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Abstract

Causal inference methods have been widely used in biomedical sciences and social sci-
ences, among many others. With different assumptions, various methods have been pro-
posed to conduct causal inference with interpretable results. The validity of most existing
methods, if not all, relies on a crucial condition: all the variables need to be precisely
measured. This condition, however, is commonly violated. In many applications, the col-
lected data are not precisely measured and are subject to measurement error. Ignoring
measurement error effects can lead to severely biased results and misleading conclusions.
In order to obtain reliable inference results, measurement error effects should be carefully
addressed.

Outside the context of causal inference, research on measurement error problems has
been extensive and a large body of methods have been developed. In the paradigm of causal
inference, however, there is limited research on measurement error problems, although an
increasing, but still scarce, literature has emerged. Certainly, this is an area that deserves
in-depth investigation. Motivated by this, this thesis focuses on causal inference with
measurement error. We investigate the impact of measurement error and propose methods
which correct for measurement error effects for several useful settings. This thesis consists
of nine chapters.

As a preliminary, Chapter 1 gives an introduction to causal inference, measurement
error and other features such as missing data, as well as an overview of existing methods
on causal inference with measurement error. In this chapter we also describe the problems
of our interest that will be investigated in depth in subsequent chapters.

Chapter 2 considers estimation of the causal odds ratio, the causal risk ratio and the
causal risk difference in the presence of measurement error in confounders, possibly time-
varying. By adapting two correction methods for measurement error effects applicable for
the noncausal context, we propose valid methods which consistently estimate the causal
effect measures for settings with error-prone confounders. Furthermore, we develop a linear
combination based method to construct estimators with improved asymptotic efficiency.

Chapter 3 focuses on the inverse-probability-of-treatment weighted (IPTW) estima-
tion of causal parameters under marginal structural models with error-contaminated and
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time-varying confounders. To account for bias due to imprecise measurements, we de-
velop several correction methods. Both the so-called stabilized and unstabilized weighting
strategies are covered in the development.

In Chapter 4, measurement error in outcomes is of concern. For settings of inverse
probability weighting (IPW) estimation, we study the impact of measurement error for
both continuous and binary outcome variables and reveal interesting consequences of the
naive analysis which ignores measurement error. When a continuous outcome variable
is mismeasured under an additive measurement error model, the naive analysis may still
yield a consistent estimator; when the outcome is binary, we derive the asymptotic bias
in a closed-form. Furthermore, we develop consistent estimation procedures for practical
scenarios where either validation data or replicates are available. With validation data,
we propose an efficient method. To provide protection against model misspecification,
we further develop a doubly robust estimator which is consistent even when one of the
treatment model and the outcome model is misspecified.

In Chapter 5, the research problem of interest is to deal with measurement error gen-
erated from more than one sources. We study the IPW estimation for settings with mis-
measured covariates and misclassified outcomes. To correct for measurement error and
misclassification effects simultaneously, we develop two estimation methods to facilitate
different forms of the treatment model. Our discussion covers a broad scope of treatment
models including typically assumed logistic regression models as well as general treatment
assignment mechanisms.

Chapters 2-5 emphasize addressing measurement error effects on causal inference. In
applications, we may be further challenged by additional data features. For instance, miss-
ing values frequently occur in the data collection process in addition to measurement error.
In Chapter 6, we investigate the problem for which both missingness and misclassification
may be present in the binary outcome variable. We particularly consider the IPW estima-
tion and derive the asymptotic biases of three types of naive analysis which ignore either
missingness or misclassification or both. We develop valid estimation methods to correct
for missingness and misclassification effects simultaneously. To provide protection against
misspecification, we further propose a doubly robust correction method.
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Doubly robust estimators developed in Chapter 6 offer us a viable way to address issues
of model misspecification and they can be easily applied for practical problems. However,
such an appealing property does not say that doubly robust estimators have no weakness.
When both the treatment model and the outcome model are misspecified, such estimators
will not necessarily be consistent. Driven by this consideration, in Chapter 7, we propose
new estimation methods to correct for effects of misclassification and/or missingness in
outcomes. Differing from the doubly robust estimators which are constructed based on a
single treatment model and a single outcome model, the new methods are developed by
considering a set of treatment models and a set of outcome models. Such enlargements of
the associated models enable us to construct consistent estimators which will enjoy the so-
called multiple robustness, a property that has been discussed in the literature of missing
data.

To expedite the application of our developed methods, we implement the proposed
methods in Chapter 4 and develop an R package for general users. The details are included
in Chapter 8. The thesis concludes with a discussion in Chapter 9.
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Chapter 1

Introduction

Causal inference and measurement error are two important aspects of statistics. Many
authors have studied them separately, and there is limited work on combining the two
features although this area is attracting increasing attention. In this thesis, we consider
several important problems concerning causal inference with measurement error. This
chapter presents a brief introduction of some key aspects, which serves as a preliminary
to later chapters. Starting from Chapter 2, we consider causal inference and measurement
error simultaneously. In addition, this chapter also gives a brief introduction to missing
data problems, which is of relevance to the development of Chapters 6 and 7. Research
problems of our interest are introduced, and they will be investigated in depth in later
chapters.

1.1 Basics of Causal Inference

This section introduces some key ideas and concepts in causal inference, which are closely
related to the later chapters.
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1.1.1 Causality and Neyman-Rubin Causal Model

In scientific research, the causal effect is often of ultimate interest. For example, does
smoking cause lung cancer? If it does, what is the magnitude of this causal effect? To an-
swer these questions, we should first define “causality”. However, the meaning of causality
is often vague and depends on the context.

Consider the following statement: smoking causes lung cancer. In strict sense, this
statement means that individuals will get lung cancer for sure if they smoke, and individ-
uals will never get lung cancer if they never smoke. Obviously, such a simple and strict
explanation usually does not hold. In reality, an individual who smokes may or may not
develop lung cancer, and an individual who never smokes may or may not develop lung
cancer as well. Therefore, to establish the existence of a causal relationship, the language
of probability and statistics should be introduced. The difficulty is how to use statistical
methods to describe the causality.

In 1965, Hill (1965) proposed his criteria for causality. Hill’s criteria list the following
guidelines for establishing causality: strength, consistency, specificity, temporality, biologi-
cal gradient, plausibility, coherence, experiment and analogy. The criteria have been widely
used in epidemiological studies. However, they do not provide a mathematical or statistical
framework to define and estimate the causal effects. According to Pearl (2009a), “Causal-
ity is not mystical or metaphysical. It can be understood in terms of simple processes, and
it can be expressed in a friendly mathematical language, ready for computer analysis.”

To explicitly describe the causal framework, the Neyman-Rubin causal model was pro-
posed (Neyman, 1923; Rubin, 1974; Holland, 1986). Specifically, we let i indicate the
individual index. We let Yi,r be the potential outcome that would have been observed had
the subject i been given treatment r, and let Yi,s be the potential outcome that would have
been observed had the subject i been given treatment s. The causal effect of treatment
r versus s can be assessed by comparing Yi,r and Yi,s. In reality, however, we can never
observe both Yi,r and Yi,s simultaneously for r 6= s. When the individual is assigned treat-
ment s, Yi,r is unobserved (thus counterfactual) and vice versa. Thus Yi,r and Yi,s can never
be compared directly for subject i. Although the individual-based causal effect cannot be
obtained due to unavailability of all potential outcomes, the population-based causal effect
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can be estimated if suitable conditions are imposed. In particular, we are interested in
comparing E(Yr) and E(Ys), where the expectations are taken with respect to the same
population: our target population; and Yr and Ys represent the potential outcomes for an
individual in the population had the individual been given treatments r and s, respectively.
The difference E(Yr)−E(Ys) represents the average treatment effect of treatment r versus
s. In most cases, by letting r = 1 and s = 0, we deal with the binary treatment case and
are interested in estimation of E(Y1)−E(Y0). Extensions are available; see Imbens (2000)
for multi-valued treatments and Hirano and Imbens (2004) for continuous treatments.

Throughout this thesis, we will stick to the Neyman-Rubin causal model framework,
which is also called the potential outcome or counterfactual framework.

1.1.2 Standard Assumptions for Causal Inference

The Neyman-Rubin causal model framework defines the potential outcomes which cannot
be observed simultaneously. This can be regarded as a missing data problem. Like in
statistical inference with missing data, some assumptions need to be made to enable us
to conduct valid causal estimation. Let T and X denote the observed binary treatment
indicator and a vector of pre-treatment covariates, respectively. We list the fundamental
assumptions in causal inference (e.g., Rosenbaum and Rubin, 1983; Lunceford and David-
ian, 2004; Cole and Frangakis, 2009; Hernán and Robins, 2016) as follows:

Assumption 1 (No Interference): the treatment taken by one subject has no
effect on the potential outcomes of another subject.

Assumption 2 (Consistency): the potential outcome under the observed treat-
ment is equal to the observed outcome Y , i.e., Y = TY1 + (1− T )Y0.

Assumption 3 (No Unmeasured Confounding): the treatment received is in-
dependent of the potential outcomes, given confounders X, i.e., (Y1, Y0) ⊥⊥ T | X.

Assumption 4 (Positivity): given the confounders X, all subjects have a positive
probability to receive treatment or not, i.e., 0 < P (T = 1|X) < 1.
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The no unmeasured confounders assumption implies that controlling for X is sufficient
to eliminate confounding bias. If this assumption is violated, the confounding bias caused
by unmeasured confounders generally cannot be eliminated, and the resulting causal results
could be misleading due to the residual confounding bias.

The positivity assumption is also required, because no comparison between the treated
and untreated groups can be made if no data exist for the treated or untreated group.

Unfortunately, like missing data analysis, causal inference usually involves untestable
assumptions.

1.1.3 Propensity Score Methods and Beyond

The propensity score e is defined as the probability of receiving treatment given observed
covariates or confounders; i.e., e(X) = P (T = 1|X). Rosenbaum and Rubin (1983) showed
that T ⊥⊥ X | e(X). This equality implies that given e(X), X offers no more information on
treatment assignment. So e(X) is a good scalar summary of X without losing information
on treatment assignment. Moreover, given e(X), the distribution of X should be well
balanced in the treated and untreated groups, indicating that the confounding bias caused
by X can be eliminated by controlling for a scalar e(X), rather than controlling for a vector
X, which can be of high dimension.

Given causal inference assumptions, Rosenbaum and Rubin (1983) showed that (Y1, Y0) ⊥⊥
T | e(X). Therefore, given e(X), the distribution of potential outcomes are independent
of the treatment assignment.

Above theoretical results justify the key role that propensity scores play in causal esti-
mation: controlling for propensity score eliminates confounding bias. Based on propensity
scores, causal inference methods have been proposed using matching (Rosenbaum and
Rubin, 1983, 1985; Heckman et al., 1998; Ho et al., 2007), stratification (Rosenbaum and
Rubin, 1983, 1984), covariance adjustment (Rosenbaum and Rubin, 1983) and inverse prob-
ability weighting (IPW)(Horvitz and Thompson, 1952; Rosenbaum, 1987, 1998; Robins
et al., 2000; Lunceford and Davidian, 2004). The propensity score methods are easy to
implement and have been increasingly used.
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Propensity score methods are commonly employed to analyze data arising from ob-
servational studies where confounding is pervasive. In some randomized trials where the
randomization is not properly implemented, i.e., distributions of the baseline variables are
imbalanced between the treated and untreated groups even after randomization, adjust-
ing for the baseline variables helps reduce the residual confounding (e.g., Kahan et al.,
2014). Williamson et al. (2014) demonstrated the IPW adjustment can account for chance
imbalance of the baseline variables and increase the precision of the estimated treatment
effect in randomized trials. Therefore, propensity score methods are applicable to both
observational studies and randomized trials.

All propensity score methods share the same first step: estimate the propensity score.
In many cases, we fit a regression model (often, a logistic regression model) to relate treat-
ment assignment T and covariates X and estimate the propensity score by calculating the
fitted probability of the regression model. Machine learning methods have also been used
(McCaffrey et al., 2004; Westreich et al., 2010; Lee et al., 2010). Kang and Schafer (2007)
found that the causal effects estimation is vulnerable to model misspecification and slight
misspecification of the propensity score model could lead to severely biased causal effects
estimates. To improve the robustness, doubly robust estimators have been proposed (e.g.,
Robins et al., 1994; Scharfstein et al., 1999; Bang and Robins, 2005; Qin et al., 2008; Cao
et al., 2009; Tan, 2010), where by doubly robust we mean the estimator is consistent even
when either the treatment model or the outcome model is misspecified. Imai and Ratkovic
(2014) proposed the covariate balancing propensity score (CBPS) which incorporates the
covariate balancing property of propensity score into the estimation procedure. Fan et al.
(2016) proposed a doubly robust estimator by generalizing CBPS.

1.1.4 Extensions to Time-Dependent Treatment Studies

The concept of propensity scores is initially designed for time-independent treatment stud-
ies (or point-treatment studies). However, it is common that many studies may involve
time-dependent treatments and time-dependent confounders which are risk factors for the
outcomes, predict subsequent treatment, and are predicted by the past treatment. In
such a setting, standard methods for adjusting for confounding can lead to biased causal
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estimates (Robins et al., 2000). To consistently estimate the causal effects, Robins and
his colleagues have developed several methods, including inverse-probability-of-treatment
weighted (IPTW) estimation of marginal structural models, parametric g-computation
formula, g-estimation of structural nested models and the iterative conditional expecta-
tions estimation; see Robins (1989), Robins et al. (1992), Robins (1997), Robins (1998),
Robins (1999), Robins et al. (2000) and Hernán et al. (2000) for details. In the presence of
time-dependent confounding, these methods can be employed to produce consistent causal
estimates under certain assumptions. For example, Polis et al. (2013) suggested using them
to control for time-dependent confounders for the assessment of causal effect of hormonal
contraception on HIV acquisition.

Among those methods, the IPTW estimation of marginal structural models has been
widely used, partially due to its straightforward implementation and close relation to the
standard analysis. However, its popularity is not a guarantee that investigators can utilize
it blindly, because its validity hinges on a set of assumptions that may not hold for every
situation.

1.1.5 Other Methods

The aforementioned methods, including the propensity score methods and the IPTW esti-
mation of marginal structural models in particular, have been widely used. However, they
cannot solve all the problems in causal inference. For example, propensity score methods
require that all confounders which need to be adjusted for are fully observed and violation of
this would lead to biased causal estimates. Instrumental variable estimation (e.g., Baiocchi
et al., 2014; Hernán and Robins, 2016) is a method which can deal with such violation. It
has its own set of assumptions without requiring observing all the confounders which need
to be adjusted for. Principal stratification (Frangakis and Rubin, 2002) is an approach
that yields causal effects within principal strata. Targeted learning (van der Laan and
Rose, 2011) is a method which incorporates various machine learning tools into estimation
procedure, with the aim of conducting efficient causal inference in a more data-driven way.

We did not name all the causal inference methods here. Our aim is to introduce the
basic idea and concept in causal inference. For example, we did not discuss causal diagrams
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(Greenland et al., 1999; Hernán and Robins, 2016) in the previous subsections, although it
is a very important tool for the illustration of relationships between variables. It displays
the causal mechanism and tells us which variables should be adjusted for and therefore
guides the model specification in causal inference.

Comprehensive treatments of causal inference can be found in Rothman et al. (2008),
Pearl (2009a), van der Laan and Rose (2011), Imbens and Rubin (2015), Hernán and
Robins (2016) and Rosenbaum (2017).

1.2 Measurement Error Problems

Unlike mathematical theories, all statistical analysis procedures involve using data, which
need to be measured and collected. To guarantee the validity of a certain statistical
method, in addition to its own set of assumptions, another crucial assumption is implicitly
required: all the measurements of variables are precise. When this assumption is violated,
measurement error problems arise.

In this section, basic concepts of measurement error models are presented.

1.2.1 Sources of Measurement Error

Measurement error can arise for both continuous and discrete variables, and the measure-
ment error in discrete variables is usually called misclassification. In practice, many data
are subject to measurement error due to various reasons (e.g., Fuller, 1987; Gustafson, 2003;
Carroll et al., 2006; Buonaccorsi, 2010; Yi, 2017). We list some reasons here. First, the
true value of the data is a long-term average, which is impossible to measure at a certain
visit. For example, the long-term average blood pressure can never be directly measured
by a clinic visit. Second, the data set includes some self-reported items in a questionnaire,
such as smoking status and dietary intake, which are subject to recall bias. Third, each
diagnostic test has its own test sensitivity and test specificity. With a positive probability,
a diagnostic test can wrongly identify a subject. For example, in medical diagnosis, it is
possible for an undiseased patient to be diagnosed with a disease. Unfortunately, there
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is a trade-off between the false positive rate and false negative rate. Decreasing the false
positive rate may inflate the false negative rate, and vice versa. Fourth, the measurement
equipment may only report measurement in a pre-specified range, and the variable with
value outside the range will be mismeasured as the limit of the pre-specified range. Fifth,
the measurement error can be caused by mis-recording. For example, suppose the true
height of an individual is 170cm, it can be misrecorded as 178cm into the spreadsheet,
because of human error. Even the birth date in a birth certificate can be wrong, although
it seems not likely to happen. Sixth, precise measurements may be too expensive to afford,
with a given budget.

A world without measurement error would be perfect. Can we really avoid measurement
error? The answer is “No”. Development of technology may make better measurement
equipment and lower the cost of precise measurement. But, no matter how careful we are,
recall bias and human error can never be eliminated. Although measurement error can
not be eliminated for many studies, the efforts we have made in study design and data
collection to try to reduce measurement error can improve the data quality. For example,
although the true long-term average of a quantity can never be observed, we can take the
average of multiple measurements to reduce some random variation.

1.2.2 Measurement Error Models

Measurement error models are statistical models describing the underlying mechanism
of measurement error. They present the relationship between the observed error-prone
measurements and other variables. Various measurement error models have been proposed
in the literature, and our intent is not to make an exhaustive list of them. Instead, we
selectively present the most commonly used models for continuous variables and for discrete
variables. More complicated measurement error models can be found in Carroll et al. (2006)
and Yi (2017). Let W denote the observed measurements of unobserved true covariates
X. Both W and X are assumed to be scalar variables for ease of exposition.

For continuous variables, the most widely used model is the classical additive model
(Carroll et al., 2006):

W = X + U, (1.1)
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where E(U |X) = 0, and often U is assumed to be independent of X and follow a normal
distribution.

Another model is complement to model (1.1) and called the Berkson model (Berkson,
1950; Carroll et al., 2006):

X = W + U, (1.2)

where E(U |W ) = 0, and often U is assumed to be independent of W and follow a normal
distribution.

Note that compared to model (1.1), in model (1.2), the positions of X and W are
exchanged. Although two models look similar, they have different implications. In model
(1.1), the variation of W is larger than X, since V ar(W ) = V ar(X) + V ar(U). On the
contrary, the variation of W is smaller than X in model (1.2), since V ar(X) = V ar(W ) +
V ar(U).

For discrete variables, the measurement error mechanism can be characterized by the
misclassification probability P (W = r|X = s), where r and s are possible realizations of
W and X. In the situation where X and W are binary, the probabilities P (W = 1|X = 1)
and P (W = 0|X = 0) are called the sensitivity and specificity, respectively. Like in the
continuous variable case, sometimes, it is preferred to exchange the positions of X and W ,
and to model P (X = s|W = r). Adding extra variables to the misclassification probability
can help characterize more complicated measurement error mechanisms.

1.2.3 Data Requirements for Measurement Error Models

Although Section 1.2.2 outlines some useful measurement error models, it does not tell us
how to handle the associated parameters such as V ar(U), or the misclassification proba-
bilities P (W = r|X = s) and P (X = s|W = r) which are often unknown. Here we briefly
outline the strategy or requirement for dealing with this issue.

Case 1: No Extra Information:

In this case, we specify reasonable values for V ar(U), P (W = r|X = s) and P (X =
s|W = r). Such user-specified reasonable values may be borrowed from similar studies. We

9



can further specify a series of specified values, to see if the estimation results are sensitive
to the specification. This process is the sensitivity analysis.

Case 2: Replication Data or Validation Data Available:

In this case, we have some extra information. By replication data we mean that the
measurements of X are taken multiple times. By using the replication data, V ar(U) can be
estimated (Carroll et al., 2006), when the measurement error is additive, and is independent
and identically distributed across individuals. By validation data, we mean that the data
include observed values of X. The validation data is called internal when it is a subset of
the original data. The validation data can also be external, when it is independent of the
original data. By using validation data, we can directly model the relationship between
X and W , because they are both observed. When external validation data are used, it
is necessary to carefully assess the appropriateness of transferring the measurement error
mechanism for the external validation data to the original data.

1.2.4 Measurement Error Effects

In the absence of measurement error, standard analysis methods are valid if their own as-
sumptions hold. It has been extensively studied and well documented that, in the presence
of measurement error, naively substituting mismeasured variables into the standard regres-
sion analysis procedures can lead to severely biased estimated regression parameters (e.g.,
Fuller, 1987; Gustafson, 2003; Carroll et al., 2006; Buonaccorsi, 2010; Yi, 2017). We take
a simple linear regression for example and write the regression model (Yi, 2017, Section
2.2):

Y = β0 + βX + ε, (1.3)

where ε is independent of X, β0 and β are the regression parameters of interest, and ε is
distributed with mean 0.

However, X is unobserved and mismeasured as W , according to measurement error
model (1.1). Model (1.3) can be re-expressed as

Y = β0 + βW − βU + ε. (1.4)
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If error term −βU + ε were independent of W and has mean 0, model (1.4) will be
a standard linear regression model and the ordinary least square estimator of (1.4) will
be a consistent estimator of β. However, −βU + ε is not independent of W , due to the
correlation between U and W . As a result, model (1.4) is not a standard regression method
relating Y and W . Furthermore, it can been shown analytically that naively conducting
regression of Y on W leads to an asymptotically inconsistent estimator (Fuller, 1987).

1.2.5 Correcting for Measurement Error Effects

To conduct a valid estimation procedure, the measurement error effects should be well
adjusted for. If there is a way to recover X based on W , the problem is solved. However,
it is impossible. By model (1.1), we can never get X from W .

A fully consistent estimation method adjusting for measurement error usually depends
on the standard analysis procedure. For example, consistent correction methods for linear
models and logistic models may be different.

It is difficult to develop approaches which are easy to implement and applicable for all
settings. However, two commonly-used approximately consistent approaches are available:
the regression calibration method (Prentice, 1982; Rosner et al., 1989, 1990; Carroll et al.,
2006) and the simulation-extrapolation (SIMEX) method (Cook and Stefanski, 1994). In
addition to regression calibration and SIMEX, other general approaches have been de-
veloped, including the moment reconstruction (MR) method (Freedman et al., 2004) and
multiple imputation (Cole et al., 2006; Freedman et al., 2008; Blackwell et al., 2017).

For comprehensive treatments of measurement error, see Fuller (1987), Gustafson (2003),
Carroll et al. (2006), Buonaccorsi (2010), and Yi (2017).

1.3 Missing Data

Statistical analyses make inferences about the target population from sample data. Im-
perfect data present a challenge for the validity of standard statistical analyses which are
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often developed under stringent assumptions and data. Mismeasured data discussed in
Section 1.2.2 fall into the category of imperfect data. In this section, we describe another
commonly-seen type of imperfect data: missing data.

1.3.1 Missingness Mechanisms

Missing data frequently arise in practice due to various reasons. In surveys, non-response
occurs when respondents cannot be reached by phone call or mail, or refuse to answer sen-
sitive questions. Sometimes, the respondents just do not know the answer. In longitudinal
studies, dropout happens when patients stop showing up at follow-ups. In some situations,
missingness is caused by administrative error. For example, the interviewer may forget to
record the responses.

It is essential to understand the reasons why missing data occur, in order to conduct
valid inferences. Let D be an n × p matrix of data, where n and p are the sample size
and the number of variables, respectively. Define M to be the matrix of missing indicator
with Mij = 1 if the jth variable of the ith subject Dij is missing and Mij = 0 otherwise
for i = 1, . . . , n, j = 1, . . . , p. Let Dobs and Dmiss denote the collections of the observed
and missing components of D, respectively. Three types of missingness mechanisms may
be defined for f(M |D), the conditional distribution of M , given D (e.g., Little and Rubin,
2002):

Missing Completely At Random (MCAR): f(M |D) = f(M);

Missing At Random (MAR): f(M |D) = f(M |Dobs);

Missing Not At Random (MNAR): f(M |D) 6= f(M |Dobs) and the distribution of M
depends on Dmiss;

where f(M) stands for the marginal distribution of M and f(M |Dobs) represents the con-
ditional distribution of M , given the observed data Dobs.

The MCAR assumption assumes that the missingness is independent of both observed
and unobserved data, and is missing completely at random. If the MCAR assumption
holds, then we are safe to regard the observed data as being representative for the whole
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data we would have seen in the absence of missingness. It is reasonable to assume MCAR,
for example, when the scanner stops working all of a sudden to scan students’ answers to
certain questions for grading.

The MAR assumption assumes that the missingness is independent of the unobserved
data conditioning on the observed data. With MAR, we may be able to model the miss-
ingness process using the observed data and further to adjust for the missingness effect.

The MNAR assumption assumes that the missingness depends on the unobserved data,
even after conditioning on the observed data. When the underlying missingness mechanism
is MNAR, it is usually a difficult situation.

1.3.2 Handling Missing Data

Missing data commonly arise in practice and has attracted extensive research attention.
Many methods have been developed to handle missing data, including maximum likelihood
approaches (e.g., Rubin, 1976) such as the EM algorithm (e.g., Dempster et al., 1977), mul-
tiple imputation (e.g., Rubin, 1987, 1996), inverse probability weighting (e.g., Horvitz and
Thompson, 1952), semiparametric methods (e.g., Robins et al., 1994, 1995), and empirical
likelihood (Qin and Lawless, 1994; Owen, 2001) based approaches (e.g., Qin and Zhang,
2007; Han and Wang, 2013; Han, 2014b), among many others. For comprehensive treat-
ments of missing data problems, see Little and Rubin (2002) and Tsiatis (2007).

Many methods developed for missing data in noncausal contexts can be applied to
estimate treatment effects in causal inference. A unique feature in causal inference is that
we can never observe all the potential outcomes for a subject at the same time. Thus,
to some degree, this feature can be regarded as a missing data problem, and methods
developed for missing data problems can be used to estimate treatment effects in causal
inference.

It is interesting to note that multiple imputation serves as a correction method in both
measurement error and missing data problems (Cole et al., 2006; Freedman et al., 2008;
Blackwell et al., 2017). The idea comes from the following observation: missing data
can be regarded as extreme measurement error, suggesting that measurement error can
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be can be dealt with using missing data methods. Other common methods for handling
measurement error and missing data problems include the observed likelihood approach
and the EM algorithm (e.g., Yi, 2017).

1.4 Overview of Methods on Causal Inference with
Measurement Error

Causal inference and measurement error have been extensively but separately studied.
Recently, there has been increasing but still relatively little attention to causal inference
with measurement error. Outside the context of causal inference methods, it has been
well documented that ignoring measurement error effects can lead to biased results and
misleading conclusions (e.g., Fuller, 1987; Gustafson, 2003; Carroll et al., 2006; Buonaccorsi,
2010; Yi, 2017). Similarly, the presence of error-prone data presents a challenge to the
validity of causal inference methods. This section provides an overview of existing methods
on dealing with measurement error in causal inference. Discussion on this topic can also
be found in Yi (2017, Section 9.2).

Using causal diagrams, Hernán and Cole (2009) qualitatively depicted four types of
measurement errors of exposure and outcome: independent nondifferential, dependent
nondifferential, independent differential, and dependent differential. In graph-based causal
inference, Pearl (2009b) proposed a matrix adjustment for measurement error effects and
introduced correction methods for binary and linear models. Kuroki and Pearl (2014)
discussed the correction for measurement errors in causal inference using graphical tech-
niques. Edwards et al. (2015a) demonstrated that bias due to mismeasurements can be
incorporated into the potential outcomes framework and considered together with other
types of bias.

In mediation analysis, Ogburn and VanderWeele (2012) examined bias caused from
nondifferential misclassification of a binary mediator. Blakely et al. (2013) investigated
the effects of mediator misclassification on the estimation of direct and indirect effects.

Under misclassified exposure, Lewbel (2007) discussed identification and estimation is-
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sues on the estimation of conditional average effect. Babanezhad et al. (2010) compared
the performance of inverse probability of treatment weighted estimators, doubly robust
estimators, G-estimators, propensity score adjusted estimators and ordinary least squares
estimators. Braun et al. (2016, 2017) proposed estimation methods to correct for exposure
misclassification in propensity score methods using validation data. Imai and Yamamoto
(2010) discussed identification issues and sensitivity analysis for causal inference with dif-
ferential measurement error.

In the presence of error-prone covariates, Regier et al. (2014) conducted a simula-
tion study to understand the impact of measurement error on the IPTW estimation for
marginal structural models. The simulation results not only reveal well-understood ef-
fects of attenuation and augmentation but also uncover two unanticipated effects: null
effects and sign reversals. McCaffrey et al. (2013) proposed consistent inverse probability-
weighted estimators with time-independent covariates that are subject to measurement
error. Lockwood and McCaffrey (2016) studied matching and weighting estimators for set-
tings where mismeasured covariates are time-independent. Kyle et al. (2016) applied the
simulation-extrapolation method to deal with measurement error in time-varying covari-
ates under marginal structural models. With a single covariate subject to mean reverting
measurement error, Lenis et al. (2016) adapted the simulation-extrapolation method to a
doubly robust estimator of the average treatment effect. For the adjustment for measure-
ment error in covariates in propensity score methods, also see Raykov (2012) for a latent
variable approach and Hong et al. (2017) for a Bayesian approach.

When the outcome variable is subject to misclassification, Gravel and Platt (2018)
developed a weighting approach to deal with misclassification effects on the estimation of
marginal causal odds ratio.

To adjust for unmeasured confounding, Stürmer et al. (2005) proposed the so-called
propensity score calibration method using validation data, which apply the regression
calibration method with treating propensity scores in the main data as error-prone data.
The execution of this method can be viewed as applying the regression calibration method
to correct for measurement error in confounders of the main data. Therefore, the propensity
score calibration method can handle measurement error. In other words, measurement
error can be treated as a special form of unmeasured confounding.
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As described in Section 1.3.2, multiple imputation is a generally applicable tool for
measurement error problems, like the regression calibration and simulation-extrapolation
method. In the context of causal inference, multiple imputation has been applied to reduce
bias due to error-prone covariates in propensity score analysis (Webb-Vargas et al., 2017)
and misclassified exposure in marginal structural models (Edwards et al., 2015b).

1.5 Problems of Our Interest

In this thesis, we investigate six interesting and important problems.

The first problem concerns estimation of three widely used causal effect measures when
the outcome variable is binary: the causal odds ratio, the causal risk ratio and the causal
risk difference. In many applications, both confounding bias and measurement error occur.
They should be adjusted for in the estimation of these causal effect measures. It is of
interest to develop consistent estimation methods for the causal effect measures with error-
prone and possibly time-varying confounders.

In the second problem, we move to the framework of marginal structural models. In
the presence of time-dependent confounders which are also affected by the previous treat-
ment, Robins et al. (2000) proposed the inverse-probability-of-treatment weighted (IPTW)
estimation method to consistently estimate causal parameters in marginal structural mod-
els. This method is, however, vulnerable to the quality of data, because these methods
were developed under the assumption that measurements were precisely collected. Kyle
et al. (2016) applied the simulation extrapolation method to adjust for measurement er-
ror in time-varying covariates. It is of interest to explore more methods to correct for
measurement error effects.

The third problem focuses on measurement error in outcomes, which can be a serious
concern in causal inference but receives rather limited attention. Among existing causal
inference methods, the inverse probability weighting (IPW) estimation methods enjoy easy
implementation and transparent interpretations. It adjusts for the confounder effects by
re-weighting the data so that the weighted data may be treated as if being collected from
randomized controlled trials. It is interesting to investigate the consequence of ignoring
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measurement error in outcomes in IPW estimation and develop methods to correct for
measurement error effects.

Two types of error are considered simultaneously in the fourth problem. In the presence
of measurement error in both covariates and outcomes, to our best knowledge, there has
been no research on addressing measurement error effects on causal inference. We focus on
the IPW estimation of average treatment effects for settings with mismeasured covariates
and misclassified outcomes. It is of interest to develop estimation methods to correct for
measurement error and misclassification effects simultaneously.

In addition to measurement error, our fifth problem is connected to missing data. Out-
side the context of causal inference, methods have been proposed to handle measurement
error in covariates and missingness in responses simultaneously (Yi, 2008; Yi et al., 2011,
2012, 2015b). We consider both missingness and misclassification in outcomes. That is,
the outcome data for some subjects are missing. For the rest of subjects, the outcome data
are available but misclassified. In the presence of both missingness and misclassification
in outcomes, to our best knowledge, there is no available work to address missingness and
misclassification effects on causal inference. We are interested in the investigation of bias
caused from ignoring missingness and/or misclassification in IPW estimation as well as the
development of methods to eliminate missingness and misclassification effects.

Our six problem is driven by a desire to achieve robustness. Recently, to further pursue
more protection against model misspecification than doubly robust methods, multiple ro-
bust estimation methods have been developed (Han and Wang, 2013; Chan and Yam, 2014;
Han, 2014a,b, 2016; Chen and Haziza, 2017). An estimator is said to be multiply robust if
it is consistent when at least one of the multiple postulated models is correctly specified.
Multiply robust estimation methods may lose their multiple robustness if ignoring mea-
surement error and/or missingness. To our best knowledge, none of the existing methods
on causal inference with measurement error were developed for the settings of multiply
robust estimation. We are interested in the development of multiply robust estimation of
causal effects with missing and/or misclassified outcomes.

In short, we consider the following six research problems in this thesis:
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• Problem 1: Simultaneous estimation of the causal odds ratio, the causal risk ratio and
the causal risk difference with mismeasured and possibly time-varying confounders

• Problem 2: Estimation of causal parameters in marginal structural models with
time-dependent confounders subject to measurement error

• Problem 3: Bias analysis and correction methods (including doubly robust estima-
tion) for IPW estimation with measurement error in outcomes

• Problem 4: Weighted estimation of causal effects correcting for measurement error
in covariates and misclassification in outcomes simultaneously

• Problem 5: Bias analysis and correction methods (including doubly robust estima-
tion) for IPW estimation with misclassification and/or missingness in outcomes

• Problem 6: Multiply robust causal inference methods with misclassification and/or
missingness in outcomes taken into account

1.6 Outline of the Thesis

This thesis consists of nine chapters. The remainder of the thesis is organized as follows.

In Chapter 2, we consider estimation of causal effect measures with error-prone con-
founders, possibly time-varying. By adapting two correction methods for measurement
error effects developed outside the context of causal inference methods, we develop valid
methods to consistently estimate the causal effect measures with measurement error taken
into account. We further develop a linear combination method to improve asymptotic
efficiency.

In Chapter 3, we are interested in IPTW estimation of causal parameters of marginal
structural models with error-contaminated and time-varying confounders. To correct for
measurement error effects, we develop several correction methods. The proposed methods
have both the so-called stabilized and unstabilized weighting versions.
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In Chapter 4, we focus on causal inference with measurement error in outcomes. When
a continuous outcome variable is mismeasured under an additive measurement error model,
we find that ignoring measurement error in IPW estimation may still yield a consistent
estimator. When the outcome is binary, we derive the asymptotic bias of the IPW estimator
and develop several consistent estimation methods with and without extra data sources.
With validation data, our proposed estimator is valid and efficient. To provide protection
against model misspecification, we further develop a doubly robust estimator which is
consistent even when one of the treatment model and the outcome model is misspecified.

In Chapter 5, we study IPW estimation with mismeasured covariates and misclassified
outcomes. We develop two estimation methods to correct for measurement error and
misclassification effects simultaneously. Our discussion covers a broad scope of treatment
models including commonly-used logistic regression models as well as general treatment
assignment mechanisms.

In Chapter 6, we investigate causal inference with outcomes subject to both missingness
and misclassification. We investigate the impact of ignoring missingness and/or misclas-
sification, and propose consistent methods to correct for missingness and misclassification
effects simultaneously. We further propose a doubly robust correction method to provide
protection against misspecification.

In Chapter 7, we propose multiply robust methods to (1) pursue more protection against
model misspecification than doubly robust estimation, (2) eliminate misclassification effect
in outcomes and (3) eliminate missingness effect in outcomes. The proposed estimators are
guaranteed to be consistent when either the set of multiple postulated treatment models
or the set of multiple postulated outcome models contains a correctly specified model.

To expedite the application of the proposed methods in Chapter 4, we develop an R
package for general users. Chapter 8 describes this package in detail.

Finally, the thesis concludes with a discussion in Chapter 9.
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Chapter 2

Estimation of Causal Effect Measures

This chapter deals with Problem 1 discussed in Section 1.5. Section 2.1 describes the
notation and framework in the absence of measurement error. In Section 2.2 we propose
the adaptive conditional score method and the adaptive unbiased estimating equation
method to correct for measurement error effects. In addition, we develop a linear combi-
nation method with improved efficiency. Section 2.3 includes sensitivity analyses of the
data arising from the Framingham Heart Study. Section 2.4 extends the development to
accommodating settings with time-dependent treatment.

2.1 Notation and Framework

2.1.1 Setup and Assumptions

For any individual, let T denote the observed binary treatment indicator, taking value 1
if the individual receives the treatment and 0 otherwise. Let Y be the observed binary
outcome variable, and Z and X be confounders, where the Z are precisely measured, and
the X are error-prone.

We specify the treatment model:

logit{P (T = 1|Z,X)} = γ0 + γT
ZZ + γT

XX, (2.1)
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where γ = (γ0,γ
T
Z ,γ

T
X)T are regression parameters.

Let Y1 and Y0 denote the potential outcomes that would have been observed had a
subject been treated and untreated, respectively. Thus, E(Y1) = P (Y1 = 1) represents
the probability of experiencing the outcome event had the entire population received the
treatment, and E(Y0) = P (Y0 = 1) stands for the probability of experiencing the outcome
event had the entire population been untreated.

For the following development, we assume the fundamental causal inference assumptions
described in Section 1.1.2 with X replaced by (XT, ZT)T.

