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 A panel data model with varying coefficents and fixed effects. 

 Empirical likelihood bands are constructed. 

 Simulation results and an application are presented.  
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November 13, 2017

Abstract

In this paper local empirical likelihood-based inference for non-parametric varying coefficient panel data
models with fixed effects is investigated. First, we show that the naive empirical likelihood ratio is asymp-
totically standard chi-squared when undersmoothing is employed. The ratio is self-scale invariant and the
plug-in estimate of the limiting variance is not needed. Second, mean-corrected and residual-adjusted empir-
ical likelihood ratios are proposed. The main interest of these techniques is that without undersmoothing,
both also have standard chi-squared limit distributions. As a by product, we propose also two empirical
maximum likehood estimators of the varying coefficient models and their derivatives. We also obtain the
asymptotic distribution of these estimators. Furthermore, a non parametric version of the Wilk’s theorem
is derived. To show the feasibility of the technique and to analyse its small sample properties, using em-
pirical likelihood-based inference we implement a Monte Carlo simulation exercise and we also illustrated
the proposed technique in an empirical analysis about the production efficiency of the European Union’s
companies.
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1 Introduction

Recently nonparametric and semiparametric estimation of panel data models has attracted the attention of

many researchers in econometrics. The interest to combine panel data techniques, that somehow alleviate

the heterogeneity issue, with nonparametric techniques, that weaken considerably the type of assumptions

that are necessary to impose in econometric models, has ended up in a vast literature that is surveyed in

Su and Ullah (2011). Although the results are rather promising, it is true that the main drawbacks related

to nonparametric techniques also appear when we apply them to panel data econometric models. Among

others, the curse of dimensionality (e. g. Härdle (1990)) appears as one of the most important problems.

In order to overcome this disadvantage varying coefficient models appear as a reasonable specification that

encompasses many alternative models. As for the pure nonparametric case, estimation of varying coefficient

models with random effects has been already studied in several papers (e.g. Ruckstuhl et al. (2000), Lin

and Carroll (2000), Henderson and Ullah (2005), Su and Ullah (2007)). However, under the setting of fixed

effects unfortunately much less results are available. In Henderson et al. (2008) direct estimation of the

nonparametric components is undertaken through the use of an iterative version of a profile least squares

technique. Already in a varying coefficients context a profile least squares approach is proposed in Sun et al.

(2009). For differencing estimators in Rodriguez-Poo and Soberón (2014) and Rodriguez-Poo and Soberón

(2015) two step backfitting estimators are proposed. Furthermore, a comparison against estimators based in

profile least squares techniques is provided. In Cai and Li (2008) a so called nonparametric generalized method

of moments is proposed to estimate the varying coefficients. Finally, in Su and Lu (2013) and Li and Liang

(2015) profile least squares results are extended towards dynamic models and smooth backfitting methods are

applied to estimate the unknown varying coefficients respectively. Eventually, once we have taken care of the

estimation process, the next step would be to concentrate in developing inference tools for this type of models.

For statistical inference such as confidence region construction or hypothesis testing the most popular techniques

are normal approximations and bootstrap methods. In fact, in all above mentioned papers, asymptotic normal

approximations are obtained for the different nonparametric estimators. Unfortunately it is well known that,

without undersmoothing, the asymptotic distribution will exhibit a bias and a rather cumbersome expression

for the variance term. Hence, if the confidence region that is derived from an asymptotic normal distribution is

predetermined to be symmetric a bias correction and a plug-in estimate are needed to make the statistic scale

invariant. Furthermore, if one wants to use these confidence bands as a testing device it will be necessary to
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obtain uniform confidence bands such as in Li et al. (2013).

In this paper, we propose to use empirical likelihood techniques to construct confidence intervals/regions.

These techniques have acquired importance since they were introduced in Owen (1988) and Owen (1990)

because of the advantages of this method over other methods such as normal approximation and bootstrap;

for instance, empirical likelihood methods adjust to the true shape of the underlying distribution and do not

require the estimation of scale, skewness (Hall and La Scala, 1990) or limiting variance as the studentization

is carried out internally via optimization. Therefore, the confidence regions are reliable, range preserving and

transformation respecting (Hall and La Scala, 1990). Another advantages is the method’s flexibility, as it can

be used when the data is incomplete, distorted or tied. Also, DiCiccio et al. (1991) have proved that empirical

likelihood regions are Bartlett correctable; thus, it has advantages over the bootstrap and the jackknife methods.

Finally, it combines the reliability of non-parametric methods with the effectiveness of the likelihood approach

and it has good asymptotic properties and power (Owen, 1990). In fact, empirical likelihood techniques have

been already applied to obtain confidence bands for longitudinal data varying coefficient models with random

effects (e.g. Xue and Zhu (2007)) but unfortunately these type of results are not available for the fixed effects

case. For the fixed effect case, in Zhang et al. (2011) confidence bands based in empirical likelihood techniques

are derived under a partially linear model specification. They obtain, under rather restrictive assumptions,

maximum empirical likelihood estimators of both parametric and nonparametric components. Furthermore,

they obtain an empirical likelihood ratio that is biased if the optimal bandwidth is used.

In this paper, and starting from a fixed effects varying coefficient model, we obtain maximum empirical

likelihood estimators of both the varying parameters and their derivatives. This last result is very interesting

for testing constancy of parameter variation. Furthermore, we develop empirical likelihood ratios and we

derive a non-parametric version of the Wilks’ theorem. In order to obtain an unbiased ratio, we propose

two modifications of the empirical likelihood ratio: the mean corrected and the residual adjusted empirical

likelihood ratios. Based on these results, we can build up confidence regions for the parameter of interest

through a standard chi squared approximation. The rest of this paper is organized as follows. In Section 2

we propose to construct the confidence bands for the unknown functions and their derivatives by using what

we call a naive empirical likelihood technique. This technique shows as main drawback sub-optimal rates of

convergence. In Section 3, as a byproduct, we provide two alternative maximum empirical likelihood estimators

of the fixed effect nonparametric varying parameters model and their derivatives. In Section 4, and using the

estimators that were previously derived, we propose two alternative techniques that enables us to obtain optimal
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nonparametric rates: Mean corrected and residual-adjusted empirical likelihood ratios. In Section 5 we provide

a Monte Carlo experiment and in Section 6 we undertake an empirical study about the production efficiency

of the European Union’s companies. Finally Section 7 concludes. The proofs of the main results are collected

in the Appendix.

2 Naive empirical likelihood

Consider the following varying coefficient panel data regression model

Yit = X>itm(Zit) + µi + vit, i = 1, ..., N ; t = 1, ..., T, (1)

where Yit is the response, Zit and Xit are vectors of covariates of dimension q and d respectively, and m(z) =

(m1(z), ...,md(z))
> is a d× 1 vector of unknown functions; here µi stands for heterogeneity of unknown form,

that is, individual characteristic that are not observed, and vit are random errors that do variate along time

and across individuals. On this econometric model we impose the following standard assumptions,

Assumption 2.1. Let (Yit, Xit, Zit)i=1,...,N ; t=1,..,T be a set of independent and identically distributed (i.i.d.)

Rd+q+1 random variables in the subscript i for each fixed t and strictly stationary over t for a fixed i.

Assumption 2.2. The random errors vit are independent and identically distributed, with 0 mean and ho-

moscedastic variance σ2
v < ∞. They are also independent of Xit and Zit for all i and t. Furthermore,

E|vit|2+δ <∞ for some δ > 0.

Assumption 2.3. Let µi can be arbitrarily correlated with both Xit and Zit with unknown correlation struc-

ture.

Assumptions 2.1, 2.2 and 2.3 are rather standard assumptions in the panel data literature. Assumption

2.1 is standard in panel data models; we could consider other settings as in Cai and Li (2008), however,

since in this paper we study the asymptotic properties as N tends to infinity and T is fixed, it is enough to

assume stationarity. These type of models where T is fixed and N tends to infinity have been proved useful in

the analysis of efficiency, where usually there is a large number of individuals during a small period of time.

Assumption 2.2 is also standard for the conventional within and first difference transformation (Wooldridge

(2002) or Hsiao (2003) for the fully parametric case). Independence between the idiosyncratic error and the

covariates Xit and / or Zit can be assumed without loss of generality, however it can be relaxed assuming
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some dependence in higher moments. If we allow some dependence, we could transform this estimator to take

into consideration more complex structures of the random error contained in the variance-covariance matrix

(Martins-Filho and Yao (2009)). Assumptions 2.1 and 2.2 in some situations, as in Cai and Li (2008), are

relaxed by considering that (Xit, Zit, vit) are for fixed, i, strictly stationary processes; unfortunately, this set

of assumptions is not sufficient to bound the asymptotic variance of the estimator and some further mixing

conditions are required to achieve convergence. In this case, T must also tend to infinity. Other cases such as

cross sectional dependence also requires both N and T tending to infinity. Finally, assumption 2.3 imposes the

so called fixed effects; note that we are not willing to assume any constraint in the relationship between the

individual heterogeneity µ and the vector of covariates (X,Z).

