fast convergence.

To resolve this slow convergence, the state-of-the-art adds
an extra feedback path to increase the integral gain based on
an a priori calibrated relation between the inlet substrate (S)
variation and the optimum input. In [7], this relation between
Rl and S is fitted using a second order polynomial (Pol).
Adding this knowledge to the feedback path results in a 10x
convergence speedup, however at the cost of a 5x loss of preci-
sion. Approximating this relation with a NN results in 5x better
precision, with a minor impact on convergence speed [8], [9].
The major drawback of these controllers is the requirement of
calibrated data of the MFC for the optimal input for a given
set of S or, more general, for every, expected environment
condition that influences J , an unrealistic assumption for a
practical setup. Obtaining this calibration data in real-time
is not specified but nevertheless requires a time-consuming
procedure due to the steady-state requirement for the numerous



TABLE III
COMPARISON OF THIS WORK WITH PREVIOUS PUBLISHED EXTREMUM SEEKING CONTROLLERS

Reference Perturb & Observe [9] IECON’12 [7] MED’15 [8] IECON’16 [9] This Work
Convergence for [16] ±100 days ±10 days ±60 days ±15 days 3.5 days ± 0.8σ 5.4 days ± 1.4σ
Precision < 1% < 5% < 1% < 1% < 5% < 1%
Calibration - Rl = Pol(S) Rl = NN(S) Rl = NN(S) -

static, off-line static, off-line static, off-line
Required Sensors J J , S J , S J , S J
Environment Variation S, T , pH , etc... S S S S , T , pH , etc...
Stability not guaranteed not guaranteed not guaranteed not guaranteed inherently stable

measurement samples.
The proposed discrete parabola controller converges on av-

erage in 3.5 days ±0.8σ for a likelihood of 95% that the initial
estimate results in a precision of ∆J < 5% and on average
in 5.4 days ± 1.4σ for a likelihood of 95% that the initial
estimate results in a precision of ∆J < 1%, a 3x improvement
in convergence speed compared to the state-of-the-art for
an equal precision on the model of [16]. Furthermore, no
calibration is required besides a rough estimate of the search
interval. The controller is inherently stable with guaranteed
convergence if Ts is chosen such that (1b) or (3b) are met.
Finally, the controller is not limited to variations in the inlet
substrate concentration nor to a MFC.

VI. CONCLUSION

A discrete extremum seeking controller is designed to
automatically and dynamically determine the electrical settings
for optimal operation of a MFC and a MEC irrespective of
the environment conditions. This discrete controller uses the
successive parabolic interpolation iteration scheme to converge
quickly to the optimum input with a minimum of sampling
points. The parameters of the controller are configurable to
either focus on fast convergence or on high precision.

For an established MFC model, convergence occurs in
about 3.5 days to stabilize within 5% of the cell’s maximum
performance and in about 5.4 days to stabilize within 1% of
the cell’s maximum performance. Equal convergence speeds
are achieved for a MEC model. Convergence is guaranteed
for an appropriate sample time with respect to the system time
constant and an initial search interval containing the optimum.

The dominant time required for convergence of this discrete
parabola controller is the static sample time. Therefore, further
research should explore the benefits of a dynamic sample time.
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