2.1.2 Causal Effect Measures

Three quantities of central interest are the causal odds ratio, causal risk ratio and the
causal risk difference, expressed respectively as follows:

ψOR = E(Y1)/{1− E(Y1)}
E(Y0)/{1− E(Y0)} , (2.2)

ψRR = E(Y1)
E(Y0) , (2.3)

and
ψRD = E(Y1)− E(Y0). (2.4)

These measures have causal interpretations since they compare the treated and un-
treated individuals in the same population based on counterfactual outcomes. In contrast,
the associational odds ratio, associational risk ratio and the associational risk difference
can be formulated from the viewpoint of association measures for observational studies:

φOR = E(Y |T = 1)/{1− E(Y |T = 1)}
E(Y |T = 0)/{1− E{Y |T = 0)} ,

φRR = E(Y |T = 1)
E(Y |T = 0) ,
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and
φRD = E(Y |T = 1)− E(Y |T = 0).

In general, φOR 6= ψOR, φRR 6= ψRR and φRD 6= ψRD, because the associational odds ratio,
associational risk ratio and the associational risk difference compare the differences of the
two subpopulations (T = 1 versus T = 0, or treated versus untreated) of the original
population. The imbalance in covariates between the two subpopulations may distort the
true relationship between treatment and outcome. Therefore, the associational quantities
fail to provide a causal interpretation.

2.1.3 Estimation in the Absence of Measurement Error

To obtain consistent estimators of ψOR, ψRR and ψRD, it suffices to estimate E(Y1) and E(Y0)
consistently in (2.2), (2.3) and (2.4). To highlight the idea, our discussion is addressed to
ψOR only; the development for ψRR and ψRD is the same except that (2.3) and (2.4) will
replace (2.2).

Let e be the propensity score which is defined as the conditional probability of treatment
assignment given confounders, i.e., by (2.1),

e = P (T = 1|Z,X) = 1
1 + exp(−γ0 − γT

ZZ − γT
XX) .

Suppose we have a sample of size n. For subject i = 1, . . . , n, let Ti be the observed
binary treatment indicator and Yi be the observed binary outcome variable; let Zi and Xi

be confounders where the Zi are precisely measured and the Xi are error-prone; and let
Yi,1 and Yi,0 be the potential outcomes that would have been observed had subject i been
treated and untreated, respectively. Let (γ̂0, γ̂

T
Z , γ̂

T
X)T be the maximum likelihood estimates

for logistic regression parameters (γ0,γ
T
Z ,γ

T
X)T in (2.1). Then ei is estimated by

êi = P̂ (Ti = 1|Zi, Xi) = 1
1 + exp(−γ̂0 − γ̂T

ZZi − γ̂T
XXi)

, (2.5)

Given êi, we estimate E(Y1) and E(Y0) using the method described by Lunceford and
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Davidian (2004) and Hernán and Robins (2016):

Ê(Y1) =
(

n∑
i=1

Ti
êi

)−1 n∑
i=1

TiYi
êi

(2.6)

and

Ê(Y0) =
(

n∑
i=1

1− Ti
1− êi

)−1 n∑
i=1

(1− Ti)Yi
1− êi

(2.7)

respectively.

Consequently, ψOR is consistently estimated by using (2.6) and (2.7) in combination
with (2.2) and (2.5). Let ψ̂OR denote the resulting estimator.

To characterize the associated variability, we use the bootstrap resampling technique
(Efron, 1982) to obtain variance estimator for ψ̂OR. We resample the data at the individual
level with replacement for B times where B is a user-specified number. Each resampled
data have sample size equals to the original data. Let ψ̂OR,b denote the resulting estimate
for ψOR obtained from the bth resample, where b = 1, . . . , B. Then the bootstrap-based
variance estimate for estimator ψ̂OR is

V̂ ar(ψ̂OR) = 1
B − 1

B∑
b=1

ψ̂OR,b −
∑B
b=1 ψ̂OR,b

B

2

.

Let ψ̂OR(α) be the (1 − α)100% quantile of {ψ̂OR,b : b = 1, . . . , B} where α is a constant
between 0 and 1. Then the resulting (1−α)100% confidence interval for the corresponding
parameter is given by (ψ̂OR(α/2), ψ̂OR(1− α/2)).

2.2 Estimation in the Presence of Measurement Error

2.2.1 Measurement Error Model

The validity of estimators described in Section 2.1 requires the precisely measured Xi.
However, when the Xi are subject to measurement error, ignoring this feature and naively
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using the procedure of Section 2.1 can lead to seriously biased estimates. To address this
issue, suppose the confounders Xi are error-prone, and X∗i is an observed measurement of
Xi. Assume that

X∗i = Xi + εi (2.8)

for i = 1, . . . , n, where the εi are independent of each other and of {Ti, Xi, Zi, Yi,1, Yi,0}.
Assume that the error terms εi follow N(0,Σε) with covariance matrix Σε. To highlight the
key idea, we assume that Σε is known for now. Measurement error model (2.8) characterizes
settings where the observed value X∗i fluctuates around the true confounder value Xi with
an error term.

2.2.2 Accommodating Measurement Error Effects

By (2.5), the êi are vulnerable to mismeasurement in Xi, and the estimation method in
Section 2.1 needs to be modified to accommodate the measurement error effects. Adapting
the development of Stefanski and Carroll (1987) who discussed correcting measurement
error effects for parameter estimation under logistic regression models, here we introduce
a modified estimator to correct for measurement errors on estimation of the conditional
probability e. Specifically, we propose to estimate ei with

êi = P̂ (Ti = 1|Zi, ∆̂i) = 1
1 + exp(−γ̂0 − γ̂T

ZZi − γ̂T
X∆̂i)

, (2.9)

where γ̂ = (γ̂0, γ̂
T
Z , γ̂

T
X)T is a consistent estimator of γ, and ∆̂i = X∗i + (Ti − 1/2)Σεγ̂X.

Compared to (2.5), ∆̂i shows how measurement error is addressed; the naive analysis
which disregards the difference between X∗i and Xi simply replaces Xi with X∗i in (2.5);
the correction method based on (2.9) incorporates the degree of measurement error which
pertains to Σε. The form of ∆̂i also suggests that correction of measurement error effects
depends on the treatment status as well as the true covariate effect γX. An equivalent
formula to (2.9) was considered by McCaffrey et al. (2013).

Using (2.9) to estimate ei requires a consistent estimator of γ. While there is no unique
way to obtain a consistent estimator of γ, here we particularly employ two methods for
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this purpose.

Adaptive Conditional Score Method

The first method modifies the conditional score method proposed by Stefanski and Carroll
(1987). A consistent estimator of γ, denoted as γ̂SC, is derived by solving

n∑
i=1

{
Ti −

1
1 + exp(−γ0 − γT

ZZi − γT
X∆i)

}
1
Zi

∆i

 = 0

for γ0, γZ and γX, where ∆i = X∗i + (Ti − 1/2)ΣεγX.

As a result, êi can be calculated by replacing γ̂ in (2.9) with γ̂SC and substituting the
resulting êi into the procedures in Section 2.1 gives the estimator of ψOR, denoted as ψ̂SC

OR.
Its variance estimate can be obtained using the bootstrap resampling method as described
in Section 2.1.

Adaptive Unbiased Estimating Equation Method

The second approach modifies the method proposed by Huang and Wang (2001). Their
method is to directly construct unbiased estimating functions using the observed surrogate
measurement X∗i . That is, we estimate γ by solving

(Ti − 1)


1
Zi

X∗i

+ Ti exp(−γ0 − γT
ZZi − γT

XX
∗
i − γT

XΣεγX/2)


1
Zi

X∗i + ΣεγX

 = 0

for γ0, γZ and γX. Let γ̂HW denote the resulting estimator of γ, which is consistent under
regularity conditions.

Similarly, replacing γ̂ in (2.9) with γ̂HW and substituting the resulting êi into the pro-
cedures in Section 2.1 gives the estimator of ψOR, denoted as ψ̂HW

OR . Its variance estimate
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of the estimator can be obtained using the bootstrap resampling method as described in
Section 2.1.

Linear Combination of Consistent Estimators

Although ψ̂SC
OR and ψ̂HW

OR are consistent estimators of ψOR, their efficiency may differ. We
want to construct a new estimator with higher efficiency than both ψ̂SC

OR and ψ̂HW
OR , in

addition to being consistent. To do this, we consider linear combinations of ψ̂SC
OR and ψ̂HW

OR

and then identify an estimator with the smallest variance (e.g., Yi and He, 2006).

For 0 ≤ c ≤ 1, consider the linear combination:

ψ̂comb
OR (c) = cψ̂SC

OR + (1− c)ψ̂HW
OR . (2.10)

Noting that

V ar{ψ̂comb
OR (c)} = {V ar(ψ̂SC

OR) + V ar(ψ̂HW
OR )− 2Cov(ψ̂SC

OR, ψ̂
HW
OR )}c2

−{2V ar(ψ̂HW
OR )− 2Cov(ψ̂SC

OR, ψ̂
HW
OR )}c+ V ar(ψ̂HW

OR ),

we minimize V ar{ψ̂comb
OR (c)} with respect to c, and let copt be the corresponding value of c,

given by

copt = V ar(ψ̂HW
OR )− Cov(ψ̂SC

OR, ψ̂
HW
OR )

V ar(ψ̂SC
OR) + V ar(ψ̂HW

OR )− 2Cov(ψ̂SC
OR, ψ̂

HW
OR )

.

Therefore, the resultant estimator ψ̂opt
OR = coptψ̂

SC
OR + (1 − copt)ψ̂HW

OR is the optimal estimator
among the class of estimators of form (2.10).

To calculate the estimator ψ̂opt
OR, we need to determine the coefficient copt. For this

purpose, we design a bootstrap-based procedure. Specifically, we resample the data with
replacement for B times where B is a user-specified number. Let ψ̂SC

OR,b and ψ̂HW
OR,b denote

the resulting estimates of estimators ψ̂SC
OR and ψ̂HW

OR using the bth resample for b = 1, . . . , B.
Calculate

V̂ ar(ψ̂SC
OR) = 1

B − 1

B∑
b=1

ψ̂SC
OR,b −

∑B
b=1 ψ̂

SC
OR,b

B

2

,
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V̂ ar(ψ̂HW
OR ) = 1

B − 1

B∑
b=1

ψ̂HW
OR,b −

∑B
b=1 ψ̂

HW
OR,b

B

2

,

and

Ĉov(ψ̂SC
OR, ψ̂

HW
OR ) = 1

B − 1

B∑
b=1

ψ̂SC
OR,b −

∑B
b=1 ψ̂

SC
OR,b

B

ψ̂HW
OR,b −

∑B
b=1 ψ̂

HW
OR,b

B

.
Then we approximate copt by

ĉopt = V̂ ar(ψ̂HW
OR )− Ĉov(ψ̂SC

OR, ψ̂
HW
OR )

V̂ ar(ψ̂SC
OR) + V̂ ar(ψ̂HW

OR )− 2Ĉov(ψ̂SC
OR, ψ̂

HW
OR )

.

In implementing this procedure, we need to ensure the resulting ĉopt is reasonable, which
means two conditions must be satisfied. Firstly, ĉopt must lie between 0 and 1. Secondly,
V̂ ar(ψ̂SC

OR) + V̂ ar(ψ̂HW
OR )− 2Ĉov(ψ̂SC

OR, ψ̂
HW
OR ) ≥ 0 since

V ar(ψ̂SC
OR) + V ar(ψ̂HW

OR )− 2Cov(ψ̂SC
OR, ψ̂

HW
OR )

= V ar(ψ̂SC
OR) + V ar(ψ̂HW

OR )− 2
√
V ar(ψ̂SC

OR)V ar(ψ̂HW
OR )Cor(ψ̂SC

OR, ψ̂
HW
OR )

≥ V ar(ψ̂SC
OR) + V ar(ψ̂HW

OR )− 2
√
V ar(ψ̂SC

OR)V ar(ψ̂HW
OR )

≥ 2
√
V ar(ψ̂SC

OR)V ar(ψ̂HW
OR )− 2

√
V ar(ψ̂SC

OR)V ar(ψ̂HW
OR )

= 0.

If one of these two conditions is not satisfied, we set ĉopt to be either 0 or 1. That is, we
take ψ̂opt

OR to be ψ̂SC
OR if ψ̂SC

OR has a smaller variance than ψ̂HW
OR , or take ψ̂opt

OR to be ψ̂HW
OR if ψ̂HW

OR

has a smaller variance than ψ̂SC
OR.

The variance estimate for ψ̂opt
OR is obtained by

V̂ ar(ψ̂opt
OR) = ĉ2

optV̂ ar(ψ̂SC
OR) + (1− ĉopt)2V̂ ar(ψ̂HW

OR ) + 2ĉopt(1− ĉopt)Ĉov(ψ̂SC
OR, ψ̂

HW
OR ).

To obtain a confidence interval for ψOR, we consider bootstrap-based estimates E = {ĉoptψ̂
SC
OR,b+

(1− ĉopt)ψ̂HW
OR,b : b = 1, . . . , B}. Let ψ̂opt

OR(α) be the (1− α)100% quantile of E , where α is a
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constant between 0 and 1. Then an approximate (1 − α)100% confidence interval of ψOR

is given by (ψ̂opt
OR(α/2), ψ̂opt

OR(1− α/2)).

2.3 Empirical Example: Framingham Heart Study

To illustrate the proposed methods, we conduct sensitivity analyses of the data arising
from the Framingham Heart Study (e.g., Carroll et al., 2006). The data set consists of
records of 1615 men aged 31 to 65. The observed outcome Y is the occurrence of coronary
heart disease within an eight-year period following Exam 3. Our objective is to estimate
the causal effects of T , the smoking status at Exam 1, on the occurrence of coronary heart
disease. Confounders considered here are age, serum cholesterol (CHOL) and systolic blood
pressure (SBP), where SBP and CHOL are error-prone since the true values of long-term
average measurements are unobserved. Let Z denote age. According to Carroll et al.
(2006), let X = (X1, X2)T, where X1 denote transformed long-term average SBP, X1 =
log(SBP− 50), and let X∗1 be a transformed observed measurement of SBP. Let X2 denote
transformed long-term average CHOL, X2 = log(CHOL), and let X∗2 be a transformed
observed measurement of CHOL. Such transformation strategies were originally discussed
by Cornfield (1962) and then applied by Carroll et al. (1984); the purpose was to make the
transformed observations distributed reasonably close to normal distributions. We define
X∗ = (X∗1 , X∗2 )T and assume that X∗ and X are modeled by (2.8). We apply the proposed

methods and naive analysis to the data with Σε set as V =
 0.0126 0.000673

0.000673 0.00846

, an

estimate obtained by (Carroll et al., 2006, page 118). In using the bootstrap algorithm for
variance estimates, we take B = 1000.

Table 2.1 summarizes the results. All the methods indicate statistically significant
causal effects of smoking on the occurrence of coronary heart disease at the nominal level
0.05. Estimates obtained from the proposed methods are slightly larger than the naive
estimates.

We further perform sensitivity analyses to evaluate how sensitive estimation of causal
effect measures is to different values of Σε. We consider four scenarios which assume the

28



Table 2.1: Analysis results for the estimation of causal effects of smoking on the occurrence
of coronary heart disease in the presence of measurement error in systolic blood pressure
and serum cholesterol: estimate (EST), bootstrap standard error (SE) and 95% confidence
interval (CI)

Method Measure EST SE 95% CI
naive ψOR 1.754 0.468 (1.138, 2.949)

ψRR 1.688 0.425 (1.127, 2.746)
ψRD 0.036 0.013 (0.009, 0.060)

ACS ψOR 1.763 0.473 (1.141, 2.997)
ψRR 1.696 0.429 (1.129, 2.814)
ψRD 0.036 0.013 (0.009, 0.060)

AUEE ψOR 1.769 0.473 (1.143, 3.001)
ψRR 1.702 0.429 (1.132, 2.811)
ψRD 0.036 0.013 (0.009, 0.060)

LC ψOR 1.763 0.473 (1.141, 2.997)
ψRR 1.696 0.428 (1.129, 2.814)
ψRD 0.036 0.013 (0.009, 0.060)

ACS: adaptive conditional score method; AUEE: adaptive unbiased estimating function method; LC:
linear combination estimator based on ACS and AUEE.
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same form (2.8) for the measurement error model but the covariance matrix Σε is specified
differently. We take Σε = δM where δ is set as a value in [0, 3] and M is a 2×2 matrix. In
Scenario 1, we set M = V ; this scenario retains the correlation structure of V but alters the

magnitude. In Scenario 2, we take M =
 0.0126 0

0 0

; this scenario explores situations

where only measurement error in SBP is incorporated in the analysis. In Scenario 3, we

take M =
 0 0

0 0.00846

; this scenario facilitates situations where only CHOL is treated

as error-prone. In Scenario 4, we take M =
 0.0126 0

0 0.00846

; this scenario describes

that both SBP and CHOL as error-prone but assumes Σε to be diagonal, i.e., measurement
error in SBP and CHOL are treated independent.

The specification of these four scenarios is driven by the following consideration. By
(2.8), V ar(X∗) = V ar(X) + Σε and hence V ar(X∗i ) ≥ Σii

ε where i = 1, 2 and Σii
ε

is the (i, i) element in Σε. The range of δ (i.e., from 0 to 3) is reasonably broad to
reflect plausible scenarios in sensitivity analyses; estimates of the reliability of Xi, de-
fined as V ar(Xi)/V ar(X∗i ) = (V ar(X∗i ) − Σii

ε )/V ar(X∗i ), change from 0.28 to 1 for X1

and from 0.20 to 1 for X2, where the empirical estimate of V ar(X∗) is V̂ ar(X∗) = 0.0525 0.00406
0.00406 0.0316

.

We display the results in Figures 2.1 and 2.2 for the estimated odds ratio, risk ratio
and risk difference obtained from the proposed methods. Figure 2.1 displays the results
for Scenarios 1 and 4, where both SBP and CHOL are treated as error-prone. Figure 2.2
shows the results for Scenarios 2 and 3, where only one of SBP and CHOL is regarded
as error-prone. Figure 2.1 shows that as δ increases, the estimates of causal effects first
become larger and then smaller. Figure 2.2 shows that the estimates of causal effects
become larger as the measurement error in SBP increases, assuming that CHOL is error-
free. The estimates of causal effects become smaller as the measurement error in CHOL
increases, assuming that SBP is error-free. Interestingly, the measurement error in SBP
and CHOL has opposite effects on estimation of causal measures. As a result, when both
SBP and CHOL are assumed to be subject to error, the effects of measurement error in
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SBP and CHOL may interplay and are difficult to be visualized. Although Figures 2.1 and
2.2 present different patterns that are related to different scenarios of measurement error,
the magnitudes of the estimates are fairly similar, which suggests that our conclusion on
the causal effects of smoking on the occurrence of coronary heart disease is reasonably
robust to different kinds of measurement error.

2.4 Extensions to Time-Dependent Treatment

In this section we generalize the proposed methods in the previous sections to the setting
with a time-dependent treatment.

2.4.1 Notation and Setting

Consider K follow up visits. Let a(k) be the potential binary treatment indicator at visit
k, where k = 0, 1, . . . , K; and ā(k) = {a(u) : 0 ≤ u ≤ k, u is an integer} is the potential
treatment history up to and including visit k. Let ā = ā(K), and Yā be the potential
outcome that would have been observed had the subject experienced treatment history ā.

For subject i, let Yi,ā denote the potential outcome that would have been observed
had this subject experienced the treatment history ā. Let Ai(k) and Āi(k) = {Ai(u) :
0 ≤ u ≤ k, u is an integer} represent the actually observed treatment at visit k and
the actually observed treatment history up to and including visit k, respectively; and
we write Āi = Āi(K). Define Ai(−1) = 0. Let (ZT

i (k), XT
i (k))T be the vector of time-

dependent confounders at visit k, where the Zi(k) are precisely measured, and the Xi(k)
are subject to measurement error. Let Z̄i(k) = {Zi(u) : 0 ≤ u ≤ k, u is an integer}
and X̄i(k) = {Xi(u) : 0 ≤ u ≤ k, u is an integer} be the confounder histories up to and
including visit k; Z̄i = Z̄i(K) and X̄i = X̄i(K). Let Yi be the binary outcome for subject
i measured after visit K. Confounders are assumed to be measured before treatment.

Analogous to the assumptions in time-independent settings, we make the following
assumptions for all k.
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Figure 2.1: Estimated causal odds ratio, causal risk ratio and causal risk difference assum-
ing measurement error in both SBP and CHOL: Scenario 1 and Scenario 4
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Figure 2.2: Estimated causal odds ratio, causal risk ratio and causal risk difference assum-
ing only one of SBP and CHOL is error-prone: Scenario 2 and Scenario 3
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Assumption 1 (No Interference): the treatment taken by subject j has no effect on
the potential outcomes of subject i for all i 6= j.

Assumption 2 (Consistency): YĀ = Y .

Assumption 3 (No Unmeasured Confounding): P (Ā|Z̄, X̄, Yā) = P (Ā|Z̄, X̄).

Assumption 4 (Positivity): 0 < P{A(k) = 1|Ā(k − 1), Z̄(k), X̄(k)} < 1.

In addition, we assume

Assumption 5 (Markov Assumption): P (Ā|Z̄, X̄) = ∏K
k=0 P{A(k)|Ā(k−1), Z(k), X(k)}.

Assumption 5 is reasonable when the previous confounders have no effect on the treat-
ment assignment, given the previous treatments and current confounders.

With any two potential treatment histories ā1 and ā0, the causal odds ratio, causal risk
ratio and the causal risk difference are given by

ψOR = E(Yā1)/{1− E(Yā1)}
E(Yā0)/{1− E(Yā0)} ,

ψRR = E(Yā1)
E(Yā0) ,

and
ψRD = E(Yā1)− E(Yā0),

respectively.

2.4.2 Estimation with Measurement Error Effects Accommodated

Suppose the confounders Xi(k) are subject to measurement error, and X∗ik is the observed
version of Xi(k). Assume that

X∗ik = Xi(k) + εik (2.11)

for i = 1, . . . , n and k = 0, . . . , K, where the εik are independent of each other, and of
{Ai(k), Xi(k), Zi(k) : k = 0, 1, . . . , K} and Yi,ā. Assume that the error terms εik follow
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N(0,Σεk), with covariance matrix Σεk. Again, to highlight the key idea, we assume that
Σεk is known.

Suppose that the treatment indicators are modeled by:

logit[P{A(k) = 1|Ā(k−1), Z(k), X(k)}] = γ0k+γT
AkĀ(k−1)+γT

ZkZ(k)+γT
XkX(k), (2.12)

where γk = (γ0k,γ
T
Ak,γ

T
Zk,γ

T
Xk)T is a vector of regression parameters for k = 0, 1, . . . , K.

To consistently estimate ψOR, ψRR and ψRD, it suffices to consistently estimate E(Yā1)
and E(Yā0). The following theorem establishes the consistency of the proposed estimators,
whose proof is included in Appendix A.

Theorem 2.1. Suppose Assumptions 1 to 5, (2.11) and (2.12) hold. Then the causal mean
E(Yā) under treatment history ā can be consistently estimated by

Ê(Yā) =
∑n
i=1 ŵiYiI(Āi = ā)∑n
i=1 ŵiI(Āi = ā)

,

where I(·) is the indicator function,

ŵi =
K∏
k=0

(
1 + exp[{−γ̂0k − γ̂T

AkĀi(k − 1)− γ̂T
ZkZi(k)− γ̂T

Xk∆̂i(k)} · {2Ai(k)− 1}]
)
,

and ∆̂i(k) = X∗ik + {Ai(k) − 1/2}Σεkγ̂Xk with (γ̂0k, γ̂
T
Ak, γ̂

T
Zk, γ̂

T
Xk)T being a consistent esti-

mator of (γ0k,γ
T
Ak,γ

T
Zk,γ

T
Xk)T.

We note that setting K = 0 shows that the resulting estimators Ê(Y1) and Ê(Y0)
can be expressed by (2.6) and (2.7), respectively, with êi given by (2.9). Therefore, the
proposed estimator based on (2.9) is a special case of Theorem 2.1. Finally, estimation of
γk (k = 0, . . . , K) may be performed using the conditional score method and the unbiased
estimating equation method described in Section 2.2.2. Estimators of ψOR, ψRR and ψRD

can be obtained in an analogous manner of the previous sections.
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2.4.3 Simulation Studies

We conduct simulation studies to assess the performance of the proposed methods described
in Section 2.2.2: the adaptive conditional score (ACS) method, the adaptive unbiased
estimating equations (AUEE) method, and the linear combination (LC) method. For
comparison purposes, we also consider the naive analysis which ignores the measurement
error effects, and the benchmark method which uses the generated measurements of Xi

rather than surrogate values X∗i . These five methods are displayed under the headings
“ACS”, “AUEE”, “LC”, “naive” and “benchmark” in the following tables.

In Setting 1, consider two time points. For the ith subject, at visit 0, the confounder
Xi(0) is a scalar and is generated from N(0, 1) and the treatment indicator Ai(0) is drawn
from a Bernoulli distribution with probability 1/[1 + exp{−γX0Xi(0)}]. At visit 1, the con-
founder Xi(1) is generated from N(Xi(0)+Ai(0)−0.5, 1), and the treatment indicator Ai(1)
is drawn from a Bernoulli distribution with probability 1/[1+exp{−γA1Ai(0)−γX1Xi(1)}].
Finally, the outcome Yi is generated from a Bernoulli distribution with probability 1/[1 +
exp{0.5 +Xi(1)− Ai(0)− Ai(1)}].

Set γX0 = 0.3, γA1 = 0.2 and γX1 = 0.3. The measurement error model is taken as
(2.11) where Σεk becomes a scalar, now denoted σ2

εk; we set σεk to be 0.5 or 1 for all k to
feature different degrees of measurement error. Sample sizes n = 1000 and n = 5000 are
considered, and 5000 simulations are run for each parameter configuration. The number
of bootstrap replicates is set to B = 1000.

We are interested in estimating the causal odds ratio, causal risk ratio and the causal
risk difference regarding two potential treatment plans ā1 = {1, 1} and ā0 = {0, 0}.

The average relative bias in percent (ReBias%), average bootstrap-based standard er-
rors (ASE), empirical standard error (ESE) and the coverage percentage (CP) of 95%
confidence intervals are reported, where the relative bias is calculated as the bias divided
by the true value.

Table 2.2 reports the results. The naive analysis produces severe bias and its per-
formance becomes worse as the magnitude of measurement error increases. The proposed
methods all present satisfactory results in terms of bias, although the estimated causal odds
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ratio displays somewhat noticeable finite sample bias when the sample size is 1000. Un-
surprisingly, variance estimates yielded from the proposed methods are larger than those
produced from the benchmark method. The AUEE method seems to produce slightly
larger variances than the ACS method does. The linear combination method shows im-
proved variance estimates although not substantial. Compared to the ACS method, the
linear combination method has smaller ASEs and sometimes larger ESEs.

In Setting 2, we consider two mismeasured confounders, i.e., vector Xi(k) has two
elements. For the ith subject, at visit 0, the confounders (Zi(0), XT

i (0))T are generated
from a multivariate normal distribution with mean (0, 0, 0)T and covariance matrix Σc,
where

Σc =


1 0.2 0.2

0.2 1 0.5
0.2 0.5 1

 ,
and the treatment indicator Ai(0) is generated from a Bernoulli distribution with proba-
bility 1/[1 + exp{−γZ0Zi(0) − γT

X0Xi(0)}]. At visit 1, the confounders (Zi(1), XT
i (1))T are

generated from a multivariate normal distribution with mean (Zi(0), XT
i (0))T + (Ai(0) −

0.5, Ai(0)− 0.5, Ai(0)− 0.5)T and covariance matrix Σc, and the treatment indicator Ai(1)
is drawn from a Bernoulli distribution with probability 1/[1 + exp{−γA1Ai(0)− γZ1Zi(1)−
γT

X1Xi(1)}]. The outcome Yi is generated from a Bernoulli distribution with probability
1/[1 + exp{0.5 + (1, 1, 1)(Zi(1), XT

i (1))T − Ai(0)− Ai(1)}].

Set γZ0 = 0.1, γX0 = (0.2, 0.3)T, γA1 = 0.2, γZ1 = 0.1, and γX1 = (0.3, 0.2)T. The
measurement error model (2.11) is assumed with Σε0 = V0, Σε1 = V1, or with Σε0 = 4V0,
Σε1 = 4V1, where

V0 =
 0.1 0.05

0.05 0.1

 and V1 =
 0.15 0.05

0.05 0.15

 .
Unlike Setting 1, Setting 2 includes both precisely measured confounders (Zi(0), Zi(1)) as
well as error-prone confounders (XT

i (0), XT
i (1)) which are allowed to be correlated with

each other. Sample sizes n = 2000 and n = 5000 are respectively considered, and 5000
simulations are run for each parameter configuration. Set the number of bootstrap repli-
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Table 2.2: Simulation results for Setting 1 with the correctly-specified measurement error
model: average relative bias in percent (ReBias%), average standard error (ASE), empirical
standard error (ESE) and coverage percentage (CP)

σεk = 0.5 σεk = 1
n Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%

1000 naive ψOR -6.936 0.321 0.318 91.4 -19.728 0.282 0.273 71.1
ψRR -3.266 0.090 0.090 91.3 -8.983 0.085 0.083 71.0
ψRD -11.778 0.038 0.038 91.2 -31.779 0.039 0.039 70.4

benchmark ψOR 1.371 0.346 0.342 95.2 1.161 0.344 0.332 95.1
ψRR 0.241 0.093 0.093 95.3 0.200 0.093 0.091 95.2
ψRD -0.245 0.038 0.038 95.3 -0.424 0.038 0.037 95.2

ACS ψOR 1.466 0.356 0.352 94.9 1.658 0.391 0.373 95.6
ψRR 0.265 0.096 0.095 95.2 0.352 0.105 0.102 95.6
ψRD -0.220 0.039 0.039 95.1 -0.194 0.042 0.041 95.6

AUEE ψOR 1.943 0.371 0.365 94.7 2.916 0.462 0.402 95.5
ψRR 0.459 0.099 0.098 95.1 0.873 0.122 0.109 95.3
ψRD 0.303 0.040 0.040 95.1 1.233 0.045 0.043 95.6

LC ψOR 0.885 0.355 0.352 94.7 0.943 0.388 0.373 95.7
ψRR 0.113 0.096 0.095 95.1 0.137 0.104 0.102 95.5
ψRD -0.276 0.039 0.039 95.0 -0.525 0.042 0.041 95.6

5000 naive ψOR -7.950 0.138 0.138 77.8 -20.492 0.122 0.121 11.1
ψRR -3.434 0.040 0.040 78.2 -9.117 0.038 0.037 12.4
ψRD -11.561 0.017 0.017 77.7 -31.457 0.018 0.017 11.3

benchmark ψOR 0.264 0.149 0.149 94.8 0.232 0.149 0.147 94.8
ψRR 0.058 0.041 0.041 94.5 0.041 0.041 0.041 95.0
ψRD -0.036 0.017 0.017 94.8 -0.076 0.017 0.017 95.0

ACS ψOR 0.285 0.153 0.153 94.8 0.311 0.165 0.163 94.8
ψRR 0.065 0.042 0.042 94.7 0.061 0.045 0.045 95.0
ψRD -0.026 0.017 0.017 94.9 -0.054 0.019 0.018 94.9

AUEE ψOR 0.364 0.157 0.157 94.6 0.505 0.172 0.169 95.0
ψRR 0.098 0.043 0.043 94.5 0.143 0.047 0.047 94.7
ψRD 0.062 0.018 0.018 94.3 0.179 0.019 0.019 94.6

LC ψOR 0.140 0.153 0.153 94.8 0.033 0.165 0.164 94.8
ψRR 0.040 0.042 0.042 94.7 -0.005 0.045 0.045 94.9
ψRD -0.030 0.017 0.017 94.9 -0.115 0.018 0.018 94.9

ACS: adaptive conditional score method; AUEE: adaptive unbiased estimating function method; LC:
linear combination estimator based on ACS and AUEE.
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cates be B = 1000. The goal is to estimate the causal odds ratio, causal risk ratio and the
causal risk difference regarding two potential treatment plans ā1 = {1, 1} and ā0 = {0, 0}.

Table 2.3 summarizes the results. As expected, the proposed methods all present
satisfactory results. The AUEE method shows larger variances than the ACS method
does. The linear combination method yields similar performance to the ACS method.

It is noted that the validity of the proposed methods requires correct specification
of the parameters for the measurement error model. We now investigate the impact of
misspecifying Σεk. For Setting 1, we set σεk = 0.5 to generate data but misspecify it as
σ∗εk = 0.4 or σ∗εk = 0.6 when conducting estimation. For Setting 2, we let the true covariance
matrices be Σε0 = 2V0 and Σε1 = 2V1 for data generation but misspecify them as Σ∗ε0 = V0,
Σ∗ε1 = V1, or Σ∗ε0 = 3V0, Σ∗ε1 = 3V1 in estimation procedures. Sample size n = 5000 is
considered and 5000 simulations are run for each parameter configuration. The results
are summarized in Tables 2.4 and 2.5. As expected, misspecifying the parameters for the
measurement error models can lead to seriously biased estimates and coverage percentages
that are significantly below 95% when using the proposed methods. In application, if there
is no good knowledge about the parameter values for the measurement error models, it is
sensible to conduct sensitivity analyses by applying the proposed estimators to examine
how sensitive the results would be under a series of possible values of the parameters for
the measurement error model.