Rather than focusing in the consistent estimation of m(z) and its vector of derivatives, we will obtain confi-

dence bands for those objects based on the empirical likelihood principle. As already stated in the introductory

section above, this approach presents clear advantages against the standard asymptotically aproximated con-

fidence bands. To make the argument for constructing the confidence regions for m(z) and its derivatives we

can start by noting that, for a given z, from model (1) we have that

E
[
Xit

(
Yit −X>itm(Zit)

)∣∣∣Zit = z
]
6= 0, (2)

because of the fixed effects. Therefore, the least-squares estimator of m(z) would be asymptotically biased.

In order to cope with this problem, several transformations have been proposed in the standard literature of

panel data models. Among them, we can take the so called within transformation. Then we have indeed that,

E

[
Ẍit

(
Ÿit −X>itm(Zit)−

1

T

T∑

s=1

X>ism(Zis)

)∣∣∣∣∣Zi1 = z, . . . , ZiT = z

]
= 0, (3)

where Ẍit = Xit − X̄i., X̄i. = T−1
∑T

s=1Xis and Ÿit = Yit − Ȳi., Ȳi. = T−1
∑T

s=1 Yis. Other transformations are

available, for example the so called first differences transformation ends up in the following moment condition,

E
[

∆Xit

(
∆Yit −

(
X>itm(Zit)−X>i(t−1)m(Zi(t−1))

))∣∣∣Zit = z, Zi(t−1) = z
]

= 0. (4)

In both cases the least squares estimator of m(z) is the solution to either (3) or (4). If we approximate

the unknown function X>itm (Zit) around a value z that is in a close neighborhood of Zit by a linear func-

tion X>itm (z) + X>it ⊗ (Zit − z)>vec(Dm(z)), then the ortogonality conditions (3) and (4) are approximated

respectively by

E
[
Z̃∗it
(
Ÿit − Z̃∗>it β(z)

)∣∣∣Zi1 = z, . . . , ZiT = z
]

= 0, (5)
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and

E
[
Z̃it

(
∆Yit − Z̃>it β(z)

)∣∣∣Zit = z, Zi(t−1) = z
]

= 0, (6)

where Z̃>it =
(

∆X>it , X
>
it ⊗ (Zit − z)> −X>i(t−1) ⊗ (Zi(t−1) − z)>

)
is 1×d(q+1) vector, β(z) = (m(z), vec(Dm(z)))>

is a d(q + 1) × 1 vector, and Z̃∗>it =
(
Ẍ>it , X

>
it ⊗ (Zit − z)> − 1

T

∑T
s=1X

>
is ⊗ (Zis − z)

)
is also a d(q + 1) × 1

vector. Also let, Dm(z) be a d × q matrix of partial derivatives of the d × 1 function m(z) with respect to

the elements of the q × 1 vector z, i.e. Dm(z) = ∂m(z)
∂z . Note that equations (5) and (6) are the first order

conditions of the minimization problem E

[(
Ÿit − Z̃∗>it β(z)

)2
∣∣∣∣ z
]

and E

[(
∆Yit − Z̃>it β(z)

)2
∣∣∣∣ z
]

for a given z.

Because nonparametric conditional expectations given either (Zi1, . . . , ZiT ) in (5) or
(
Zit, Zi(t−1)

)
in (6) are

involved, a local smoothing method is needed to obtain the sample version of those equations. In order to

define the empirical likelihood estimator we employ equation (5) or (6) as auxiliary random vectors; therefore,

the auxiliary random vector for the within transformation is as follows

Twi (β(z)) =
T∑

t=1

Z̃∗it[Ÿit − Z̃∗>it β(z)]KH(Zi1 − z) · · ·KH(ZiT − z), (7)

and for the first differences transformation

Tfi (β(z)) =

T∑

t=2

Z̃it[∆Yit − Z̃>it β(z)]KH(Zit − z)KH(Zi(t−1) − z). (8)

In equations (7) and (8) H is a bandwidth matrix of dimension q× q, K (·) denotes a kernel function in Rq and

KH (u) = K
(
H−1/2u

)
.

Note that the Tw1 (β(z)) , . . . , TwN (β(z)) are independent and, due to assumption 2.2, E (Twi) = 0; the same

implications remain valid for Tfi. Therefore, a naive empirical likelihood ratio function for m(z) and Dm(z)

can be defined as the solution to the maximization problem of a multinomial log-likelihood function, i.e.

Rw(β(z)) = −2 max

{
N∑

i=1

log(pi)

∣∣∣∣∣pi ≥ 0,
N∑

i=1

pi = 1,
N∑

i=1

piTwi(β(z)) = 0

}
, (9)

where the probabilities pi = pi(z), for i = 1, ..., N . There exists a unique value of Rw(β(z)), for a given β(z),

provided that 0 is inside the convex hull of (Tw1(β(z)), ..., TwN (β(z))) (Owen (1988) and Owen (1990)). Using

the Lagrange multiplier method the probabilities pi are

pi =
1

N

1

(1 + λ>Twi(β(z)))
.
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Note that it is necessary that 0 ≤ pi ≤ 1 which implies that λ and β(z) must satisfy that 1+λ>Twi(β(z)) ≥ N−1

for each i (see Owen (2001), Chapter 3). This constraint satisfies the non-negativity condition and it avoids a

convex dual problem.

Using pi’s expression and after some calculations equation (9) leads to

Rw(β(z)) = 2

N∑

i=1

log(1 + λ>Twi(β(z))), (10)

where λ is a d(q + 1) × 1 vector associated to the constraint
∑N

i=1 piTwi(β(z)) = 0. It is indeed given as the

solution to
N∑

i=1

Twi(β(z))

1 + λ>Twi(β(z))
= 0. (11)

Let us now denote D̃w(β(z)) = (NT |H|T/2)−1
∑N

i=1 Twi(β(z))T>wi(β(z)). Using equations (10), (11) and a

Taylor expansion, it can be shown that

Rw(β(z)) =

[
1√

NT |H|T/2
N∑

i=1

Twi(β(z))

]> [
D̃w(β(z))

]−1
[

1√
NT |H|T/2

N∑

i=1

Twi(β(z))

]
+ op(1). (12)

Hence, as expected, Rw(β(z)) is asymptotically a standard Chi-squared distribution. To state formally these

results, we first introduce some notations and assumptions.

Assumption 2.4. The Kernel functionsK(.) are compactly supported and bounded kernels such that
∫
K(u)du =

1,
∫
uu>K(u)du = µ2(Ku)I, and

∫
K(u)2du = R(Ku) where µ2(Ku) 6= 0, and R(Ku) 6= 0 are scalars and I is

a q × q identity matrix. Besides, we will assume that there exist eight-order marginal moment for K(.), i.e.,

∫
u8

1K(u1, .., uT )du1, ..., duT <∞.

Also, the odd-order moments of K, when they exist, are zero, i.e.,

∫
ui11 u

i2
2 , ..., u

iT
T K(u1, .., uT )du1, ..., duT = 0 if

T∑

j=1

ij is odd.

Assumption 2.5. Let fZit(.), fZit,Zi(t−1)
(., .) and fZi1,Zi2,Zi3(., ., .), for t = 1, .., T be respectively the probability

density functions of Zit, (Zit, Zi(t−1)) and (Zi1, Zi2, Zi3). All density functions are continuously differentiable

in all their arguments and they are bounded from above and bellow in any point of their support.

Assumption 2.6. Let z be an interior point of fZit . The third order derivatives of m1(.), ...,md(.) are bounded

and uniformly continuous.
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Assumption 2.7. The bandwidth matrix H is symmetric and strictly definite positive. Moreover, each entry

of the matrix tends to zero as N →∞ in such a way that N |H| → ∞.

Assumption 2.8. The function E[ẌitẌ
>
it |Zi1 = z1, ..., ZiT = zT ] is positive definite for any interior point of

(z1, z2, ..zT ) in the support of fZi1,...,ZiT (z1, z2, ..., zT ).

Assumption 2.9. Let ||A|| =
√

tr (A>A), then E[
∣∣∣∣XitX

>
it

∣∣∣∣2 |Zi1 = z, .., ZiT = z] is bounded and uniformly

continuous in its support. Furthermore, let the following matrix functions E[ẌitX
>
it |Zi1 = z, .., ZiT = z],

E[XitX
>
it |Zit = z, Zi(t−1) = z] and E[XisX

>
is |Zi1 = z, ..., ZiT = z] be bounded and uniformly continuous in

their support. Also, E[ẌitX
>
is |Zi1 = z, ..., ZiT = z] and E[XitX

>
is |Zi1 = z, ..., ZiT = z], for t 6= s and t = s, are

bounded and uniformly continuous in their support.

Assumption 2.10. The functions E[|Xitvit|2+δ|Zit = z, Zi(t−1)=z], E[|Xisvit|2+δ|Zit = z, Zi(t−1)=z] and,

E[|Ẍitvit|2+δ|Zit = z, Zi(t−1)=z], for some δ > 0, are bounded and uniformly continuous in any point of its

support.

These assumptions are rather common in the literature of non-parametric regression analysis of panel data

models. Similar conditions were used in Xue and Zhu (2007), Su et al. (2010), Rodriguez-Poo and Soberón

(2014) and Rodriguez-Poo and Soberón (2015). They are basically smoothness and boundedness conditions

for the within estimator. There are also assumptions about the kernel functions and about the behavior of the

bandwidth matrix.

Under these assumptions, we are able to establish the following results.

Theorem 2.1. Assuming that conditions 2.1 - 2.10 hold and H → 0 in such a way that NT |H|T/2 →∞ and
√
NT |H|T/2tr(H)→ 0, then Rw(β(z))→d χ

2
d(q+1) as N →∞ and T is fixed, where →d means the convergence

in distribution and χ2
d(q+1) is the standard chi-squared distribution with d(q + 1) degrees of freedom.

Now, following exactly the same steps as for the within transformation and denoting

D̃f (β(z)) = (NT |H|)−1
N∑

i=1

Tfi(β(z))T>fi(β(z)),

we obtain

Rf (β(z)) =

[
1√

NT |H|

N∑

i=1

Tfi(β(z))

]> [
D̃f (β(z))

]−1
[

1√
NT |H|

N∑

i=1

Tfi(β(z))

]
+ op(1), (13)
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and, as in the within case, using a non-parametric version of the Wilks’ theorem we can provide that Rf (β(z))

has, asymptotically, a Chi squared distribution. In fact, in order to show this result we need the following

smoothness conditions on moment functional forms,

Assumption 2.11. Let ||A|| =
√

tr (A>A), then the function E[∆Xit∆X
>
it |Zit = z, Zi(t−1) = z] is a positive

definite for any interior point of (z, z) in the support of fZit,Zi(t−1)
(z, z).

Assumption 2.12. Also the following matrix functions E[∆XitX
>
it |Zit = z, Zi(t−1) = z], E[XitX

>
it |Zit =

z, Zi(t−1) = z], E[Xi(t−1)X
>
i(t−1)|Zit = z, Zi(t−1) = z] and E[∆XitX

>
i(t−1)|Zit = z, Zi(t−1) = z] are bounded

and uniformly continuous in their support.

Assumption 2.13. The functions E[|∆Xit∆vit|2+δ|Zit = z, Zi(t−1)=z], E[|Xit∆vit|2+δ|Zit = z, Zi(t−1)=z] and

E[|Xi(t−1)∆vit|2+δ|Zit = z, Zi(t−1)=z] for some δ > 0, are bounded and uniformly continuous in any point of

its support.

These group of conditions substitute assumptions 2.8 - 2.10 when working with the first differences technique.

Then, we are able to show the following result.

Theorem 2.2. Assuming that conditions 2.1 - 2.7 and 2.11 - 2.13 hold and H → 0 in such a way that

NT |H| → ∞ and
√
NT |H|tr(H) → 0, then Rf (β(z)) →d χ

2
d(q+1) as N → ∞ and T is fixed, where χ2

d(q+1) is

the standard chi-squared distribution with d(q + 1) degrees of freedom.

Using theorems 2.1 and 2.2 we can approximate α-level confidence regions for β(z) as the set of values β(z)

such that Rf (β(z)) ≤ cα and Rw(β(z)) ≤ cα, where cα is defined such that Pr
(
χ2
d(q+1) ≤ cα

)
= α.

In the following section we obtain the maximum empirical likelihood estimators using the empirical likelihood

ratios defined in this section. Also, as the usual tool to construct confidence bands, we will provide the

asymptotic distribution of the estimators.

3 Maximum empirical likelihood estimators

We can define the maximum empirical likelihood (MELE) estimator of β(z), β̂w(z) as the minimizer of

Rw(β(z)). From equations (10) and (12) and following the same lines as Qin and Lawless (1994), β̂w(z)

is obtained from the solution of the estimating equation
(
NT |H|T/2

)−1∑N
i=1 Twi(β(z)) = 0 and, as it will

be shown in the proof of Theorem 3.1, the remainder term is of smaller order tending to zero as NT |H|T/2

tends to infinity. Consequently, the MELE is asymptotically equivalent to the fixed effect estimator using the
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within transformation. Therefore, if we assume that 1
NT |H|T/2

∑
it

∏T
l=1KH(Zil − z)Z̃∗itZ̃∗>it is invertible, then

the MELE is as follows

β̂w(z) =

(
1

NT |H|T/2
∑

it

T∏

l=1

KH(Zil − z)Z̃∗itZ̃∗>it

)−1
1

NT |H|T/2
∑

it

T∏

l=1

KH(Zil − z)Z̃∗itŸit

+ op

(
1√

NT |H|T/2

)
. (14)

As it has been already pointed out in other works, the leading terms in both bias and variance do not

depend on the sample, and therefore we can consider such terms as playing the role of the unconditional bias

and variance. For comparison purposes, and in order to build up confidence bands, we state the asymptotic

distribution of the estimator in the following theorem.

Theorem 3.1. Assuming that conditions 2.1 - 2.10 hold and H → 0 in such a way that NT |H|T/2 →∞, then

√
NT |H|T/2

{
β̂w(z)− β(z)−Bw(z)

}
→d N (0,Σw(z)) ,

where

Bw(z) = diag

{
Id,

[(
1− 1

T

)
BXtXt(z, ..., z)⊗ µ2(Kuτ )H

]−1
}

×
(

1
2µ2(Kuτ )diagd {tr {Hmr(z)H}} id
1
2µ2(Kuτ )2Bw1(z) + 1

3!Bw2(z)

)
,

and

Σw(z) = σ2
vdiag

{
Id,

[(
1− 1

T

)
BXtXt(z, ..., z)⊗ µ2(Kuτ )H

]−1
}(

Σw1(z) 0
0 Σw2(z)

)

×diag

{
Id,

[(
1− 1

T

)
BXtXt(z, ..., z)⊗ µ2(Kuτ )H

]−1
}
,

where τ is any index between 1 and T . Also, let

Bw1(z) =

(
1− 1

T

)
DB>XtXt(z, ..., z)diagd

{
tr
{
Hmr(z)H2

}}
id

−
[
DBẌẌ(z, ..., z) (Id ⊗H)

]>
diagd {tr {Hmr(z)H}} id,

Bw2(z) =

(
1− 1

T

)
BXtXt(z, ..., z)⊗

∫ (
H1/2uτ

)
D3
m(z,H1/2uτ )

T∏

l=1

K(ul)dul,

Σw1(z) = B−1
ẌẌ

(z, ..., z)R(K)T ,

Σw2(z) =
[
DBẌẌ(z, ..., z) (Id ⊗H)

]> B−1
ẌẌ

(z, ..., z)R(K)T
[
DBẌẌ(z, ..., z) (Id ⊗H)

]
,

BẌẌ(z, ..., z) = E
[
ẌitẌ

>
it

∣∣∣Zi1 = z, ..., ZiT = z
]
fZi1,...,ZiT (z, ..., z),

BXtXt(z, ..., z) = E
[
XitX

>
it

∣∣∣Zi1 = z, ..., ZiT = z
]
fZi1,...,ZiT (z, ..., z).

10



Here, DBẌẌ(z, ..., z) and DBXtXt(z, ..., z) are d× dq gradient matrix of the form

DBXtXt(z1, .., zT ) =




∂b
XtXt
11 (z1,...,zT )

∂z1
· · · ∂b

XtXt
1d (z1,...,zT )

∂z1
...

. . .
...

∂b
XtXt
d1 (z1,...,zT )

∂z1
· · · ∂b

XtXt
dd′ (z1,...,zT )

∂z1


 ,

and bXtXtdd′ (z1, ..., zT ) = E [XditXd′it|Zi1 = z1, ..., ZiT = zT ] fZi1,...,ZiT (z1, ..., zT ), diagd {tr {Hmr(z)H}} stands

for a diagonal matrix of elements tr {Hmr(z)H}, for r = 1, ..., d, where Hmr is the Hessian matrix of the rth

component of m(.) and D3
m(z, Zit − z) has as general expression, for k = 3,

Dk
m(z, u) =

∑

i1,...,iq

Cki1,...,iq
∂km(z)

∂zi11 , . . . , ∂z
iq
q

ui11 , . . . , u
iq
q ,

where the sums are over all distinct nonnegative integers i1, . . . , iq, such that i1 + . . . + iq = k, and Cki1,...,iq =

k!/(i1! . . . iq!). Finally we denote by id a d× 1 unit vector

Similarly, if we assume that 1
NT |H|

∑
itKH(Zit − z)KH(Zi(t−1) − z)Z̃itZ̃>it is invertible, we can define the

MELE for the first difference approach, β̂f (d), write

β̂f (z) =

(
1

NT |H|
∑

it

KH(Zit − z)KH(Zi(t−1) − z)Z̃itZ̃>it

)−1
1

NT |H|
∑

it

KH(Zit − z)KH(Zi(t−1) − z)Z̃it∆Yit

+ op

(
1√

NT |H|

)
, (15)

where the asymptotic normality of the estimator is as follows

Theorem 3.2. Assuming that conditions 2.1 - 2.7 and 2.11 - 2.13 hold and H → 0 in such a way that

NT |H| → ∞, then
√
NT |H|

{
β̂f (z)− β(z)−Bf (z)