Supplementary Material: An Alternative Approach

An alternative approach estimates the causal mean E(Yā) under treatment ā by

Ẽ(Yā) =
∑n
i=1 ŵiYiI(Āi = ā)

n

where I(·) and ŵi are the same as described in Theorem 2.1. Simulation results using
Ẽ(Yā) with correctly-specified measurement error model are reported in Tables 2.6 and
2.7. Tables 2.8 and 2.9 summarize the simulation results using Ẽ(Yā) with misspecified
covariance matrices of measurement error.
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Table 2.3: Simulation results for Setting 2 with the correctly-specified measurement error
model: average relative bias in percent (ReBias%), average standard error (ASE), empirical
standard error (ESE) and coverage percentage (CP)

Σε0 = V0, Σε1 = V1 Σε0 = 4V0, Σε1 = 4V1

n Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%
2000 naive ψOR -6.237 0.065 0.065 90.0 -19.188 0.057 0.057 47.1

ψRR -2.915 0.038 0.038 89.9 -9.071 0.036 0.036 47.0
ψRD 15.200 0.026 0.026 90.2 47.631 0.026 0.026 46.8

benchmark ψOR 0.480 0.069 0.069 95.0 0.514 0.069 0.070 94.3
ψRR 0.092 0.039 0.039 94.8 0.093 0.039 0.039 94.4
ψRD -0.002 0.026 0.026 95.0 -0.041 0.026 0.026 94.3

ACS ψOR 0.488 0.071 0.071 94.9 0.769 0.077 0.076 94.7
ψRR 0.091 0.040 0.040 95.0 0.189 0.043 0.042 94.8
ψRD 0.034 0.027 0.027 94.9 -0.395 0.029 0.029 94.6

AUEE ψOR 1.550 0.082 0.081 94.5 2.400 0.093 0.089 94.1
ψRR 0.508 0.045 0.045 94.5 0.836 0.050 0.049 94.2
ψRD -1.931 0.030 0.030 94.5 -3.460 0.033 0.033 94.0

LC ψOR 0.311 0.071 0.071 94.8 0.500 0.077 0.076 94.5
ψRR 0.057 0.040 0.040 95.0 0.122 0.043 0.043 94.7
ψRD 0.084 0.027 0.027 94.9 -0.275 0.029 0.029 94.6

5000 naive ψOR -6.496 0.041 0.041 82.3 -19.537 0.036 0.036 11.4
ψRR -2.962 0.024 0.024 82.6 -9.161 0.023 0.023 11.0
ψRD 15.177 0.016 0.017 82.5 47.938 0.017 0.017 11.2

benchmark ψOR 0.150 0.043 0.043 94.9 0.138 0.043 0.044 94.4
ψRR 0.022 0.024 0.024 94.8 0.012 0.024 0.025 94.2
ψRD 0.083 0.016 0.016 94.9 0.131 0.016 0.017 94.4

ACS ψOR 0.216 0.044 0.045 94.9 0.241 0.047 0.048 94.4
ψRR 0.047 0.025 0.025 94.7 0.049 0.027 0.027 94.2
ψRD -0.036 0.017 0.017 94.9 -0.009 0.018 0.018 94.3

AUEE ψOR 0.671 0.050 0.051 94.5 0.836 0.055 0.055 94.3
ψRR 0.229 0.028 0.028 94.5 0.287 0.030 0.031 94.4
ψRD -0.896 0.019 0.019 94.5 -1.143 0.020 0.021 94.3

LC ψOR 0.179 0.044 0.045 94.9 0.140 0.047 0.048 94.3
ψRR 0.042 0.025 0.025 94.7 0.025 0.027 0.027 94.2
ψRD -0.032 0.017 0.017 94.9 0.024 0.018 0.018 94.3

V0 =
(

0.1 0.05
0.05 0.1

)
, V1 =

(
0.15 0.05
0.05 0.15

)
; ACS: adaptive conditional score method; AUEE: adaptive

unbiased estimating function method; LC: linear combination estimator based on ACS and AUEE.
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Table 2.4: Simulation results for Setting 1 with misspecified variance for the measurement
error model: average relative bias in percent (ReBias%), average standard error (ASE),
empirical standard error (ESE) and coverage percentage (CP)

σ∗εk = 0.4 σ∗εk = 0.6

Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%
naive ψOR -7.972 0.138 0.138 77.6 -7.867 0.139 0.138 78.9

ψRR -3.449 0.040 0.040 77.6 -3.408 0.040 0.040 78.7
ψRD -11.600 0.017 0.017 77.0 -11.450 0.017 0.017 78.5

benchmark ψOR 0.208 0.149 0.149 94.8 0.326 0.149 0.148 94.7
ψRR 0.031 0.041 0.041 94.5 0.073 0.041 0.041 94.9
ψRD -0.118 0.017 0.017 94.7 0.040 0.017 0.017 94.9

ACS ψOR -3.136 0.147 0.147 91.9 5.472 0.163 0.163 89.0
ψRR -1.374 0.041 0.041 92.2 2.174 0.044 0.044 89.8
ψRD -4.696 0.017 0.017 91.9 6.711 0.017 0.017 89.5

AUEE ψOR -3.071 0.150 0.150 92.1 5.579 0.168 0.168 89.2
ψRR -1.347 0.042 0.042 92.2 2.218 0.045 0.045 89.6
ψRD -4.619 0.017 0.018 91.8 6.824 0.018 0.018 89.4

LC ψOR -3.260 0.147 0.147 91.8 5.299 0.163 0.163 89.3
ψRR -1.395 0.041 0.041 92.0 2.144 0.044 0.044 89.8
ψRD -4.697 0.017 0.017 91.9 6.702 0.017 0.017 89.6

ACS: adaptive conditional score method; AUEE: adaptive unbiased estimating function method; LC:
linear combination estimator based on ACS and AUEE.
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Table 2.5: Simulation results for Setting 2 with misspecified working covariance matri-
ces: average relative bias in percent (ReBias%), average standard error (ASE), empirical
standard error (ESE) and coverage percentage (CP)

Σ∗ε0 = V0, Σ∗ε1 = V1 Σ∗ε0 = 3V0, Σ∗ε1 = 3V1

Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%
naive ψOR -11.824 0.039 0.039 51.8 -11.836 0.039 0.039 52.8

ψRR -5.438 0.023 0.024 52.5 -5.444 0.023 0.024 52.4
ψRD 28.018 0.017 0.017 51.8 28.049 0.017 0.017 52.8

benchmark ψOR 0.077 0.043 0.043 95.0 0.088 0.043 0.044 94.6
ψRR -0.013 0.024 0.024 94.7 -0.012 0.024 0.025 94.6
ψRD 0.246 0.016 0.016 95.0 0.230 0.016 0.017 94.7

ACS ψOR -6.559 0.042 0.042 82.1 8.995 0.051 0.051 78.7
ψRR -2.996 0.024 0.024 82.2 3.819 0.027 0.028 78.3
ψRD 15.345 0.017 0.017 82.2 -18.505 0.018 0.018 78.6

AUEE ψOR -6.175 0.046 0.046 86.4 9.656 0.060 0.059 79.6
ψRR -2.838 0.027 0.027 86.2 4.073 0.032 0.032 79.0
ψRD 14.561 0.019 0.019 86.3 -19.656 0.021 0.021 79.5

LC ψOR -6.595 0.042 0.042 82.0 8.873 0.051 0.051 79.0
ψRR -3.002 0.024 0.024 82.1 3.790 0.027 0.028 78.5
ψRD 15.348 0.017 0.017 82.2 -18.458 0.018 0.018 78.6

V0 =
(

0.1 0.05
0.05 0.1

)
and V1 =

(
0.15 0.05
0.05 0.15

)
ACS: adaptive conditional score method; AUEE: adaptive unbiased estimating function method; LC:
linear combination estimator based on ACS and AUEE.
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Table 2.6: Supplementary Material: Simulation results using Ẽ(Yā) for Setting 1 with
correctly-specified measurement error model

Σεk = 0.52 Σεk = 12

n Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%
1000 naive ψOR -6.871 0.332 0.325 92.0 -19.740 0.286 0.276 71.2

ψRR -3.228 0.091 0.090 91.8 -8.937 0.086 0.084 71.6
ψRD -11.737 0.039 0.039 91.8 -31.774 0.040 0.039 70.7

benchmark ψOR 1.630 0.364 0.355 94.9 1.434 0.362 0.345 95.3
ψRR 0.265 0.094 0.093 95.0 0.230 0.094 0.091 95.4
ψRD -0.085 0.039 0.039 94.9 -0.242 0.039 0.038 95.3

ACS ψOR 1.773 0.379 0.367 95.0 2.129 0.501 0.404 95.6
ψRR 0.295 0.097 0.096 95.0 0.372 0.108 0.104 95.6
ψRD -0.037 0.040 0.040 95.1 -0.002 0.044 0.043 95.6

AUEE ψOR 1.961 0.381 0.372 95.1 2.651 0.831 0.410 95.3
ψRR 0.390 0.099 0.098 94.9 0.579 0.112 0.106 95.4
ψRD 0.199 0.040 0.040 94.9 0.631 0.046 0.044 95.5

LC ψOR 0.775 0.372 0.363 94.9 0.739 0.425 0.393 95.4
ψRR 0.035 0.097 0.096 94.9 -0.037 0.106 0.103 95.6
ψRD -0.661 0.040 0.040 95.0 -1.245 0.044 0.043 95.5

5000 naive ψOR -8.071 0.141 0.141 77.8 -20.579 0.123 0.122 12.0
ψRR -3.432 0.040 0.040 78.1 -9.079 0.038 0.038 13.3
ψRD -11.695 0.017 0.017 77.1 -31.524 0.018 0.018 12.1

benchmark ψOR 0.252 0.154 0.154 94.4 0.312 0.154 0.153 94.8
ψRR 0.038 0.041 0.042 94.5 0.058 0.041 0.041 95.0
ψRD -0.090 0.017 0.017 94.5 -0.007 0.017 0.017 94.9

ACS ψOR 0.281 0.159 0.159 95.0 0.418 0.175 0.174 95.0
ψRR 0.047 0.042 0.043 94.7 0.076 0.046 0.046 94.7
ψRD -0.074 0.018 0.018 94.8 0.015 0.019 0.019 95.1

AUEE ψOR 0.317 0.161 0.161 94.5 0.493 0.177 0.175 94.9
ψRR 0.061 0.043 0.044 94.5 0.112 0.047 0.047 94.6
ψRD -0.032 0.018 0.018 94.6 0.114 0.020 0.020 95.0

LC ψOR -0.090 0.158 0.158 94.8 -0.175 0.173 0.172 95.0
ψRR -0.006 0.042 0.043 94.6 -0.061 0.046 0.046 94.8
ψRD -0.200 0.018 0.018 94.6 -0.378 0.019 0.019 95.0

ACS: adaptive conditional score method; AUEE: adaptive unbiased estimating function method; LC:
linear combination estimator based on ACS and AUEE.
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Table 2.7: Supplementary Material: Simulation results using Ẽ(Yā) for Setting 2 with
correctly-specified measurement error model

Σε0 = V0, Σε1 = V1 Σε0 = 4V0, Σε1 = 4V1

n Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%
2000 naive ψOR -5.843 0.069 0.068 91.0 -18.669 0.059 0.059 51.6

ψRR -2.842 0.041 0.041 90.9 -9.015 0.039 0.039 52.4
ψRD 14.488 0.028 0.027 90.9 46.513 0.027 0.027 51.8

benchmark ψOR 0.727 0.074 0.073 95.3 0.647 0.074 0.073 94.8
ψRR 0.143 0.043 0.042 95.1 0.096 0.043 0.043 95.0
ψRD -0.366 0.028 0.027 95.2 -0.149 0.028 0.028 94.8

ACS ψOR 0.761 0.076 0.075 95.3 0.947 0.083 0.081 95.1
ψRR 0.149 0.044 0.043 95.1 0.200 0.047 0.047 95.2
ψRD -0.368 0.029 0.028 95.3 -0.552 0.031 0.030 95.1

AUEE ψOR 1.247 0.081 0.080 94.7 1.590 0.088 0.086 94.6
ψRR 0.356 0.046 0.046 94.6 0.489 0.050 0.049 94.6
ψRD -1.229 0.030 0.030 94.6 -1.760 0.033 0.032 94.7

LC ψOR 0.185 0.075 0.074 95.2 0.124 0.082 0.080 94.8
ψRR -0.044 0.043 0.043 95.0 -0.092 0.047 0.046 94.9
ψRD 0.094 0.028 0.028 95.2 0.296 0.031 0.030 94.9

5000 naive ψOR -6.300 0.043 0.043 83.7 -19.030 0.037 0.037 14.3
ψRR -2.948 0.026 0.026 84.4 -9.099 0.024 0.025 15.3
ψRD 14.836 0.017 0.017 83.9 46.801 0.017 0.017 14.5

benchmark ψOR 0.210 0.046 0.046 94.5 0.200 0.046 0.046 94.4
ψRR 0.026 0.027 0.027 94.7 0.017 0.027 0.027 94.5
ψRD 0.028 0.017 0.018 94.5 0.061 0.017 0.018 94.3

ACS ψOR 0.251 0.047 0.047 94.7 0.370 0.051 0.051 94.4
ψRR 0.040 0.027 0.028 94.6 0.079 0.029 0.030 94.4
ψRD -0.036 0.018 0.018 94.6 -0.199 0.019 0.019 94.4

AUEE ψOR 0.465 0.050 0.050 94.4 0.597 0.054 0.054 94.8
ψRR 0.135 0.029 0.029 94.8 0.182 0.031 0.031 94.5
ψRD -0.433 0.019 0.019 94.5 -0.626 0.020 0.021 94.7

LC ψOR 0.028 0.047 0.047 94.7 -0.033 0.050 0.051 94.7
ψRR -0.042 0.027 0.027 94.5 -0.069 0.029 0.030 94.4
ψRD 0.111 0.018 0.018 94.6 0.191 0.019 0.019 94.5

V0 =
(

0.1 0.05
0.05 0.1

)
, V1 =

(
0.15 0.05
0.05 0.15

)
; ACS: adaptive conditional score method; AUEE: adaptive

unbiased estimating function method; LC: linear combination estimator based on ACS and AUEE.
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Table 2.8: Supplementary Material: Simulation results using Ẽ(Yā) for Setting 1 with
misspecified working covariance matrix Σ∗εk 6= Σεk = 0.52

Σ∗εk = 0.42 Σ∗εk = 0.62

Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%
naive ψOR -8.058 0.141 0.140 78.2 -7.909 0.142 0.141 78.9

ψRR -3.431 0.040 0.040 78.4 -3.373 0.040 0.040 79.4
ψRD -11.677 0.017 0.017 78.1 -11.468 0.017 0.017 78.8

benchmark ψOR 0.245 0.154 0.154 95.0 0.417 0.155 0.153 94.8
ψRR 0.031 0.041 0.041 94.9 0.095 0.041 0.041 95.1
ψRD -0.099 0.017 0.017 95.0 0.128 0.017 0.017 95.0

ACS ψOR -3.161 0.152 0.150 92.4 5.734 0.173 0.172 89.4
ψRR -1.366 0.041 0.041 92.3 2.189 0.044 0.044 89.6
ψRD -4.725 0.018 0.017 92.2 6.921 0.018 0.018 89.6

AUEE ψOR -3.130 0.153 0.152 92.4 5.770 0.174 0.174 89.1
ψRR -1.351 0.042 0.042 92.4 2.208 0.045 0.045 89.5
ψRD -4.685 0.018 0.018 92.4 6.964 0.018 0.018 89.3

LC ψOR -3.457 0.151 0.150 91.8 5.237 0.171 0.171 90.0
ψRR -1.402 0.041 0.041 92.1 2.109 0.044 0.044 89.9
ψRD -4.797 0.018 0.017 92.2 6.701 0.018 0.018 89.6

ACS: adaptive conditional score method; AUEE: adaptive unbiased estimating function method; LC:
linear combination estimator based on ACS and AUEE.
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Table 2.9: Supplementary Material: Simulation results using Ẽ(Yā) for Setting 2 with
misspecified working covariance matrices Σ∗ε0 6= Σε0 = 2V0, Σ∗ε1 6= Σε1 = 2V1

Σ∗ε0 = V0, Σ∗ε1 = V1 Σ∗ε0 = 3V0, Σ∗ε1 = 3V1

Method Measure ReBias% ASE ESE CP% ReBias% ASE ESE CP%
naive ψOR -11.458 0.040 0.040 57.4 -11.463 0.040 0.040 57.7

ψRR -5.390 0.025 0.025 58.5 -5.395 0.025 0.025 58.5
ψRD 27.282 0.017 0.017 57.9 27.294 0.017 0.017 57.8

benchmark ψOR 0.172 0.046 0.046 94.9 0.187 0.046 0.046 94.9
ψRR 0.007 0.027 0.027 94.8 0.006 0.027 0.027 94.7
ψRD 0.109 0.017 0.017 94.9 0.093 0.017 0.018 94.8

ACS ψOR -6.308 0.043 0.044 84.4 8.914 0.055 0.056 81.0
ψRR -2.960 0.026 0.027 84.5 3.814 0.031 0.031 81.7
ψRD 14.885 0.018 0.018 84.5 -18.278 0.019 0.020 80.9

AUEE ψOR -6.107 0.046 0.046 86.3 9.128 0.059 0.059 81.7
ψRR -2.871 0.028 0.028 86.5 3.909 0.032 0.032 81.0
ψRD 14.484 0.019 0.019 86.4 -18.645 0.020 0.020 81.4

LC ψOR -6.464 0.043 0.047 83.7 8.361 0.055 0.055 82.5
ψRR -3.024 0.026 0.027 83.7 3.632 0.030 0.031 82.5
ψRD 14.987 0.018 0.018 84.4 -17.740 0.019 0.019 81.7

V0 =
(

0.1 0.05
0.05 0.1

)
and V1 =

(
0.15 0.05
0.05 0.15

)
ACS: adaptive conditional score method; AUEE: adaptive unbiased estimating function method; LC:
linear combination estimator based on ACS and AUEE.
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Chapter 3

Inverse-Probability-of-Treatment
Weighted Estimation of Causal
Parameters with Error-Prone Data

This chapter deals with Problem 2 discussed in Section 1.5. Section 3.1 describes the nota-
tion and framework with error free data. Section 3.2 presents the measurement error model
we consider. Section 3.3 describes methods to account for the measurement error effects on
IPTW estimation with error-prone and possibly time-dependent confounders. In section
3.4, we perform simulation studies to assess the performance of the explored methods in
finite samples, and apply our methods to conduct sensitivity analyses for NHEFS data.

3.1 Notation and Framework

Suppose subjects in the study are assessed at discrete time points 0, 1, . . . , K. For k =
0, 1, . . . , K, let A(k) denote the binary treatment indicator at visit k and Ā(k) = {A(u) :
u = 0, 1, . . . , k} the treatment history up to and including visit k. Write Ā = Ā(K). Let
(ZT(k), XT(k))T be the vector of possibly time-dependent confounders that are measured
at visit k, where the Z(k) are precisely measured and the X(k) are subject to measurement
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error. Both X(k) and Z(k) can be univariate or multivariate. Depending on the application
context, Z(k) and X(k) may represent the true measurements precisely collected at time
point k, or the average measurements over the time period between visit k − 1 and visit
k; sometimes, Z(k) and X(k) may even refer to the cumulative average measurements up
to and including time point k. Let Z̄(k) = {Z(u) : u = 0, 1, . . . , k} and X̄(k) = {X(u) :
u = 0, 1, . . . , k} be the confounder histories up to and including visit k, Z̄ = Z̄(K), and
X̄ = X̄(K). Let Y denote the outcome that is observed at the end of the study which can
be either continuous or discrete.

For k = 0, 1, . . . , K, let a(k) be a realization of the treatment indicator at visit k and
ā(k) = {a(u) : u = 0, 1, . . . , k} be the corresponding treatment history up to and including
visit k. Write ā = ā(K). Let Yā denote the potential outcome that would have been
observed had a subject experienced treatment history ā, and let Yi,ā denote the potential
outcome for subject i that would have been observed had this subject experienced treatment
history ā. Suppose we have a sample of observations from n subjects. We add subscript
i to symbols from time to time to indicate information for subject i in the sample. For
instance, Ai(k) represents the observed treatment at visit k for subject i.

We make the following assumptions for all k.

Assumption 1 (No Interference): the treatment taken by subject j has no effect on
the potential outcomes of subject i for all i 6= j.

Assumption 2 (Consistency): YĀ = Y .

Assumption 3 (No Unmeasured Confounding): P (Ā|Z̄, X̄, Yā) = P (Ā|Z̄, X̄).

Assumption 4 (Positivity): 0 < P{A(k) = 1|Ā(k − 1), Z̄(k), X̄(k)} < 1.

3.1.1 Model Setup

Assume a marginal structural model for the mean of the potential outcome with treatment
history ā:

E(Yā) = h(ā; β), (3.1)
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where β is the vector of causal parameters of interest, and h(·) is a known function. Model
(3.1) basically facilitates the marginal feature (i.e., the mean) of potential outcomes by
postulating its relationship with the treatment history (Robins et al., 2000; Daniel et al.,
2013).

In reality, we can only observe the treatment history Ā and associated outcome Y

rather than ā and all the potential outcomes Yā. In association studies, one may employ
a model form as in (3.1) to describe the conditional mean of the observed outcome, given
the observed treatment history Ā:

E(Y |Ā) = h(Ā; α), (3.2)

where α is the vector of associational regression parameters. However, in the presence
of time-dependent confounders, which may also be predicted by the previous treatment,
fitting model (3.2) to the observed data generally yields biased estimation for the causal
effect β (Robins et al., 2000).

3.1.2 IPTW Estimation of Causal Effects

To produce a consistent estimator for β, Robins et al. (2000) proposed the IPTW estimation
method which includes the following two steps.

Step 1 (Weight Estimation):

For each subject i, determine the weight

wi =
K∏
k=0

1
P{Ai(k)|Āi(k − 1), Z̄i(k), X̄i(k)}

, (3.3)

which requires the determination of conditional probabilities P{Ai(k)|Āi(k−1), Z̄i(k), X̄i(k)}
for k = 0, 1, . . . , K. Since the Ai(k) are binary variables, we invoke conventional modeling
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techniques to characterize these conditional probabilities:

logit[P{Ai(k) = 1|Āi(k − 1), Z̄i(k), X̄i(k)}] = γ0k + γT
AkĀi(k − 1) + γT

ZkZ̄i(k) + γT
XkX̄i(k),

(3.4)

where γk = (γ0k,γ
T
Ak,γ

T
Zk,γ

T
Xk)T is the vector of regression parameters for k = 0, 1, . . . , K.

We fit (3.4) to the observed data and obtain an estimator for γk for each k, thus yielding
the estimator ŵi of wi from (3.3).

Weights defined by (3.3) can be quite large when some probabilities in the denominator
are close to 0, resulting in unstable numerical results; these weights are thereby referred
to as unstabilized weights. To produce more stable results, Robins et al. (2000) and Daniel
et al. (2013) suggested to alternatively take the stabilized weights:

swi =
K∏
k=0

P{Ai(k)|Āi(k − 1)}
P{Ai(k)|Āi(k − 1), Z̄i(k), X̄i(k)}

, (3.5)

whose denominators are the same as those in (3.3). The numerator of swi requires speci-
fication of models for the A(k) conditioning on Ā(k − 1):

P{Ai(k) = 1|Āi(k − 1)} = g(Āi(k − 1); θ0k,θAk), (3.6)

where g(·) is a link function, and θ0k and θAk are regression parameters. Often, the logistic
model is used (Robins et al., 2000):

logit[P{Ai(k) = 1|Āi(k − 1)}] = θ0k + θT
AkĀi(k − 1). (3.7)

Let ŝwi denote the resulting estimate of swi.

Step 2 (Fitting the Weighted Outcome Model):

For i = 1, . . . , n, assign weights ŵi or ŝwi to subject i and fit model (3.2) accordingly.
Let β̂ denote the resulting estimator of parameter α in model (3.2); and β̂ is the so-called
the IPTW estimator for the causal effect β of model (3.1).
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3.2 Measurement Error Model

The validity of IPTW estimation discussed in Section 3.1.2 requires the weights to be
correctly specified. However, when the Xi(k) are mismeasured, disregarding the difference
between Xi(k) and the observed version and naively using the procedure of Section 3.1.2
would produce biased estimates. In fact, (3.3), (3.4) and (3.5) show that the denominators
of wi or swi are vulnerable to mismeasurements in Xi(k).

We consider the situation where the Xi(k) are mismeasured and other variables are pre-
cisely measured. Let X∗ik be an observed measurement of Xi(k). Assume that conditional
on Xi(k),

X∗ik = Xi(k) + εik (3.8)

for i = 1, . . . , n and k = 0, . . . , K, where the εik and the Xi(k) are independent, and the εik
are independent across different i and k. Assume that the error terms εik follow N(0,Σεk),
with covariance matrix Σεk. To highlight the key idea, we assume that Σεk is known for
now.

Model (3.8) is commonly used in the literature and is referred to as the classical additive
measurement error model (e.g., Carroll et al., 2006; Yi, 2017). It characterizes situations
where the observed value is an unbiased measure of the true value with additional additive
noise involved.

We comment that the assumption of independency among the εik is reasonable when the
sources of measurement error for different visits are unlikely to be correlated. This assump-
tion does not imply the independence among the observed measurements X∗ik. To see this,
consider a simple case where the Xi(k) and the X∗ik are all scalar. Then cov(X∗ik, X∗il) =
E(X∗ikX∗il) − E(X∗ik)E(X∗il) = E{Xi(k)Xi(l)} − E{Xi(k)}E{Xi(l)} = cov{Xi(k), Xi(l)},
suggesting that X∗ik and X∗il are allowed to be correlated through the correlation between
Xi(k) and Xi(l) (Freedman et al., 2015). Furthermore, the independence assumption
among the εik is often plausible to feature the problems in which the observed measure-
ments at different visits are less correlated than the true measurements, because var(X∗ik) >
var{Xi(k)} and var(X∗il) > var{Xi(l)} give |corr(X∗ik, X∗il)| < |corr{Xi(k), Xi(l)}|. When
the independence assumption of the εik is unreasonable, more sophisticated measurement
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error models can be considered. Detailed discussions can be found in Freedman et al.
(2015).

3.3 Adjusting for Measurement Error Effects on the
Estimation of Causal Parameters

To carry out valid estimation of causal parameters in the presence of mismeasurements,
we need to address error effects on estimation of the IPTW weights. By (3.3) or (3.5),
it suffices to account for error effects on the estimation of fitted probabilities in models
(3.4). In this section we describe three schemes of handling mismeasurement effects. We
explore the extension of the regression calibration method (Prentice, 1982) and the con-
ditional score method (Stefanski and Carroll, 1987) which were originally developed for
non-causal settings to the settings of causal inference with measurement error. With some
modifications, we also present the two types of simulation-extrapolation methods (Cook
and Stefanski, 1994) which were also examined by Kyle et al. (2016).

3.3.1 Regression Calibration

The first approach is to apply the regression calibration (RC) method (Prentice, 1982)
to address measurement error effects. The basic idea of the RC method is to conduct a
standard analysis with the X covariates replaced by their conditional expectations given
the observed data. The RC method was initiated by Prentice (1982) for analyzing survival
data with time-independent covariate mismeasurements, and has proved in many non-
causal inference settings to outperform the naive analysis which disregards measurement
error (e.g., Carroll et al., 2006; Rosner et al., 1989, 1990).

With time-varying covariates Xi(k) here, we may apply the RC method with Xi(k)
replaced by its expectation E{Xi(k)|X∗ik} which is conditioning on the observed value
X∗ik. Using the discussion of Carroll et al. (2006, Sec. 4.4.2), we estimate the conditional
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expectation E{Xi(k)|X∗ik} by

X̂i(k) = µ̂k + Σ̂Xk · (Σ̂Xk + Σεk)−1 · (X∗ik − µ̂k), (3.9)

where µ̂k =
∑n

i=1 X
∗
ik

n
and Σ̂Xk =

∑n
i=1(X∗ik − µ̂k)(X∗ik − µ̂k)T − (n− 1)Σεk

n− 1 .

Replacing Xi(k) with X̂i(k) and fitting models (3.4) to the data gives estimates of the
logistic model parameters, thus leading to the adjusted IPTW weights which will serve as
the input in Step 2 of the standard IPTW estimation in Section 3.1.2.

It is interesting that this RC method and the naive analysis which replaces Xi(k) with
X∗ik in the procedure of Section 3.1.2 produce the same point estimates for wi and swi, and
thus for β. Indeed, by (3.9), the estimate of E{Xi(k)|X∗ik} is linear in X∗ik, given by

X̂i(k) = uk + VkX
∗
ik, (3.10)

where uk = µ̂k − Σ̂Xk · (Σ̂Xk + Σεk)−1 · µ̂k and Vk = Σ̂Xk · (Σ̂Xk + Σεk)−1.

Maximization of the likelihood function of logistic model (3.4) with Xi(k) replaced by
X̂i(k) yields the maximum likelihood estimator of γ, denoted as γ̂∗ = (γ̂∗0k, γ̂∗

T
Ak, γ̂

∗T
Zk, γ̂

∗T
Xk)T.

Let ūk = (uT
0 , u

T
1 , . . . , u

T
k)T and let V̄k = diag(V0, . . . , Vk) be the diagonal block matrix.

By the form of (3.10) and the logistic model (3.4), we obtain that the naive estimator
γ̃ = (γ̃0k, γ̃

T
Ak, γ̃

T
Zk, γ̃

T
Xk)T of γ, obtained from fitting (3.4) with Xi(k) replaced by X∗ik, is

related to estimator γ̂∗ as follows:

γ̃0k = γ̂∗0k + γ̂∗
T
Xkūk, γ̃Ak = γ̂∗Ak, γ̃Zk = γ̂∗Zk, and γ̃T

Xk = γ̂∗
T
XkV̄k. (3.11)

Then by examining the terms in the denominators of (3.3) and (3.5) which involve error-
prone covariates, we obtain the identical relationship between the two estimated counter-
parts derived from using estimators γ̂∗ and γ̃:

1
1 + exp{−γ̂∗0k − γ̂∗

T
AkĀi(k − 1)− γ̂∗

T
ZkZ̄i(k)− γ̂∗

T
Xk

¯̂
X i(k)}
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= 1
1 + exp{−γ̂∗0k − γ̂∗

T
AkĀi(k − 1)− γ̂∗

T
ZkZ̄i(k)− γ̂∗

T
Xk(ūk + V̄kX̄∗ik)}

= 1
1 + exp{−γ̃0k − γ̃T

AkĀi(k − 1)− γ̃T
ZkZ̄i(k)− γ̃T

XkX̄
∗
ik}
,

where ¯̂
X i(k) = (X̂T

i (0), . . . , X̂T
i (k))T, and (3.10) and (3.11) are, respectively, used at the

first and second steps. Consequently, by (3.3) and (3.5), we conclude that RC and the
naive methods produce the same estimated IPTW weights and hence, the same estimate
for the causal parameter β.

3.3.2 SIMEX Correction Methods

In association studies with error-prone variables, the simulation-extrapolation (SIMEX)
method, proposed by Cook and Stefanski (1994), is another popularly used algorithm; see
Yi (2008) and Yi and He (2012), among many others. Theoretical justification of this
method was provided by Carroll et al. (1996).

Let B be a given positive integer, and Λ = {λ1, λ2 . . . , λM} be a sequence of increasing
numbers, where λ1 = 0, M is a given positive integer, and λM is a prespecified positive
number. The SIMEX method consists of the following three steps.

Step 1 (Simulation):

For i = 1, . . . , n and k = 0, . . . , K, generate eikb ∼ N(0,Σεk) for b = 1, 2, . . . , B. For
λ ∈ Λ, calculate X∗i (k; b, λ) = X∗ik +

√
λeikb.

Step 2 (Estimation):

Estimate the logistic regression parameters in (3.4) with Xi(k) replaced by X∗i (k; b, λ),
and let γ̂k(b, λ) denote the resulting estimator. Calculate γ̂k(λ) = 1

B

∑B
b=1 γ̂k(b, λ) for

k = 0, 1, . . . , K.

Step 3: (Extrapolation):

For r = 1, 2, . . . , qk where qk is the dimension of γk, fit a regression model to {(λ, γ̂kr(λ)) :
λ ∈ Λ} where γ̂kr(λ) is the rth element of γ̂k(λ), and extrapolating back to λ = −1 gives a
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predicted value γ̂kr(−1). Then (γ̂kr(−1), r = 1, 2, . . . , qk)T is the SIMEX estimator of γk,
denoted as γ̂†k. Consequently, using (3.3) and (3.4), or, (3.4) and (3.5), with γk replaced
by γ̂†k and Xi(k) replaced by X̂i(k) gives the adjusted IPTW weights which will serve as
the input in Step 2 of the standard IPTW estimation in Section 3.1.2. Our descriptions
slightly differ from Kyle et al. (2016) in that Xi(k) is replaced by X̂i(k) rather than X∗ik
at the second stage.

This method, called the indirect SIMEX correction method (Kyle et al., 2016) , adjusts
for the measurement error effects by correcting the IPTW weights first and then substitut-
ing the resulting weights into the standard IPTW estimation procedure. Alternatively, we
can directly adjust for the error effects on the estimation of causal parameter β by mod-
ifying Steps 2 and 3, and call it the direct SIMEX correction (Kyle et al., 2016) method.
The procedure consists of the following three steps.

Step I (Simulation):

This step is the same as Step 1 of the indirect SIMEX correction method.

Step II (Estimation):

Estimate the causal parameter β by conducting the standard IPTW estimation in Sec-
tion 3.1.2 with Xi(k) replaced by X∗i (k; b, λ), and let β̂(b, λ) denote the resultant estimator.
Let β̂r(b, λ) be the rth component of β̂(b, λ) where r = 1, 2, . . . , p and p is the dimension
of β. Calculate

β̂r(λ) = 1
B

B∑
b=1

β̂r(b, λ).

Step III (Extrapolation):

For r = 1, 2, . . . , p, fit a regression model to {(λ, β̂r(λ)) : λ ∈ Λ}, and extrapolating
them back to λ = −1 gives a predicted value β̂r(−1). Then β̂ = (β̂r(−1), r = 1, 2, . . . , p)T

is the SIMEX estimator of β.

3.3.3 Refined Correction Method

Estimators derived from the SIMEX methods are simple to implement and work generally
well for many settings. However, they usually are approximately consistent because there
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is no knowledge of the true extrapolation function and only an approximation is used
(Carroll et al., 1996). To obtain a consistent estimator of β, we adapt the conditional
score method proposed by Stefanski and Carroll (1987) for non-causal regression settings
with time-independent covariates. For this purpose, we further impose

Assumption 5 (Markov Assumption):

P{A(k)|Ā(k − 1), Z̄(k), X̄(k)} = P{A(k)|Ā(k − 1), Z̄(k), X(k)} for k = 0, . . . , K.

The assumption says that given the history of error-free confounders and the treatment
history, the probability of receiving the treatment at the present moment depends only
on the current error-prone confounders but not their history. Assumption 5 is needed
for establishing the consistent estimation of the causal parameters using the refined cor-
rection method to be discussed. This assumption holds automatically in commonly-seen
time-invariant studies where K = 0; it can be regarded as the price paid for generaliz-
ing the development that is valid only for time-invariant settings to circumstances with
time-dependent measurements. This assumption resembles the usual first-order Markov
assumption and may be plausible for many settings. When this assumption is in doubt in
application, one may modify the definition of Xi(t) and Zi(t) by properly including current
or previous confounders so that Assumption 5 may be feasible. Discussion on this strategy
can be found in Miglioretti and Heagerty (2004).

Let ∆i(k) = X∗ik + {Ai(k) − 1/2}ΣεkγXk. Stefanski and Carroll (1987) proposed the
estimating equations

n∑
i=1


[
Ai(k)− 1

1 + exp{−γ0k − γT
AkĀi(k − 1)− γT

ZkZ̄i(k)− γT
Xk∆i(k)}

]
1

Āi(k − 1)
Z̄i(k)
∆i(k)




= 0 (3.12)

for γk; Solving (3.12) for γk yields an estimate of γk. Let γ̂k = (γ̂0k, γ̂
T
Ak, γ̂

T
Zk, γ̂

T
Xk)T be

the resulting estimator of γk, which is a consistent estimator of γk, provided regularity
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conditions (Stefanski and Carroll, 1987).

We notice that (3.12) is identical to the likelihood score function derived from the model
(3.4) with Xi(k) replaced by ∆i(k). Driven by this observation, we propose to use (3.4)
with Xi(k) replaced by ∆i(k) to estimate the conditional probabilities P{Ai(k)|Āi(k −
1), Z̄i(k), Xi(k)}, given by

P̂{Ai(k)|Āi(k − 1), Z̄i(k), ∆̂i(k)}

= 1
1 + exp[{−γ̂0k − γ̂T

AkĀi(k − 1)− γ̂T
ZkZ̄i(k)− γ̂T

Xk∆̂i(k)}{2Ai(k)− 1}]
, (3.13)

where ∆̂i(k) = X∗ik + {Ai(k)− 1/2}Σεkγ̂Xk.

In Appendix B, we establish the consistency for the refined estimator of the causal
parameter, which is summarized as follows.

Theorem 3.1. Suppose Assumptions 1-5 and (3.4) hold, and the measurement error model
is specified as (3.8). Let

ŵi =
K∏
k=0

1
P̂{Ai(k)|Āi(k − 1), Z̄i(k), ∆̂i(k)}

and ŝwi =
K∏
k=0

P̂{Ai(k)|Āi(k − 1)}
P̂{Ai(k)|Āi(k − 1), Z̄i(k), ∆̂i(k)}

denote the estimated weights corresponding to (3.3) and (3.5) where the denominators of
ŵi and ŝwi are given by (3.13), and the numerators of ŝwi are obtained from (3.6). Then,
the following properties hold:

(a). Fitting model (3.2) with weight ŵi yields a consistent estimator for the causal param-
eter β of model (3.1).

(b). Fitting model (3.2) with weight ŝwi yields a consistent estimator for the causal pa-
rameter β of model (3.1). Furthermore, misspecification of model (3.6) does not
affect the consistency of the resulting estimator for β.

Theorem 3.1 implies that, attaching weights ŵi or ŝwi to subject-level data makes the
data resemble those collected from randomized studies, thus the bias caused by measure-
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ment error and the imbalance in confounders can be eliminated using the IPTW estimation
method with the proposed correction of measurement error. We comment that (3.13) re-
duces to an equivalent expression considered by McCaffrey et al. (2013) when the treatment
is time-invariant, where the estimand of interest is the causal mean rather than the causal
parameters in marginal structural models.

To obtain variance estimates for the proposed estimators, we use the bootstrap method
(Efron, 1982). Let β̂r denote the estimator of βr obtained by using a proposed method,
where βr is the rth element of β. We resample the data at the individual level with
replacement for L times, and form L samples each having the same size as the original
sample, where L is a user-specified number. For l = 1, . . . L, let β̂r,l denote the estimator
of βr obtained from the lth resample. Then the bootstrap variance estimate for estimator
β̂r is given by

V̂ ar(β̂r) = 1
L− 1

L∑
l=1

{
β̂r,l −

1
L

L∑
l=1

β̂r,l

}2

.

3.4 Numerical Studies

3.4.1 Simulation Studies

To assess finite sample performance of the three strategies developed in Section 3.3, we
consider six estimation methods for β:

• Method 1, called “Naive/RC”, ignores measurement error effects and conducts IPTW
estimation in Section 3.1.2 with Xi(k) replaced by X∗ik. This method yields the same results
as RC described in Section 3.3.1.

• Method 2 is the indirect SIMEX correction method presented in Section 3.3.2; we use
ISIMEX as a short name of this method.

• Method 3 is the direct SIMEX correction method presented in Section 3.3.2; we use
DSIMEX as a short name of this method.

•Method 4 is a refined version of the indirect SIMEX, called “RISIMEX”. This method
substitutes the indirect SIMEX based γ̂†k, given by Step 3 of Section 3.3.2, into (3.13) to
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produce the IPTW weights, and then produces the causal estimate using Step 2 of Section
3.1.2.

• Method 5 is a refined RC version, called “RRC”. This method substitutes the regres-
sion calibration based estimator γ̂∗, given by fitting models (3.4) with Xi(k) replaced by
X̂i(k), into (3.13) to produce IPTW weights, and then yields the causal estimate using
Step 2 of Section 3.1.2.

• Method 6, called “RCM”, is the refined correction method described in Section 3.3.3.

For all the SIMEX-based methods, set B = 100, Λ = {0, 0.5, 1, 1.5, 2}, M = 5, and
the quadratic regression is invoked in the extrapolation step. The number of bootstrap
replicates is set as 1000. Logistic regression models (3.7) are used to estimate the numerator
of (3.5). In our simulation studies we consider the case with a single confounder. Therefore,
Σεk in (3.8) represents a variance rather than a covariance matrix, and now we denote it
as σ2

εk for clarity.

Sample size of n = 1000 is considered and 1000 replications are run for each parameter
configuration. The average relative bias in percent (ReBias%), the average bootstrap
standard error (ASE), empirical standard error (ESE), mean squared error (MSE), and
coverage percentage (CP%) are reported for estimation of β, where the relative bias is

calculated as β̂ − β
β

, and the coverage percentage is the percentage the 95% confidence

intervals β̂ ∓ 1.96×
√
V̂ ar(β̂) which contain the true value β.

To measure the between-simulation variability, we use the Monte Carlo error (MCE) dis-
cussed by Koehler et al. (2009). To be specific, MCE refers to the standard deviation of the
Monte Carlo estimator taken across hypothetical simulation repetitions, where each simu-
lation is based on the same design and consists of D replications, and D is a user-specific
positive integer. MCE for the estimation of β is estimated as M̂CE = 1

D

√∑D
d=1(β̂(d) − ¯̂

β)2,

where ¯̂
β = 1

D

∑D
d=1 β̂

(d) is the Monte Carlo estimator and β̂(d) is the estimator of β in the

dth replication. It is immediate that M̂CE =
√
D − 1
D

ESE, which equals 0.0316ESE when
D is taken as 1000, as we consider here. The entries in the ESE column of Table 3.1 show
that the Monte Carlo error is small.
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We consider two settings. The first setting has two time points (i.e., K = 1) and
the second setting has three time points (i.e., K = 2). The first setting is similar to
that of Daniel et al. (2013). For the ith subject, we generate an unmeasured variable
Ui = Ui(0) = Ui(1) which follows a Bernoulli distribution with probability 0.3. At visit 0,
the treatment Ai(0) is drawn from a Bernoulli distribution with probability 0.5. At visit 1,
the confounder Xi(1) is generated from N(Ui +Ai(0)− 0.8, 1), and the treatment Ai(1) is
drawn from a Bernoulli distribution with probability 1/[1 + exp{−γ01− γX1Xi(1)}], where
γ01 and γX1 are parameters. The outcome is generated as

Yi = 2 + β{Ai(0) + Ai(1)} − Ui,

where β is the parameter.

As discussed by Daniel et al. (2013), the data generating mechanism implies that the
no unmeasured confounding assumption holds. Taking integration of the outcome model
with respect to U gives the marginal structural model

E(Yā) = 2 + β{a(0) + a(1)} − 0.3 = 1.7 + β{a(0) + a(1)},

where β is the causal parameter of interest. Set β = 1, γ01 = 0.5 and γX1 = −1. Note that
although this setting has two time points, the confounder exists only for the time point
k = 1 but not for k = 0. The measurement error model is specified as (3.8) where σε1 is
taken as 0.5 or 1.5.