}
→d N (0,Σf (z))

where,

Bf (z) = diag
{
Id,
[(
BXX(z, z) + BX−1X−1(z, z)

)
⊗ µ2(Ku)H

]−1
}

×
(

1
2µ2(Ku)diagd {tr {Hmr(z)H}} id
1
2µ2(Ku)2Bf1(z) + 1

3!Bf2(z)

)
,

and

Σf (z) = 2σ2
vdiag

{
Id,
[(
BXX(z, z) + BX−1X−1(z, z)

)
⊗ µ2(Ku)H

]−1
}( Σf1(z) 0

0 Σf2(z)

)

×diag
{
Id,
[(
BXX(z, z) + BX−1X−1(z, z)

)
⊗ µ2(Ku)H

]−1
}

;
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also, let

Bf1(z) =
(
DBXX(z, z)−DBX−1X−1(z, z)

)>
diagd

{
tr
{
Hmr(z)H2

}}
id

− [DB∆X∆X(z, ..., z) (Id ⊗H)]> diagd {tr {Hmr(z)H}} id,

Bf2(z) =
(
BXX(z, z)− BX−1X−1(z, z)

) ∫ (
H1/2u

)
D3
m(z,H1/2u)K(u)K(v)dudv,

Σf1(z) = B∆X∆X(z, z)R(Ku)R(Kv),

Σf2(z) = [DB∆X∆X(z, z) (Id ⊗ µ2(Ku)H)]> B−1
∆X∆X(z, z)R(Ku)R(Kv)

× [DB∆X∆X(z, z) (Id ⊗ µ2(Ku)H)] ,

B∆X∆X(z, z) = E
[

∆Xit∆X
>
it

∣∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z),

BXX(z, z) = E
[
XitX

>
it

∣∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z),

BX−1X−1(z, z) = E
[
Xi(t−1)X

>
i(t−1)

∣∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z).

Here, DB∆X∆X , DBXX(z, z) and DBX−1X−1(z, z) are d× dq gradient matrices defined as in theorem 3.1.

The results shown in Theorems 3.1 and 3.2 somehow correspond, under a different setting, to Theorem 3.1

in Rodriguez-Poo and Soberón (2015) and Theorems 3.1 in Rodriguez-Poo and Soberón (2014) respectively.

However, we point out that the results obtained for the vector of derivatives are fully new in this fixed effects

panel data setting. An interesting issue that needs to be considered here is the relative asymptotic efficiency of

these estimators. Note first, that as the reader surely realizes none of these estimators achieve the optimal rate

of convergence in terms of the Mean Integrated Square Error (MISE). Indeed, for this type of problems the

optimal rate is 1/NT |H|1/2 (see Fan (1993) for details). For the estimator based in the within transformation

the rate of convergence in terms of the MISE (see Theorem 3.1) is 1/NT |H|T/2, whereas for the estimator based

in the first differences transformation (see Theorem 3.2) it is 1/NT |H|. Therefore, the rate of convergence of

both Empirical Maximum Likelihood Estimators is suboptimal. However, note that the relative asymptotic

efficiency of β̂f (z) with respect to β̂w(z) with the same bandwidths is of order O
(
|H|T2 −1

)
. If T > 2 then

β̂f (z) will exhibit a faster rate of convergence than β̂w(z). Indeed as far as T gets larger this difference

in rates increases. This is due to the so-called curse of dimensionality that is more serious in the case of

the estimator based in the within transformation. In fact, in the case of β̂f (z) we use a kernel function of

dimension 2 × q whereas for the other estimator the dimension is T × q. Finally, as an example, consider

the estimation of m(·) using both estimators. Using Theorems 3.2 and 3.1 and some standard calculations

note that the bandwidth that minimizes the MISE for the estimator based in the within transformation is of

12



order (NT )
− 1

4+qT whereas for the estimator based in the first differences transformation converges to zero at

the rate (NT )
− 1

4+2q . Substituting these optimal bandwidths in the asymptotic MISE expressions we obtain

the following convergence rates: (NT )
− 4

4+qT for the within estimator, and (NT )
− 2

2+q for the first differences

estimator.

4 Bias corrected empirical likelihood

In fact, note that in order to show the convergence of both theorems, theorem 2.1 and theorem 2.2, we

have included one extra condition on the asymptotic behavior of the sequence of bandwidth matrices, i.e.
√
NT |H|T/2tr(H)→ 0 for the within estimator and

√
NT |H|tr(H)→ 0 for the first differences transformation.

These additional conditions ensure that the smoothness bias becomes negligible as the sample size tends to

infinity. Unfortunately, these conditions on H exclude the bandwidth matrix that is optimal, therefore this will

end up in suboptimal rates of convergence for both Rw(β(z)) and Rf (β(z)). In order to avoid this problem

we propose two modifications of the Empirical Likelihood ratio that remove the bias term: the Mean-corrected

Empirical Likelihood (MCEL) ratio and the Residual-Adjusted Empirical Likelihood (RAEL) ratio. These bias

corrections have already been proposed in Xue and Zhu (2007) and what we will do here is to adapt them to

our panel data with fixed effect setting.

4.1 Mean-corrected empirical likelihood ratio

As we have already pointed out, if H tends to zero at the optimal rate then Rw(β(z)) will not converge in

distribution to a χ2 random variable. The main reason is that the smoothness bias will not vanish as NT |H|T/2

tends to infinity. However, from the proof of Theorem 2.1 we know that, under the assumptions established

in theorem 2.1,
√
NT |H|T/2

(
1

NT |H|T/2
∑

i Twi (β(z))− bw(z)
)
→d N (0, υw(z)), as NT |H|T/2 tends to infinity.

Here

bw(z) =

(
1
2bw1(z)
1
2bw2(z) + 1

3!bw3(z)

)
, (16)

and

υw(z) = σ2
vd

(
R(K)TBẌẌ(z, ..., z) 0

0
(
1− 1

T

)
µ2(K2

uτ )
∏T
l 6=τ R(Kul)BXtXt(z, ..., z)⊗H

)
, (17)
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where

bw1(z) = µ2(Kuτ )BẌẌ(z, .., z)diagd {tr {Hmr(z)H}} id,

bw2(z) = µ2(Kuτ )2

(
1− 1

T

)
DB>XtXt(z, .., z)diagd

{
tr
{
Hmr(z)H2

}}
id,

bw3(z) =

(
1− 1

T

)
BXtXt(z, .., z)⊗

∫ (
H1/2uτ

)
D3
m(z,H1/2uτ )

T∏

l=1

K(ul)dul.

Hence, the first proposal is to correct Rw(β(z)) by the smoothing bias,
√
NT |H|T/2 bw(z). In order to do so

we need a consistent estimator of bw(z). By noting that

1

|H|T/2E
[
Z̃∗it

(
X>itm(Zit)−

1

T

T∑

s=1

X>ism(Zis)− Z̃∗>it β(z)

)
T∏

l=1

KH(Zil − z)
]

= bw(z) + op(1),

(see (A.8) for details) then a consistent estimator of bw(z) can be naturally defined as

b̂w (z) =
1

NT |H|T/2
∑

it

Z̃∗it

(
X>it m̂w(Zit)−

1

T

T∑

s=1

X>ism̂w(Zis)− Z̃∗>it β̂w(z)

)
T∏

l=1

KH(Zil − z), (18)

where β̂w(z) is the MELE defined in (14), m̂w(z) = e>β̂w(z), and e =

[
Id

... 0

]
, Id is a d-dimensional unit

matrix and 0 is a dq × d matrix. Taking into account (18), let us denote

ξ̃w(β(z)) =
√
NT |H|T/2 b̂w(z)>

[
D̃w(β(z))

]−1
[

2√
NT |H|T/2

N∑

i=1

Twi(β(z))−
√
NT |H|T/2 b̂w(z)

]
.

Finally, the mean-corrected empirical likelihood for β(z) will be

R̃w(β(z)) = Rw(β(z))− ξ̃w(β(z)). (19)

Similarly, for the first differences transformation, we can define the mean-corrected empirical likelihood as

R̃f (β(z)) = Rf (β(z))− ξ̃f (β(z)), (20)

where ξ̃f (β(z)) =
√
NT |H| b̂f (z)>

[
D̃f (β(z))

]−1
[

2√
NT |H|

∑N
i=1 Tfi(β(z))−

√
NT |H| b̂f (z)

]
. Also, b̂f (z) is a

consistent estimator of bf (z). In this case, it is easy to show (see (A.19) for details) that

1

|H|E
[
Z̃it

(
X>itm(Zit)−X>i(t−1)m(Zi(t−1))− Z̃>it β(z)

)
KH(Zit − z, Zi(t−1) − z)

]
= bf (z) + op(1),

then the estimator of bf (z) is

b̂f (z) =
1

NT |H|
∑

it

Z̃it

(
X>it m̂f (Zit)−X>i(t−1)m̂f (Zi(t−1))− Z̃>it β̂f (z)

)
KH (Zit − z)KH

(
Zi(t−1) − z

)
,
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where β̂f (z) is the MELE defined in (15), and m̂f (z) = e>β̂w(z). Note that from the proof of theorem 2.2,

bf (z) =

(
1
2bf1(z)
1
2bf2(z) + 1

3!bf3(z)

)
, (21)

where

bf1(z) = µ2(Ku)B∆X∆X(z, z)diagd {tr {Hmr(z)H}} id,

bf2(z) = µ2(Ku)2
(
DB>XX(z, z)−DB>X−1X−1

(z, z)
)

diagd
{

tr
{
Hmr(z)H2

}}
id,

bf3(z) =
(
BXX(z, z)− BX−1X−1(z, z)

)
⊗
∫ (

H1/2uτ

)
D3
m(z,H1/2uτ )K(u)K(v)dudv.