The simulation results are summarized in Table 3.1. The naive analysis, or the RC
method, leads to biased results, and its performance becomes worse as the degree of mea-
surement error increases. We observe RRC produces less biased estimates than RC does,
and RISIMEX produces less biased estimates than ISIMEX does. Thus, using formula
(3.13) improves the performance of RC and SIMEX methods. Among all the six methods,
RCM performs the best as expected, and confirms the consistency established by Theorem
3.1. Except for RCM, all other methods are not exactly consistent. As a result, they
produce coverage percentages that are apart from 95% and the situation becomes worse as
measurement error increases. The discrepancy between ASE and ESE is fairly small, and
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the empirical coverage percentages are in close agreement with 95% for RCM. These re-
sults suggest that the bootstrap variance estimates are reliable. Stabilized and unstabilized
weights show similar performance in settings we consider.

In the second setting, we consider three time points (i.e., K = 2). At visit 0, the con-
founder Xi(0) is generated from the standard normal distribution N(0, 1), and the treat-
ment Ai(0) is drawn from a Bernoulli distribution with probability 1/[1+exp{−γX0Xi(0)}].
At visit k = 1, 2, the confounder Xi(k) is generated from N(Xi(k− 1) +Ai(k− 1)− 0.5, 1),
and the treatment Ai(k) is drawn from a Bernoulli distribution with probability 1/[1 +
exp{−γT

AkĀi(k−1)−γXkXi(k)}]. The outcome is generated as Yi = −0.5Xi(0)+β{Ai(0)+
Ai(1) + Ai(2)}+ ei, with ei generated from N(0, 1).

Taking integration of the outcome model with respect to X(0) and e gives the marginal
structural model:

E(Yā) = β{a(0) + a(1) + a(2)},

where β is the causal parameter of interest. Set β = 1, γX0 = 0.3, γA1 = 0.2, γX1 = 0.3,
γA2 = (0.2, 0.2)T, and γX2 = 0.3. The measurement error model is taken as (3.8) with
{σε0, σε1, σε2} set to be {0.5, 1, 1.5} or {1, 1.5, 2}.

The simulation results for the second setting are reported in Table 3.2. Examining the
ESE column of Table 3.2 shows small Monte Carlo error. Similar to results in Table 3.1,
RCM outperforms other methods thanks to the consistency of its estimator. Tables 3.1
and 3.2 also reveal that the naive method may either overestimate or underestimate the
causal parameter with a noticeable bias.

3.4.2 Sensitivity Analyses of NHEFS Data

As an application, we use the proposed approaches to analyze the NHEFS data, a national
longitudinal study jointly initiated by the National Center for Health Statistics and the
National Institute on Aging in collaboration with other agencies of the Public Health
Service. The objectives are to understand complex relationships among clinical, nutritional,
and behavioral factors measured in the first National Health and Nutrition Examination
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Table 3.1: Average relative bias in percent (ReBias%), average bootstrap standard error
(ASE), empirical standard error (ESE), mean squared error (MSE) and coverage percentage
(CP%) of causal estimates with 2 time points.

σε1 = 0.5

Weights Method ReBias(%) ASE ESE MSE/10−2 CP%
Naive/RC 2.189 0.027 0.027 0.119 88.5
ISIMEX 2.023 0.027 0.027 0.112 87.9

Unstabilized DSIMEX 0.322 0.029 0.030 0.092 93.9
RISIMEX 0.481 0.029 0.029 0.086 94.1

RRC 0.668 0.029 0.029 0.087 93.8
RCM -0.206 0.029 0.029 0.083 95.5

Naive/RC 2.137 0.026 0.027 0.118 87.4
ISIMEX 1.988 0.027 0.027 0.111 87.3

Stabilized DSIMEX 0.301 0.029 0.030 0.091 93.8
RISIMEX 0.463 0.029 0.029 0.089 93.9

RRC 0.635 0.029 0.029 0.090 93.4
RCM -0.197 0.029 0.029 0.085 95.1

σε1 = 1.5

Naive/RC 7.679 0.025 0.025 0.654 14.1
ISIMEX 8.709 0.024 0.024 0.814 4.30

Unstabilized DSIMEX 5.400 0.028 0.028 0.368 51.2
RISIMEX 5.593 0.028 0.028 0.392 50.0

RRC 2.396 0.041 0.045 0.263 87.2
RCM 0.521 0.057 0.062 0.390 94.3

Naive/RC 7.463 0.024 0.025 0.618 13.6
ISIMEX 8.520 0.023 0.023 0.777 3.40

Stabilized DSIMEX 5.275 0.027 0.027 0.352 51.8
RISIMEX 5.485 0.027 0.027 0.374 49.3

RRC 2.296 0.041 0.045 0.258 85.7
RCM 0.459 0.058 0.062 0.391 94.1
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Table 3.2: Average relative bias in percent (ReBias%), bootstrap standard error (ASE),
empirical standard error (ESE), mean squared error (MSE) and coverage percentage (CP%)
of causal estimates with 3 time points.

{σε0, σε1, σε2} = {0.5, 1, 1.5}

Weights Method ReBias(%) ASE ESE MSE/10−2 CP%
Naive/RC -3.979 0.038 0.038 0.299 82.2
ISIMEX -4.146 0.037 0.037 0.308 80.9

Unstabilized DSIMEX -1.568 0.040 0.041 0.193 90.7
RISIMEX -1.351 0.040 0.040 0.177 93.2

RRC -1.156 0.041 0.041 0.181 93.7
RCM 0.009 0.043 0.042 0.178 95.3

Naive/RC -4.014 0.036 0.036 0.290 80.5
ISIMEX -4.178 0.036 0.036 0.303 78.9

Stabilized DSIMEX -1.580 0.038 0.040 0.184 91.3
RISIMEX -1.382 0.039 0.039 0.167 93.7

RRC -1.186 0.039 0.039 0.166 93.9
RCM -0.017 0.042 0.041 0.172 95.4

{σε0, σε1, σε2} = {1, 1.5, 2}

Naive/RC -6.720 0.037 0.038 0.598 56.3
ISIMEX -7.855 0.036 0.037 0.756 41.5

Unstabilized DSIMEX -3.816 0.039 0.038 0.291 84.3
RISIMEX -3.945 0.040 0.040 0.319 81.7

RRC -1.782 0.044 0.044 0.225 92.9
RCM -0.015 0.049 0.046 0.215 95.9

Naive/RC -6.784 0.036 0.037 0.596 53.4
ISIMEX -7.911 0.035 0.036 0.758 38.8

Stabilized DSIMEX -3.841 0.038 0.037 0.282 82.8
RISIMEX -4.008 0.038 0.039 0.314 80.0

RRC -1.850 0.042 0.042 0.212 91.2
RCM -0.021 0.048 0.046 0.211 95.2
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Survey NHANES I and subsequent morbidity, mortality, and hospital utilization, among
others. A detailed description of this study is available at

https://wwwn.cdc.gov/nchs/nhanes/nhefs/default.aspx.

The dataset consists of 1624 subjects who were cigarette smokers. The treatment and
potential confounders were collected at the baseline (1971-1975) and the follow-up visit
(1982). The outcome is the indicator of death by 1992. Here the treatment indicator is
defined as the indicator of whether or not being a light smoker, taking value 1 if a subject
smoked 10 cigarettes per day or fewer and 0 otherwise. Confounders include age, sex,
exercise level, physical activity level, and SBP. The exercise level takes value 1 if a subject
exercises regularly and 0 otherwise. The physical activity level is classified as binary, taking
value 1 if a subject is active and 0 otherwise. We are interested in studying possible causal
effects of the smoking behavior on the risk of death with confounders controlled. In other
words, we want to understand the difference between the risk of death that would have
been observed had the population consisted of all light smokers and the risk of death that
would have been observed had the population consisted of all heavier smokers.

Using the symbols in Section 3.1, for subject i, we let Yi be the death indicator by
1992; let Ai(0) and Ai(1) be the light smoker indicators at the baseline and the follow-up
visit, respectively; let Zi(0) and Zi(1) be the vector of age, sex, exercise level, and physical
activity level at the baseline and the follow-up visit, respectively. Since SBP involves daily
and seasonal biological variabilities (e.g., Carroll et al., 2006, p.13), its measurements at the
baseline and the follow-up visit generally differ from its long term average or cumulative
average measurements by the visit time. It is thereby important to incorporate such
discrepancies in the analysis. According to (Carroll et al., 2006, p.113), we consider the
transformation of SBP, log(SBP− 50), and assume the measurement error model is (3.8).
Let X∗i0 and X∗i1 be the transformed observed SBP measurements at the baseline and the
follow-up visit, respectively; and let Xi(0) and Xi(1) be the transformed cumulative average
SBP up to the baseline and the follow-up visit, respectively.

Consider the marginal structural model:

logit P (Yā = 1) = β0 + β{a(0) + a(1)},
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where β is the causal parameter of interest.

We apply the methods in Section 3.4.1 to analyze the NHEFS data. Confounders
measured at time point k are used to model the treatment assignment at time point k.
Assumption 5 is perhaps feasible here; if the cumulative average SBP up to time point k
can explain the treatment at time point k, then the cumulative average SBP at earlier time
point l can be ignored where l < k. Measurements of SBP at two visits are likely to have
the same variance so we assume σε0 and σε1 are equal. Since there is no information on
variances σ2

ε0 and σ2
ε1, we perform sensitivity analyses. We specify σ2

ε0 and σ2
ε1 as 0.0126, an

estimate obtained using the data from Framingham Heart Study by Carroll et al. (2006,
p.160) to characterize the degree of measurement error in SBP. Furthermore, we set σ2

ε0

and σ2
ε1 to be 0.02 to feature a situation with a larger degree of measurement error in SBP.

Table 3.3 summarizes the analysis results. As discussed in Section 3.3.1, RC and
the naive analysis produce the same results. When measurement error effects are not
accounted for, the estimated β is -0.032 with a 95% confidence interval (-0.185, 0.122) if
using unstabilized weights, and is -0.028 with a 95% confidence interval (-0.183, 0.126) if
using stabilized weights, both suggesting that the causal effect is statistically insignificant.
This conclusion agrees with that reported by Hernán and Robins (2016) who studied causal
effect of quitting smoking on the risk of death by 1992. When measurement error in SBP is
taken into account, the estimated causal effects obtained from the RCM, RRC, RISIMEX
and DSIMEX methods are smaller than the naive estimates. When the measurement error
in SBP increases, the causal effect estimates obtained from the RCM, RRC, RISIMEX and
DSIMEX methods tend to decrease. Although estimates of the causal effect β are different
from method to method, from different degrees of measurement error in SBP, and from
using different weights, all the analyses suggest that the causal effect is not statistically
significant.

65



Table 3.3: Sensitivity analyses of NHEFS data with estimated causal effect (EST), boot-
strap standard error (SE) and 95% confidence interval (95% CI).

σ2
ε0 = σ2

ε1 = 0.0126 σ2
ε0 = σ2

ε1 = 0.02

Weights Method EST SE 95% CI EST SE 95% CI
Naive/RC -0.032 0.078 (-0.185, 0.122) -0.032 0.078 (-0.185, 0.122)
ISIMEX -0.020 0.079 (-0.174, 0.135) -0.007 0.078 (-0.161, 0.146)

Unstabilized DSIMEX -0.035 0.076 (-0.184, 0.115) -0.039 0.077 (-0.189, 0.112)
RISIMEX -0.037 0.079 (-0.191, 0.117) -0.041 0.079 (-0.195, 0.113)

RRC -0.049 0.079 (-0.204, 0.106) -0.066 0.081 (-0.224, 0.093)
RCM -0.038 0.078 (-0.191, 0.115) -0.044 0.079 (-0.198, 0.111)

Naive/RC -0.028 0.079 (-0.183, 0.126) -0.028 0.079 (-0.183, 0.126)
ISIMEX -0.019 0.079 (-0.175, 0.136) -0.007 0.079 (-0.162, 0.149)

Stabilized DSIMEX -0.031 0.076 (-0.180, 0.118) -0.035 0.077 (-0.186, 0.116)
RISIMEX -0.037 0.079 (-0.192, 0.118) -0.041 0.079 (-0.196, 0.115)

RRC -0.049 0.080 (-0.205, 0.107) -0.066 0.082 (-0.226, 0.095)
RCM -0.034 0.078 (-0.187, 0.119) -0.040 0.078 (-0.192, 0.113)

Disclaimer: Interpretations and conclusions made by the authors do not reflect the view of
National Center for Health Statistics.
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Chapter 4

Measurement Error in Outcomes:
Bias Analysis and Estimation
Methods

This chapter deals with Problem 3 discussed in Section 1.5. In Section 4.1 we describe
the IPW estimation framework for error-free settings. In Sections 4.2 and 4.3, we inves-
tigate the impact of ignoring measurement error in both continuous and binary outcome
variables. As an application, we analyze a real dataset from a clinical trial to examine the
effectiveness of a perioperative smoking cessation program (Lee et al., 2013). In Section
4.4 we develop valid estimation procedures to accommodate measurement error effects for
practical settings where either validation data or replicates of the outcome variable are
available. In Section 4.5 we present simulation results to assess the performance of the
proposed methods. To provide protection against model misspecification, in Section 4.6
we propose a doubly robust estimator which is consistent even when either the treatment
model or the outcome model is misspecified. In Section 4.7, we extend the proposed meth-
ods to accommodating complex misclassification models.

67



4.1 IPW Estimation in Error-Free Settings

Suppose for an individual, T is the observed binary treatment variable, with T = 1 if
treated and T = 0 if untreated; and X is a vector of pre-treatment covariates. Let Y1 be
the potential outcome that would have been observed had the subject been treated, and Y0

be the potential outcome that would have been observed had the subject been untreated.
Let Y be the observed outcome. We assume fundamental causal inference assumptions
described in Section 1.1.2 for the following development.

Our goal is to estimate the average treatment effect (ATE), E(Y1)−E(Y0), denoted as τ0.
Suppose we have a sample of size n. For i = 1, . . . , n, let Yi,1 be the potential outcome that
would have been observed had subject i been treated and Yi,0 be the potential outcome
that would have been observed had subject i been untreated; Ti be the observed binary
treatment variable for subject i; Xi be the observed vector of pre-treatment covariates for
subject i; and Yi be the observed outcome variable for subject i.

Since each individual can only contribute measurement of either Y1 or Y0 but not
both, estimation of τ0 cannot be obtained directly based on available measurements of
the outcome variables. Using the observed data allows us to estimate the difference of
conditional mean outcomes between the treated and untreated groups, E(Y |T = 1) −
E(Y |T = 0), which generally differs from ATE τ0 because of possible imbalance of X in
the treated and untreated groups. Rosenbaum and Rubin (1983) initiated the idea of using
the propensity score, defined as e = P (T = 1|X), to balance the distribution of X for the
treated and untreated groups.

Using propensity scores, Rosenbaum (1998) proposed a consistent estimator of τ0,

τ̂ = Ê(Y1)− Ê(Y0), (4.1)

where
Ê(Y1) = 1

n

n∑
i=1

TiYi
êi

, Ê(Y0) = 1
n

n∑
i=1

(1− Ti)Yi
1− êi

,

and êi is the propensity score for subject i where the associated parameter is replaced by a
consistent estimator. Lunceford and Davidian (2004) studied the asymptotic distribution
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of
√
n(τ̂ − τ0). When treatment model form for e = P (T = 1|X) and its parameter are

known, under regularity conditions,
√
n(τ̂−τ0) has an asymptotic normal distribution with

mean zero and variance
V = E

(
Y 2

1
e

+ Y 2
0

1− e

)
− τ 2

0 . (4.2)

The consistency of estimator τ̂ given by (4.1) requires a critical condition that the
outcome variable is precisely measured. However, this condition does not always hold in
applications. Often, response variable Yi cannot be measured accurately and is subject to
mismeasurement; instead, a surrogate measurement, denoted as Y ∗i , is collected. Ignoring
the difference between Y ∗i and Yi and naively using (4.1) with Yi replaced by Y ∗i usually
yields biased estimation results for τ0. In the next two sections, we explore the asymptotic
bias resulted from mismeasurement in outcome variables.

4.2 IPW Estimation with Mismeasured Continuous Y

In this section, we consider the case where Yi is a continuous variable. Suppose Y ∗i and Yi
are linked by measurement error model:

Y ∗i = Yi + α1Tiε1 + α2(1− Ti)ε2 + g(Xi) + ε3, (4.3)

where ε1, ε2 and ε3 are mutually independent and independent of Ti given Xi, E(ε1|Xi) =
E(ε2|Xi) = E(ε3|Xi) = 0, and α1 and α2 are parameters. Function g(·) reflects possible
dependence of Y ∗i on Xi which can be linear or nonlinear; and its form is unknown. If the
g(·) function is null, model (4.3) suggests that the surrogate measurement Y ∗i is independent
of Xi, given Yi and Ti.

Formulation (4.3) includes a general class of models in which no distributional assump-
tions are imposed on ε1, ε2 and ε3. Model (4.3) features a measurement error mechanism
that depends on treatment assignment and incorporates possible heterogeneity in mea-
surement structure. For a treated individual, the error term is α1ε1 + g(Xi) + ε3; for an
untreated individual, the error term is α2ε2 + g(Xi) + ε3. When α1 = α2 = 0, model (4.3)
reduces to Y ∗i = Yi + g(Xi) + ε3, showing that the treated and untreated groups share the
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same magnitude of measurement error. When α1 = 0, α2 6= 0, a larger measurement error
variance is assumed for the untreated group; when α2 = 0, α1 6= 0, treatment group has
a larger measurement error variance. When α1 = α2 = g(Xi) = 0, model (4.3) reduces
to Y ∗i = Yi + ε3, the so-called classical additive measurement error model (Carroll et al.,
2006) which is perhaps the most widely used measurement error model.

With the unavailability of measurements of Yi, it is tempting to use the available
measurements of Y ∗i to work out an estimator for τ0 using formulation (4.1). That is, we
replace Yi with Y ∗i in (4.1) and obtain a naive estimator τ̂ ∗ of τ0. Since Y ∗i is not necessarily
identical to Yi, one may expect the naive estimator τ̂ ∗ to incur bias in estimation of τ0.
However, under the additive linear structure for the measurement error model (4.3), we
establish the following theorem whose proof is given in Appendix C.1.

Theorem 4.1. Under the causal inference assumptions described in Section 1.1.2 and
model (4.3), naively replacing Yi with Y ∗i in the IPW estimator (4.1) still yields a consistent
estimator, τ̂ ∗, of τ0.

Theorem 4.1 implies that if the measurement error process can be described by (4.3),
ignoring measurement error in the analysis can still produce a consistent estimator of
τ0. We stress that the consistency of the naive estimator τ̂ ∗ relies on the additive linear
structure of the measurement error model (4.3) as well as the unit coefficient of Y. If Y ∗

and Y are linked by a nonlinear model, the naive estimator τ̂ ∗ would commonly be biased,
which is to be demonstrated by the simulation study in Section 4.5. If the coefficient of
Y is not 1, even an additive linear error structure cannot guarantee the consistency of
the naive estimator. For instance, suppose the measurement error model assumes a form
slightly different from (4.3):

Y ∗i = βYi + α1Tiε1 + α2(1− Ti)ε2 + g(Xi) + ε3

where β is a coefficient different from 1 and 0; and other quantities follow the same de-
scriptions as in (4.3). By analogy to the proof of Theorem 4.1, we can show that the naive
estimator τ̂ ∗ converges to βτ0 in probability, and hence is a biased estimator of τ0. In
this instance, a consistent estimator of τ0 can be given by τ̂ ∗/β̂, where β̂ is a consistent
estimator of β which may be obtained from a validation sample.
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4.3 IPW Estimation with Mismeasured Binary Y

In this section, we investigate the asymptotic bias induced from misclassification in a
binary outcome and propose a closed-form consistent estimator of τ0. We consider a useful
scenario where misclassification probabilities are homogeneous in the sense that

P (Y ∗ = a|Y = b,X, T = t) = P (Y ∗ = a|Y = b) (4.4)

for a, b, t = 0, 1. Let pab = P (Y ∗ = a|Y = b) for a, b = 0, 1.

4.3.1 Estimation Method

Ignoring the difference between Y ∗i and Yi, the naive analysis uses (4.1) to construct an
estimator of τ0:

τ̂ ∗ = 1
n

n∑
i=1

TiY
∗
i

êi
− 1
n

n∑
i=1

(1− Ti)Y ∗i
1− êi

. (4.5)

The following theorem establishes the asymptotic bias in the naive estimator whose
proof is given in Appendix C.1.

Theorem 4.2. Suppose the causal inference assumptions described in Section 1.1.2 and
model (4.4) hold. Let τ̂ ∗ denote the naive estimator (4.5) of τ0. Then

(a). the asymptotic bias of the naive estimator τ̂ ∗ is (p11 − p10 − 1)τ0;

(b). τ̂ = τ̂ ∗

p11 − p10
is a consistent estimator of τ0 when p11 6= p10.

Theorem 4.2(a) implies that in the presence of misclassification, the naive estimator
is asymptotically biased and Theorem 4.2(b) offers us a consistent estimator of τ0 which
incorporates the misclassification effects. This estimator is conceptually easy but it requires
that the misclassification probabilities are known, a condition which is rather restrictive for
application (unless sensitivity analyses are conducted). In Section 4.4, we further develop
valid estimation methods for practical settings. The requirement p11 6= p10 in Theorem
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4.2(b) is often feasible since P (Y ∗ = 1|Y = 1) is practically larger than P (Y ∗ = 1|Y = 0);
otherwise, the collected data are virtually useless.

4.3.2 Asymptotic Distribution

Let γ be the parameters for the treatment model, and φ(·) be an unbiased estimating
function of γ which is determined by the treatment model. Let θ = (τ,γT)T include all
the model parameters, and θ0 = (τ0,γ

T
0 )T be the true value of θ. Define

Ψ(Y ∗i , Ti, Xi; θ) =


φ(Xi, Ti; γ)

TiY
∗
i

ei
− (1− Ti)Y ∗i

1− ei
− (p11 − p10)τ

 . (4.6)

By the result E
(
TY ∗

e

)
−E

{
(1− T )Y ∗

1− e

}
= (p11−p10)τ0, shown in Appendix C.1, we can

show that Ψ(Y ∗i , Ti, Xi; θ) is an unbiased estimating function of θ. Then solving

n∑
i=1

Ψ(Y ∗i , Ti, Xi; θ) = 0

for θ yields an estimator of θ0, denoted as θ̂ = (τ̂ , γ̂T)T, where τ̂ = τ̂ ∗

p11 − p10
.

By theory of estimating functions (e.g., Newey and McFadden, 1994; Heyde, 1997; Yi
and Reid, 2010; Yi, 2017), we have

√
n(θ̂ − θ0) d−→ N

(
0, A(θ0)−1B(θ0)A(θ0)−1 T

)
as n→∞, (4.7)

provided regularity conditions, where A(θ0) = E {−(∂/∂θT)Ψ(Y ∗, T,X; θ0)} , and B(θ0) =
E{Ψ(Y ∗, T,X; θ0)ΨT(Y ∗, T,X; θ0)}. The variance of θ̂ can then be estimated by the
empirical sandwich estimator:

V̂ ar(θ̂) = 1
n
An(θ̂)−1Bn(θ̂)An(θ̂)−1 T, (4.8)

where An(θ̂) and Bn(θ̂) are the empirical counterparts of A(θ0) and B(θ0), respectively.
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Let V̂ij be the element of the ith row and the jth column of V̂ ar(θ̂). Then the variance
estimate, V̂ ar(τ̂), of τ̂ is V̂11, and a 95% confidence interval is τ̂ ∓ 1.96×

√
V̂ ar(τ̂).

4.3.3 Efficiency Loss Caused by Misclassification

Theorem 4.2 reveals that misclassification of outcome variable produces biased estimates of
ATE. In our causal inference setting, we further show that the misclassification of outcome
variable can also lead to loss of efficiency.

When the treatment model and its parameter are known, the estimating function (4.6)
is reduced to

ψ(Y ∗i , Ti, Xi; τ) = TiY
∗
i

ei
− (1− Ti)Y ∗i

1− ei
− (p11 − p10)τ,

then solving
n∑
i=1

ψ(Y ∗i , Ti, Xi; τ) = 0

for τ yields an estimator, say τ̃ ∗, of τ0.

By theory of estimating functions, under regularity conditions we have

√
n(τ̃ ∗ − τ0) d−→ N (0, VP) as n→∞,

where VP = A(τ0)−1B(τ0){A(τ0)−1}T, A(τ0) = E

{
− ∂

∂τ
ψ(Y ∗, T,X; τ0)

}
= p11 − p10, and

B(τ0) = E{ψ2(Y ∗, T,X; τ0)}.

It is reasonable to assume that p11 > p10, saying that it is more likely to have Y ∗ = 1
when Y = 1 than when Y = 0. In Appendix C.2, we show VP > V , suggesting that the
misclassification reduces efficiency, where V is the asymptotic variance of

√
n(τ̂ − τ0) given

by (4.2). This result is similar to that of Neuhaus (1999) who considered a misclassification
problem for a non-causal setting.
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4.3.4 Application to Smoking Cessation Data

To illustrate our methods, we consider the data arising from a clinical trial to assess the
effectiveness of a perioperative smoking cessation program (Lee et al., 2013). One hundred
sixty-eight patients were equally randomized to either the treatment group or the control
group, where the treatment group was assigned to the smoking cessation intervention
and the control group received standard care. Baseline variables include information on
physical characteristics, type of surgery, current disease and smoking habits. Specifically,
we consider gender, age, body mass index (BMI), diabetes status, hypertension, chronic
obstructive pulmonary disease (COPD), cigarettes per day, the number of years of smoking,
Fagerström score, and exhaled carbon monoxide (CO) level (ppm). The outcome variable
of interest is the smoking cessation status for at least 7 days at the 30-day follow-up
postoperatively, which was set to be 1 if the individual had quit smoking, and 0 otherwise.

Lee et al. (2013) pointed out that the follow-up data were self-reported and not con-
firmed by formal tests. Therefore, the smoking cessation status was subject to misclas-
sification. Magder and Hughes (1997) illustrated that individuals who really had quit
smoking were not likely to report that they still smoked, thus it is reasonable to assume
p11 = 100%. But individuals who still smoked might report that they did not smoke.
Lee et al. (2013) collected smoking cessation status for at least 7 days before surgery and
the exhaled CO levels, where an exhaled CO ≤ 10 ppm confirmed smoking cessation sta-
tus (SRNT Subcommittee on Biochemical Verification, 2002). This study shows that the
number of inaccurate self-reported smoking cessation records with exhaled CO of >10 ppm
is 5 in the control group and 6 in the treatment group, and the number of individuals with
exhaled CO of >10 ppm is 70 in the control group and 76 in the treatment group. Since the
rates in the control and treated groups are close, we roughly treat the inaccurate records
to be independent of intervention and pool the data to calculate a misclassification rate as

5 + 6
70 + 76 = 7.5%. Then we conduct sensitivity analysis to see what the estimate of ATE is
if the true probability p10 is specified as this misclassification rate 7.5%.

We re-analyze the data using the IPW estimation methods we propose. A logistic
model is employed to link the treatment indicator and the baseline pre-treatment variables.
Hypertension is found to be statistically significant in the logistic model. Our goal is to
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estimate the ATE on the smoking cessation status for at least 7 days at the 30-day follow-up
postoperatively. Ignoring the misclassification issue of the outcome leads to τ̂ ∗ = 0.170. By
using the adjusted estimator in Section 4.3.1, we obtain τ̂ = τ̂ ∗

p11 − p10
= 0.170

1− 0.075 = 0.184

with a variance estimate 0.390×10−2, leading to a 95% confidence interval (0.061, 0.306) of
τ0, where τ0 represents the difference between the smoking cessation rate of the population
of individuals who would all have been assigned to the smoking cessation intervention and
that of the population of individuals who would all have to receive standard care. This
analysis suggests that there is a significant causal effect of the smoking cessation program;
with misclassification in the outcome addressed, the smoking cessation intervention is very
likely to reduce the smoking rate by at least 6.1% and at most 30.6%.

This analysis also reveals the attenuation effect of outcome misclassification on ATE
estimation by noting that τ̂ = 0.184 and τ̂ ∗ = 0.170. Using the information on misclassi-
fication of smoking cessation from other studies, we observe the same phenomenon. For
example, Magder and Hughes (1997) specified p11 = 100% and p10 = 10%. Using these
misclassification probabilities gives an adjusted estimated ATE 0.170

1− 0.10 = 0.189 with a
variance estimate 0.412 × 10−2; this yields a 95% confidence interval (0.063, 0.314) of τ0,
suggesting a more substantial misclassification effect on estimation of ATE τ0.

4.4 Estimation with Unknown Misclassification Prob-
abilities

The development in Section 4.3 assumes that p11 and p10 are known and focuses on esti-
mating τ0. However, in many settings, p11 and p10 are unknown and need to be estimated
from additional data sources. We consider two useful settings where validation data or
replicates of the outcome variable are available.
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4.4.1 Using Validation Data

Suppose among the main study subjects {1, . . . , n}, there is a simple random internal
subsample V which contains subjects with measurements of variables X, T , Y and Y ∗. Let
nV be the size of V . We estimate p11 and p10 using the validation data. Let m11 be the
number of individuals with Yi = 1 and Y ∗i = 1 for i ∈ V ; m10 be the number of individuals
with Yi = 0 and Y ∗i = 1 for i ∈ V ; m1 be the number of individuals with Yi = 1 for i ∈ V ;
and m0 be the number of individuals with Yi = 0 for i ∈ V . We then estimate p11 and p10

by
p̂11 = m11

m1
and p̂10 = m10

m0
, (4.9)

respectively.

Note that m11 = ∑
i∈V YiY

∗
i , m1 = ∑

i∈V Yi, m10 = ∑
i∈V(1− Yi)Y ∗i and m0 = ∑

i∈V(1−
Yi). Estimators (4.9) are equivalently obtained from solving the estimating equations

n∑
i=1

g1(Y ∗i , Yi; p11) = 0 and
n∑
i=1

g2(Y ∗i , Yi; p10) = 0,

where
g1(Y ∗i , Yi; p11) = (YiY ∗i − p11Yi) · I(i ∈ V) · n

nV
;

g2(Y ∗i , Yi; p10) = {(1− Yi)Y ∗i − p10(1− Yi)} · I(i ∈ V) · n
nV
.

Let θ = (τ,γT, p11, p10)T. We describe three estimation methods for θ. The first method
uses only validation data {(Yi, Xi, Ti) : i ∈ V} to estimate τ0. Let τ̂V denote the resulting
estimator:

τ̂V = 1
nV

∑
i∈V

TiYi
êi
− 1
nV

∑
i∈V

(1− Ti)Yi
1− êi

. (4.10)

Although this approach is valid, it incurs efficiency loss, which can be large when the sample
size of validation data is small. The second approach is to employ the correction method
indicated by Theorem 4.2(b) using the non-validation data only, with misclassification
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probabilities estimated from the validation data. Let τ̂N denote the resulting estimator:

τ̂N = 1
p̂11 − p̂10

 1
n− nV

∑
i/∈V

TiY
∗
i

êi
− 1
n− nV

∑
i/∈V

(1− Ti)Y ∗i
1− êi

 . (4.11)

The limitation of this method is that the validation data is not used. The third approach
is to combine the validation data and non-validation data into the estimating function for
τ . Let

g(w)
τ (Y ∗i , Ti, Xi, Yi; τ) = wI(i ∈ V)

{
TiYi
ei
− (1− Ti)Yi

1− ei

}

+ (1− w)I(i /∈ V)
p11 − p10

{
TiY

∗
i

ei
− (1− Ti)Y ∗i

1− ei

}
− δτ (4.12)

where w is a weight between 0 and 1, and

δ = wE{I(i ∈ V)}+ (1− w)E{I(i /∈ V)} = wnV

n
+ (1− w)(n− nV)

n
.

Define

Ψ(Y ∗i , Ti, Xi, Yi; θ) =


φ(Xi, Ti; γ)
g1(Y ∗i , Yi; p11)
g2(Y ∗i , Yi; p10)

g(w)
τ (Y ∗i , Ti, Xi, Yi; τ)

 ,

then Ψ(Y ∗i , Ti, Xi, Yi; θ) is an unbiased estimating function of θ. Under regularity condi-
tions, solving

n∑
i=1

Ψ(Y ∗i , Ti, Xi, Yi; θ) = 0

for θ yields a consistent estimator of θ0. Let τ̃(w) denote the corresponding estimator of
τ0 which may depend on the weight w.

We comment that the estimators of τ0 obtained from the three methods are related in
a linear form:

τ̃(w) = wnV

wnV + (1− w)(n− nV) τ̂V +
{

1− wnV

wnV + (1− w)(n− nV)

}
τ̂N. (4.13)
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With weight w = 1, (4.13) recovers τ̂V, which is also evidenced by the formulation of (4.12)
where only the validation data are used. On the other hand, with w = 0, (4.13) recovers
τ̂N, and this is also suggested by (4.12) that only the non-validation data are used for
estimation of τ0. If w = 1/2, then (4.13) gives τ̃(w) = nV

n
τ̂V + n− nV

n
τ̂N, which is obtained

by placing equal weights on validation and non-validation data; this is the method that
has been widely used in the literature for studies with validation data in addition to main
study data (e.g., Yi et al., 2015a; Spiegelman et al., 2000). Let τ̃(0.5) denote the estimator
with w = 1/2. Although the equal weight method of obtaining τ̃(0.5) is universally used
in practice, this approach does not necessarily yield the most efficient estimator for τ0.

Now we discuss an optimal choice of the weight w so that the resultant estimator τ̃(w)
has the smallest variance among all the estimators of form (4.13). To do this, consider any
linear combination:

τ̂(c) = cτ̂V + (1− c)τ̂N,

where c is a constant between 0 and 1. Noting that

V ar{τ̂(c)} = {V ar(τ̂V) + V ar(τ̂N)− 2Cov(τ̂V, τ̂N)}c2

−{2V ar(τ̂N)− 2Cov(τ̂V, τ̂N)}c+ V ar(τ̂N),

we minimize V ar{τ̂(c)} at

cOPT = V ar(τ̂N)− Cov(τ̂V, τ̂N)
V ar(τ̂V) + V ar(τ̂N)− 2Cov(τ̂V, τ̂N) , (4.14)

therefore, the estimator cOPTτ̂V +(1−cOPT)τ̂N, denoted as τ̂OPT, is the best estimator among
the linear combination estimators of form (4.13). Using linear combinations of consistent
estimators is a useful method to find an estimator with improved efficiency, see, for example,
Yi and He (2006) and Braun et al. (2016).

Since cOPT is unknown, in actual implementation and we estimate it by

ĉOPT = V̂ ar(τ̂N)− Ĉov(τ̂V, τ̂N)
V̂ ar(τ̂V) + V̂ ar(τ̂N)− 2Ĉov(τ̂V, τ̂N)

,

78



where V̂ ar(τ̂N), Ĉov(τ̂V, τ̂N) and V̂ ar(τ̂V) are the estimates for V ar(τ̂N), Cov(τ̂V, τ̂N) and
V ar(τ̂V) obtained by combing the estimating functions constructed from the first two meth-
ods. The details are given in Appendix C.3.

We comment that the variances of τ̂V and τ̂N and the covariance between τ̂V and τ̂N are
constrained with

V ar(τ̂V) + V ar(τ̂N)− 2Cov(τ̂V, τ̂N)
≥ 2

√
V ar(τ̂V)V ar(τ̂N)− 2

√
V ar(τ̂V)V ar(τ̂N)Cor(τ̂V, τ̂N) ≥ 0,

and 0 ≤ c ≤ 1, but the empirical estimates V̂ ar(τ̂V) + V̂ ar(τ̂N)− 2Ĉov(τ̂V, τ̂N) and ĉOPT do
not necessarily satisfy these constraints. If this happens, we set ĉOPT to be 0 or 1, and τ̂OPT

is set to be either τ̂V or τ̂N, whichever has a smaller variance. Let τ̂OPT be the resulting
optimal linear combination estimator.

4.4.2 Using Replicates

In some settings, the validation data are not available, but there are replicates of Yi. White
et al. (2001) proposed methods to estimate misclassification probabilities with replicates,
and we utilize their idea here. Without loss of generality, we illustrate the case where two
independent replicates of Yi are available. Situations with more replicates can be discussed
similarly.

Let η = P (Y = 1) and let πr be the probability of obtaining r observations of Y=1 for
r = 0, 1, 2. Then

π0 = η(1− p11)2 + (1− η)(1− p10)2; (4.15)

π1 = 2η(1− p11)p11 + 2(1− η)(1− p10)p10; (4.16)

π2 = ηp2
11 + (1− η)p2

10. (4.17)

The probability πr can be estimated by π̂r = dr/n, where dr is the number of individuals
with r observations of Y=1, and r = 0, 1, 2. Since π0 +π1 +π2 = 1, p11, p10 and η cannot be
identified from (4.15), (4.16) and (4.17). To get around this problem, we invoke a common
strategy which imposes certain constraints on the parameters (e.g., White et al., 2001).
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We discuss several useful constraints. The first constraint is p10 = p01, which assumes the
same misclassification probability regardless of the value of Y (i.e., the sensitivity equals
specificity). The second constraint is p11 = 1, which says that the outcome for those
subjects with Y = 1 is always correctly measured. For example, it is reasonable to assume
p11 = 1 in smoking cessation studies because individuals who quit smoking (i.e., Y = 1)
are unlikely to report that they still smoke. In contrast, the third constraint is p00 = 1,
which states that the outcome for those subjects with Y = 0 is always accurately measured.
Other constraints may be considered as well. For example, by a prior knowledge, one may
take the prevalence η as known. In principle, introducing suitable constraints is to reduce
the parameter space to exclude those inadmissible parameter values, and a specific form
of constraints is largely driven by the feature of an individual problem.

Let Y ∗i (1) and Y ∗i (2) be the two replicates of Yi. Noting that d0 = ∑n
i=1[{1−Y ∗i (1)}{1−

Y ∗i (2)}], d1 = ∑n
i=1[Y ∗i (1){1 − Y ∗i (2)} + Y ∗i (2){1 − Y ∗i (1)}] and d2 = ∑n

i=1{Y ∗i (1)Y ∗i (2)},
we obtain that estimation of η, p11 and p10 using (4.15), (4.16) and (4.17) is equivalent to
solving the estimating equations

n∑
i=1

h1(Y ∗i (1), Y ∗i (2); η, p11, p10) = 0;

n∑
i=1

h2(Y ∗i (1), Y ∗i (2); η, p11, p10) = 0, (4.18)

where
h1(Y ∗i (1), Y ∗i (2); η, p11, p10) = {1− Y ∗i (1)} · {1− Y ∗i (2)} − π0;

h2(Y ∗i (1), Y ∗i (2); η, p11, p10) = Y ∗i (1) · {1− Y ∗i (2)}+ Y ∗i (2) · {1− Y ∗i (1)} − π1.

Consequently, to estimate θ = (τ,γT, η, p11, p10)T, we need to combine estimating func-
tions in (4.18) with estimating functions for γ and τ . That is, set
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Ψ{Y ∗i (1), Y ∗i (2), Ti, Xi; θ} =



φ(Xi, Ti; γ)
h1(Y ∗i (1), Y ∗i (2); η, p11, p10)
h2(Y ∗i (1), Y ∗i (2); η, p11, p10)

TiY
∗
i

ei
− (1− Ti)Y ∗i

1− ei
− (p11 − p10)τ


,

where Y ∗i = {Y ∗i (1) + Y ∗i (2)}/2, together with the constraint imposed for parameter iden-
tifiability.

Let τ̂R denote the estimator of τ0 resulted from solving∑n
i=1 Ψ{Y ∗i (1), Y ∗i (2), Ti, Xi; θ} =

0 for θ. The variance of τ̂R can be obtained by the same manner as described in Section
4.3.2.

4.5 Simulation Studies

In this section, we conduct simulation studies to demonstrate the theoretical results estab-
lished in Sections 4.2, 4.3 and 4.4.

4.5.1 Continuous Outcome

Let X = (X1, X2, X3)T, where X1, X2 and X3 are independently generated from a stan-
dard normal distribution. The treatment T is drawn from a Bernoulli distribution with
probability 1/{1 + exp(−0.2−X1−X2−X3)}. Let Y = T +X1 +X2 +X2

3 +Z, where Z
follows a standard normal distribution. This implies τ0 = 1, since

E(Y1)− E(Y0) = E(1 +X1 +X2 +X2
3 + Z)− E(0 +X1 +X2 +X2

3 + Z) = 1.

Surrogate measurement Y ∗ is generated from model (4.3), where α1 = α2 = 1. Function
g(X) is specified as 0, min(X1, X2, X3), or 1/(X2

1 + 1)+|X2+X3|, respectively. Let ε1 = Z1,
ε2 = Z2 and ε3 = Z3 − 1, where Z1 follows a standard normal distribution, Z2 follows a
uniform distribution ranging from -1 to 1, and Z3 is generated from a unit exponential
distribution.
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Figure 4.1: The performance of the naive estimator when a continuous outcome variable is
subject to additive measurement error given by model (4.3) with g(X) specified by three
forms:

first: g(X) = 0; second: g(X) = min(X1, X2, X3); third: g(X) = 1
X2

1 + 1
+ |X2 +X3|.

+: mean of the 1000 naive estimates.

We consider two sample sizes with n = 1000 and n = 5000, and 1000 simulations are
run for each g(X). The box plots of estimates of naive analysis under each specification
g(X) are displayed in Figure 4.1. A horizontal line is drawn in Figure 4.1 to indicate the
true value τ0 = 1. The empirical mean of the estimates is indicated by ′′+′′. The box
plots reveal that the naive analysis produces fairly small empirical bias despite the choice
of g(X) and the empirical bias becomes smaller as sample size increases, which confirms
Theorem 4.1.

The consistency of the naive estimator τ̂ ∗ relies on the additive linear structure of model
(4.3) as well as the unit coefficient of Y , as discussed in Section 4.2. Next we explore the
effect of nonlinear measurement error models. Let X be independently generated from the
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standard normal distribution. The treatment T is generated from a Bernoulli distribution
with probability 1/{1 + exp(−0.2 − X)}. Let Y = τ0T + X + Z, where τ0 is the causal
effect of interest and Z follows a standard normal distribution. We set

Y ∗ = exp(βY ) + ε, (4.19)

where β takes values in {−0.1,−0.5,−1, 0.1, 0.5, 1}, and ε is independent of {Y, T,X} and
has mean 0. Noting that

E
(
Tε

e

)
− E

{
(1− T )ε

1− e

}
= E

{1
e
E (T |X)

}
E(ε)− E

{ 1
1− eE (1− T |X)

}
E(ε) = 0,

which implies that ε does not cause bias for the estimation of τ0, we consider only that ε
follows a standard normal distribution in simulation.

We consider sample size n = 1000, and 1000 simulations are run for each β. Figure
4.2 displays the average bias of 1000 naive estimates versus true value τ0 with τ0 varying
from −1 to 1, where different values of β are considered. The bias increases as the absolute
value of τ0 increases. The direction of bias depends on values of τ0 and β. These simulation
results reveal that when a continuous outcome is subject to nonlinear measurement error,
naively ignoring the difference between Yi and Y ∗i may result in seriously biased estimates
of τ0.

4.5.2 Binary Outcome with Known Misclassification Probabili-
ties

Let X be generated from a standard normal distribution. Treatment T is drawn from a
Bernoulli distribution with probability 1/{1+exp(−0.2−X)}. Outcome Y is drawn from a
Bernoulli distribution with probability 1/{1+exp(−0.2−T −X)}. Model (4.4) is specified
with (p11, p10) set to be (0.9, 0.1), (0.8, 0.2) or (0.7, 0.3).

Unlike the linear model which gives the value of τ0 directly, a logistic model for the
binary outcome does not explicitly show τ0 as its parameter. The coefficient of T in the
outcome model is a conditional effect rather than a marginal or causal effect. To obtain
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Figure 4.2: The performance of the naive estimator when a continuous outcome variable
is subject to nonlinear measurement error given by model (4.19)
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the value of τ0 from the given model, one strategy is to simulate a large size of data
to directly approximate τ0 = P (Y1 = 1) − P (Y0 = 1) =

∫∞
−∞ P (Y = 1|T = 1, X =

x)f(x)dx−
∫∞
−∞ P (Y = 1|T = 0, X = x)f(x)dx by 1

N

∑N
i=1{P (Yi = 1|Ti = 1, Xi)− P (Yi =

1|Ti = 0, Xi)}, where N is a sufficiently large number and f(x) is the density of X. When
N is large enough, the approximated value of τ0 is almost identical to τ0. This simulation
approach was described in detail by Austin (2007). Here to obtain τ0, we use a sample size
of 50000 and replicate the process for 5000 times, and then obtain the average, which gives
τ0 = 0.190.

We consider two sample sizes with n = 1000 and n = 5000, and 5000 simulations are
run for each pair of (p11, p10). For both the corrected estimator τ̂ and the naive estimator
τ̂ ∗, the average relative bias (ReBias), average sandwich standard error (ASE), empirical
standard error (ESE) and 95% coverage percentage (CP%) are reported. For ϑ̂ representing

τ̂ or τ̂ ∗, the relative bias is calculated as ϑ̂− τ0

τ0
, the coverage percentage is the percentage

the 95% confidence intervals ϑ̂∓ 1.96×
√
V̂ ar(ϑ̂) which contain τ0.

Table 4.1 summarizes the simulation results under various misclassification probabil-
ities. The naive analysis leads to severely biased results, and its performance becomes
worse as the degree of misclassification increases. The corrected estimates demonstrate
satisfactory performance in terms of bias, as assured by Theorem 4.2. The discrepancy
between ASE and ESE is fairly small, and empirical coverage percentages are close to 95%,
indicating that the sandwich variance estimates are reliable. By Theorem 4.2, the asymp-
totic relative bias (ReBias) of the naive estimator τ̂ ∗ equals p11 − p10 − 1. As a result, for
the specification of (p11, p10) = (0.9, 0.1), (0.8, 0.2), and (0.7, 0.3), theoretical asymptotic
relative biases are 0.9 − 0.1 − 1 = −0.2, 0.8 − 0.2 − 1 = −0.4 and 0.7 − 0.3 − 1 = −0.6,
respectively. Empirical results in Table 4.1 support our expectation.

4.5.3 Binary Outcome with Validation Data

We use the same setting of Section 4.5.2 except that an internal validation sample is as-
sumed, and (p11, p10) is set as (0.8, 0.2) or (0.7, 0.3). Take the sample size ratio of validation
data and main data to be nV/n = 20%, 40% or 60%. For four corrected estimators τ̂V,
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Table 4.1: Simulation results for a binary outcome misclassified with known misclassifica-
tion probabilities: the performance of the proposed IPW estimator τ̂ as opposed to the
performance of the naive estimator τ̂ ∗

setting n = 1000 n = 5000

(p11, p10) Est. ReBias ASE ESE CP(%) ReBias ASE ESE CP(%)
(0.9, 0.1) τ̂ ∗ -0.196 0.036 0.036 82.7 -0.198 0.016 0.016 35.1

τ̂ 0.006 0.045 0.045 95.1 0.002 0.020 0.020 95.4

(0.8, 0.2) τ̂ ∗ -0.397 0.037 0.037 46.5 -0.401 0.017 0.017 0.50
τ̂ 0.005 0.062 0.061 95.3 -0.002 0.028 0.028 94.7

(0.7, 0.3) τ̂ ∗ -0.603 0.038 0.038 13.9 -0.600 0.017 0.017 0.00
τ̂ -0.007 0.094 0.095 94.6 0.001 0.042 0.043 94.6

Est.: estimator; ReBias: average relative bias; ASE: average sandwich standard error; ESE:
empirical standard error; CP%: 95% coverage percentage.
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τ̂N, τ̃(0.5) and τ̂OPT, the average relative bias (ReBias), average sandwich standard error
(ASE), empirical standard error (ESE), 95% coverage percentage (CP%) and the average
estimated relative efficiency (ARE) are reported, where the estimated relative efficiency of
estimate ϑ̂ is calculated as V̂ ar(τ̂OPT)/V̂ ar(ϑ̂) for ϑ̂ set as τ̂V, τ̂N or τ̃(0.5).

Table 4.2 summarizes the simulation results for the four methods described in Section
4.4.1 and the naive estimator τ̂ ∗, given by

τ̂ ∗ = 1
n

n∑
i=1

TiỸi
êi
− 1
n

n∑
i=1

(1− Ti)Ỹi
1− êi

where Ỹi = I(i ∈ V)Yi+I(i /∈ V)Y ∗i . The naive analysis leads to severely biased results, and
its performance becomes worse as the degree of misclassification increases. On the contrary,
the four corrected estimators τ̂V, τ̂N, τ̃(0.5) and τ̂OPT all present satisfactory performance
with fairly small empirical bias and empirical coverage percentages close to 95%. In terms
of efficiency, the variance of τ̂V can be larger or smaller than that of τ̂N, depending on the
misclassification probabilities and the validation sample size. The estimator based on a
linear combination of τ̂V and τ̂N, τ̂OPT, shows the best efficiency, as expected.

Figure 4.3 displays the average of 5000 estimated relative efficiency (ARE) of τ̂V, τ̂N

and τ̃(0.5) under various misclassification probabilities. As shown in Figure 4.3, τ̂OPT has
the best efficiency. The ARE of τ̂V increases as the misclassification probabilities increase,
while the ARE of τ̂N decreases as the misclassification probabilities increase. The ARE
of τ̂V increases as the validation sample size increases, while the ARE of τ̂N decreases as
the validation sample size increases. The ARE of τ̃(0.5) decreases as the misclassification
probabilities increase, suggesting that the advantage of τ̂OPT compared to τ̃(0.5) is more
significant under more substantial misclassification.

4.5.4 Binary Outcome with Replicates

We use the same setting of Section 4.5.2 except that two independent replicates of Yi are
available for each individual i. The extra assumption we use is p11 = 1 − p10, where the
sensitivity equals the specificity. For the corrected estimator, the average relative bias
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Table 4.2: Simulation results with validation data available: the performance of proposed
estimators τ̂V, τ̂N, τ̃(0.5) and τ̂OPT compared to the naive estimator τ̂ ∗

p11 = 0.8, p10 = 0.2 p11 = 0.7, p10 = 0.3

n
nV

n
Est. ReBias ASE ESE CP% ARE% ReBias ASE ESE CP% ARE%

1000 20% τ̂ ∗ -0.313 0.037 0.037 63.5 - -0.475 0.037 0.038 32.7 -
τ̂V -0.001 0.121 0.123 94.9 21.2 0.022 0.121 0.121 94.9 35.8
τ̂N 0.026 0.081 0.080 96.0 46.5 0.029 0.127 0.128 96.3 33.7

τ̃(0.5) 0.020 0.061 0.061 95.9 81.5 0.027 0.097 0.099 96.4 57.9
τ̂OPT 0.019 0.055 0.055 95.3 - 0.014 0.071 0.071 95.2 -

40% τ̂ ∗ -0.237 0.036 0.036 76.4 - -0.361 0.037 0.037 54.0 -
τ̂V -0.001 0.079 0.079 95.2 35.8 0.002 0.079 0.080 94.6 49.8
τ̂N 0.013 0.099 0.100 95.1 23.0 0.007 0.151 0.152 95.4 14.3

τ̃(0.5) 0.007 0.055 0.055 95.9 75.3 0.005 0.084 0.084 95.9 46.5
τ̂OPT 0.010 0.047 0.047 95.0 - 0.002 0.056 0.055 95.1 -

60% τ̂ ∗ -0.156 0.036 0.036 86.7 - -0.240 0.036 0.036 75.6 -
τ̂V 0.004 0.059 0.060 94.8 51.2 -0.001 0.059 0.058 95.2 62.3
τ̂N 0.010 0.130 0.133 94.6 10.6 0.012 0.195 0.197 95.4 5.94

τ̃(0.5) 0.006 0.049 0.050 94.6 74.2 0.004 0.072 0.072 95.2 43.7
τ̂OPT 0.009 0.042 0.043 94.7 - 0.000 0.046 0.046 95.5 -

5000 20% τ̂ ∗ -0.319 0.016 0.016 4.36 - -0.482 0.017 0.017 0.02 -
τ̂V 0.002 0.054 0.056 94.7 20.4 0.000 0.055 0.056 94.3 34.4
τ̂N 0.004 0.036 0.036 95.1 47.2 0.001 0.055 0.054 95.6 34.4

τ̃(0.5) 0.003 0.027 0.027 95.3 83.0 0.001 0.042 0.041 95.4 59.4
τ̂OPT 0.004 0.025 0.024 94.8 - 0.000 0.032 0.032 94.8 -

40% τ̂ ∗ -0.238 0.016 0.016 20.2 - -0.362 0.017 0.017 1.36 -
τ̂V 0.002 0.036 0.036 94.4 35.7 0.002 0.036 0.035 95.2 49.5
τ̂N 0.005 0.044 0.044 94.9 23.0 -0.008 0.066 0.067 94.7 14.3

τ̃(0.5) 0.004 0.024 0.024 95.4 76.0 -0.004 0.037 0.037 94.6 46.9
τ̂OPT 0.004 0.021 0.021 95.0 - -0.001 0.025 0.025 95.0 -

60% τ̂ ∗ -0.158 0.016 0.016 54.1 - -0.241 0.016 0.016 18.8 -
τ̂V 0.001 0.026 0.026 95.5 51.3 -0.002 0.026 0.027 94.9 62.2
τ̂N 0.007 0.058 0.058 95.4 10.6 0.003 0.086 0.087 94.8 5.87

τ̃(0.5) 0.003 0.022 0.022 95.0 74.6 0.000 0.032 0.032 94.7 43.6
τ̂OPT 0.003 0.019 0.019 94.8 - 0.001 0.021 0.021 94.9 -

Est.: estimator; ReBias: average relative bias; ASE: average sandwich standard error; ESE:
empirical standard error; CP%: 95% coverage percentage; ARE: average estimated relative
efficiency. 88
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Figure 4.3: Average estimated relative efficiency (ARE) of proposed estimators τ̂V, τ̂N and
τ̃(0.5) relative to the proposed optimal estimator τ̂OPT when validation data are available

89



Table 4.3: Simulation results for the misclassified binary outcome with replicates available:
the performance of the proposed IPW estimator τ̂R as opposed to the performance of the
naive estimator τ̂ ∗

setting n = 1000 n = 5000

(p11, p10) Est. ReBias ASE ESE CP(%) ReBias ASE ESE CP(%)
(0.9, 0.1) τ̂ ∗ -0.201 0.033 0.033 77.7 -0.200 0.015 0.015 25.9

τ̂R -0.002 0.041 0.041 94.9 0.000 0.018 0.018 94.6

(0.8, 0.2) τ̂ ∗ -0.404 0.031 0.031 29.6 -0.401 0.014 0.014 0.00
τ̂R -0.004 0.051 0.053 94.8 -0.001 0.023 0.023 94.9

(0.7, 0.3) τ̂ ∗ -0.605 0.029 0.030 2.90 -0.602 0.013 0.013 0.00
τ̂R 0.002 0.076 0.078 94.9 -0.003 0.033 0.034 94.9

Est.: estimator; ReBias: average relative bias; ASE: average sandwich standard error; ESE:
empirical standard error; CP%: 95% coverage percentage.

(ReBias), average sandwich standard error (ASE), empirical standard error (ESE) and
95% coverage percentage (CP%) are reported.

Table 4.3 summarizes the simulation results for the corrected estimator τ̂R and the
naive estimator τ̂ ∗, where τ̂ ∗ is obtained by treating Y ∗i = {Y ∗i (1) + Y ∗i (2)}/2 as the
true value Yi. The naive analysis leads to severely biased results, and its performance
becomes worse as the degree of misclassification increases. The corrected estimator τ̂R

demonstrates a satisfactory performance with fairly small empirical biases and empirical
coverage percentages close to 95%, as anticipated.

Finally, as discussed in Section 4.4.2, the consistency of estimator τ̂R requires certain
constraints on the model parameters. It is interesting to investigate the impact of constraint
misspecification on estimation of τ0. We examine two scenarios here. In Scenario 1, the
constraint p11 = 1 is used to generate data, but the constraint p11 = 1− p10 is used to fit
the data. Scenario 2 considers an opposite case; the constraint p11 = 1 − p10 is imposed
for the data generation but the constraint p11 = 1 is used when fitting the data. The
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Table 4.4: Simulation results for the misclassified binary outcome with replicates when
the constraint for identification is wrong (here p11 = 1 but we assume p11 = 1− p10): the
performance of the proposed IPW estimator τ̂R as opposed to the performance of the naive
estimator τ̂ ∗

setting n = 1000 n = 5000

(p11, p10) Est. ReBias ASE ESE CP(%) ReBias ASE ESE CP(%)
(1, 0.1) τ̂ ∗ -0.099 0.033 0.033 91.5 -0.100 0.015 0.015 75.6

τ̂R -0.033 0.036 0.036 94.8 -0.034 0.016 0.016 92.9

(1, 0.2) τ̂ ∗ -0.198 0.032 0.033 78.2 -0.201 0.014 0.014 24.5
τ̂R -0.084 0.037 0.037 92.2 -0.088 0.016 0.016 82.6

(1, 0.3) τ̂ ∗ -0.298 0.031 0.031 53.9 -0.300 0.014 0.014 1.70
τ̂R -0.157 0.037 0.038 87.1 -0.159 0.017 0.017 55.1

Est.: estimator; ReBias: average relative bias; ASE: average sandwich standard error; ESE:
empirical standard error; CP%: 95% coverage percentage.

results are reported in Tables 4.4 and 4.5, respectively, for Scenarios 1 and 2, where the
results of the naive analysis are also presented for comparisons. It is unsurprising that
constraint misspecification may induce biased results, and biases tend to exacerbate as the
degree of misclassification in the outcome variable increases. However, the performance of
the estimator τ̂R is much better than that of the naive estimator, even in the existence of
constraint misspecification.

4.6 Doubly Robust Estimator

The consistency of the estimator in Theorem 4.2 requires a correctly specified treatment
model. To provide protection against model misspecification, in this section we propose a
doubly robust estimator of τ0, which is consistent even when the treatment model or the
outcome model is misspecified.
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Table 4.5: Simulation results for the misclassified binary outcome with replicates when
the constraint for identification is wrong (here p11 = 1− p10 but we assume p11 = 1): the
performance of the proposed IPW estimator τ̂R as opposed to the performance of the naive
estimator τ̂ ∗

setting n = 1000 n = 5000

(p11, p10) Est. ReBias ASE ESE CP(%) ReBias ASE ESE CP(%)
(0.9, 0.1) τ̂ ∗ -0.201 0.033 0.033 78.1 -0.200 0.015 0.015 25.0

τ̂R 0.038 0.042 0.043 94.7 0.039 0.019 0.019 92.9

(0.8, 0.2) τ̂ ∗ -0.398 0.031 0.030 29.6 -0.401 0.014 0.014 0.00
τ̂R -0.025 0.050 0.049 95.4 -0.030 0.022 0.022 94.1

(0.7, 0.3) τ̂ ∗ -0.597 0.029 0.030 2.80 -0.602 0.013 0.013 0.00
τ̂R -0.237 0.055 0.056 87.0 -0.246 0.025 0.024 52.8

Est.: estimator; ReBias: average relative bias; ASE: average sandwich standard error; ESE:
empirical standard error; CP%: 95% coverage percentage.
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4.6.1 Theoretical Development

Let q1 = P (Y = 1|T = 1, X) and q0 = P (Y = 1|T = 0, X) be the outcome probabilities.
A consistent estimator of τ0 can be created by the difference of a consistent estimator for
E(Y1) and a consistent estimator for E(Y0) because τ0 = E(Y1) − E(Y0). Therefore, we
first propose augmented estimators for E(Y1) and E(Y0), respectively, given by

Ê(Y1) = 1
n

n∑
i=1

{
TiY

∗
i

êi(p11 − p10) −
Ti − êi
êi

q̂i1 −
Ti
êi

(
p10

p11 − p10

)}
(4.20)

and

Ê(Y0) = 1
n

n∑
i=1

{
(1− Ti)Y ∗i

(1− êi)(p11 − p10) + Ti − êi
1− êi

q̂i0 −
1− Ti
1− êi

(
p10

p11 − p10

)}
, (4.21)

where q̂i1 is an estimate of P (Yi = 1|Ti = 1, Xi) and q̂i0 is an estimate of P (Yi = 1|Ti =
0, Xi). Then we estimate τ0 by the augmented estimator

τ̂DR = Ê(Y1)− Ê(Y0). (4.22)

The augmented estimator τ̂DR combines the information on the treatment and outcome
models. The following theorem establishes the doubly robust property of τ̂DR whose proof
is given in Appendix C.4.

Theorem 4.3. Assume the causal inference assumptions described in Section 1.1.2 and
model (4.4) hold. Then (4.20) and (4.21) are consistent estimators of E(Y1) and E(Y0),
respectively, when either the treatment model or the outcome model is correctly specified.
Consequently, (4.22) is a consistent estimator of τ0 when either the treatment model or the
outcome model is correctly specified.

Note that q̂i1 and q̂i0 cannot be directly obtained by fitting the postulated outcome
models which relate Y with T and X, because the true value Y is unobserved. To obtain
q̂i1 and q̂i0 with misclassification in the outcome addressed, we present a likelihood based
approach using a logistic regression model to illustrate the idea; other regression model
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forms can be accommodated in the same manner. Suppose the postulated outcome model
is

logit q1 = β01 + βT
XX, (4.23)

logit q0 = β00 + βT
XX, (4.24)

where β01, β00, and βX are regression parameters. Noticing that the outcome models (4.23)
and (4.24) can be rewritten in a single form as:

logit P (Y = 1|T,X) = β00 + (β01 − β00)T + βT
XX,

we then write the observed likelihood function contributed from subject i as

Li(β00, β01,βX)

= 1
1 + exp{−β00 − (β01 − β00)Ti − βT

XXi}
· {p11Y

∗
i + (1− p11)(1− Y ∗i )}

+ exp{−β00 − (β01 − β00)Ti − βT
XXi}

1 + exp{−β00 − (β01 − β00)Ti − βT
XXi}

· {p10Y
∗
i + (1− p10)(1− Y ∗i )}.

The maximization of ∏n
i=1 Li(β00, β01,βX) with respect to (β00, β01,β

T
X) yields a consistent

estimator of (β00, β01,β
T
X), denoted as (β̂00, β̂01, β̂

T
X). It is immediate that

q̂i1 = P̂ (Yi = 1|Ti = 1, Xi) = 1
1 + exp(−β̂01 − β̂T

XXi)

and
q̂i0 = P̂ (Yi = 1|Ti = 0, Xi) = 1

1 + exp(−β̂00 − β̂T
XXi)

.

4.6.2 Simulation Studies

Let X1 follow a standard normal distribution. The treatment T is generated from a
Bernoulli distribution with probability 1/{1 + exp(−0.1−X1 − 0.2X2)}, where X2 = X2

1 .
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Write X = (X1, X2)T. The treatment model is a logistic regression model

logit P (T = 1|X) = 0.1 +X1 + 0.2X2, (4.25)

and the outcome model is a logistic regression model

logit P (Y = 1|T,X) = −1 + T + 0.5X1 +X2. (4.26)

The misclassification mechanism (4.4) is assumed with (p11, p10) being (0.9, 0.1) or (0.8, 0.2).
We consider two sample sizes of n = 2000 and n = 5000, and 1000 simulations are run for
each pair of (p11, p10). Variance estimates are obtained by bootstrapping (Efron, 1982) and
the number of bootstrap replicates is set to be 1000. To evaluate the performance of the
proposed doubly robust estimator τ̂DR in Theorem 4.3, we compare it with the corrected
estimator τ̂ in Theorem 2 whose validity requires a correctly specified treatment model.
The average relative bias (ReBias), average bootstrap standard error (ASE), empirical
standard error (ESE) and 95% coverage percentage (CP%) are reported.

We specifically consider three scenarios for model specification.

1. Both the treatment model and the outcome model are correctly specified:

In this case, a logistic regression model is correctly specified to relate T with X1 and
X2, and a logistic regression model is correctly specified to relate Y with T , X1 and X2.
That is, we use both (4.25) and (4.26) to generate data and fit the data.

2. The treatment model is correctly specified but the outcome model is mis-
specified:

In this case, a logistic regression model is correctly specified to relate T with X1 and X2,
but the outcome model is misspecified. Specifically, we use (4.25) and (4.26) to generate
data, but when fitting the data, we use (4.25) and (4.26) with X2 removed from (4.26).

3. The outcome model is correctly specified but the treatment model is mis-
specified:

In this case, a logistic regression model is correctly specified to relate Y with T , X1

and X2, but the treatment model is misspecified. Specifically, we use (4.25) and (4.26) to
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generate data, but when fitting the data, we use (4.25) and (4.26) with X2 removed from
(4.25).

Table 4.6 summarizes the simulation results. Confirmed by Theorem 4.3, the doubly
robust estimator τ̂DR presents satisfactory performance with fairly small empirical biases
and the coverage rates of 95% confidence intervals close to the nominal level in all three
scenarios. In comparison, estimator τ̂ performs well in the first scenario but produces
severely biased results in the third scenario, because the validity of this estimator requires
a correctly specified treatment model. It is interesting that τ̂ is reasonably robust to
misspecification of the outcome model; τ̂ performs fairly well for Scenario 2 which involves
misspecification of the outcome model. The reason is that the calculation of τ̂ does not
involve information on the outcome model.

4.6.3 Analysis of Smoking Cessation Data

We re-analyze the smoking cessation data in Section 4.3.4 using the doubly robust estima-
tor. The same treatment model is employed. We specify the outcome model as a logistic
model linking the outcome and other variables (treatment and pre-treatment covariates as
in Section 4.3.4). We specify p11 = 100% and p10 = 7.5% as in Section 4.3.4. By using the
doubly robust estimation method, we obtain τ̂DR = 0.203 with a bootstrap variance esti-
mate 0.651× 10−2, leading to a 95% confidence interval (0.045, 0.361), where the number
of bootstrap replicates is 5000. Therefore, the smoking cessation intervention reduces the
smoking rate by 20.3% after adjustment for misclassification of the outcome. If we further
specify p11 = 100% and p10 = 10% as in Section 4.3.4, then the adjusted estimated ATE
is 0.212, with a bootstrap variance estimate 0.757× 10−2, leading to a 95% confidence in-
terval (0.041, 0.382). These results indicate a statistically significant effect of the smoking
cessation program on reducing smoking rate which agrees with results in Section 4.3.4.
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Table 4.6: Simulation results for a binary outcome misclassified with known misclassifi-
cation probabilities: the performance of doubly robust estimator τ̂DR in comparison with
treatment model based estimator τ̂

p11 = 0.9, p10 = 0.1 p11 = 0.8, p10 = 0.2

n Est. Scenario ReBias ASE ESE CP% ReBias ASE ESE CP%
2000 τ̂ both 0.014 0.035 0.036 94.0 -0.005 0.048 0.052 94.8

trt -0.006 0.035 0.037 94.9 0.013 0.047 0.051 94.1
out 0.423 0.036 0.035 31.6 0.489 0.047 0.046 42.8

τ̂DR both 0.000 0.030 0.030 95.1 -0.009 0.043 0.046 94.2
trt -0.009 0.031 0.031 95.0 0.005 0.043 0.045 93.5
out 0.001 0.029 0.028 96.4 0.009 0.040 0.040 94.4

5000 τ̂ both 0.006 0.023 0.024 93.8 0.000 0.031 0.032 95.7
trt 0.013 0.023 0.023 95.0 0.006 0.031 0.031 94.9
out 0.427 0.022 0.022 3.40 0.487 0.030 0.029 8.60

τ̂DR both 0.001 0.019 0.020 95.5 -0.004 0.027 0.027 94.8
trt 0.010 0.020 0.019 96.1 0.003 0.028 0.027 95.1
out 0.003 0.018 0.018 95.4 0.003 0.026 0.025 96.0

both: both models are correctly specified;
trt: only treatment model is correctly specified;
out: only outcome model is correctly specified;
Est.: estimator; ReBias: average relative bias; ASE: average bootstrap standard error; ESE:
empirical standard error; CP%: 95% coverage percentage.
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4.7 Extensions to Complex Misclassification

For settings with a misclassified binary outcome, we assume that the misclassification
probabilities are governed by the mechanism (4.4), which says that the surrogate measure-
ment Y ∗ is independent of X and T if Y is controlled. This assumption is often feasible
and it parallels the so-called nondifferential measurement error mechanism classified for
error-contaminated covariates (Carroll et al., 2006, p.36). When the assumption (4.4) is
violated, our development can be modified to generalize model (4.4) to incorporate possible
dependence on X and/or T . The following theorem establishes the asymptotic bias of the
naive estimator and provides a way of constructing a consistent estimator.

Theorem 4.4. Under the causal inference assumptions described in Section 1.1.2, naively
replacing Yi with Y ∗i in the IPW estimator (4.1) yields a biased estimator of τ0. Let τ̂ ∗

denote this naive estimator.

(a). The asymptotic bias of the naive estimator τ̂ ∗ is

E ([{p111(X)− p101(X)}P (Y1 = 1|X) + p101(X)]
−[{p110(X)− p100(X)}P (Y0 = 1|X) + p100(X)])− τ0,

where pabt(x) = P (Y ∗ = a|Y = b,X = x, T = t) for a, b, t = 0, 1, and x being a
realization of X.

(b). Let

τ̂ = 1
n

n∑
i=1

[
TiY

∗
i

êi{p111(Xi)− p101(Xi)}
− p101(Xi)
p111(Xi)− p101(Xi)

]

− 1
n

n∑
i=1

[
(1− Ti)Y ∗i

(1− êi){p110(Xi)− p100(Xi)}
− p100(Xi)
p110(Xi)− p100(Xi)

]
.

Then τ̂ is a consistent estimator of τ0.

Similarly, we extend the doubly robust estimator (4.22) by the following theorem.
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Theorem 4.5. Assume the causal inference assumptions described in Section 1.1.2 hold.
Let pabt(x) = P (Y ∗ = a|Y = b,X = x, T = t) for a, b, t = 0, 1, and x be a realization of X.
Define τ̂DR to be

1
n

n∑
i=1

[
TiY

∗
i

êi{p111(Xi)− p101(Xi)}
− Ti − êi

êi
q̂i1 −

Ti
êi

{
p101(Xi)

p111(Xi)− p101(Xi)

}]
−

1
n

n∑
i=1

[
(1− Ti)Y ∗i

(1− êi){p110(Xi)− p100(Xi)}
+ Ti − êi

1− êi
q̂i0 −

1− Ti
1− êi

{
p100(Xi)

p110(Xi)− p100(Xi)

}]
.

Then τ̂DR is a consistent estimator of τ0 when either the treatment model or the outcome
model is correctly specified.
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Chapter 5

Weighted Causal Inference Methods
with Mismeasured Covariates and
Misclassified Outcomes

This chapter deals with Problem 4 discussed in Section 1.5. Section 5.1 describes the
IPW estimation for settings with error-free data. In Section 5.2 we present the models for
mismeasured covariates and outcome variables. In Section 5.3 we propose two correction
methods which utilize different characteristics of the treatment model to deal with mis-
measurements. Simulation studies are conducted in Section 5.4 to assess the finite sample
performance of the proposed methods. In Section 5.5, we apply the proposed methods to
analyze the NHEFS dataset for further illustration.

5.1 IPW Estimation with Error-Free Data

For each individual, let T be a binary treatment indicator with T = 1 if treated and T = 0
if untreated. Let Y1 denote the potential outcome that would have been observed had
the subject been treated and let Y0 denote the potential outcome that would have been
observed had the subject been untreated. Let Y be the observed binary outcome and let
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X and Z be the vectors of covariates.

The goal is to estimate the average treatment effect (ATE), defined to be τ0 = E(Y1)−
E(Y0). Let

e = P (T = 1|X) (5.1)

be the propensity score (Rosenbaum and Rubin, 1983). Assume the fundamental causal
inference assumptions described in Section 1.1.2 hold.

Suppose we have a sample of size n. For subject i where i = 1, . . . , n, we add subscript
i to T , Y1, Y0, Y , X and Z for the corresponding variables of subject i and obtain Ti, Yi,1,
Yi,0, Yi, Xi and Zi, respectively.

Rosenbaum (1998) proposed to estimate τ0 by the IPW estimator, given by

τ̂ = Ê(Y1)− Ê(Y0), (5.2)

where
Ê(Y1) = 1

n

n∑
i=1

TiYi
êi

, Ê(Y0) = 1
n

n∑
i=1

(1− Ti)Yi
1− êi

,

and êi is an estimated propensity score for subject i.

Under the causal inference assumptions described in Section 1.1.2 and that the treat-
ment model for the propensity score e is correctly specified, the estimator τ̂ given by (5.2)
is consistent. However, when the observed outcome Y and/or the covariates X are subject
to measurement error, the consistency of τ̂ is no longer true.

5.2 Measurement Error Models

Suppose Z is precisely measured, but X is subject to measurement error. Let X∗ be an
observed measurement, or the surrogate of X. Suppose X∗ and X are postulated by the
classical additive model

X∗ = X + ε, (5.3)
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where the error term ε follows a normal distribution N(0,Σε) with covariance matrix Σε

and ε is independent of {X,Z, T, Y, Y1, Y0}. To highlight the key idea, we assume that Σε

is known, bearing in mind that Σε can be consistently estimated using extra data sources
such as validation data or replicates (Carroll et al., 2006). The classical additive model
(5.3) is perhaps the most commonly used measurement error model in the literature of
measurement error models (Carroll et al., 2006; Yi, 2017).

Regarding misclassification in the outcome variable, we let Y ∗ represent an observed
value of Y . To characterize the misclassification mechanisms, we assume that the misclas-
sification probabilities satisfy

P (Y ∗ = a|Y = b,X∗, X, Z, T = t) = P (Y ∗ = a|Y = b,X, Z, T = t) = P (Y ∗ = a|Y = b)
(5.4)

for a, b, t = 0, 1, and let pab = P (Y ∗ = a|Y = b) for a, b = 0, 1. Assumption (5.4) basically
says that conditional on the true outcome variable Y , the surrogate Y ∗ is independent of
(X,Z, T ) as well as of the surrogateX∗. This assumption aligns with the outcome surrogacy
discussed by Prentice (1989). To highlight the idea, we assume that pab is known for now.

5.3 Theoretical Results

In the presence of measurement error in X and misclassification in Y , estimator (5.2)
cannot be directly applied because of the unavailability of X and Y . In the presence of
misclassification in Y alone, in Chapter 4 we develop consistent estimators

Ê(Y1) = 1
n(p11 − p10)

n∑
i=1

TiY
∗
i

êi
− p10

p11 − p10
(5.5)

and
Ê(Y0) = 1

n(p11 − p10)

n∑
i=1

(1− Ti)Y ∗i
1− êi

− p10

p11 − p10
(5.6)

for E(Y1) and E(Y0), respectively, to correct for misclassification effects in the outcome
variable, where êi is an estimate of propensity score ei in (5.1) that is expressed in terms
of Xi together with Zi.
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To further account for effects of measurement error in Xi, we need to revise the esti-
mators (5.5) and (5.6). Noticing that when Xi is subject to error, we cannot calculate êi
by replacing Xi with X∗i directly (Yi, 2017), we need to modify (5.5) and (5.6) in a way
such that the modified estimators are expressed in terms of the observed Zi, X∗i , Ti and
Y ∗i , so that the resulting estimator is consistent.

To this end, we propose to consider a working weight function G(Z,X∗, T ) of Z, X∗

and T as well as of model parameters, where the dependence on the model parameters is
suppressed in the notation. Let Gi be G(Zi, X∗i , Ti), evaluated for subject i, and let Ĝi

be Gi with unknown parameters replaced by their estimates. We propose the modified
estimators

Ê(Y1) = 1
n(p11 − p10)

n∑
i=1

TiY
∗
i Ĝi −

p10

p11 − p10
(5.7)

and
Ê(Y0) = 1

n(p11 − p10)

n∑
i=1

(1− Ti)Y ∗i Ĝi −
p10

p11 − p10
(5.8)

for E(Y1) and E(Y0), respectively, to correct for the effects caused from both measurement
error in X and misclassification in Y .

The inclusion of Ĝi in such a way mimics the inverse of the estimated propensity score
êi, as shown in (5.5) and (5.6). We need to find a proper function form for G(·) such that
the estimators (5.7) and (5.8) are consistent estimators for E(Y1) and E(Y0), respectively.
The following theorem offers us a guideline of finding a G(·) function; the proof is deferred
to Appendix D.1.