We state the asymptotic results of these two MCEL ratios in the following theorem.

Theorem 4.1. Assuming that conditions 2.1 - 2.13 hold, and β(z) is the true vector of parameters, then

R̃w(β(z)) →d χ
2
d(q+1) and R̃f (β(z)) →d χ

2
d(q+1) as N → ∞ and T is fixed, where →d means the convergence

in distribution and χ2
d(q+1) is the standard chi-squared distribution with d(q + 1) degrees of freedom.

Note that to state this result we do not impose any extra condition. Here, we need conditions 2.1 - 2.10 to

ensure that R̃w(β(z))→d χ
2
d(q+1) and conditions 2.1 - 2.7 and 2.11 - 2.13 to ensure that R̃f (β(z))→d χ

2
d(q+1)

as N → ∞. Basically these conditions are the same conditions of Theorems 2.1 and 2.2; however we do not

need that
√
NT |H|T/2tr(H)→ 0 for the within transformation and

√
NT |H|tr(H)→ 0 for the first differences

transformation.

4.2 Residual-adjusted empirical likelihood ratio

There exist an alternative method to the MCEL in order to cope with the asymptotic bias. The main idea is

to borrow the asymptotic expansion of the empirical likelihood ratio already derived. That is, for the within

transformation, let T̂wi(β(z)) be an adjustment of the weighted residuals, Twi(β(z)), that is defined as

T∑

t=1

Z̃∗it

[
Ÿit − Z̃∗>it β(z)−

(
X>it m̂w(Zit)−

1

T

T∑

s=1

X>ism̂w(Zis)− Z̃∗>it β̂w(z)

)]
T∏

l=1

KH(Zil − z).

Similarly, for the first differences transformation we have that T̂fi(β(z)) is defined as

T∑

t=2

Z̃it

[
∆Yit − Z̃>itβ(z)−

(
X>it m̂f (Zit)−X>i(t−1)m̂f (Zi(t−1))− Z̃>it β̂f (z)

)]
KH(Zit − z)KH(Zi(t−1) − z).

Then, an adjusted empirical log-likelihood ratio function for β(z) can be defined, for the within transformation,

as

R̂w(β(z)) = −2 max

{
N∏

i=1

pi

∣∣∣∣∣pi ≥ 0,
N∑

i=1

pi = 1,
N∑

i=1

piT̂wi(β(z)) = 0

}
,
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and, for the first differences transformation, as

R̂f (β(z)) = −2 max

{
N∏

i=1

pi

∣∣∣∣∣pi ≥ 0,
N∑

i=1

pi = 1,
N∑

i=1

piT̂fi(β(z)) = 0

}
.

The asymptotic results for both, R̂w(β(z)) and R̂f (β(z)), are stated in the following theorem

Theorem 4.2. Assuming that conditions 2.1 - 2.13 hold, and β(z) is the true parameter value, then R̂w(β(z))→d

χ2
d(q+1) and R̂f (β(z)) →d χ

2
d(q+1) as N → ∞ and T is fixed, where →d means the convergence in distribution

and χ2
d(q+1) is the standard chi-squared distribution with d(q + 1) degrees of freedom.

Note that to state this result we do not impose any extra condition. Here, we need conditions 2.1 - 2.10 to

ensure that R̂w(β(z))→d χ
2
d(q+1) and conditions 2.1 - 2.7 and 2.11 - 2.13 to ensure that R̂f (β(z))→d χ

2
d(q+1)

as N → ∞ as N → ∞; however we do not need that
√
NT |H|T/2tr(H) → 0 for the within transformation

and
√
NT |H|tr(H) → 0 for the first differences transformation. Therefore, it is possible now to consider an

optimal bandwidth matrix and hence the rate of convergence of the estimators will be also optimal.

As in other nonparametric estimation problems, bandwidth selection is important. Since the previous

corrections enable us to use the optimal bandwidth then we can rely on standard data driven bandwidth

selection techniques to select a bandwidth matrix. Among them, we propose to use a plug-in rule based on

Sheather and Jones (1991). This proposal will be investigated in numerical studies in Section 5 and it will be

also applied for illustrating the proposed Empirical Likelihood method with an empirical application in Section

6. Finally, there exists other data driven bandwidth selection criteria, such as cross-validation or empirical

MSE criteria, that can be used alternatively to the plug-in method. They are detailed in a supplement. Their

main drawback is that their are computationally more demanding.

5 Monte Carlo results

In this section we propose a simulation exercise to analyse the small sample behaviour of the empirical likelihood

techniques that we have proposed in the previous sections when constructing confidence bands. In order to do

so, we consider the following data generating process,

Yit = µqi +X>ditm(Zqit) + vit, i = 1, ..., N ; t = 1, ..., T ; d, q = 1, 2,
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where Xdit and Zqit are random variables, where Zqit = wqit + wqi(t−1), (wqit are i.i.d. N (0, 1)) and Xdit =

0.5ζdit + 0.5ξdit (ζqit and ξdit are i.i.d. N (0, 1)) and we consider three cases of study

a. (d = 1, q = 1) : Yit = µ1i +X>1itm1(Z1it) + vit,

b. (d = 1, q = 2) : Yit = µ2i +X>1itm1(Z1it, Z2it) + vit,

c. (d = 2, q = 1) : Yit = µ1i +X>1itm1(Z1it) +X>2itm2(Z1it) + vit.

The chosen functional form for m(.) are m1(Z1it) = sin(Z1itπ), m1(Z1it, Z2it) = sin((Z1it + Z2it)π/2), and

m2(Z1it) = exp(−Z2
1it). We also experiment with tow specifications for the fixed effects

1. µ1i depends on Z1it, where the dependence is imposed by µ1i = c0Z̄1i. + ui for i = 1, ..., N and Z̄1i. =

T−1
∑

t Z1it,

2. µ2i depends on Z1it and Z2it by µ2i = c0Z̄i. + ui for i = 1, ..., N and Z̄i. = 1
2(Z̄1i. + Z̄2i.),

where ui is an i.i.d. N (0, 1) and c0 = 0.5 controls the correlation between the unobservable individual

heterogeneity and some of the regressors of the model. Also, let εit be and i.i.d. N (0, 1) and vit a scalar

random variable, for each model we work with the following specification of the error term: vit = εit

In this experiment we use 1000 Monte Carlo replications (M). The number of period (T ) is fixed to be 3

and the number of cross-sections (N) take the values 50, 100 and 150. For the calculations we use a Gaussian

Kernel and for the bandwidth matrix H we use the standard choice Ĥ = ĥI, where I is the q×q identity matrix,

and ĥ = σ̂z(NT )−1/5, where σ̂z is the simple standard deviation of {Zit}N,Ti=1,t=1. For any replication we have

built up the confidence bands using the empirical likelihood confidence bands and the normal approximation

confidence bands introduced before. In table 1 we present the point-wise confidence intervals, where NLB =

Normal Approximation (NA) Lower Bound, NUB = NA Upper Bound, MELLB = Mean Corrected Empirical

Likelihood (MCEL) Lower Bound, MELUB= MCEL Upper Bound, RELLB = Residual Adjusted Empirical

Likelihood (RAEL) Lower Bound and RELUB = RAEL Upper Bound.