Theorem 5.1. Suppose that the causal inference assumptions described in Section 1.1.2,
measurement error model (5.3) and misclassification model (5.4) hold. Let τ̂ = Ê(Y1) −
Ê(Y0) where Ê(Y1) and Ê(Y0) are defined by (5.7) and (5.8), respectively. Then τ̂ is a
consistent estimator of τ0 if function G(·) satisfies

E{G(Z,X∗, T )|X,Z, T = 1} = 1
P (T = 1|X,Z) (5.9)

and
E{G(Z,X∗, T )|X,Z, T = 0} = 1

P (T = 0|X,Z) . (5.10)
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We comment that in the absence of misclassification in Y , Theorem 5.1 recovers the
results of McCaffrey et al. (2013). Within a class of logistic treatment models, the closed-
form solution for G(·) is available (McCaffrey et al., 2013). In general settings, finding a
G(·) function to satisfy (5.9) and (5.10) may be difficult. Now we examine this in detail in
the following subsections.

5.3.1 Consistent Estimation with Logistic Treatment Models

Suppose that the treatment model (5.1) is given by a logistic regression model, a model
that is widely employed in applications:

logit{P (T = 1|Z,X)} = α0 + αT
ZZ + αT

XX, (5.11)

where α = (α0,α
T
Z ,α

T
X)T is the vector of parameters.

Under model (5.11), setting

G(Z,X∗, T ) = 1 + exp{(−α0 −αT
ZZ −αT

X∆)(2T − 1)} (5.12)

makes (5.9) and (5.10) hold, where ∆ = X∗+ (T − 1/2)ΣεαX ; the justification is outlined
in Appendix D.2. Consequently,

Ĝi = 1 + exp{(−α̂0 − α̂T
ZZi − α̂T

X∆̂i)(2Ti − 1)}, (5.13)

where ∆̂i = X∗i + (Ti − 1/2)Σεα̂X with a consistent estimator α̂ = (α̂0, α̂
T
Z , α̂

T
X)T of α.

Now it remains to obtain a consistent estimator α̂ of α. This can be done by applying
the conditional score method proposed by Stefanski and Carroll (1987). Specifically, we
obtain α̂ by solving the estimating equations

n∑
i=1

{
Ti −

1
1 + exp(−α0 −αT

ZZi −αT
X∆i)

}
1
Zi

∆i

 = 0 (5.14)
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for α, where ∆i = X∗i + (Ti − 1/2)ΣεαX . As a result, the consistent estimator τ̂ of τ0 can
be obtained using (5.7), (5.8) and (5.13). The associated variance estimate V̂ ar(τ̂) can be
obtained using bootstrapping (Efron, 1982).

Finally, we make a comment on the proposed method. We note that the estimating
equations (5.14) resembles the likelihood equation

n∑
i=1

{
Ti −

1
1 + exp(−α0 −αT

ZZi −αT
XXi)

}
1
Zi

Xi

 = 0 (5.15)

which is derived from the logistic model (5.11); the only difference is that Xi in (5.15)
is replaced by ∆i for (5.14). By such a similarity, we estimate the propensity score ei =
P (Ti = 1|Zi, Xi) by

ê∗i = 1
1 + exp(−α̂0 − α̂T

ZZi − α̂T
X∆̂i)

.

Replacing êi with ê∗i in (5.5) and (5.6), we obtain the estimators

Ê(Y1) = 1
n(p11 − p10)

n∑
i=1

TiY
∗
i

ê∗i
− p10

p11 − p10
(5.16)

and
Ê(Y0) = 1

n(p11 − p10)

n∑
i=1

(1− Ti)Y ∗i
1− ê∗i

− p10

p11 − p10
. (5.17)

Evidently, the estimators (5.16) and (5.17) are identical to the proposed estimators (5.7)
and (5.8), with Ĝi given by (5.13). Therefore, we have shown that the proposed estimators
(5.7) and (5.8) can also be obtained intuitively by adapting the idea of the conditional
score method which was originally developed for the estimation of α.

5.3.2 Augmented Simulation-Extrapolation

The consistent estimation method described in Section 5.3.1 capitalizes on the logistic
regression form (5.11) for the treatment model. With other regression forms for the treat-
ment model, a closed-form expression for G may not be available or G does not even exist
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to make conditions (5.9) and (5.10) satisfied; a similar aspect was discussed by Stefanski
(1989) for a different setting. In such circumstances, we propose an augmented Simulation-
Extrapolation (SIMEX) method which roots from a combination of the method developed
in Chapter 4 and the SIMEX method proposed by Cook and Stefanski (1994).

Let B be a user-specified positive integer and Λ = {λ1, λ2 . . . , λM} be a sequence of
increasingly ordered numbers, where λ1 = 0, λM is positive and M is a positive integer
that are user-specified. The proposed augmented SIMEX method consists of the following
three steps.

Step 1 (Simulation):

For i = 1, . . . , n, generate eib ∼ N(0,Σε) for b = 1, 2, . . . , B. For λ ∈ Λ, calculate

X∗i (b, λ) = X∗i +
√
λeib.

Step 2 (Estimation):

For b = 1, 2, . . . , B and λ ∈ Λ, we treat X∗i (b, λ) as if it were the the true value and
estimate ATE using (5.5) and (5.6). That is, we calculate

Ê(b,λ)(Y1) = 1
n(p11 − p10)

n∑
i=1

TiY
∗
i

êi(b, λ) −
p10

p11 − p10

and
Ê(b,λ)(Y0) = 1

n(p11 − p10)

n∑
i=1

(1− Ti)Y ∗i
1− êi(b, λ) −

p10

p11 − p10
,

where êi(b, λ) is the estimated propensity score for subject i with Xi replaced by X∗i (b, λ)
in the treatment model. Then calculate

τ̂(b, λ) = Ê(b,λ)(Y1)− Ê(b,λ)(Y0)

and
τ̂(λ) = 1

B

B∑
b=1

τ̂(b, λ).

Step 3 (Extrapolation):
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Fitting a regression model to {(λ, τ̂(λ)) : λ ∈ Λ} and extrapolating it back to λ = −1
gives a predicted value τ̂(−1), denoted as τ̃ . Then τ̃ is the augmented SIMEX estimator of
τ0. The associated variance estimate V̂ ar(τ̃) can be obtained using bootstrapping (Efron,
1982).

Here, λ indicates the degree of measurement error in X; the larger λ is, the larger the
measurement error becomes. By gradually adding extra error to the observed X∗ in the
simulation step and obtaining a series of ATE estimates in the estimation step, we are able
to delineate how different degrees of measurement error in X may bias the estimate of τ0.
By doing extrapolation back to λ = −1, we predict the ATE estimate without measurement
error, which is of primary interest. The estimator τ̃ is often not exactly consistent because
the true extrapolation function is unknown and the user-specified extrapolation function
is only an approximation to it.

5.4 Simulation Studies

We first conduct simulation studies to confirm the consistency of the proposed estimator τ̂
described in Section 5.3.1 and compare its performance to the naive analysis which ignores
measurement error and misclassification. Let τ̂ ∗ denote the naive estimator, obtained by
conducting IPW estimation in Section 5.1 with X∗ and Y ∗ being treated as if they were
precise measurements. Sample sizes n = 1000 and n = 5000 are considered, and 1000
simulations are run for each parameter configuration.

Consider two settings where the marginal distribution of covariates X and Z are the
standard normal distribution, and the treatment T is generated from the logistic regression
model (5.11) with the parameters set as α = (0.2, 1, 1)T. In Setting 1, let X and Z be
independent; the outcome Y is generated from a Bernoulli distribution with probability
1/{1 + exp(−0.2− T −Z −X)}. In Setting 2, let X and Z be dependent with correlation
coefficient 0.5; the outcome Y is generated from a Bernoulli distribution with probability
1/{1 + exp(0.3− T − Z + X)}. The measurement error model is specified as (5.3) where
Σε is written as σ2

ε with σε being 0.1, 0.5 or 1, to reflect different degrees of measurement
error. The misclassification mechanism (5.4) is assumed with (p11, p10) being (0.9, 0.1),

107



(0.8, 0.2) and (0.7, 0.3), to indicate different degrees of misclassification.

The average relative bias in percent (ReBias%), average bootstrap standard error
(ASE), empirical standard error (ESE), and 95% coverage percentage (CP%) are reported.
For estimator ϑ̂, the relative bias is defined to be (ϑ̂− τ0)/τ0, and the coverage percentage
is defined to be the percentage of those 95% confidence intervals ϑ̂∓1.96×

√
V̂ ar(ϑ̂) which

contain τ0.

Tables 5.1 and 5.2 summarize the simulation results for Setting 1 and Setting 2, re-
spectively. The naive estimator produces severely biased results due to the ignorance of
measurement error in X and misclassification in Y . The corrected estimator τ̂ in Section
5.3.1 yields fairly small finite sample biases under various combinations of σε and (p11, p10),
and finite sample biases become smaller as the sample size increases, as expected. The
discrepancy between ASE and ESE is fairly small, and the empirical coverage percentages
are close to 95%, indicating that the bootstrap variance estimates are reliable.

Next, we conduct simulation studies to compare the performance of three methods.
The first method is the proposed method described in Section 5.3.1, called the logistic-
based correction method (LCM). The second method is the proposed method described
in Section 5.3.2, called the augmented SIMEX method (ASIMEX). The third method is
the naive analysis. When conducting ASIMEX, we set B = 100, Λ = {0, 0.5, 1, 1.5, 2} and
M = 5. The quadratic regression is used for the extrapolation step.

Two different treatment models are considered. The first treatment model is the same
as before, i.e.,

P (T = 1|Z,X) = 1/exp(−0.2− Z −X). (5.18)

The second model is

P (T = 1|Z,X) =


0.1, if 1/exp(−0.2− Z −X) ≤ 0.1,
1/exp(−0.2− Z −X), if 0.1 < 1/exp(−0.2− Z −X) < 0.9,
0.9, if 1/exp(−0.2− Z −X) ≥ 0.9,

(5.19)

Under the two treatment models (5.18) and (5.19), the box plots of the estimates
obtained from the two proposed methods and the naive analysis are displayed in Figures
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Table 5.1: Simulation results for the consistent estimator τ̂ described in Section 5.3.1 in
contrast to the naive estimator τ̂ ∗: Setting 1

n = 1000 n = 5000

(p11, p10) σε Est. ReBias% ASE ESE CP% ReBias% ASE ESE CP%
(0.9,0.1) 0.1 τ̂ ∗ -19.55 0.046 0.047 88.5 -18.68 0.020 0.020 66.5

τ̂ -0.549 0.058 0.060 94.7 0.562 0.026 0.026 95.8
0.5 τ̂ ∗ -3.786 0.043 0.044 94.5 -3.171 0.019 0.019 93.5

τ̂ -1.329 0.067 0.071 95.2 -0.114 0.029 0.030 94.2
1 τ̂ ∗ 18.97 0.039 0.037 86.5 19.71 0.017 0.017 50.2

τ̂ -2.475 0.132 0.133 96.3 -0.163 0.044 0.050 94.8
(0.8, 0.2) 0.1 τ̂ ∗ -40.64 0.046 0.047 68.1 -39.54 0.021 0.021 10.3

τ̂ -2.138 0.078 0.078 94.9 -0.346 0.036 0.036 94.3
0.5 τ̂ ∗ -26.21 0.044 0.045 84.7 -27.34 0.019 0.019 32.0

τ̂ 1.995 0.090 0.096 95.6 -0.405 0.040 0.040 94.6
1 τ̂ ∗ -10.77 0.040 0.040 93.2 -10.38 0.018 0.017 83.3

τ̂ -0.975 0.147 0.145 96.5 -0.592 0.058 0.061 95.7
(0.7, 0.3) 0.1 τ̂ ∗ -59.22 0.047 0.050 41.9 -59.22 0.021 0.022 0.40

τ̂ 0.853 0.120 0.127 93.7 0.840 0.054 0.055 94.8
0.5 τ̂ ∗ -51.27 0.044 0.044 49.8 -51.37 0.020 0.020 0.60

τ̂ 0.963 0.132 0.135 95.7 0.527 0.061 0.062 95.6
1 τ̂ ∗ -39.23 0.040 0.040 62.2 -39.99 0.018 0.018 2.80

τ̂ 2.309 0.219 0.208 95.8 0.656 0.086 0.091 94.8

Est.: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap
standard error; ESE: empirical standard error; CP%: 95% coverage percentage.
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Table 5.2: Simulation results for the consistent estimator τ̂ described in Section 5.3.1 in
contrast to the naive estimator τ̂ ∗: Setting 2

n = 1000 n = 5000

(p11, p10) σε Est. ReBias% ASE ESE CP% ReBias% ASE ESE CP%
(0.9,0.1) 0.1 τ̂ ∗ -21.22 0.057 0.062 87.2 -20.89 0.027 0.029 60.8

τ̂ -0.592 0.072 0.079 95.2 -0.154 0.034 0.036 94.5
0.5 τ̂ ∗ -33.35 0.052 0.056 71.8 -34.25 0.025 0.026 17.9

τ̂ 1.196 0.078 0.086 96.5 0.186 0.037 0.040 94.6
1 τ̂ ∗ -51.70 0.049 0.050 39.6 -51.73 0.022 0.022 0.50

τ̂ 1.679 0.155 0.141 97.4 -0.524 0.052 0.056 95.9
(0.8, 0.2) 0.1 τ̂ ∗ -41.42 0.058 0.067 67.5 -39.84 0.027 0.026 12.6

τ̂ -1.440 0.100 0.114 94.2 1.230 0.045 0.044 95.7
0.5 τ̂ ∗ -50.75 0.053 0.056 45.6 -50.34 0.024 0.025 2.30

τ̂ 0.047 0.104 0.113 95.6 0.472 0.050 0.051 95.2
1 τ̂ ∗ -64.09 0.050 0.050 23.4 -63.45 0.022 0.023 0.00

τ̂ -0.212 0.185 0.180 98.2 0.513 0.069 0.079 96.1
(0.7, 0.3) 0.1 τ̂ ∗ -59.82 0.057 0.062 38.4 -60.12 0.027 0.028 2.50

τ̂ 1.445 0.145 0.157 95.0 0.672 0.068 0.071 95.6
0.5 τ̂ ∗ -66.97 0.054 0.057 26.0 -67.03 0.025 0.025 0.50

τ̂ 0.193 0.163 0.179 95.3 -0.305 0.076 0.078 95.8
1 τ̂ ∗ -76.24 0.050 0.051 11.4 -75.43 0.022 0.022 0.00

τ̂ 0.385 0.294 0.297 97.7 -0.813 0.102 0.110 95.9

Est.: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap
standard error; ESE: empirical standard error; CP%: 95% coverage percentage.
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5.1 - 5.4. In each figure the horizontal line indicates the true value τ0. The average of the
estimates across 1000 runs for each method is indicated by ′′+′′.

In Setting 1 with n = 5000, the results under models (5.18) and (5.19) are displayed
in Figures 5.1 and 5.2, respectively. Figure 5.1 further demonstrates negligible empirical
biases of the LCM method under the logistic treatment model (5.11). The naive analysis
generally produces severely biased results. The performance of the ASIMEX method is
satisfactory when σε = 0.1 or 0.5. When σε = 1, the performance of the ASIMEX method
decays. Figure 5.2 also demonstrates seriously biased results of the naive analysis. Unsur-
prisingly, the LCM method produces biased results due to the violation of model (5.11).
The ASIMEX method performs quite well when σε = 0.1 or 0.5, but when measurement
error is severe with σε = 1, its performance decays as observed from Figure 5.1.

In Setting 2 with n = 5000, the results under models (5.18) and (5.19) are displayed in
Figures 5.3 and 5.4, respectively. These figures further show the severe bias produced by
ignoring mismeasurements.

We further conduct simulations for a different sample size, n = 1000, and a treatment
model that is different from (5.18) and (5.19). The results yield similar implications to
those discussed here; the detailed results are placed in the Supplementary Material.

Our simulation studies clearly show that the LCM method performs well under various
combinations of measurement error and misclassification, as long as model (5.11) holds.
The ASIMEX method enables us to handle general treatment models and shows promis-
ing performance with small to moderate measurement error in X. However, when the
measurement error in X is remarkably large, the performance of the ASIMEX method
decays.

5.5 Analysis of NHEFS Data

For illustration, we use the proposed approaches to analyze the NHEFS dataset. We are
interested in studying possible causal effects of exercises on smoking cessation, with covari-
ates age, sex, race, body mass index (BMI) and systolic blood pressure (SBP) controlled.
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Figure 5.1: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.18) in Setting 1 with n = 5000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.2: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.19) in Setting 1 with n = 5000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.3: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.18) in Setting 2 with n = 5000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.4: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.19) in Setting 2 with n = 5000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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It is documented that measurement error arises inevitably in measuring the long-term aver-
age SBP due to daily and seasonal variation (Carroll et al., 2006). Moreover, self-reported
smoking cessation status is subject to misclassification (Wagenknecht et al., 1992; Magder
and Hughes, 1997; Lee et al., 2013). Therefore, the usual IPW estimation based on (5.2)
is challenged by both covariate measurement error and outcome misclassification.

Let the treatment indicator T be a binary variable which takes value 1 if a subject
has moderate or much exercise, and 0 if a subject takes little or no exercise. Precisely
measured covariates Z include age, sex, race and BMI. According to Carroll et al. (2006),
we consider a transformed SBP defined to be log(SBP− 50). The transformation strategy
was originally described by Cornfield (1962) and then applied by Carroll et al. (1984) with
a purpose to make the distribution of transformed observations reasonably approximate a
normal distribution. Let X∗ be the transformed observed SBP measurement and let Y ∗

denote the self-reported smoking cessation status.

The naive analysis and the two proposed methods are applied to analyze this dataset.
One thousand bootstrap replicates are used for variance estimation. The naive analysis
which ignores the presence of measurement error and misclassification yields that the esti-
mate of ATE is −0.017 with a bootstrap standard error 0.021, leading to a 95% confidence
interval (−0.058, 0.025), suggesting no statistically significant causal effect of exercise on
smoking cessation, at the nominal level of 5%.

We then apply the proposed methods developed in Sections 5.3.1 and 5.3.2, called
LCM and ASIMEX, respectively, to analyze the data, just as described in Section 5.4.
The treatment model is specified as the logistic regression model (5.11). Suppose the
measurement error model (5.3) and the misclassification model (5.4) hold. Since there is no
information on the degree of measurement error or misclassification, we conduct sensitivity
analyses based on the information from other studies. Specifically, we take σ2

ε = 0.0126,
the value used by Carroll et al. (2006) for characterizing measurement error in SBP in
analyzing the data arising from the Framingham Heart Study. In addition, we further set
σ2
ε = 0.03 to feature a scenario with a larger degree of measurement error in SBP. Magder

and Hughes (1997) illustrated that subjects who really quit smoking were very likely to
report that they have quit, but those who still smoked might inaccurately report having
quit smoking. Therefore, assuming p11 = 100% and p10 > 0 is perhaps reasonable to reflect
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Table 5.3: Analysis results of the NHEFS data using the proposed method in Section 5.3.1
(LCM) and the proposed method in Section 5.3.2 (ASIMEX): estimate (EST), bootstrap
standard error (SE) and 95% confidence interval (95% CI)

LCM ASIMEX

σ2
ε p10 EST SE 95% CI EST SE 95% CI

0.0126 0.05 -0.018 0.024 (-0.064, 0.029) -0.018 0.023 (-0.063, 0.028)
0.10 -0.019 0.025 (-0.067, 0.030) -0.019 0.025 (-0.068, 0.031)
0.20 -0.021 0.029 (-0.078, 0.036) -0.021 0.028 (-0.076, 0.035)
0.30 -0.024 0.032 (-0.087, 0.039) -0.023 0.033 (-0.088, 0.041)

0.03 0.05 -0.018 0.023 (-0.063, 0.027) -0.018 0.025 (-0.066, 0.030)
0.10 -0.019 0.025 (-0.068, 0.031) -0.018 0.024 (-0.066, 0.029)
0.20 -0.021 0.029 (-0.079, 0.036) -0.021 0.028 (-0.077, 0.034)
0.30 -0.024 0.032 (-0.086, 0.038) -0.024 0.031 (-0.085, 0.037)

Disclaimer: Interpretations and conclusions made by the authors do not reflect the view
of National Center for Health Statistics.

misclassification of smoking status. Magder and Hughes (1997) specified p10 = 10%. To
study the impact of different degrees of misclassification on the estimation, here we consider
p10 = 5%, 10%, 20% or 30%.

Table 5.3 reports the estimates, the bootstrap standard errors and the 95% confi-
dence intervals obtained from the LCM and ASIMEX methods under each combination of
measurement error and misclassification. Both methods perform very similarly. As mis-
classification probability p10 increases, the resultant estimates of τ0 decrease, although the
change is small. The results are quite similar under σ2

ε = 0.0126 and σ2
ε = 0.03, implying

a very small measurement error effect for this particular dataset. Both methods suggest
no evidence of the causal effect of exercise on quitting smoking, since all the confidence
intervals include 0. The proposed methods yield smaller estimates than the naive analysis,
but the difference is not big. Compared with the naive analysis, the proposed methods
yield larger standard errors which is consistent with the patterns in the literature.
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In this example, the presence of measurement error and misclassification does not really
alter the conclusion and the results given by the naive analysis are similar to those obtained
by using the correction methods. However, this phenomenon does not occur in general.
For example, as shown in our simulation studies, measurement error and misclassification
can substantially degrade the inference results. In applications where mismeasurements
are present, blindly conducting the naive analysis without a careful examination on the
impact of measurement error and misclassification can yield misleading results.

Supplementary Material: Additional Simulation Re-
sults

We repeat simulations with n = 1000, and further consider another treatment model (5.20):

P (T = 1|Z,X) =


0.2, if 1/exp(−0.2− Z −X) ≤ 0.2,
1/exp(−0.2− Z −X), if 0.2 < 1/exp(−0.2− Z −X) < 0.8,
0.8, if 1/exp(−0.2− Z −X) ≥ 0.8,

(5.20)

The simulation results are displayed in the following figures.
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Figure 5.5: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.18) in Setting 1 with n = 1000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.6: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.19) in Setting 1 with n = 1000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.7: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.18) in Setting 2 with n = 1000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.8: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.19) in Setting 2 with n = 1000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.9: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.20) in Setting 1 with n = 1000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.10: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.20) in Setting 2 with n = 1000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.11: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.20) in Setting 1 with n = 5000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Figure 5.12: Simulation results for the comparison of the two proposed methods and the
naive analysis: treatment model (5.20) in Setting 2 with n = 5000

first: the naive analysis; second: the proposed method in Section 5.3.1 (LCM); third: the
proposed method in Section 5.3.2 (ASIMEX).
Cases 1, 2 and 3: (p11, p10) = (0.9, 0.1), σε = 0.1, 0.5, and 1.0;
Cases 4, 5 and 6: (p11, p10) = (0.8, 0.2), σε = 0.1, 0.5, and 1.0;
Cases 7, 8 and 9: (p11, p10) = (0.7, 0.3), σε = 0.1, 0.5, and 1.0;
+: average of estimates across 1000 runs; The horizontal solid line indicates τ0.
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Chapter 6

Weighting-Based Causal Inference
with Missingness and
Misclassification in Outcomes

This chapter deals with Problem 5 discussed in Section 1.5. Section 6.1 describes the
IPW estimation with complete and error-free data. Section 6.2 presents the models for
missingness and misclassification in outcome variables. In Section 6.3 we first derive the
asymptotic bias caused by ignoring missingness, misclassification or both, and then propose
two IPW based correction methods to eliminate missingness and mismeasurements effects
simultaneously. In Section 6.4 we develop a doubly robust correction method to provide
protection against misspecification of the treatment model. In Section 6.5 we conduct
simulation studies to assess the finite sample performance of the proposed methods. As
an application, in Section 6.6 we analyze a smoking cessation dataset using the proposed
methods.

127



6.1 Notation and Framework

For any subject, let X be the vector of associated covariates and let T be the binary
indicator of treatment assignment with T = 1 if treated and T = 0 if untreated. Let Y1 be
the potential binary outcome that would have been observed had the subject been treated
and Y0 be the potential binary outcome that would have been observed had the subject
been untreated; let Y be the observed binary outcome. We assume the causal inference
assumptions described in Section 1.1.2 for the following development.

The primary interest is to estimate the average treatment effect (ATE), defined as
τ0 = E(Y1)−E(Y0). With binary outcomes, the ATE can also be interpreted as the causal
risk difference P (Y1 = 1)− P (Y0 = 1).

Suppose we have a sample of size n. For i = 1, . . . , n, we attach subscript i to X, T ,
Y1, Y0 and Y to denote the corresponding variables for subject i, yielding Xi, Ti, Yi,1, Yi,0
and Yi, respectively. The propensity score for subject i, defined as

ei = P (Ti = 1|Xi), (6.1)

plays an important role in causal inference (Rosenbaum and Rubin, 1983), where i =
1, . . . , n. Using propensity scores, Rosenbaum (1987, 1998) proposed the IPW estimator
for the ATE:

τ̂ = Ê(Y1)− Ê(Y0), (6.2)

where
Ê(Y1) = 1

n

n∑
i=1

TiYi
êi

, Ê(Y0) = 1
n

n∑
i=1

(1− Ti)Yi
1− êi

,

and êi is the estimated propensity score for subject i obtained by fitting the treatment
model (6.1).

Under the causal inference assumptions described in Section 1.1.2 and that the treat-
ment model (6.1) is correctly specified, τ̂ is a consistent estimator of τ0 (e.g., Lunceford
and Davidian, 2004). However, this consistency property of τ̂ also requires two critical
conditions which are tacitly assumed: the variables must be measured precisely and the
associated observations must be complete. When these conditions are violated, the consis-
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tency of τ̂ no longer holds.

In subsequent sections, we discuss this issue and develop consistent estimators of τ0

when the outcome variable is subject to both missingness and misclassification.

6.2 Missingness and Misclassification Models

Let R be the missing data indicator with R = 1 if the outcome variable is observed and
R = 0 otherwise. Assume that given the covariates X and treatment variable T , the
missing data indicator R and the outcome variable Y are independent, i.e., R ⊥⊥ Y |(X,T ).
This assumption aligns with the missing at random (MAR) mechanism which is commonly
considered in the non-causal framework (e.g., Little and Rubin, 2002). In other words, we
assume that

P (R = 1|Y,X, T = t) = P (R = 1|X,T = t) (6.3)

for t = 0, 1. We let πt = P (R = 1|X,T = t) for t = 0, 1.

In addition to being subject to missing, the observed outcome variable Y is subject
to misclassification, and we let Y ∗ denote the actually observed value of Y . We consider
situations where the misclassification probabilities are not affected by the covariates X nor
the treatment indicator T , provided the true value Y is given, i.e.,

P (Y ∗ = a|Y = b,X, T = t) = P (Y ∗ = a|Y = b) (6.4)

for a, b, t = 0, 1. We now write pab = P (Y ∗ = a|Y = b) for a, b = 0, 1. Model (6.4) is widely
used in the literature, with p11 and p00 often being referred to as sensitivity and specificity,
respectively. To highlight the key idea, assume that the pab are known, but bearing in
mind that unknown pab can be estimated by using validation data or replicates of outcome
measurements (e.g., White et al., 2001).
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6.3 Bias Analysis and Correction Methods

6.3.1 Bias Analysis

In the presence of missingness and misclassification in Y , (6.2) cannot be directly applied
for estimation of τ0. One may however, be tempted to use the available data to work out
an estimator by naively using (6.2). The most naive but simple approach is to ignore both
features of missingness and misclassification in the outcome variable. That is, one would
apply (6.2) and replace Yi with YiRi to ensure complete observations and then further
replace YiRi with Y ∗i Ri in order to use the observed measurements Y ∗i . Such a method
would yield a naive estimator of τ0:

τ̂ ∗∗ = Ê∗∗(Y1)− Ê∗∗(Y0), (6.5)

where
Ê∗∗(Y1) = 1∑n

i=1Ri

n∑
i=1

TiY
∗
i Ri

êi
, Ê∗∗(Y0) = 1∑n

i=1Ri

n∑
i=1

(1− Ti)Y ∗i Ri

1− êi
,

and êi is an estimated propensity score for subject i, as described for (6.2).

A “less-naive” approach is to ignore missingness in Y but account for the misclassifi-
cation effects. That is, we may first consider τ̂ ∗∗ and then follow Chapter 4 to incorporate
misclassification effects by working on

τ̂ ∗ = τ̂ ∗∗/(p11 − p10). (6.6)

Alternatively, another “less-naive” approach ignores misclassification but takes miss-
ingness effects into account. That is, one may use πit = P (Ri = 1|Xi, Ti = t) to re-weight
the contribution from subject i and then estimate τ0 by the estimator

τ̃ ∗ = 1
n

n∑
i=1

TiY
∗
i Ri

eiπ̂i1
− 1
n

n∑
i=1

(1− Ti)Y ∗i Ri

(1− ei)π̂i0
, (6.7)

where π̂it is an estimated value of πit for t = 0, 1.
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To understand the differences among these naive estimators, we present the asymptotic
bias of τ̂ ∗∗, τ̂ ∗ and τ̃ ∗ in the following theorem; the proof is deferred to Appendix E.1.

Theorem 6.1. Suppose the causal inference assumptions described in Section 1.1.2, the
missingness mechanism (6.3) and the misclassification mechanism (6.4) hold. Then the
following results are true.

(a). The asymptotic bias caused by ignoring both misclassification and missingness is

Bias(τ̂ ∗∗) = E[π1{(p11 − p10)P (Y1 = 1|X) + p10}]
P (R = 1)

−E[π0{(p11 − p10)P (Y0 = 1|X) + p10}]
P (R = 1) − τ0;

(b). The asymptotic bias caused by ignoring only the missingness is

Bias(τ̂ ∗) = E[π1{P (Y1 = 1|X) + p10/(p11 − p10)}]
P (R = 1)

−E[π0{P (Y0 = 1|X) + p10/(p11 − p10)}]
P (R = 1) − τ0,

provided p11 6= p10;

(c). The asymptotic bias caused by ignoring only the misclassification is

Bias(τ̃ ∗) = (p11 − p10 − 1)τ0.

Theorem 6.1 gives that when p11 6= p10,

Bias(τ̂ ∗∗) = (p11 − p10)Bias(τ̂ ∗) + Bias(τ̃ ∗). (6.8)

Theorem 6.1 shows that the three naive methods incur different degrees of biases in es-
timating τ0, and (6.8) further reveals how these biases are related. Interestingly, adding
up the bias induced from missingness and the bias due to misclassification cannot fully
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capture the bias caused from ignoring both missingness and misclassification simultane-
ously. Instead, the latter bias Bias(τ̂ ∗∗) is a linear combination of Bias(τ̂ ∗) and Bias(τ̃ ∗)
with unequal coefficients. The unity coefficient of Bias(τ̃ ∗) can be understood that the
bias introduced from ignoring misclassification alone amounts to part of the bias Bias(τ̂ ∗∗),
but the coefficient, p11 − p10, of Bias(τ̂ ∗) clearly indicates that the missingness effects in-
teract with misclassification probabilities. The identity (6.8) also suggests that Bias(τ̂ ∗∗)
can be smaller than both Bias(τ̂ ∗) and Bias(τ̃ ∗). That is, there are counter-intuitive situa-
tions where ignoring both missingness and misclassification can perform better than merely
ignoring one feature.

In terms of the absolute magnitude, (6.8) leads to

|Bias(τ̂ ∗∗)| ≤ |Bias(τ̂ ∗)|+ |Bias(τ̃ ∗)|,

which says that adding up the bias in the absolute value caused from ignoring one feature
can only give an upper bound of the most naive method which disregards both features.

Furthermore, Theorem 6.1(b) suggests that the asymptotic bias of τ̂ ∗ would be zero if
the outcomes are missing completely at random (MCAR) with

P (R = 1|Y,X, T = t) = P (R = 1)

for t = 0, 1, which is a circumstance where the feature of missingness can be ignored for the
estimation of τ0. However, Theorem 6.1(c) uncovers that the feature of misclassification
cannot be ignored when estimating τ0 unless τ0 = 0.

6.3.2 Correction Methods

Using the results in Theorem 6.1, we develop consistent estimators of τ0 by eliminating
the effects of both missingness and misclassification. Specifically, we propose to modify a
naive estimator by removing its associated bias that is quantified by Theorem 6.1.
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Theorem 6.2. Suppose that the conditions of Theorem 6.1 hold. Then

(a). τ̂ = Ê(Y1)− Ê(Y0) is a consistent estimator of τ0, where

Ê(Y1) = 1
n

n∑
i=1

TiY
∗
i Ri

eiπ̂i1(p11 − p10) −
p10

p11 − p10
(6.9)

and
Ê(Y0) = 1

n

n∑
i=1

(1− Ti)Y ∗i Ri

(1− ei)π̂i0(p11 − p10) −
p10

p11 − p10
; (6.10)

(b). τ̃ = Ẽ(Y1)− Ẽ(Y0) is a consistent estimator of τ0, where

Ẽ(Y1) =
{

n∑
i=1

RiTi
êiπ̂i1

}−1 n∑
i=1

TiY
∗
i Ri

eiπ̂i1(p11 − p10) −
p10

p11 − p10
(6.11)

and

Ẽ(Y0) =
{

n∑
i=1

Ri(1− Ti)
(1− êi)π̂i0

}−1 n∑
i=1

(1− Ti)Y ∗i Ri

(1− ei)π̂i0(p11 − p10) −
p10

p11 − p10
. (6.12)

The proof of Theorem 6.2 is deferred to Appendix E.2. While Theorem 6.2 does not
exhaust all consistent estimators of τ0 which correct for missingness and misclassification
in the outcome variable simultaneously, the estimators in Theorem 6.2 are motivated by
modifying one of the naive estimators τ̂ ∗∗, τ̂ ∗, or τ̃ ∗. For instance, Theorem 6.1(c) motivates
an estimator of τ0 to be given by τ̃ ∗/(p11−p10), which is exactly τ̂ in Theorem 6.2(a). The
estimator τ̃ in Theorem 6.2(b) comes from the further modification of the factor 1/n
involved in τ̂ in Theorem 6.2(a) by using the formulation developed by Lunceford and
Davidian (2004). Noticing E(T/e) = 1 and E{(1 − T )/(1 − e)} = 1, Lunceford and
Davidian (2004) considered to estimate τ0 by

(
n∑
i=1

Ti
êi

)−1 n∑
i=1

TiYi
êi
−
(

n∑
i=1

1− Ti
1− êi

)−1 n∑
i=1

(1− Ti)Yi
1− êi

(6.13)

for settings without missingness nor misclassification. Modifying (6.13) by incorporating
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the structures of (6.9) and (6.10) gives us the formulation of τ̃ .

6.4 Doubly Robust Estimator

The consistency of the proposed estimators in Theorem 6.2 requires the treatment model
be correctly specified. However, in some applications specifying a suitable treatment model
for ei may be difficult, or less likely to postulate the treatment variable than to model the
outcome model. To handle such problems with protection against model misspecification,
we propose a doubly robust estimator of τ0, which is consistent even when one of the
treatment model and the outcome model is misspecified. To this end, we need to find
suitable augmented estimators of E(Y1) and E(Y0) to incorporate the information on both
the treatment model and the outcome model so that the resulting estimators of E(Y1) and
E(Y0) are doubly robust.

For i = 1, . . . , n, t = 0, 1, qit = P (Yi = 1|Ti = t,Xi) be the conditional outcome
probabilities, given Xi.

Theorem 6.3. Let

ÊDR(Y1) = 1
n

n∑
i=1

{
TiY

∗
i Ri

êi(p11 − p10)π̂i1
− Ti − êi

êi
q̂i1 −

Ti
êi

(
p10

p11 − p10

)}
(6.14)

and

ÊDR(Y0) = 1
n

n∑
i=1

{
(1− Ti)Y ∗i Ri

(1− êi)(p11 − p10)π̂i0
+ Ti − êi

1− êi
q̂i0 −

1− Ti
1− êi

(
p10

p11 − p10

)}
, (6.15)

where for i = 1, . . . , n, êi is an estimate of ei, q̂it is an estimate of qit for t = 0, 1, and π̂it
is an estimate of πit for t = 0, 1. Define

τ̂DR = ÊDR(Y1)− ÊDR(Y0). (6.16)

Suppose that conditions in Theorem 6.1 hold and the missingness model for πit with t =
0, 1 is correctly specified. Then when either the treatment model or the outcome model is
correctly specified,
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(a). (6.14) and (6.15) are consistent estimators of E(Y1) and E(Y0), respectively;

(b). (6.16) is a consistent estimator of τ0.

The proof of is deferred to Appendix E.3. To use the doubly robust estimator τ̂DR to
estimate τ0, we need to calculate q̂i1 and q̂i0, which however, cannot be directly calculated
by fitting the postulated outcome model because of the unavailability of Y when there is
missingness or misclassification in Y . To get around this issue, we present a likelihood based
approach. Suppose that the outcome model qi = P (Yi = 1|Xi, Ti) and the missingness
model πi = P (Ri = 1|Xi, Ti) are delineated parametrically; we let β and α denote the
respective parameters associated with these two models and now we write qi as qi(β) and
πi as πi(α). Then under assumption (6.3), the observed likelihood function contributed
from subject i is given by

Li(α,β)
= {P (Y ∗i |Ti, Xi; β)P (Ri = 1|Y ∗i , Ti, Xi; α)}Ri

×
{∑

y

P (Y ∗i = y|Ti, Xi; β)P (Ri = 0|Y ∗i = y, Ti, Xi; α)
}1−Ri

= P (Y ∗i |Ti, Xi; β)RiP (Ri|Ti, Xi; α)
{∑

y

P (Y ∗i = y|Ti, Xi; β)
}1−Ri

= Si(β)Ri ·Mi(α) (6.17)

where ∑y P (Y ∗i = y|Ti, Xi; β) = 1 is used, and Si(β) represents the conditional probability
P (Y ∗i |Ti, Xi; β), given by

Si(β) = qi(β){p11Y
∗
i + (1− p11)(1− Y ∗i )}

+{1− qi(β)}{p10Y
∗
i + (1− p10)(1− Y ∗i )},

Mi(α) represents the conditional probability P (Ri|Ti, Xi; α), given by

Mi(α) = πi(α)Ri{1− πi(α)}1−Ri

The maximum likelihood estimators of α and β can be obtained by maximizing∏n
i=1 Li(α,β)
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with respect to α and β jointly. Clearly, by (6.17),

n∏
i=1

Li(α,β) =
n∏
i=1

Si(β)Ri

n∏
i=1

Mi(α)

suggesting that this joint maximization procedure is equivalent to a two-stage approach.
At the first stage, the estimator of α, denoted by α̂, is obtained by maximizing ∏n

i=1Mi(α)
with respect to α, and at the second stage, the estimator of β, denoted by β̂, is obtained
by maximizing ∏n

i=1 Si(β)Ri with respect to β.