As the reader may notice, from table 1, between the MCEL, the RAEL and the NA, the length of the

confidence interval is smaller in the RAEL; also note that, the confidence interval length of the MCEL is

smaller than the NA. Also, it is interesting that, as table 1 shows, the confidence intervals using NA are

wider than ones using empirical likelihood. Therefore we can say that when N goes to infinity the length

the confidence bands of the NA are wider that the confidence bands of the MCEL and the RAEL. Thus, we

can conclude by saying that the RAEL and MCEL confidence bands behave better than the NA confidence
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Table 1: Pointwise Confidence interval for β(z) at z = 0 based on the MCEL, RAEL and NA, when the nominal
level is 95%

Size Model NLB MELLB RELLB β̂1(z) RELUB MELUB NUB

Within

N = 50
a -0.99 -0.60 -0.42 0.04 0.48 0.68 1.13
b -0.94 -0.62 -0.46 0.00 0.49 0.63 0.97
c -0.78 -0.67 -0.51 0.02 0.54 0.70 0.83

N = 100
a -0.95 -0.52 -0.28 0.01 0.30 0.54 0.98
b -0.98 -0.58 -0.42 -0.03 0.36 0.52 0.90
c -0.74 -0.53 -0.28 0.07 0.38 0.65 0.87

N = 150
a -0.91 -0.46 -0.21 0.00 0.21 0.47 0.93
b -1.02 -0.50 -0.34 0.03 0.39 0.57 1.10
c -0.83 -0.52 -0.23 0.00 0.23 0.52 0.78

Fist Difference

N = 50
a -0.96 -0.75 -0.41 0.00 0.38 0.74 0.94
b -0.85 -0.60 -0.38 0.03 0.43 0.66 0.94
c -0.92 -0.78 -0.43 0.00 0.43 0.78 0.92

N = 100
a -0.79 -0.64 -0.23 0.01 0.26 0.66 0.81
b -0.88 -0.52 -0.31 -0.01 0.29 0.49 0.87
c -0.77 -0.70 -0.26 0.00 0.28 0.71 0.80

N = 150
a -0.72 -0.58 -0.20 -0.00 0.19 0.56 0.71
b -0.93 -0.46 -0.27 0.00 0.26 0.45 0.92
c -0.69 -0.61 -0.20 -0.00 0.21 0.62 0.68

bands. Between RAEL and MCEL confidence bands, simulations results show that the RAEL onfidence bands

behave better than the MCEL. Also, by comparing the within method with the first difference method we can

conclude that for the NA and the RAEL confidence bands the First Difference method reduces the length of

the confidence interval; however the MCEL confidence interval increases it length in comparison to the Within

method (table 1 )

6 An empirical aplication

In this section we offer a very simple application where our empirical likelihood based confidence intervals can

be of great interest; we consider the estimation of the production efficiency of the EU firms. Conventionally,

these type of studies are based on a Cobb-Douglas stochastic production function. A standard assumption
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in the literature is that capital and labour elasticities are constant over time; studies conducted under such a

restrictive framework present some weaknesses. On the one hand, the estimation procedure can be complicated

by the presence of individual heterogeneity together with the inefficiency term; especially, when there exist a

correlation between the individual heterogeneity and the covariates of the model. See Greene (2005) or Wang

and Ho (2010) among others. On the other hand, there are empirical studies that suggest that capital and

labour elasticities vary according to other features of the companies such as the research and development,

R&D, expenses. See Ahmad et al. (2005) among others, where they prove that varying coefficient models are

a natural way to extend these constant elasticities to the functional form. Also, there exist a standard belief

that the liquid capital marginal productivity is not affected by the R&D expenses. In order to test this fact,

we propose the following varying coefficient panel data model

yit = witβ1(zit) + litβ2(zit) + kitβ3(zit) + µi + vit, i = 1, . . . , N ; t = 1, . . . , T (22)

where yit = ln (Yit), wit = ln (Wit), lit = ln (Lit) and kit = ln (Kit). Also, Y represents the sales of the

company, W the liquid capital, L the labour input, K the fixed capital and Z the firms R&D expenses. In

addition µi stands for the individual heterogeneity and vit = νit−uit is a composed error term, where νit is the

idiosyncratic error and uit represents the inefficiency that has expected value equal to E [vit] = −E [uit]. Note

that in the specification (22) the R&D variable has a neutral effect on the production function by shifting the

level of the production frontier but also affects the labour and capital marginal productivities.

Table 2: Statistics of inputs and outputs.

Variable Average Standard Deviation Correlations

Y 6705377.60 25791397.23
W 1379564.74 5073321.65 0.66
K 1161082.07 3443125.02 0.79 0.83
L 17976.52 48686.98 0.59 0.83 0.86
Z 224303.78 937324.42 0.40 0.60 0.63 0.62

The sample used in this empirical analysis includes 1220 observations divided in 160 companies and 7 time

periods, form 2008 to 2014, from the Analyse Major Database form European Sources (AMADEUS). The

data contains information about the accounting and financial statements of European firms. Note that we are

working with expenses, thus all the variables have been deflected using the implicit index of the GDP. The

information related to prices used to deflate the variables was obtained form the Spanish Statistical Office

(various years). In Table 2 we present summary statistics of the observations, as it can be seen, the standard

deviations show that there exist a high degree of heterogeneity.
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In figure 1 we present our results by plotting the estimated curves against the R&D expenses; here the

continuous lines denote the non-parametric estimated curve and the doted lines represent the 95% pointwise

confidence interval obtained using the MCEL (long-dashed curve) and RAEL (short-dashed curve). The band-

widths, as in Section 5, have been computed by a plug-in technique proposed in Sheather and Jones (1991)

and already explained in Section 4. Also, note that figure 1 shows the results for the marginal productivity of

liquid capital (W ), fixed capital (K) and labour (L), and the returns to scale defined as β1(z) + β2(z) + β3(z).

Figure 1: Averages of 95 % Confidence Intervals for β̂j(z) for j = 1, . . . , 3 (Within method), based on MCEL
(long-dashed curve) and RAEL (short-dashed curve).
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Return to Scale

Focusing in the marginal productivity of liquid capital (W marginal productivity) we have realized that it

tends to be decreasing; however when it reaches a certain level of R&D expenses it tends to be steady and

close to zero. Basically, this means that companies with small R&D expenses have a decreasing marginal

productivity of liquid capital. Analysing the graph, we can see that as the level of R&D expenses increases,
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first the companies see an increase in the marginal productivity of liquid capital; then they experiment a drop

of the marginal productivity of liquid capital until it become stable near to zero. On its part, the marginal

productivity of fixed capital (K marginal productivity) is not a linear function with the level of R&D expenses.

Clearly, there exist an upward general trend, with a bell shape form for companies with large R&D expenses.

This bell shape of the marginal productivity of fixed capital curve suggests that, while modest R&D expenses

can improve the fixed capital productivity, higher R&D expenses leads to lower fixed capital productivity.

L marginal productivity shows the results of the labour marginal productivity. Here we observe that the

labour marginal productivity is not a linear function of R&D; broadly, it decreases with R&D, however, with

higher levels of R&D the marginal productivity of labour becomes to increase. This inverted bell shape suggest

that companies with reduced R&D tend to have lower labour marginal productivity at the beginning while

companies with higher R&D are more likely to have an increase in labour marginal productivity. Note that this

behaviour is characteristic in companies that use R&D to improve the performance of their machines rather

than focusing in training their workers. Finally, using these results we can not conclude that the returns to

scale are not equal to one because one is within the confidence interval. However, we can conclude that the

returns to scale are not linear with R&D and they seem to have a negative effect in the behaviour of the returns

to scale.

7 Conclusions

In this paper we adapt empirical likelihood techniques to construct confidence bands in a fixed effects varying

coefficient panel data model. First we consider a so called naive empirical likelihood technique. As a byprod-

uct we provide two alternative empirical maximum likelihood estimators of the varying coefficients and their

derivatives. Since the use of naive empirical likelihood techniques provides sub-optimal rates of convergence

we slightly modify the original techniques that enables us to obtain optimal nonparametric rates: Mean cor-

rected and residual adjusted empirical likelihood ratios. Finally we undertake a simulation study and we apply

successfully our techniques in a empirical study of of production efficiency of the European Unions companies.

8 Appendix: Proofs

8.1 Proof of Theorem 2.1

Note that, Rw(β(z)) =

[
1√

NT |H|T/2
∑N

i=1 Twi(β(z))

]> [
D̃w(β(z))

]−1
[

1√
NT |H|T/2

∑N
i=1 Twi(β(z))

]
+ op(1), (see

equation (12)) as N tends to infinity. The proof of this result is done in three steps: first, we show the
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asymptotic normality of the vector 1√
NT |H|T/2

∑N
i=1 Twi(β(z)), second, we show the consistency of D̃w(β(z))

and finally we use a Cramer-Wold device to close the proof.

In order to obtain the asymptotic distribution of 1√
NT |H|T/2

∑N
i=1 Twi(β(z)) note that

1

NT |H|T/2
N∑

i=1

Twi(β(z)) =
1

NT |H|T/2
N∑

i=1

(Twi(β(z))− E[Twi(β(z))|X,Z])

+
1

NT |H|T/2
N∑

i=1

E [Twi(β(z))|X,Z] ≡ U1N + U2N , (A.1)

where X = (X11, ..., XNT ) and Z = (Z11, ..., ZNT ) are the sample covariate values. We first work on the bias

term U2N . Then, substituting Twi (β(z)) by (7) into E [Twi (β(z)) |X,Z], applying Assumption 2.2 and taking

Taylor expansion around X>itm(Zit)− T−1
∑

sX
>
ism(Zis) we obtain

U2N ≡
1

NT |H|T/2
N∑

i=1

E[Twi(β(z))|X,Z] =

(
A1.1N +A1.2N

A1.3N +A1.4N +A1.5N

)
. (A.2)

Here

A1.1N =
1

2NT |H|T/2
∑

it

ẌitQm(z)KH(Zi − z),

A1.2N =
1

NT |H|T/2
∑

it

ẌitR1(z)KH(Zi − z),

A1.3N =
1

2NT |H|T/2
∑

it

(
Xit ⊗ (Zit − z)−

1

T

T∑

s=1

Xis ⊗ (Zis − z)
)
Qm(z)KH(Zi − z),

A1.4N =
1

3!NT |H|T/2
∑

it

(
Xit ⊗ (Zit − z)−

1

T

T∑

s=1

Xis ⊗ (Zis − z)
)
Cm(z)KH(Zi − z),

A1.5N =
1

2NT |H|T/2
∑

it

(
Xit ⊗ (Zit − z)−

1

T

T∑

s=1

Xis ⊗ (Zis − z)
)
R2(z)KH(Zi − z),

where KH(Zi − z) =
∏T
l=1KH (Zil − z) and

Qm(z) = X>it ⊗ (Zit − z)>Hm(z)(Zit − z)−
1

T

T∑

s=1

X>is ⊗ (Zis − z)>Hm(z)(Zis − z),

Cm(z) = X>it ⊗D3
m(z, Zit − z)−

1

T

T∑

s=1

X>is ⊗D3
m(z, Zis − z),

R1(z) = X>it ⊗ (Zit − z)>R(Zit; z)(Zit − z)−
1

T

T∑

s=1

X>is ⊗ (Zis − z)>R(Zis; z)(Zis − z),

R2(z) = X>it ⊗R∗(Zit; z)−
1

T

T∑

s=1

X>is ⊗R∗(Zis; z).
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The remainder terms in the Taylor expansion are defined as

R(Zit; z) =

∫ 1

0
[Hm(z + ω(Zit − z))−Hm(z)] (1− ω)dω,

R∗(Zit; z) =

∫ 1

0

[
D3
m(z + ω(Zit − z), Zit − z)−D3

m(z, Zit − z)
]

(1− ω)2dω,

where ω is a weight function. Now we analyze the limit behavior of each of these terms when N tends to

infinity and T remains fixed. First we will show that

A1.1N =
1

2
µ2(Kuτ )BẌẌ(z, .., z)diagd {tr {Hmr(z)H}} id + op (tr {H}) , (A.5)

and using standard results from nonparametric regression analysis and Assumption 2.4 we have that

E (A1.1N ) =
1

2

∫
E
[
ẌitX

>
it

∣∣∣Zi1 = z +H1/2u1, ..., ZiT = z +H1/2uT

]
⊗ (H1/2uτ )>

×Hm(z)(H1/2uτ )f(z +H1/2u1, ..., z +H1/2uT )

T∏

l=1

K(ul)dul

− 1

2T

T∑

s=1

∫
E
[
ẌitX

>
is

∣∣∣Zi1 = z +H1/2u1, ..., ZiT = z +H1/2uT

]
⊗ (H1/2us)

>

×Hm(z)(H1/2us)f(z +H1/2u1, ..., z +H1/2uT )
T∏

l=1

K(ul)dul.

Then a straightforward application of a Taylor expansion and assumptions 2.1 and 2.5 are enough to show

that (A.5) holds. Also, note that to show (A.5) we need to prove that Var(A1.1N )→ 0, as N tends to infinity

and T is fixed. Under Assumption 2.1, Var(A1.1N ) = 1
NT Var (ait) + 1

NT 2

∑T
t=3(T − t)Cov (ai2, ait) , where

ait = 1
|H|T/2 ẌitQm(z)KH(Zi − z). Then, under assumptions 2.5 and 2.9 the first element shows the following

bound Var (ait) ≤ C
NT |H|T/2 and Cov (ai2, ait) ≤ C′

N |H|T/2 . Therefore, if N |H|T/2 tends to infinity the variance

tends to zero and applying a weak law of large numbers (A.5) follows.

Following a similar procedure, and noting that due to Assumption 2.4 the odd order moments of K(.)

disappear, it easy to show that

A1.3N =
1

2
µ2(Kuτ )2

(
1− 1

T

)
DB>XtXt(z, .., z)diagd

{
tr
{
Hmr(z)H2

}
id
}

+ op
(
tr
{
H2
})
, (A.6)

and

A1.4N =
1

3!

(
1− 1

T

)
BXtXt(z, .., z)⊗

∫ (
H1/2uτ

)
D3
m(z,H1/2uτ )

T∏

l=1

H(ul)dul + op
(
H2
)
. (A.7)
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Finally focusing on the residual terms A1.2N and A1.5A and using the same procedure as in the proof of

(A.18)-(A.28) in Rodriguez-Poo and Soberón (2015) it can be shown that A1.2N = op (tr {H}) and A1.5N =

op
(
tr
{
H2
})

. Then by replacing the different asymptotic expressions for the AN ’s into U2N , we obtain,

U2N =
1

NT |H|T/2
N∑

i=1

E[Twi(β(z))|X,Z] =

(
1
2bw1(z)
1
2bw2(z) + 1

3!bw3(z)

)
+ op

(
tr {H}
tr
{
H2
}
)
, (A.8)

where bw1(z), bw2(z) and bw3(z) were defined in (16).

Now we obtain the limiting distribution of the quantity
√
NT |H|T/2U1N . In order to do so we apply

Liapunov’s Central Limit Theorem. We do it by obtaining the variance-covariance matrix of the limiting

distribution and verifying the so called Liapunov’s condition. By substituting (7) into U1N we obtain, U1N ≡
1

NT |H|T/2
∑N

i=1 [Twi(β(z))− E [Twi(β(z))|X,Z]] = 1
NT |H|T/2

∑
it Z̃
∗
itvitKH(Zi − z). Now, because of assumptions

2.1 and 2.2 we have that

NTVar (U1N |X,Z) =
σ2
v

NT |H|T
∑

it

Z̃∗itZ̃
∗>
it K

2
H(Zi − z). (A.9)

Applying assumptions 2.1 - 2.2 and 2.4 and mimicking (A.33)-(A.35) in Rodriguez-Poo and Soberón (2015)

we obtain the following,

NT |H|T/2V ar (U1N ) (A.10)

= σ2
v

(
R(K)TBẌẌ(z, ..., z) Op(|H|T )

Op(|H|T )
(
1− 1

T

)
µ2(K2

uτ )
∏T
l 6=τ R(Kul)BXtXt(z, ..., z)⊗H

)
(1 + op(1)).

Now, we check Liapunov’s condition; we must show that for any unit vector b ∈ Rd(q+1) and some δ > 0,

as N tends to infinity, 1√
NT |H|T/2

∑
itE

[∣∣∣b>Z̃∗itvit
∏T
l=1KH(Zil − z)

∣∣∣
2+δ
]
→ 0. To prove this, let us define

φit = |H|T/4b>Z̃∗itvit
∏T
l=1KH(Zil − z) ∀i = 1, ..., N ; t = 1, ..., T . Following assumption 2.4 we can write

Var(φit) = σ2
vb
>
(
R(K)TBẌẌ(z, ..., z) 0

0
(
1− 1

T

)
µ2(K2

uτ )
∏T
l 6=τ R(Kul)BXtXt(z, ..., z)⊗H

)
b(1 + op(1)),

and
∑T

t=1 |Cov(φi1, φit)| = op(1).Note also that we can write φit = φ1it+φ2it where φ1it = b>Ẍitvit
∏T
l=1KH(Zil−

z) and φ2it = b>Xit ⊗ (Zit − z) − b> 1
T

∑
s = 1TXis ⊗ (Zis − z)vit

∏T
l=1KH(Zil − z). Furthermore, let us

define φ∗n,i = T−1/2
∑T

t=1 φit = T−1/2
∑T

t=1 (φ1it + φ2it). For fixed T , the φ∗n,i are independent random

variables and n = NT . Then, using Minkowski inequality and due to the matrix structure of Z̃∗it we get

E|φ∗n,i|2+δ ≤ CT (2+δ)/2E|φit|2+δ = CT (2+δ)/2E|φ1it+φ2it|2+δ. Analysing each term by separate, (see Rodriguez-

Poo and Soberón (2015) for details), we obtain

(NT )−(2+δ)/2
N∑

i=1

E|φ∗n,i|2+δ ≤ C(N |H|T/2)−δ/2, (A.11)
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which tends to zero when N |H| → ∞. Therefore, Liapunov’s Central Limit Theorem applies and hence

√
NT |H|T/2U1N →d N (0, υw(z)) . (A.12)

Therefore, by substituting (A.8) and (A.12) into (A.1) and imposing the condition
√
NT |H|T/2tr(H)→ 0 we

obtain that 1√
NT |H|T/2

∑
i Twi (β(z))→d N (0, υw(z)) , as N tends to infinity.

Now we prove the consistency of D̃w(β(z)). As N tends to infinity and T is fixed, if conditions 2.1 - 2.10

hold and, similar to the proof of (A.10), by applying a Law of Large Numbers it is straightforward to show

that

D̃w(β(z)) =
1

NT |H|T/2
N∑

i=1

Twi(β(z))T>wi(β(z)) = υw(z) + op (tr {H}) , (A.13)

where υw(z) was defined in (17). From (A.8), (A.12) and (A.13), and using the same arguments as in the

proof of (2.14) in Owen (1990), we can prove that

λ = Op

(
(NT |H|T/2)−1/2

)
, (A.14)

where λ was defined in (11). Then applying Taylor expansion to (10) and invoking (A.8), (A.12) and (A.13),

we obtain

Rw(β(z)) = 2

N∑

i=1

[
T>wi(β(z))λ−

(
T>wi(β(z))λ

)2
/2

]
+ op(1). (A.15)

By (11) and applying Taylor expansion again it follows that

0 =

N∑

i=1

Twi(β(z))

1 + λ>Twi(β(z))

=
N∑

i=1

Twi(β(z))−
N∑

i=1

Twi(β(z))T>wi(β(z))λ+
N∑

i=1

Twi(β(z))(T>wi(β(z))λ)2

1 + λ>Twi(β(z))
.