With α̂ and β̂ obtained from the two-stage procedure, it is immediate to calculate π̂it
and q̂it with t = 0, 1 using the specified missingness model and the outcome model.

It is interesting to note that the two-stage procedure here is different from usual two-
stage estimation procedures discussed in the literature for which the estimation of β at the
second stage has to depend on the estimate of α at the first stage; to have a consistent
estimator of β, α often has to be consistently estimated. However, the estimation of β

at the second stage here has nothing to do with the estimation of α at the first stage.
Estimation of β and α can be carried out completely separately, so the consistency of
the estimator of β is not affected by whether or not α is consistently estimated, and vice
versa. This property, however, does not imply that consistently estimating α or β is not
important in estimating τ0 consistently. In fact, by Theorem 6.3, consistent estimation of α

is required for consistent estimation of τ0, and if β is not consistently estimated, then, the
treatment model parameters must be consistently estimated in order to obtain a consistent
estimator of τ0. We further note that the missingness probabilities πit with t = 0, 1 can
be handled nonparametrically if there is no feasible model to delineate πit parametrically;
the detail can be found in Ning et al. (2018). In such an instance, one may estimate the
response model parameter β merely using the second stage described here.

6.5 Simulation Studies

We conduct simulation studies to evaluate the finite sample performance of the proposed
estimators τ̂ , τ̃ and τ̂DR in comparison to the naive estimators τ̂ ∗∗, τ̂ ∗ and τ̃ ∗.
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For the ith subject of the simulated data with i = 1, . . . , n, let the vector of covariates
Xi = (Xi1, Xi2)T be generated from the bivariate normal distribution with standard normal
margins and correlation 0.5. The treatment model is specified as the logistic regression
model

logit P (Ti = 1|Xi) = (1, XT
i )γ, (6.18)

where γ is set as (−0.2, 1.6,−0.4)T and the outcome model is given as the logistic regression
model with

logit P (Yi = 1|Ti, Xi) = (1, Ti, XT
i )β. (6.19)

where β is taken as (0.5,−1.5,−1,−1)T.

For the (non-)missing data indicator R, we consider the model

logit P (Ri = 1|Ti, Xi) = (1, Ti, XT
i )α. (6.20)

We consider two settings where α is set as (−2.85, 1, 0.6,−0.4)T in Setting 1 and α is
specified as (−1.45, 1, 0.6,−0.4)T in Setting 2. Setting 1 and Setting 2 yield about 13.6%
and 38.9% probabilities of missing for subject j when Tj = 1, Xj = (0, 0)T. The misclassi-
fication probabilities (p11, p10) in (6.4) are assumed to be (0.9, 0.1) or (0.8, 0.2).

We consider the following three scenarios.

1. Both the treatment model and the outcome model are correctly specified:

The treatment model (6.18) and the outcome model (6.19), are, respectively, used to
generate the treatment variable T and the outcome variable Y . In the estimation of τ0, we
specify (6.18) as the treatment model and (6.19) as the outcome model.

2. Only the treatment model is correctly specified:

The treatment model (6.18) and the outcome model (6.19), are, respectively, used to
generate the treatment variable T and the outcome variable Y . In the estimation of τ0, we
specify (6.18) as the treatment model, but the outcome model is mistaken as (6.19) with
Xi replaced by Xi1.

3. Only the outcome model is correctly specified:
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The treatment model (6.18) and the outcome model (6.19), are, respectively, used to
generate the treatment variable T and the outcome variable Y . In the estimation of τ0, we
specify (6.19) as the outcome model, but the treatment model is mistaken as (6.18) with
Xi replaced by Xi1.

Sample sizes n = 2000 and n = 5000 are considered, and 1000 simulations are run
for each parameter setting. The average relative biases in percent (ReBias%), the average
bootstrap standard error (ASE), the empirical standard error (ESE) and the 95% coverage
percentage (CP%) are reported, where for an estimator ϑ̂, the relative bias is defined to
be (ϑ̂ − τ0)/τ0, and the coverage percentage is defined to be the percentage of those 95%
confidence intervals ϑ̂∓ 1.96×

√
V̂ ar(ϑ̂) containing τ0.

Tables 6.1, 6.2, and 6.3 summarize the simulation results. The first type naive esti-
mator τ̂ ∗∗ produces severely biased results due to no adjustment for the missingness and
misclassification effects. The second type naive estimator τ̂ ∗ leads to severely biased results
because of the ignorance of missingness effects, or falsely assuming MCAR when the miss-
ingness actually depends on the observed treatment and covariates. The third type naive
estimator τ̃ ∗ also produces biased results because of its failure of accounting for misclas-
sification effects. Furthermore, the observed empirical biases for τ̂ ∗∗, τ̂ ∗ and τ̃ ∗ in Tables
6.1 and 6.2 support the theoretical results established in (6.8).

When the treatment model is correctly specified, the estimators τ̂ and τ̃ produce fairly
small empirical biases and coverage percentages closed to 95% under various combinations
of missing percentages and misclassification probabilities, as anticipated by their consis-
tency. The doubly robust estimator τ̂DR yields fairly small empirical biases and coverage
percentages closed to 95% when either the treatment model or the outcome model is cor-
rectly specified, as expected by Theorem 6.3. Discrepancies between ASE and ESE are
fairly small, suggesting that the bootstrap variance estimates are reliable. Shown in Tables
6.1 and 6.2, τ̃ has the smallest standard errors, τ̂ tends to have the largest standard errors,
and τ̂DR seems to have in-between standard errors, although the differences are fairly small
in many settings. This limited simulation suggests that τ̃ may be preferred to τ̂ when there
is no concern on the specification of the treatment model, and τ̂DR is recommended when
the treatment model is suspected to be misspecified.
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Table 6.1: Simulation results for the evaluation of performance of the proposed estimators
τ̂ , τ̃ and τ̂DR in comparison to three types of naive estimators τ̂ ∗∗, τ̂ ∗ and τ̃ ∗, when both
the treatment model and outcome model are correctly specified.

n = 2000 n = 5000

(p11, p10) missing Est. ReBias% ASE ESE CP% ReBias% ASE ESE CP%
(0.9,0.1) Setting 1 τ̂ ∗∗ -42.27 0.032 0.032 10.6 -42.59 0.020 0.021 0.70

τ̂ ∗ -27.84 0.040 0.040 60.8 -28.24 0.026 0.026 24.7
τ̃ ∗ -19.62 0.033 0.034 65.1 -20.08 0.021 0.022 35.5
τ̂ 0.478 0.042 0.043 96.1 -0.099 0.027 0.028 94.6
τ̃ -0.177 0.035 0.034 95.5 -0.234 0.022 0.023 94.9
τ̂DR 0.484 0.037 0.037 95.7 -0.134 0.024 0.024 94.3

Setting 2 τ̂ ∗∗ -82.36 0.039 0.040 0.60 -82.32 0.025 0.024 0.00
τ̂ ∗ -77.95 0.049 0.050 4.00 -77.90 0.031 0.031 0.00
τ̃ ∗ -20.20 0.043 0.046 70.9 -20.23 0.028 0.028 51.5
τ̂ -0.251 0.054 0.057 94.1 -0.289 0.035 0.036 94.5
τ̃ -0.726 0.041 0.043 94.9 -0.213 0.027 0.026 95.3
τ̂DR -0.217 0.051 0.053 95.2 -0.134 0.033 0.033 95.6

(0.8,0.2) Setting 1 τ̂ ∗∗ -61.74 0.034 0.035 1.60 -61.67 0.022 0.022 0.00
τ̂ ∗ -36.23 0.056 0.058 66.5 -36.12 0.036 0.036 32.0
τ̃ ∗ -40.10 0.035 0.036 20.2 -39.86 0.022 0.023 2.70
τ̂ -0.165 0.058 0.059 95.5 0.234 0.037 0.038 95.7
τ̃ -0.552 0.050 0.051 95.4 -0.004 0.032 0.032 95.0
τ̂DR -0.477 0.053 0.054 95.5 0.143 0.034 0.033 95.9

Setting 2 τ̂ ∗∗ -100.9 0.041 0.042 0.20 -101.1 0.026 0.026 0.00
τ̂ ∗ -101.4 0.068 0.069 5.10 -101.9 0.043 0.043 0.00
τ̃ ∗ -40.04 0.044 0.050 33.5 -40.31 0.028 0.028 9.00
τ̂ -0.060 0.074 0.083 95.1 -0.509 0.047 0.047 95.6
τ̃ 0.143 0.058 0.059 94.2 -0.429 0.038 0.038 95.5
τ̂DR 0.063 0.071 0.076 95.0 -0.453 0.044 0.046 94.6

Est.: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap standard
error; ESE: empirical standard error; CP%: 95% coverage percentage.
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Table 6.2: Simulation results for the evaluation of performance of the proposed estimators
τ̂ , τ̃ and τ̂DR in comparison to three types of naive estimators τ̂ ∗∗, τ̂ ∗ and τ̃ ∗, when only
the treatment model is correctly specified.

n = 2000 n = 5000

(p11, p10) missing Est. ReBias% ASE ESE CP% ReBias% ASE ESE CP%
(0.9,0.1) Setting 1 τ̂ ∗∗ -42.28 0.032 0.033 12.8 -42.44 0.020 0.021 0.30

τ̂ ∗ -27.85 0.040 0.041 58.5 -28.04 0.026 0.026 24.9
τ̃ ∗ -19.50 0.033 0.034 65.6 -19.90 0.021 0.021 36.0
τ̂ 0.626 0.042 0.043 94.0 0.120 0.027 0.027 95.0
τ̃ 0.522 0.035 0.035 94.1 0.111 0.022 0.022 95.5
τ̂DR 0.343 0.038 0.038 94.4 0.084 0.024 0.023 95.5

Setting 2 τ̂ ∗∗ -81.89 0.039 0.039 0.20 -81.92 0.025 0.024 0.10
τ̂ ∗ -77.36 0.048 0.048 3.10 -77.40 0.031 0.031 0.10
τ̃ ∗ -20.18 0.042 0.045 70.6 -19.78 0.028 0.030 51.2
τ̂ -0.220 0.053 0.056 94.6 0.271 0.034 0.037 94.1
τ̃ -0.104 0.041 0.042 94.7 0.400 0.026 0.027 94.1
τ̂DR -0.085 0.051 0.053 96.0 0.545 0.033 0.034 94.4

(0.8,0.2) Setting 1 τ̂ ∗∗ -61.82 0.034 0.035 2.70 -61.94 0.022 0.022 0.10
τ̂ ∗ -36.36 0.056 0.059 63.9 -36.57 0.036 0.036 29.9
τ̃ ∗ -40.02 0.035 0.037 19.4 -40.15 0.022 0.023 2.40
τ̂ -0.028 0.058 0.061 94.9 -0.255 0.037 0.038 95.0
τ̃ -0.079 0.050 0.051 94.3 0.098 0.032 0.031 95.4
τ̂DR -0.030 0.053 0.054 94.6 0.019 0.034 0.033 95.0

Setting 2 τ̂ ∗∗ -100.8 0.041 0.041 0.10 -100.4 0.026 0.026 0.00
τ̂ ∗ -101.3 0.068 0.068 5.50 -100.6 0.043 0.043 0.10
τ̃ ∗ -39.79 0.045 0.048 36.7 -39.64 0.028 0.030 11.2
τ̂ 0.346 0.074 0.081 94.4 0.600 0.047 0.049 94.6
τ̃ -0.005 0.059 0.061 94.3 0.499 0.037 0.038 95.1
τ̂DR 0.671 0.071 0.075 95.3 0.629 0.045 0.047 95.3

Est.: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap standard
error; ESE: empirical standard error; CP%: 95% coverage percentage.
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Table 6.3: Simulation results for the evaluation of performance of the proposed estimators
τ̂ , τ̃ and τ̂DR in comparison to three types of naive estimators τ̂ ∗∗, τ̂ ∗ and τ̃ ∗, when only
the outcome model is correctly specified.

n = 2000 n = 5000

(p11, p10) missing Est. ReBias% ASE ESE CP% ReBias% ASE ESE CP%
(0.9,0.1) Setting 1 τ̂ ∗∗ -27.29 0.030 0.031 39.1 -26.03 0.019 0.020 11.1

τ̂ ∗ -9.110 0.038 0.039 90.4 -7.533 0.024 0.025 86.6
τ̃ ∗ -7.783 0.030 0.031 89.1 -6.640 0.019 0.020 84.9
τ̂ 15.27 0.038 0.039 82.5 16.70 0.024 0.025 60.7
τ̃ 15.47 0.032 0.033 76.9 16.69 0.021 0.021 48.1
τ̂DR -0.709 0.035 0.035 95.2 0.346 0.022 0.023 94.3

Setting 2 τ̂ ∗∗ -61.11 0.037 0.039 3.60 -61.47 0.024 0.024 0.00
τ̂ ∗ -51.38 0.047 0.049 24.6 -51.84 0.030 0.029 1.20
τ̃ ∗ -6.300 0.039 0.041 90.8 -7.147 0.025 0.025 87.0
τ̂ 17.13 0.049 0.052 89.4 16.07 0.031 0.031 79.0
τ̃ 16.45 0.038 0.039 80.9 16.07 0.024 0.025 63.2
τ̂DR 0.686 0.047 0.048 95.4 -0.220 0.030 0.030 94.5

(0.8,0.2) Setting 1 τ̂ ∗∗ -48.91 0.033 0.032 4.20 -48.83 0.021 0.020 0.10
τ̂ ∗ -14.85 0.054 0.053 91.0 -14.71 0.035 0.034 83.0
τ̃ ∗ -29.72 0.033 0.032 37.7 -29.79 0.021 0.020 7.30
τ̂ 17.13 0.054 0.054 89.4 17.02 0.034 0.034 78.5
τ̃ 16.23 0.048 0.047 86.1 16.66 0.030 0.030 74.0
τ̂DR 0.301 0.051 0.049 95.4 0.628 0.032 0.032 95.7

Setting 2 τ̂ ∗∗ -83.83 0.040 0.041 0.60 -83.31 0.025 0.025 0.00
τ̂ ∗ -73.05 0.066 0.069 23.8 -72.18 0.042 0.042 1.30
τ̃ ∗ -30.09 0.040 0.043 49.9 -29.62 0.026 0.026 20.5
τ̂ 16.52 0.067 0.071 92.6 17.30 0.043 0.043 85.2
τ̃ 16.47 0.055 0.056 86.7 16.88 0.035 0.035 77.5
τ̂DR -0.223 0.066 0.069 95.4 0.682 0.041 0.042 95.2

Est.: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap standard
error; ESE: empirical standard error; CP%: 95% coverage percentage.
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6.6 Application to Smoking Cessation Data

As an application, we analyze a smoking cessation data using the proposed methods. The
dataset was collected from a study on the effectiveness of a perioperative smoking cessation
program (Lee et al., 2013) for which 168 patients were recruited with 30-day follow up.
We consider the baseline covariates gender, age, body mass index, diabetes status, hyper-
tension, chronic obstructive pulmonary disease, cigarettes per day, the number of years
of smoking, and the exhaled carbon monoxide (CO) level. The indicator of the smoking
cessation intervention is taken as the treatment variable and the outcome variable is the
indicator of smoking cessation for previous 7 days at the 30-day follow-up postoperatively.

The follow-up data were collected from telephone interview. Lee et al. (2013) pointed
out that the collected outcomes were self-reported which were likely to be subject to mis-
classification. In addition, outcome measurements for 18 patients, 7 in the treated group
and 11 in the control group, were missing. Our primary interest is to estimate the ATE
(i.e., τ0) on smoking cessation for previous 7 days at the follow-up.

The naive analysis without correcting for missingness and misclassification effects yields
τ̂ ∗∗ = 0.178 with standard error 0.063, and hence a 95% confidence interval for τ0 is (0.055,
0.301). These results suggest that there is a significant causal effect of the smoking cessation
intervention on reducing smoking.

To investigate the effects of missingness and misclassification effects, we apply the
proposed methods to analyze the data. Because individuals who had quit smoking were
unlikely to report that they still smoked, so we assume that p11 = 1 (e.g., Magder and
Hughes, 1997). To see what misclassification probability p10 might be, we take the in-
formation available in Lee et al. (2013) as a reference point. Lee et al. (2013) collected
self-reported data on the smoking cessation status for seven days preoperatively and the
exhaled CO levels.

In total, there were 146 patients with exhaled CO levels greater than 10 ppm. Among
them, 11 patients self-reported no smoking. If we treat exhaled CO level <=10 ppm
as a gold standard for smoking cessation, then these data yield a misclassification rate
11/146 = 7.5%. Using 7.5% as a reference, we consider multiple values around 7.5%
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for p10 to see how sensitive the results will be under various degrees of misclassification.
Specifically, we take p10 to be a value of 5.0%, 7.5%, 10.0% or 15.0%.

The missingness model is specified as the logistic model (6.20) and the treatment model
is specified as the logistic model (6.18). When applying the doubly robust method, the
outcome model is specified as the logistic model (6.19).

Table 6.4 summarizes the analyses results which can be obtained from the proposed
estimators τ̂ ,τ̃ and τ̂DR as well as the three types of naive estimators τ̂ ∗∗, τ̂ ∗ and τ̃ ∗. The
results obtained from the proposed estimators τ̂ and τ̃ are similar to that obtained from the
estimator τ̂ ∗ which ignores missingness but differ from those obtained from τ̂ ∗∗ and τ̃ ∗ with
the differences become larger as p10 increases, suggesting missingness effects are negligible
whereas misclassification effects are not. The doubly robust estimator τ̂DR provides larger
estimates and standard errors than τ̂ and τ̃ do. While the results are different for different
estimators, all the methods reveal evidence of significant causal effects of the intervention
on smoking cessation.
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Table 6.4: Analysis results of the smoking cessation data using proposed estimators τ̂ , τ̃
and τ̂DR and naive estimators τ̂ ∗∗, τ̂ ∗ and τ̃ ∗: estimate (EST), bootstrap standard error
(SE) and 95% confidence interval (95% CI)

p10 = 5% p10 = 7.5%

Method EST SE 95% CI EST SE 95% CI
τ̂ ∗∗ 0.178 0.063 (0.055, 0.301) 0.178 0.063 (0.055, 0.301)
τ̂ ∗ 0.188 0.066 (0.058, 0.318) 0.193 0.071 (0.054, 0.331)
τ̃ ∗ 0.172 0.066 (0.042, 0.301) 0.172 0.066 (0.042, 0.301)
τ̂ 0.181 0.067 (0.050, 0.311) 0.185 0.076 (0.037, 0.334)
τ̃ 0.185 0.066 (0.055, 0.315) 0.190 0.071 (0.050, 0.330)
τ̂DR 0.194 0.072 (0.053, 0.335) 0.204 0.080 (0.047, 0.361)

p10 = 10% p10 = 15%

Method EST SE 95% CI EST SE 95% CI
τ̂ ∗∗ 0.178 0.063 (0.055, 0.301) 0.178 0.063 (0.055, 0.301)
τ̂ ∗ 0.198 0.074 (0.054, 0.342) 0.210 0.074 (0.064, 0.356)
τ̃ ∗ 0.172 0.066 (0.042, 0.301) 0.172 0.066 (0.042, 0.301)
τ̂ 0.191 0.074 (0.046, 0.335) 0.202 0.077 (0.051, 0.353)
τ̃ 0.195 0.074 (0.050, 0.341) 0.207 0.076 (0.058, 0.355)
τ̂DR 0.207 0.082 (0.047, 0.368) 0.226 0.084 (0.062, 0.391)
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Chapter 7

Multiply Robust Estimation of
Causal Effects with Outcomes
Subject to Both Misclassification and
Missingness

This chapter deals with Problem 6 discussed in Section 1.5. Section 7.1 describes the
notation and framework in the absence of misclassification and missingness. Sections 7.2-
7.4 propose multiple robust estimation methods in situations where only misclassification
occurs, only missingness occurs, and both misclassification and missingness occur, respec-
tively. In Section 7.5, simulation studies are conducted to evaluate the finite sample per-
formance of the proposed methods. Section 7.6 presents an application of the proposed
method to the smoking cessation data.

7.1 Notation and Framework

For any subject, let X be the vector of covariates and T be the binary indicator of treatment
assignment with T = 1 if treated and T = 0 otherwise. Let Y be the observed binary
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outcome, let Y1 be the potential outcome that would have been observed had the subject
been treated and Y0 be the potential outcome that would have been observed had the
subject been untreated. Assume fundamental causal inference assumptions described in
Section 1.1.2 hold.

The quantity of primary interest is the average treatment effect (ATE) defined as fol-
lows:

τ0 = E(Y1)− E(Y0). (7.1)

With binary outcome, τ0 can also be interpreted as as the causal risk difference. Naturally,
it is also of interest to estimate other commonly-used causal effect measures such as the
causal risk ratio and the causal odds ratio given by

ψRR = E(Y1)
E(Y0) , (7.2)

and
ψOR = E(Y1)/{1− E(Y1)}

E(Y0)/{1− E(Y0)} , (7.3)

respectively.

To consistently estimate τ0, ψRR and ψOR, it suffices to consistently estimate E(Y1) and
E(Y0) in (7.1), (7.2) and (7.3). Therefore, although this chapter focuses on the ATE, our
development covers the consistent estimation of E(Y1) and E(Y0), which can be immedi-
ately applied to estimate the causal risk ratio and the causal odds ratio.

Suppose we have a sample of size n. For i = 1, . . . , n, subscript i in notations will be
used to denote the corresponding variables for subject i. Without loss of generality, suppose
subjects i = 1, . . . ,m are assigned to take the treatment while subjects i = m + 1, . . . , n
are untreated, where m is the size of treatment group.

Han and Wang (2013) proposed an empirical likelihood (Qin and Lawless, 1994; Owen,
2001) based estimation methods for the estimation of sample mean with missing data.
Their method can be directly applied to estimate E(Y1) and E(Y0) and enjoys the property
called multiple robustness, i.e., the resulting causal estimators are consistent when either
the set of multiple postulated treatment models or the set of postulated outcome models
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contains a correctly specified model. The estimation procedure is briefly described as
follows.

Let e(X) = P (T = 1|X) be the true treatment model, also termed as the propensity
score (Rosenbaum and Rubin, 1983). Let qt(X) = P (Y = 1|X,T = t) be the true outcome
probabilities for t = 0, 1. Suppose E = {ej(γj;X), j = 1 . . . , J} is a set of J postulated
treatment models, where γj is the regression parameter for the jth treatment model.
Suppose Q = {qkt (βk;X), k = 1 . . . , K} is a set of K postulated outcome models, where
βk is the regression parameter for the kth outcome model. Let γ̂j be the estimator of γj

obtained by fitting the jth treatment model, and β̂k be the estimator of βk obtained by
fitting the kth outcome model. Write γ̂ = {γ̂j : j = 1, . . . , J} and β̂ = {β̂k : j = 1, . . . , K}.

Define θ̂j = n−1∑n
i=1 e

j(γ̂j;Xi) for j = 1, . . . , J , η̂k1 = n−1∑n
i=1 q

k
1(β̂k;Xi) for k =

1, . . . , K, and

ĝi(γ̂, β̂) = (e1(γ̂1;Xi)− θ̂1, . . . , eJ(γ̂J ;Xi)− θ̂J , q1
1(β̂1;Xi)− η̂1

1, . . . , q
K
1 (β̂K ;Xi)− η̂K1 )T.

By the proposed method of Han and Wang (2013), E(Y1) can be estimated by

Ê(Y1) =
m∑
i=1

ŵiYi, (7.4)

where
ŵi = arg max

wi

m∏
i=1

wi

subject to constraints
m∑
i=1

wi = 1,
m∑
i=1

wiĝi(γ̂, β̂) = 0,

Han and Wang (2013) showed that for i = 1 . . . ,m,

ŵi =
{

1
m

1
1 + ρ̂Tĝi(γ̂, β̂)

}/{
1
m

m∑
i=1

1
1 + ρ̂Tĝi(γ̂, β̂)

}
(7.5)
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where ρ̂ = (ρ̂1, . . . , ρ̂J+K)T is a (J +K)× 1 vector solving the following equation for ρ:

m∑
i=1

ĝi(γ̂, β̂)
1 + ρTĝi(γ̂, β̂)

= 0. (7.6)

Similarly, we define η̂k0 = n−1∑n
i=1 q

k
0(β̂k;Xi) for k = 1, . . . , K and

ĥi(γ̂, β̂) = (θ̂1 − e1(γ̂1;Xi), . . . , θ̂J − eJ(γ̂J ;Xi), q1
0(β̂1;Xi)− η̂1

0, . . . , q
K
0 (β̂K ;Xi)− η̂K0 )T.

By the symmetry between E(Y1) and E(Y0), E(Y0) can be estimated by

Ê(Y0) =
n∑

i=m+1
w̃iYi, (7.7)

where
w̃i = arg max

wi

n∏
i=m+1

wi

subject to constraints
n∑

i=m+1
wi = 1,

n∑
i=m+1

wiĥi(γ̂, β̂) = 0,

Similarly, for i = m+ 1 . . . , n,

w̃i =
{

1
n−m

1
1 + δ̂Tĥi(γ̂, β̂)

}/ 1
n−m

n∑
i=m+1

1
1 + δ̂Tĥi(γ̂, β̂)

 (7.8)

where δ̂ = (δ̂1, . . . , δ̂J+K)T is a (J +K)× 1 vector solving the following equation for δ:

n∑
i=m+1

ĥi(γ̂, β̂)
1 + δTĥi(γ̂, β̂)

= 0. (7.9)

Under regularity conditions, (7.4) is a consistent estimator of E(Y1) when either E or Q
contains a correctly specified model (Han and Wang, 2013). Similarly, (7.7) is a consistent
estimator of E(Y0) when either E or Q contains a correctly specified model. This approach
provides more protection against model misspecification than the doubly robust estimation;
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this property is called multiple robustness.

However, this property of multiple robustness also requires a critical condition: the
variables are measured completely and precisely. In many applications, measurement error
problems and/or missing data frequently occur and may jeopardize the multiple robustness
of (7.4) and (7.7).

In subsequent sections, we develop multiply robust estimators for E(Y1) and E(Y0)
when the outcome variable is subject to only the misclassification, only the missingness,
and both.

7.2 Multiply Robust Estimation Accommodating Out-
come Misclassification

In the section, we consider situations where only the outcome misclassification occurs.

7.2.1 Misclassification Model

Suppose the outcome variable is subject to misclassification, and let Y ∗ be the actually
observed value of Y . We consider situations where the misclassification probabilities are
not determined by the covariates X nor the treatment indicator T , conditioning on the
true value Y , that is

P (Y ∗ = a|Y = b,X, T = t) = P (Y ∗ = a|Y = b) (7.10)

for a, b, t = 0, 1. Write pab = P (Y ∗ = a|Y = b) for a, b = 0, 1. Model (7.10) is widely
used in the literature, with p11 and p00 often being referred to as sensitivity and specificity,
respectively. To highlight the key idea, assume that the pab are known, but bearing in
mind that unknown pab can be estimated by using validation data or replicates of outcome
measurements (e.g., White et al., 2001).
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7.2.2 Correction Method

In the presence of outcome misclassification, we observe that (7.4) and (7.7) cannot be
applied directly because the true value Y is unobserved. Moreover, by (7.5), (7.6), (7.8) and
(7.9), the weights ŵi for i = 1, . . .m and w̃i for i = m+1, . . . n cannot be directly calculated
because we cannot fit the postulated outcome models in Q directly with unobserved Y . As
a result, the estimation of β̂k, (k = 1, . . . , K) is challenged by the misclassification effect.
Fortunately, the estimation of γ̂j, (j = 1, . . . , J) is unaffected by misclassification, because
the treatment model does not involve Y .

To eliminate the misclassification effect, we propose a five-step correction approach,
where efforts are taken in Steps 2 and 4 to correct for outcome misclassification.

Step 1 (Obtain γ̂j for j = 1, . . . , J):

We obtain γ̂j by fitting the jth postulated treatment model directly.

Step 2 (Obtain β̂k for k = 1, . . . , K):

We obtain β̂k by maximizing the observed likelihood rather than naively fitting the
postulated outcome model with Y ∗ regarded as the true value Y . For the kth postulated
outcome model, the observed likelihood function contributed from subject i is

Lki (βk) = qkTi
(βk;Xi){p11Y

∗
i + (1− p11)(1− Y ∗i )}

+{1− qkTi
(βk;Xi)}{p10Y

∗
i + (1− p10)(1− Y ∗i )},

Maximizing ∏n
i=1 L

k
i (βk) gives β̂k.

Step 3 (Obtain weights ŵi for i = 1, . . .m and w̃i for i = m+ 1, . . . n):

We calculate ŵi and w̃i using (7.5) and (7.8), respectively, with γ̂j obtained in Step 1
and β̂k obtained in Step 2.

Step 4 (Obtain Ê(Y1) and Ê(Y0)):
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We modify (7.4) and (7.7) and propose to estimate E(Y1) and E(Y0) by

Ê(Y1) =
m∑
i=1

ŵi

(
Y ∗i

p11 − p10

)
− p10

p11 − p10
(7.11)

and
Ê(Y0) =

n∑
i=m+1

w̃i

(
Y ∗i

p11 − p10

)
− p10

p11 − p10
, (7.12)

respectively, where ŵi for i = 1, . . .m and w̃i for i = m+ 1, . . . n are obtained in Step 3.

Step 5 (Estimate causal effect):

We estimate the causal risk difference by

τ̂ = Ê(Y1)− Ê(Y0), (7.13)

where Ê(Y1) and Ê(Y0) are given by (7.11) and (7.12), respectively.

The following theorem establishes the multiple robustness of the proposed estimators
and the proof is deferred to Appendix F.1.

Theorem 7.1. Suppose the causal inference assumptions described in Section 1.1.2 and the
misclassification mechanism (7.10) hold. When either E or Q contains a correctly specified
model,

(a). Ê(Y1) given by (7.11) is a consistent estimator of E(Y1);

(b). Ê(Y0) given by (7.12) is a consistent estimator of E(Y0);

(c). τ̂ given by (7.13) is a consistent estimator of τ0.

7.3 Multiply Robust Estimation Accommodating Out-
come Missingness

In the section, we consider situations where only the outcome missingness occurs.

151



7.3.1 Missingness Model

Let R be the missing data indicator with R = 1 if the outcome variable is observed and
R = 0 otherwise. Assume that given the covariates X and treatment variable T , the
missing data indicator R and the outcome variable Y are independent, i.e., R ⊥⊥ Y |(X,T ).
This assumption aligns with the missing at random (MAR) mechanism which is commonly
considered in the non-causal framework (e.g., Little and Rubin, 2002). In other words, we
assume that

P (R = r|Y,X, T = t) = P (R = r|X,T = t) (7.14)

for t, r = 0, 1. We let πrt(α;X) = P (R = r|X,T = t) for r, t = 0, 1, where α is the
regression parameter of missingness model.

7.3.2 Correction Method

In the presence of outcome missingness, we observe that (7.4) and (7.7) cannot be applied
directly because the true value Y is subject to missingness. Moreover, The estimation
of β̂k, (k = 1, . . . , K) is affected by missingness because the postulated outcome models
cannot be fit using data of all subjects. Fortunately, the estimation of γ̂j, (j = 1, . . . , J)
is unaffected by missingness, because the treatment model does not involve Y .

Observe that the joint likelihood is

n∏
i=1

Li(α,β) =
n∏
i=1
{π1Ti

(α;Xi)P (Yi|Ti, Xi; β)}Ri · π0Ti
(α;Xi)1−Ri

can be factorized as
n∏
i=1

Li(α,β) =
n∏
i=1

πRiTi
(α;Xi)

n∏
i=1

P (Yi|Ti, Xi; β)Ri .

Therefore, the estimation of β̂k can be conducted by directly fitting the postulated outcome
model using complete cases, and the estimation of α can be carried out by fitting the
missingness model using all sample data.
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To eliminate the missingness effect, we propose a five-step correction approach, where
efforts are taken in Steps 2 and 4 to correct for outcome missingness.

Step 1 (Obtain γ̂j for j = 1, . . . , J):

We obtain γ̂j by fitting the jth postulated treatment model directly.

Step 2 (Obtain β̂k for k = 1, . . . , K):

We obtain β̂k by fitting the kth postulated outcome model directly using complete
cases data.

Step 3 (Obtain weights ŵi for i = 1, . . .m and w̃i for i = m+ 1, . . . n):

We calculate ŵi and w̃i using (7.5) and (7.8), respectively, with γ̂j obtained in Step 1
and β̂k obtained in Step 2.

Step 4 (Obtain Ê(Y1) and Ê(Y0)):

We modify (7.4) and (7.7) and propose to estimate E(Y1) and E(Y0) by

Ê(Y1) =
m∑
i=1

ŵiYiRi/π11(α̂;Xi) (7.15)

and
Ê(Y0) =

n∑
i=m+1

w̃iYiRi/π10(α̂;Xi) (7.16)

respectively, where ŵi for i = 1, . . .m and w̃i for i = m+ 1, . . . n are obtained in Step 3, α̂

is obtained by fitting the missingness model (7.14).

Step 5 (Estimate causal effect):

We estimate the causal risk difference by

τ̂ = Ê(Y1)− Ê(Y0), (7.17)

where Ê(Y1) and Ê(Y0) are given by (7.15) and (7.16), respectively.
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The following theorem establishes the multiple robustness of the proposed estimators
and the proof is deferred to Appendix F.2.

Theorem 7.2. Suppose the causal inference assumptions described in Section 1.1.2 and
the missingness mechanism (7.14) hold. When either E or Q contains a correctly specified
model,

(a). Ê(Y1) given by (7.15) is a consistent estimator of E(Y1);

(b). Ê(Y0) given by (7.16) is a consistent estimator of E(Y0);

(c). τ̂ given by (7.17) is a consistent estimator of τ0.

7.4 Multiply Robust Estimation with Both Misclas-
sification and Missingness Effects Incorporated

In the section, we consider situations where both outcome misclassification and outcome
missingness occur. Suppose the misclassification model (7.10) and the missing model (7.14)
both hold.

When the outcome variable is subject to both misclassification and missingness, we
observe that (7.4) and (7.7) cannot be applied directly. The estimation of β̂k, (k =
1, . . . , K) is affected by missingness and misclassification because the postulated outcome
models cannot be fit using data of all subjects, nor using complete cases whose outcome
measurements are misclassified. The estimation of γ̂j, (j = 1, . . . , J) is unaffected, because
the treatment model does not involve Y .

Observe that the joint likelihood is

n∏
i=1

Li(α,β) =
n∏
i=1
{π1Ti

(α;Xi)Si(β)}Ri · π0Ti
(α;Xi)1−Ri ,

where

Si(β) = P (Yi = 1|Ti, Xi; β){p11Y
∗
i +(1−p11)(1−Y ∗i )}+P (Yi = 0|Ti, Xi; β){p10Y

∗
i +(1−p10)(1−Y ∗i )}.
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Note that the joint likelihood can be factorized by

n∏
i=1

Li(α,β) =
n∏
i=1

πRiTi
(α;Xi)

n∏
i=1

Si(β)Ri .

Therefore, the estimation of β̂k can be conducted by maximizing ∏n
i=1 Si(β)Ri , and the

estimation of α can be carried out by fitting the missingness model using all sample data.

To eliminate both the misclassification and missingness effects, we propose a five-step
correction approach, where efforts are taken in Steps 2 and 4 to correct for outcome mis-
classification and missingness.

Step 1 (Obtain γ̂j for j = 1, . . . , J):

We obtain γ̂j by fitting the jth postulated treatment model directly.

Step 2 (Obtain β̂k for k = 1, . . . , K):

We obtain β̂k by maximizing ∏n
i=1 S

k
i (βk)Ri , where

Ski (βk) = qkTi
(βk;Xi){p11Y

∗
i +(1−p11)(1−Y ∗i )}+{1−qkTi

(βk;Xi)}{p10Y
∗
i +(1−p10)(1−Y ∗i )},

with qkTi
(βk;Xi) given by the model form of the kth postulated outcome model.

Step 3 (Obtain weights ŵi for i = 1, . . .m and w̃i for i = m+ 1, . . . n):

We calculate ŵi and w̃i using (7.5) and (7.8), respectively, with γ̂j obtained in Step 1
and β̂k obtained in Step 2.

Step 4 (Obtain Ê(Y1) and Ê(Y0)):

We modify (7.4) and (7.7) and propose to estimate E(Y1) and E(Y0) by

Ê(Y1) =
m∑
i=1

ŵiY
∗
i Ri

π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10
(7.18)

and
Ê(Y0) =

n∑
i=m+1

w̃iY
∗
i Ri

π10(α̂;Xi)(p11 − p10) −
p10

p11 − p10
(7.19)
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respectively, where ŵi for i = 1, . . .m and w̃i for i = m+ 1, . . . n are obtained in Step 3, α̂

is obtained by fitting the missingness model (7.14).

Step 5 (Estimate causal effect):

We estimate the causal risk difference by

τ̂ = Ê(Y1)− Ê(Y0), (7.20)

where Ê(Y1) and Ê(Y0) are given by (7.18) and (7.19), respectively.

The following theorem establishes the multiple robustness of the proposed estimators
and the proof is deferred to Appendix F.3.

Theorem 7.3. Suppose the causal inference assumptions described in Section 1.1.2, the
misclassification mechanism (7.10) and the missingness mechanism (7.14) hold. When
either E or Q contains a correctly specified model,

(a). Ê(Y1) given by (7.18) is a consistent estimator of E(Y1);

(b). Ê(Y0) given by (7.19) is a consistent estimator of E(Y0);

(c). τ̂ given by (7.20) is a consistent estimator of τ0.

7.5 Simulation Studies

In this section, we conduct simulation studies to assess the finite sample performance of
correction methods developed in Sections 7.2-7.4.

7.5.1 Simulation Setup

Let X = (X1, X2)T, where X1 and X2 are independent and following the uniform distri-
bution ranging from −2 to 2 and the standard normal distribution, respectively. The true
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treatment model is a logistic regression model with

logit P (T = 1|X1, X2) = 0.2 +X1 + 0.5X2,

and the true outcome model is a logistic regression model with

logit P (Y = 1|T,X1, X2) = −0.5 + T − 0.3X1 +X2.