Then, recalling (A.8), (A.12) and (A.13) we can prove that

N∑

i=1

(T>wi(β(z))λ)2 =
N∑

i=1

T>wi(β(z))λ+ op(1), (A.16)

and

λ =

[
N∑

i=1

Twi(β(z))T>wi(β(z))

]−1 N∑

i=1

Twi(β(z)) + op

(
(NT |H|T/2)−1/2

)
. (A.17)

Now, if we rely on (A.8), (A.12) and (A.13) the proof is concluded by applying the Cramer-Wold device.
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8.2 Proof of Theorem 2.2

This proof is similar to that of Theorem 2.1 and therefore most of the details are omitted. In order to obtain

the asymptotic distribution of 1√
NT |H|

∑N
i=1 Tfi(β(z)) we follow similar steps to those in (A.1),

1

NT |H|
N∑

i=1

Tfi(β(z)) = U∗1N + U∗2N . (A.18)

For the bias term U∗2N , defining a similar multivariate Taylor expansion around X>itm(Zit)−X>i(t−1)m(Zi(t−1))

as the one used in (A.2), and applying Assumption 2.2 we obtain

U∗2N =
1

NT |H|
N∑

i=1

E[Tfi(β(z))|X,Z] =

(
1
2bf1(z)
1
2bf2(z) + 1

3!bf3(z)

)
+ op

(
tr {H}
tr
{
H2
}
)
, (A.19)

where bf1(z), bf2(z) and bf3(z) were defined in (21).

Now we obtain the limiting distribution of the quantity
√
NT |H|U∗1N . By substituting (8) into U∗1N we ob-

tain that U∗1N = 1
NT |H|

∑
it Z̃it∆vitKH(Zit−z, Zi(t−1)−z), and taking into account that because of assumptions

2.1 and 2.2 we have that

E[∆vit∆vi′t′ |X,Z] =





2σ2
v if i = i′, t = t′

−σ2
v if i = i′, |t− t′| < 2

0 otherwise

. (A.20)

Then, mimicking (A.30)-(A.36) in Rodriguez-Poo and Soberón (2014) we obtain the following,

NT |H|V ar (U∗1N ) (A.21)

= 2σ2
v

(
R(Ku)R(Kv)B∆X,∆X(z, z) Op(|H|2)

Op(|H|2) µ2(K2)R(Ku)
(
BXX(z, z) + BX−1X−1(z, z)

)
⊗H

)
(1 + op(1)).

The rest of the proof follows exactly the lines of the proof of Theorem 2.1.

8.3 Proof of Theorem 3.1

Note that,

β̂w(z)− β(z) =
(
β̂w(z)− E

[
β̂w(z)

∣∣∣X,Z
])

+
(
E
[
β̂w(z)

∣∣∣X,Z
]
− β(z)

)
≡ I1N + I2N . (A.22)

To prove the desired result we will show that, under the conditions of this theorem, I2N = Bw(z) +

op(
1√

NT |H|T/2
) and

√
NT |H|T/2I1N →d N (0,Σw(z)), as N tends to infinity, where Bw(z) and Σw(z) have
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been defined in theorem 3.1. If we substitute (14) into (A.22) and we make a second order Taylor expansion

around X>itm (Zit)− 1
T

∑
sX
>
ism (Zis) we obtain that

I2N =

(
1

NT |H|T/2
∑

it

KH(Zi − z)Z̃∗itZ̃∗>it

)−1(
A1.1N +A1.2N

A1.3N +A1.4N +A1.5N

)
. (A.23)

Note that A1.1N , A1.2N , A1.3N , A1.4N and A1.5N have been already defined in the proof of Theorem 2.1. Fur-

thermore, the asymptotic behavior of the second term in (A.23) has been already obtained in (A.8); therefore,

all what we need to calculate the asymptotic behavior of I2N is to study the first term. Proceeding as in

Rodriguez-Poo and Soberón (2015) (see expressions (A.8)-(A.12)), it is straightforward to show that

(
1

NT |H|T/2
∑

it

T∏

l=1

KH(Zil − z)Z̃∗itZ̃∗>it

)−1

=

(
C11 C12

C21 C22

)
, (A.24)

where

C11 = B−1
ẌẌ

(z, ..., z) + op(1)

C12 = −B−1
ẌẌ

(z, ..., z)
(
DBẌẌ(z, ..., z) (Id ⊗ µ2(Kuτ )H)

)

×
((

1− 1

T

)
BXtXt(z, .., z)⊗ µ2(Kuτ )H

)−1

+ op(1)

C21 = −
((

1− 1

T

)
BXtXt(z, .., z)⊗ µ2(Kuτ )H

)−1 (
DBẌẌ(z, ..., z) (Id ⊗ µ2(Kuτ )H)

)>

×B−1
ẌẌ

(z, ..., z) + op(1)

C22 =

((
1− 1

T

)
BXtXt(z, .., z)⊗ µ2(Kuτ )H

)−1

+ op(H
−1),

Using the terms (A.24) and (A.8) and applying Slutsky’s Theorem to (A.23) we finish the proof.

In order to show the asymptotic behavior of I1N note that by (14) we have that

I1N = β̂w(z)− E
[
β̂w(z)

∣∣∣X,Z
]

=

(∑

it

KH(Zi − z)Z̃∗itZ̃∗>it

)−1∑

it

KH(Zi − z)Z̃∗itvit, (A.25)

and considering assumptions 2.1 and 2.2 the variance term of β̂w(z), using the Slutsky’s Theorem and previous

results can be written as

NT |H|T/2Var
(
β̂w(z)

∣∣∣X,Z
)

= Σw(z)(1 + op(1)); (A.26)

the Liapunov condition needed to apply a Central Limit Theorem here is the same as the one as in the proof

of Theorem 2.1 (see A.11) and then a further application of the Cramer-Wold device closes the proof.
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8.4 Proof of Theorem 3.2

The proof of this theorem is similar to that of Theorem 3.1 and therefore the details are omitted.

In order to show Theorems 4.1 and 4.2 we need the following additional lemma that is proved at the end

of the Appendix.

Lemma 8.1. Assuming that conditions of Theorems 4.1 and 4.2 hold. Then b̂w(z)→p bw(z) and b̂f (z)→p bf (z)

respectively, as N tends to infinity.

8.5 Proof of Theorem 4.1

If we substitute (12) into (19) we obtain that R̃w(β(z)) is equal to

=

[
1√

NT |H|T/2
N∑

i=1

Twi(β(z))−
√
NT |H|T/2 bw(z)

]>
D̃−1
w (β(z))

[
1√

NT |H|T/2
N∑

i=1

Twi(β(z))−
√
NT |H|T/2 bw(z)

]

+

[√
NT |H|T/2

{
b̂w(z)− bw(z)

}]>
D̃−1
w (β(z))

[√
NT |H|T/2

{
b̂w(z) + bw(z)

}
− 2√

NT |H|T/2
N∑

i=1

Twi(β(z))

]
+ op(1)

≡ L1(z) + L2(z) + op(1).

In Theorem 2.1, we have already proved that 1√
NT |H|T/2

∑N
i=1 Twi(β(z)) →d N

(√
NT |H|T/2 bw(z), υw(z)

)

and D̃w(β(z))→p vw(z). Then, together with the proof of Lemma 8.1 we can conclude that L1(z)→d χ2
d(q+1)

and L2(z)→p 0. Thus the proof of Theorem 4.1 is closed.

8.6 Proof of Theorem 4.2

The proof of this theorem is similar to that of Theorem 4.1 and therefore the details are omitted.
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8.7 Proof of Lemma 8.1

Let us consider,

b̂w(z)− bw(z)

=
1

NT |H|T/2
∑

it

Z∗it

(
X>it (m̂w(Zit)−m(Zit))−

1

T

∑

s

X>is (m̂w(Zis)−m(Zis))

− Z∗>it
(
β̂w(z)− β(z)

))
KH (Zi − z)

+
1

NT |H|T/2
∑

it

Z∗it

(
X>itm (Zit)−

1

T

∑

s

X>ism (Zis)− Z∗>it β(z)

)
KH (Zi − z)

−bw(z)

= L∗1(z) + L∗2(z).

Then, by Theorem 2.1, equation (A.8), we have that, as N tends to infinity, L∗2(z) →p 0. Furthemore, the

conditions of this Theorem guarantee that supz |m̂w(z)−m(z)| = op(1) and supz

∣∣∣β̂w(z)− β(z)
∣∣∣ = op(1) (see

Masry (1996), Theorem C) and jointly with assumption 2.9 it is easy to show that L∗1(z)→p 0
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