Consider the following three scenarios for model specification.

I. one postulated treatment model is correctly specified and none of the pos-
tulated outcome models is correctly specified:

The two postulated treatment models are

logit P (T = 1|X1, X2) = (1, X1, X2)γ1 (3)

and
logit P (T = 1|X1) = (1, X1)γ2 (7)

The two postulated outcome models are

logit P (Y = 1|T,X1) = (1, T,X1)β1 (7)

and
logit P (Y = 1|T,X2) = (1, T,X2)β2 (7)

II. one postulated outcome model is correctly specified and none of the postu-
lated treatment models is correctly specified:

The two postulated treatment models are

logit P (T = 1|X1) = (1, X1)γ1 (7)

and
logit P (T = 1|X2) = (1, X2)γ2 (7)
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The two postulated outcome models are

logit P (Y = 1|T,X1, X2) = (1, T,X1, X2)β1 (3)

and
logit P (Y = 1|T,X1) = (1, T,X1)β2 (7)

III. one postulated treatment model and one postulated outcome model are
correctly specified:

The two postulated treatment models are

logit P (T = 1|X1, X2) = (1, X1, X2)γ1 (3)

and
logit P (T = 1|X2) = (1, X2)γ2 (7)

The two postulated outcome models are

logit P (Y = 1|T,X1, X2) = (1, T,X1, X2)β1 (3)

and
logit P (Y = 1|T,X2) = (1, T,X2)β2 (7)

The subsequent sections 7.5.2, 7.5.3 and 7.5.4 conduct simulations for situations where
only misclassification occurs, only missingness occurs, and both misclassification and miss-
ingness occur, respectively. Consider sample sizes n = 2000 and n = 5000, and 1000
simulations runs for each configuration. The average relative bias in percent (ReBias%),
average bootstrap standard error (ASE), empirical standard error (ESE) and 95% coverage
percentage (CP%) are reported. For estimator ϑ̂, the relative bias in percent is defined to
be (ϑ̂− τ0)/τ0 × 100%, and the coverage percentage is defined to be the percentage of the
95% bootstrap percentile confidence intervals which contain τ0.
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7.5.2 Only Misclassification Occurs

We compare the performance of the proposed estimator τ̂ developed in Section 7.2 to the
naive estimator τ̂ ∗ which ignores misclassification effects and regards the Y ∗i as if they were
true data. The misclassification probabilities (p11, p10) are specified as (0.9, 0.1), (0.8, 0.2)
and (0.7, 0.3) to cover different degrees of misclassification.

Table 7.1 summarizes the simulation results under various combinations of misclassi-
fication probabilities and scenarios for model specification. The naive analysis produces
severely biased results, and its performance becomes worse with the degree of misclassi-
fication. These results suggest that ignoring the misclassification effect can result in the
loss of multiple robustness. The proposed estimator presents satisfactory performance with
negligible finite sample bias for all combinations of misclassification probabilities and sce-
narios for model specification, as anticipated from its multiple robustness. The discrepancy
between ASE and ESE is fairly small, and empirical coverage percentages are close to 95%,
indicating that the bootstrap variance estimates and the bootstrap percentile confidence
intervals are reliable.

7.5.3 Only Missingness Occurs

We compare the performance of the proposed estimator τ̂ developed in Section 7.3 to
the naive estimator τ̂ ∗ which ignores missingness effects. Specifically, τ̂ ∗ shares the same
estimation procedures with τ̂ except for Step 4, where E(Y1) and E(Y0) are estimated by

Ê∗(Y1) =
(

m∑
i=1

ŵiRi

)−1 m∑
i=1

ŵiYiRi

and

Ê∗(Y0) =
 n∑
i=m+1

w̃iRi

−1
n∑

i=m+1
w̃iYiRi.

Then calculate τ̂ ∗ = Ê∗(Y1)− Ê∗(Y0).

The missingness mechanism is specified as logit P (R = 1|X,T = t) = α0−T +0.5X1−
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Table 7.1: Simulation results comparing the proposed estimator τ̂ in Section 7.2 to the
naive estimator τ̂ ∗, when only outcome misclassification occurs

n = 2000 n = 5000

(p11, p10) Setting Est ReBias% ASE ESE CP% ReBias% ASE ESE CP%
(0.9,0.1) I τ̂ ∗ -19.57 0.026 0.026 69.8 -19.94 0.017 0.017 32.4

τ̂ 0.549 0.033 0.033 94.7 0.075 0.021 0.021 94.7
II τ̂ ∗ -19.99 0.028 0.029 68.8 -19.88 0.018 0.019 41.0

τ̂ 0.011 0.035 0.036 94.2 0.186 0.023 0.024 94.4
III τ̂ ∗ -19.36 0.026 0.026 67.9 -20.34 0.016 0.016 29.8

τ̂ 0.843 0.032 0.032 95.0 -0.423 0.020 0.020 95.1
(0.8,0.2) I τ̂ ∗ -40.01 0.027 0.027 14.1 -42.05 0.017 0.017 0.20

τ̂ -1.716 0.045 0.045 95.0 -0.092 0.028 0.028 94.8
II τ̂ ∗ -40.78 0.028 0.029 17.7 -40.07 0.019 0.020 0.80

τ̂ -1.155 0.047 0.049 95.7 -0.043 0.032 0.034 95.3
III τ̂ ∗ -40.69 0.027 0.027 13.8 -40.04 0.017 0.017 0.30

τ̂ -1.063 0.045 0.044 94.3 -0.045 0.028 0.030 93.1
(0.7,0.3) I τ̂ ∗ -59.76 0.028 0.028 1.50 -60.39 0.017 0.019 0.10

τ̂ 0.641 0.069 0.071 93.6 -0.897 0.044 0.046 93.7
II τ̂ ∗ -60.32 0.029 0.030 1.50 -60.47 0.019 0.020 0.00

τ̂ -0.484 0.073 0.076 94.9 -0.591 0.048 0.051 94.2
III τ̂ ∗ -60.16 0.028 0.028 0.60 -60.21 0.017 0.018 0.00

τ̂ -0.276 0.068 0.068 94.5 -0.526 0.043 0.044 94.0

Est: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap
standard error; ESE: empirical standard error; CP%: 95% coverage percentage;

I: one postulated treatment model is correct and no postulated outcome models are correct;
II: one postulated outcome model is correct and no postulated treatment models are correct;
III: one postulated treatment model and one postulated outcome model are correct.
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0.6X2. The parameter α0 is set to be 3, 1.5 and 0.5 such that there are approximately
10%, 30% and 50% subjects with missing outcomes, respectively.

Table 7.2 summarizes the simulation results under various combinations of missing-
ness rates and scenarios for model specification. The naive analysis leads to biased results
and the performance becomes worse as the degree of missingness increases. These results
demonstrate that ignoring the missingness effect can result in the loss of multiple ro-
bustness. The proposed estimator presents satisfactory performance with negligible finite
sample bias for all combinations of missingness models and scenarios for model specifica-
tion, as expected from its multiple robustness. The discrepancy between ASE and ESE is
fairly small and the empirical coverage percentages are close to 95%, indicating that the
bootstrap variance estimates and the bootstrap percentile confidence intervals are reliable.

7.5.4 Both Misclassification and Missingness Occur

We compare the performance of the proposed estimator τ̂ developed in Section 7.4 to the
naive estimator τ̂ ∗ which ignores misclassification and missingness effects. Specifically, the
first three steps in estimating τ̂ ∗ is Steps 1 to 3 in Section 7.3.2 with Yi replaced by Y ∗i . In
the fourth step, E(Y1) and E(Y0) are estimated by

Ê∗(Y1) =
(

m∑
i=1

ŵiRi

)−1 m∑
i=1

ŵiY
∗
i Ri

and

Ê∗(Y0) =
 n∑
i=m+1

w̃iRi

−1
n∑

i=m+1
w̃iY

∗
i Ri.

Then calculate τ̂ ∗ = Ê∗(Y1)− Ê∗(Y0).

The misclassification probabilities (p11, p10) are specified as (0.9, 0.1) and (0.8, 0.2). The
missingness mechanism is the same as in Section 7.5.3, with α0 set to be 3 and 1.5 to yield
approximately 10% and 30% missingness rates, respectively.

Table 7.3 summarizes the simulation results under various combinations of misclassi-
fication probabilities, missingness rates and scenarios for model specification. The naive
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Table 7.2: Simulation results comparing the proposed estimator τ̂ in Section 7.3 to the
naive estimator τ̂ ∗, when only outcome missingness occurs

n = 2000 n = 5000

Missing Setting Est ReBias% ASE ESE CP% ReBias% ASE ESE CP%
10% I τ̂ ∗ -4.808 0.027 0.028 93.3 -4.683 0.017 0.017 91.3

τ̂ 0.520 0.027 0.028 94.5 0.589 0.017 0.017 94.5
II τ̂ ∗ -5.336 0.028 0.030 92.0 -5.129 0.019 0.019 90.6

τ̂ 0.006 0.029 0.031 94.4 0.283 0.019 0.020 95.2
III τ̂ ∗ -4.902 0.027 0.026 93.1 -5.461 0.017 0.017 90.0

τ̂ 0.320 0.027 0.026 95.5 -0.263 0.017 0.017 94.8
30% I τ̂ ∗ -11.82 0.031 0.031 87.1 -11.11 0.020 0.020 78.6

τ̂ -0.214 0.035 0.035 95.9 0.369 0.022 0.023 93.9
II τ̂ ∗ -11.75 0.033 0.035 88.5 -12.33 0.022 0.024 78.3

τ̂ 0.201 0.037 0.039 94.9 -0.066 0.024 0.027 94.2
III τ̂ ∗ -10.82 0.031 0.031 88.6 -11.38 0.019 0.020 75.8

τ̂ 1.152 0.035 0.035 94.1 0.042 0.022 0.022 94.4
50% I τ̂ ∗ -15.09 0.037 0.038 88.0 -14.84 0.024 0.024 75.2

τ̂ -0.076 0.051 0.051 95.3 -0.018 0.032 0.031 94.9
II τ̂ ∗ -15.18 0.040 0.043 86.3 -15.69 0.026 0.029 76.4

τ̂ -0.018 0.053 0.054 94.1 -0.356 0.035 0.037 94.3
III τ̂ ∗ -14.18 0.037 0.037 87.6 -14.72 0.023 0.025 73.7

τ̂ 0.173 0.050 0.051 94.7 0.437 0.032 0.033 93.5

Est: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap
standard error; ESE: empirical standard error; CP%: 95% coverage percentage;

I: one postulated treatment model is correct and no postulated outcome models are correct;
II: one postulated outcome model is correct and no postulated treatment models are correct;
III: one postulated treatment model and one postulated outcome model are correct.
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analysis leads to severely biased results, suggesting that the effects of misclassification and
missingness can degrade the validity of multiply robust estimation. The proposed estima-
tor demonstrate satisfactory performance with reasonably small finite sample bias for all
combinations of misclassification probabilities, missingness degrees and scenarios for model
specification, as expected from its multiple robustness. The discrepancy between ASE and
ESE is fairly small and the empirical coverage percentages are close to 95%, indicating
that the bootstrap variance estimates and the bootstrap percentile confidence intervals are
reliable.

7.6 Application to Smoking Cessation Data

For illustration, in this section we apply the proposed method to the smoking cessation
data arising from a study on the effectiveness of a perioperative smoking cessation program
(Lee et al., 2013). The dataset includes 168 patients with baseline covariates gender, age,
body mass index, diabetes status, chronic obstructive pulmonary disease, hypertension,
cigarettes per day, the number of years of smoking, and the exhaled carbon monoxide (CO)
level. The treatment variable is an indicator of taking the smoking cessation intervention.
The outcome variable is the indicator of smoking cessation for previous 7 days at the 30-day
follow-up postoperatively. Our primary goal is to estimate the causal effect of treatment
on smoking cessation for previous 7 days at the 30-day follow-up postoperatively.

Among the 168 patients, 18 (10.7%) of them had missing outcomes. For the rest of
the patients who had complete outcome data, misclassification is a real concern. The
outcome measurements at the 30-day follow-up were self-reported via telephone interview
without verification by biochemical tests (Lee et al., 2013). As a result, the smoking
cessation status data were subject to misclassification. The effects of missingness and
misclassification, put together, present a challenge to the causal inference. In order to
obtain valid inference results, causal estimation should take both the missingness and
misclassification into account.

We postulate two treatment models both linking the treatment variable to the baseline
covariates. The first postulated treatment model assumes the logit link, while the second
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Table 7.3: Simulation results comparing the proposed estimator τ̂ in Section 7.4 to the
naive estimator τ̂ ∗, when both outcome misclassification and outcome missingness occur

n = 2000 n = 5000

(p11, p10) Missing Setting Est ReBias% ASE ESE CP% ReBias% ASE ESE CP%
(0.9,0.1) 10% I τ̂ ∗ -24.90 0.028 0.027 57.2 -24.23 0.018 0.017 19.1

τ̂ -0.695 0.035 0.034 95.6 -0.123 0.022 0.022 94.3
II τ̂ ∗ -23.57 0.029 0.031 63.0 -24.46 0.019 0.021 30.0

τ̂ 0.871 0.037 0.040 93.5 -0.254 0.025 0.028 94.2
III τ̂ ∗ -24.56 0.028 0.028 56.2 -23.84 0.017 0.017 21.6

τ̂ -0.360 0.035 0.036 94.7 0.418 0.022 0.022 95.6
(0.9,0.1) 30% I τ̂ ∗ -29.21 0.032 0.033 54.7 -28.91 0.020 0.020 16.7

τ̂ 0.414 0.045 0.045 95.5 0.418 0.028 0.028 94.2
II τ̂ ∗ -28.60 0.034 0.035 57.9 -30.01 0.022 0.023 22.0

τ̂ 1.194 0.047 0.049 94.2 -0.494 0.031 0.033 94.2
III τ̂ ∗ -29.65 0.032 0.032 54.7 -29.03 0.020 0.022 16.6

τ̂ -0.646 0.044 0.044 95.3 0.314 0.028 0.028 94.8
(0.8,0.2) 10% I τ̂ ∗ -42.76 0.029 0.029 14.4 -43.27 0.018 0.018 0.00

τ̂ 0.703 0.048 0.048 94.1 -0.172 0.030 0.030 94.1
II τ̂ ∗ -43.45 0.030 0.032 17.4 -43.34 0.020 0.021 1.20

τ̂ -0.497 0.051 0.054 94.1 -0.009 0.034 0.037 93.6
III τ̂ ∗ -43.14 0.029 0.029 14.4 -43.32 0.018 0.018 0.20

τ̂ -0.054 0.048 0.047 94.9 -0.426 0.030 0.030 95.3
(0.8,0.2) 30% I τ̂ ∗ -46.75 0.033 0.033 17.4 -46.07 0.021 0.021 0.70

τ̂ 0.157 0.060 0.060 94.1 1.111 0.038 0.037 94.9
II τ̂ ∗ -48.53 0.034 0.037 19.3 -47.84 0.022 0.024 0.90

τ̂ -1.507 0.063 0.067 93.8 -0.383 0.042 0.047 93.9
III τ̂ ∗ -47.10 0.033 0.033 16.5 -47.46 0.021 0.021 0.10

τ̂ 0.211 0.060 0.059 95.7 -1.060 0.038 0.038 94.5

Est: estimator; ReBias%: average relative bias in percent; ASE: average bootstrap
standard error; ESE: empirical standard error; CP%: 95% coverage percentage;

I: one postulated treatment model is correct and no postulated outcome models are correct;
II: one postulated outcome model is correct and no postulated treatment models are correct;
III: one postulated treatment model and one postulated outcome model are correct.
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postulated treatment model assumes the complementary log-log link. Similarly, we postu-
late two outcome models both relating the outcome variable to the treatment variable and
the baseline covariates, where one model assumes the logit link and the other assumes the
complementary log-log link.

We first analyze the data using the naive method which ignores both the missingness
and misclassification in outcomes. The resultant estimated causal risk difference is τ̂ ∗ =
0.171 with bootstrap standard error 0.063 and 95% bootstrap percentile confidence interval
(0.046, 0.310), suggesting a significant causal effect of the smoking cessation intervention
on reducing smoking rate.

To correct for both the missingness and misclassification effects, we apply the proposed
method in Section 7.4 to this dataset. It is reasonable to assume p11 = 1 given that
those who had quit smoking were unlikely to report that they still smoked. However, it
is likely that p10 > 0 because subjects who still smoked might report that they had quit
smoking (e.g., Magder and Hughes, 1997). Lee et al. (2013) collected self-reported smoking
cessation data preoperatively along with the exhaled CO levels, with an exhaled CO of ≤10
ppm confirming the self-reported smoking cessation. Among the 146 patients with exhaled
CO of >10 ppm, 11 patients had exhaled CO of >10 ppm despite self-reported smoking
cessation. These preoperatively collected data yield a misclassification rate 11/146 =
0.075. It is reasonable to assume the preoperative misclassification mechanism is similar
to the postoperative misclassification mechanism. Therefore, we specify p10 = 0.075 when
applying the proposed method.

The missingness model is fit using the logistic model relating non-missingness indicator
to the treatment variable and baseline covariates. After adjustment for the missingness
and misclassification effects, the proposed method yields estimated causal risk difference
τ̂ = 0.202 with bootstrap standard error 0.084 and 95% bootstrap percentile confidence
interval (0.050, 0.348), confirming the statistical significance of the causal effect of the
smoking cessation intervention. The comparison of the results obtained using the naive
method and those obtained using the proposed method reveals an attenuation effect of
missingness and misclassification. Magder and Hughes (1997) specified the falsely reported
smoking cessation probability p10 = 0.1 in the data analysis for another study. If we borrow
this value for our analysis, the estimated causal risk difference will be τ̂ = 0.207 with
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bootstrap standard error 0.084 and 95% bootstrap percentile confidence interval (0.034,
0.356). These results reveal the attenuation effect of misclassification.

We further repeat the adjustment assuming the missing completely at random (MCAR)
mechanism P (R = 1|X,T, Y ) = P (R = 1), or equivalently, the missingness model is fit
using the logistic model relating non-missingness indicator R to 1. If we specify p10 = 0.075,
the resulting estimated causal risk difference τ̂ = 0.209 with bootstrap standard error 0.072
and 95% bootstrap percentile confidence interval (0.068, 0.346). If we specify p10 = 0.1, the
resulting estimated causal risk difference τ̂ = 0.214 with bootstrap standard error 0.082
and 95% bootstrap percentile confidence interval (0.057, 0.362).

We compare the adjustment fitting logit P (R = 1|X,T ) ∼ T + X and that fitting
logit P (R = 1|X,T ) ∼ 1. The latter produces larger estimates, but the difference is small.
Therefore, inference results are similar under MAR and MCAR.

Figure 7.1 further displays the adjustment results under MAR and MCAR, for P10

between 0 and 0.15. We use the solid line to denote the adjusted estimate and the grey
region to represent the 95% confidence interval. The causal estimate becomes larger as the
misclassification probability p10 increases. The confidence interval becomes wider as well,
indicated by the shape of grey regions. The dashed line of 0.171 (i.e., naive estimate) is
below the solid line (adjusted estimates), suggesting the attenuation effect of misclassifi-
cation and missingness. The grey region is above 0, indicating the statistical significance
of the causal effect. Comparing the left and right plots demonstrates that assuming MAR
and MCAR yields similar results.
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Figure 7.1: Sensitivity analyses of the smoking cessation data using the proposed estimator
τ̂ developed in Section 7.4 under various p10. The solid line represents the estimates and
the grey region represents the 95% confidence intervals. The dashed line represents the
naive estimate which ignores misclassification and missingness.
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Chapter 8

ipwErrorY: An R Package for
Estimating Average Treatment
Effects with Outcome
Misclassification

8.1 Introduction

In Chapter 4 we explore estimation of the average treatment effect (ATE) with outcomes
subject to measurement error. We derive the asymptotic bias caused by misclassification
and developed consistent estimation methods to eliminate the misclassification effects.
The development covers practical scenarios where (1) the misclassification probabilities
are known, or (2) the misclassification probabilities are unknown but validation data or
replicates of outcome measurements are available for their estimation. We further propose
a doubly robust estimator to provide protection against possible misspecification of the
treatment model.

These methods enjoy wide applications, because misclassified outcome data arise com-
monly in practice. For example, the self-reported smoking status without being confirmed
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by biochemical tests is subject to misclassification; results of screening tests are often sub-
ject to false positive error and/or false negative error. For datasets with outcome misclas-
sification, ignoring misclassification effects may lead to severely biased results. To expedite
the application of the correction methods for general users, we develop an R (R Core Team,
2017) package called ipwErrorY (Shu and Yi, 2018c), to implement the methods developed
in Chapter 4 for practical settings where the commonly-used logistic regression model is
employed for the treatment model and the outcome model.

The remainder is organized as follows. Section 8.2 presents the implementation details.
Section 8.3 illustrates the use of the package with examples. The developed R package
ipwErrorY is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=ipwErrorY.

8.2 Implementation in R

In this section we describe our developed R package. The developed package imports R
packages stats (R Core Team, 2017) and nleqslv (Hasselman, 2016).

8.2.1 Implementation with Known Error

The function KnownError produces the ATE estimate using the correction method de-
scribed in Section 4.3 along with the standard error and (1− α)100% confidence interval.
The details of function KnownError are given by

KnownError(data, indA, indYerror, indX, sensitivity, specificity,
confidence=0.95)

with arguments described as follows:

• data: the dataset to be analyzed in the form of R data frame;

• indA: the column name which indicates the treatment variable;
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• indYerror: the column name which indicates the misclassified outcome variable;

• indX: the vector of column names of covariates included in the treatment model;

• sensitivity: the specified sensitivity (i.e., p11) between 0 and 1;

• specificity: the specified specificity (i.e., 1− p10) between 0 and 1;

• confidence: The confidence level (i.e., 1 − α) between 0 and 1; the default is 0.95
corresponding to a 95% confidence interval.

8.2.2 Implementation with Validation Data

The function EstValidation produces the results for the method described in Section
4.4.1; they include the optimal linear combination estimate, the standard error, (1−α)100%
confidence interval and the estimated sensitivity and specificity. The details of function
EstValidation are given by

EstValidation(maindata, validationdata, indA, indYerror, indX, indY,
confidence=0.95)

with arguments described as follows:

• maindata: the non-validation main data in the form of R data frame;

• validationdata: the validation data in the form of R data frame;

• indA: the column name which indicates the treatment variable;

• indYerror: the column name which indicates the misclassified outcome variable;

• indX: the vector of column names of covariates included in the treatment model;

• indY: the column name which indicates the precisely measured outcome variable;

• confidence: The confidence level (i.e., 1 − α) between 0 and 1; the default is 0.95
corresponding to a 95% confidence interval.
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8.2.3 Implementation with Replicates

The function Est2Replicates produces the results for the method described in Section
4.4.2 with a constraint imposed; they include the estimate, the standard error, (1−α)100%
confidence interval, and the imposed constraint(s), and the information on sensitivity and
specificity. The details of function Est2Replicates are given by

Est2Replicates(data, indA, indYerror, indX, constraint=c("sensitivity equals
specificity", "known sensitivity", "known specificity", "known prevalence"),
sensitivity = NULL, specificity = NULL, prevalence = NULL, confidence=0.95)

with arguments described as follows:

• data: the dataset to be analyzed in the form of R data frame;

• indA: the column name which indicates the treatment variable;

• indYerror: the vector of two column names indicating the replicates of the outcome;

• indX: the vector of column names of covariates included in the treatment model;

• constraint: the imposed constraint with sensitivity equals specificity by default;

• sensitivity: the specified sensitivity between 0 and 1 when imposing the constraint
that sensitivity is known, and the default is set to be NULL;

• specificity: the specified specificity between 0 and 1 when imposing the constraint
that specificity is known, and the default is set to be NULL;

• prevalence: the specified prevalence between 0 and 1 when imposing the constraint
that prevalence is known, and the default is set to be NULL;

• confidence: The confidence level (i.e., 1 − α) between 0 and 1; the default is 0.95
corresponding to a 95% confidence interval.
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8.2.4 Implementation of Doubly Robust Estimation

The function KnownErrorDR produces the ATE estimate using the doubly robust correction
method described in Section 4.6 along with the standard error and (1−α)100% confidence
interval. The details of function KnownErrorDR are given by

KnownErrorDR(data, indA, indYerror, indXtrt, indXout, sensitivity,
specificity, numBoot, sharePara=FALSE, confidence=0.95)

with arguments described as follows:

• data: the dataset to be analyzed in the form of R data frame;

• indA: the column name which indicates the treatment variable;

• indYerror: the column name which indicates the misclassified outcome variable;

• indXtrt: the vector of column names indicating the covariates that are included in
the treatment model;

• indXout: the vector of column names indicating the covariates that are included in
the outcome model;

• sensitivity: the specified sensitivity (i.e., p11) between 0 and 1;

• specificity: the specified specificity (i.e., 1− p10) between 0 and 1;

• numBoot: the specified number of bootstrap replicates for variance estimation;

• sharePara=FALSE: if the treated and untreated groups share parameters for X in
the logistic outcome model (i.e., assuming Y ∼ T + X), then set sharePara=TRUE;
if not (i.e., modeling Y ∼ X for the treated and untreated groups separately), then
set sharePara=FALSE. By default, sharePara=FALSE;

• confidence: The confidence level (i.e., 1 − α) between 0 and 1; the default is 0.95
corresponding to a 95% confidence interval.

172



8.3 Examples

To illustrate the use of the developed R package ipwErrorY, for each method, we simulate
a dataset and then apply a function described in Section 8.2 to analyze the dataset. To
make sure users can reproduce the results, we use the function set.seed to generate data.
Moreover, the simulated data provide users a clear sense about the data structure.

8.3.1 Example with Known Error

We first load the package in R:

R> library("ipwErrorY")

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “X1”,
“A” and “Yast” being the column names for the covariate, treatment and misclassified
outcome, respectively:

R> set.seed(100)
R> X1 = rnorm(2000)
R> A = rbinom(2000, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(2000, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> da = data.frame(X1 = X1, A = A,Yast = Yast)

By using the function head, we print the first six observations of dataset da so that the
data structure is clearly shown as follows:

R> head(da)
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X1 A Yast
1 -0.50219235 1 1
2 0.13153117 1 1
3 -0.07891709 1 1
4 0.88678481 0 1
5 0.11697127 1 1
6 0.31863009 1 1

To apply the method described in Section 4.3 with sensitivity 0.95 and specificity 0.85,
we call the developed function KnownError and obtain a list of the estimate, the standard
error and a 95% confidence interval:

R> KnownError(data = da, indA = "A", indYerror = "Yast", indX = "X1",
+ sensitivity = 0.95, specificity = 0.85, confidence=0.95)
$Estimate
[1] 0.1702513

$Std.Error
[1] 0.02944824

$‘95% Confidence Interval‘
[1] 0.1125338 0.2279688

8.3.2 Example with Validation Data

Using sensitivity 0.95 and specificity 0.85, we create mainda which is the non-validation
main data of size 1200, and validationda which is the validation data of size 800:

R> set.seed(100)
R> X1= rnorm(1200)
R> A = rbinom(1200, 1, 1/(1 + exp(-0.2 - X1)))
R> Y= rbinom(1200, 1, 1/(1 + exp(-0.2 - A - X1)))
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R> y1 = which(Y == 1)
R> y0 = which(Y==0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> mainda = data.frame(A = A, X1 = X1, Yast = Yast)
R> X1 = rnorm(800)
R> A = rbinom(800, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(800, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast = Y
R> Yast[y1] = rbinom(length(y1), 1, 0.95)
R> Yast[y0] = rbinom(length(y0), 1, 0.15)
R> validationda = data.frame(A = A, X1 = X1, Y = Y, Yast = Yast)

We print the first six observations of non-validation data mainda and validation data
validationda:

R> head(mainda)
A X1 Yast

1 1 -0.50219235 0
2 0 0.13153117 0
3 1 -0.07891709 1
4 1 0.88678481 1
5 0 0.11697127 1
6 1 0.31863009 1
R> head(validationda)

A X1 Y Yast
1 0 -0.0749961081 0 0
2 1 -0.9470827924 1 1
3 1 0.0003758095 1 1
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4 0 -1.5249574007 0 0
5 1 0.0983516474 0 0
6 0 -1.5266078213 1 1

The preceding output clearly reveals that the non-validation data and validation data
differ in the data structure. The non-validation data mainda record measurements of
the treatment, covariate and misclassified outcome, indicated by the column names “A”,
“X1” and “Yast”, respectively. In comparison, the validation data validationda record
measurements of the treatment, covariate, misclassified outcome and the true outcome,
indicated by the column names “A”, “X1”, “Yast”, and “Y”, respectively.

To apply the optimal linear combination method described in Section 4.4.1, we call the
developed function EstValidation and obtain a list of the estimate, the standard error, a
95% confidence interval, and the estimated sensitivity and specificity:

R> EstValidation(maindata = mainda, validationdata = validationda, indA = "A",
+ indYerror = "Yast", indX = "X1", indY = "Y", confidence=0.95)
$Estimate
[1] 0.1714068

$Std.Error
[1] 0.02714957

$‘95% Confidence Interval‘
[1] 0.1181946 0.2246189

$‘estimated sensitivity and estimated specificity‘
[1] 0.9482072 0.8557047

8.3.3 Example with Replicates

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “A”,
“X1”, and { “Yast1”, “Yast2”} being the column names for the treatment, covariate, and
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two replicates of outcome, respectively:

R> set.seed(100)
R> X1 = rnorm(2000)
R> A = rbinom(2000, 1, 1/(1 + exp(-0.2 - X1)))
R> Y = rbinom(2000, 1, 1/(1 + exp(-0.2 - A - X1)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Yast1 = Y
R> Yast1[y1] = rbinom(length(y1), 1, 0.95)
R> Yast1[y0] = rbinom(length(y0), 1, 0.15)
R> Yast2 = Y
R> Yast2[y1] = rbinom(length(y1), 1, 0.95)
R> Yast2[y0] = rbinom(length(y0), 1, 0.15)
R> da = data.frame(A = A, X1 = X1, Yast1 = Yast1, Yast2 = Yast2)

By using the function head, we print the first six observations of dataset da so that the
data structure is clearly shown as follows:

R> head(da)
A X1 Yast1 Yast2

1 1 -0.50219235 1 1
2 1 0.13153117 1 1
3 1 -0.07891709 1 1
4 0 0.88678481 1 0
5 1 0.11697127 1 1
6 1 0.31863009 1 1

To apply the method described in Section 4.4.2 with the imposed constraint that speci-
ficity equals 0.85, we call the developed function Est2Replicates and obtain a list of the
estimate, the standard error, a 95% confidence interval, the imposed constraint and the
information on sensitivity and specificity:
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R> Est2Replicates(data = da, indA = "A", indYerror = c("Yast1", "Yast2"),
+ indX = "X1", constraint = "known specificity", sensitivity = NULL,
+ specificity = 0.85, prevalence = NULL, confidence=0.95)
$Estimate
[1] 0.1908935

$Std.Error
[1] 0.02687287

$‘95% Confidence Interval‘
[1] 0.1382236 0.2435634

$‘imposed constraint‘
[1] "known specificity"

$‘estimated sensitivity and assumed specificity‘
[1] 0.95 0.85

8.3.4 Example of Doubly Robust Estimation

Using sensitivity 0.95 and specificity 0.85, we create da, a dataset of size 2000 with “A”,
{“X”, “xx”} and “Yast” being the column names for the treatment, covariates and mis-
classified outcome, respectively:

R> set.seed(100)
R> X = rnorm(2000)
R> xx = Xˆ2
R> A = rbinom(2000, 1, 1/(1 + exp(-0.1 - X - 0.2*xx)))
R> Y = rbinom(2000, 1, 1/(1 + exp(1 - A - 0.5*X - xx)))
R> y1 = which(Y == 1)
R> y0 = which(Y == 0)
R> Y[y1] = rbinom(length(y1), 1, 0.95)
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R> Y[y0] = rbinom(length(y0), 1, 0.15)
R> Yast = Y
R> da = data.frame(A = A, X = X, xx = xx, Yast = Yast)

By using the function head, we print the first six observations of dataset da so that the
data structure is clearly shown as follows:

R> head(da)
A X xx Yast

1 1 -0.50219235 0.252197157 1
2 1 0.13153117 0.017300447 1
3 1 -0.07891709 0.006227907 1
4 0 0.88678481 0.786387298 0
5 1 0.11697127 0.013682278 1
6 1 0.31863009 0.101525133 0

When applying the doubly robust method described in Section 4.6 with sensitivity 0.95
and specificity 0.85, covariates indicated by column names “X” and “xx” are both included
in the treatment model and the outcome model. The number of bootstrap replicates is
specified as 50 for illustrative purpose, but bearing in mind a larger number such as 1000
may be used in applications. Let the outcome model be fitted for the treated and untreated
groups separately. We call the developed function KnownErrorDR and obtain a list of the
estimate, the standard error, and a 95% confidence interval:

R> set.seed(100)
R> KnownErrorDR(data = da, indA = "A", indYerror = "Yast",
+ indXtrt = c("X", "xx"), indXout = c("X", "xx"), sensitivity = 0.95,
+ specificity = 0.85, numBoot = 50, sharePara = FALSE, confidence=0.95)
$Estimate
[1] 0.2099162

$Std.Error
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[1] 0.02696814

$‘95% Confidence Interval‘
[1] 0.1570597 0.2627728

Note that we call the function set.seed before the developed function KnownErrorDR
in order to make sure users can reproduce the results. If set.seed is not used, then the
variance estimates obtained by different users can differ due to the inner randomness of
the bootstrap method.
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Chapter 9

Summary and Discussion

In this thesis, we investigate several important research problems regarding causal inference
with measurement error as well as other features such as missing values. The results in
this thesis have been or will be wrapped up as papers for dissemination. The results in
Chapters 2 and 4, respectively, come from the publications by Shu and Yi (2018a) and Shu
and Yi (2017); the results in Chapter 3 and Chapter 5, respectively, come from the papers
by Shu and Yi (2016) and Shu and Yi (2018d) which are now under revision; the results in
Chapters 6 and 7 will be wrapped up for publication shortly; and the material in Chapter
8 has been wrapped up as Shu and Yi (2018b) and submitted for publication. Below we
present a summary for each chapter with discussions.

Chapter 2

The odds ratio, the risk ratio and the risk difference are important measures in epi-
demiological studies to assess the comparative effectiveness of available treatment plans.
However, their estimation becomes complicated when confounders are subject to measure-
ment error. In this chapter, we examine the measurement error effects by simulation studies
and develop valid estimation methods to correct for measurement error effects on estima-
tion of causal effect measures when confounders, time-independent or time-dependent, are
error-contaminated. The proposed methods are easy to implement and are robust in the
sense that the distribution of the unobserved true variables is left unspecified.
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In principle, all the proposed methods may be used in practice, as they all provide
consistent estimators. Theoretical justifications demonstrate that the estimator obtained
from the linear combination method has the smallest asymptotic variance. However, our
numerical studies show that the finite sample performance of the adaptive conditional score
method is similar to that of the linear combination method, and therefore can be used as
well in applications.

The variance estimation of the linear combination estimator is approximate in a sense
that uncertainty in the estimation of copt is not accounted for. Bootstrap procedures may
be helpful to handle this.

Although the measurement error models we consider are commonly used, they can-
not cover all practical problems which may have complex underlying measurement error
mechanisms. It would be interesting to generalize our development here to feature other
measurement error models. A discussion of various measurement error mechanisms in the
context of causal inference was given by Hernán and Robins (2016).

Our methods are developed under the assumption that the covariance matrix in the
measurement error model is known. However this assumption can be relaxed. The proposed
approaches can be extended to accommodating settings where the covariance matrix is
unknown and estimated by using additional data, such as repeated measurements and
validation data. When the covariance matrix in the measurement error model is unknown
and no extra data are available to estimate it, sensitivity analyses can be carried out
to assess how sensitive the estimates are to different degrees of measurement error, by
considering a series of representative values of the covariance matrix. Analyses can be
carried out along the lines of Small and Rosenbaum (2008) and Baiocchi et al. (2010) in
combinations with our development here.

Chapter 3

We explore a number of methods for adjusting for measurement error effects in causal
inference with time-dependent and error-contaminated confounders. Our simulation stud-
ies demonstrate that ignoring measurement error effects can produce biased estimates for
causal parameters. The regression calibration method is equivalent to the naive analysis
in our setting. The direct SIMEX and refined indirect SIMEX approaches (i.e., DSIMEX
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and RISIMEX in Section 3.4) outperform the indirect SIMEX method (i.e., ISIMEX in
Section 3.4). The refined regression calibration method (i.e., RRC in Section 3.4) tends to
perform better than the SIMEX-based methods (i.e., ISIMEX, DSIMEX and RISIMEX).
The refined correction method (i.e., RCM in Section 3.4) performs the best. In application,
we recommend to implement the RCM method if Assumption 5 is regarded plausible. The
method RRC is preferred to RISIMEX due to its smaller finite sample biases and much
less computational burdens. If Assumption 5 is unreasonable, then methods based on it
(i.e., RISIMEX, RRC and RCM) may not be preferred. Instead, we can use the DSIMEX
method whose implementation is the most straightforward, though time-consuming just
like the ISIMEX method.

When the treatment assignment is driven by the observed measurements of confounders
instead of the underlying true values, addressing effects of measurement error in con-
founders may be unnecessary.

The development here assumes that the covariance matrix of measurement error Σεk is
known, which is applicable when conducting sensitivity analyses, as illustrated in Section
3.4.2. In application, this assumption may not be true, then we need to estimate Σεk using
additional data sources such as validation data and repeated measurements.

When an external validation sample data is available, i.e., both measurements for
Xi(k) and X∗ik are available for some subjects. Using the measurement error model (3.8),
var(X∗ik) = var{Xi(k)} + Σεk, we can estimate the unknown covariance matrix Σε as
v̂ar(X∗ik)− v̂ar{Xi(k)}, where v̂ar(X∗ik) and v̂ar{Xi(k)} are the sample covariance matri-
ces for X∗ik and Xi(k) which can be obtained from the validation data.

In the case where repeated surrogate measurements are available, let X∗ikj denote the
jth independent replicate of observed measurements for Xi(k), where j = 1, 2, · · · , lk and
lk ≥ 2. Let X̄∗ik = l−1

k

∑lk
j=1X

∗
ikj. By Carroll et al. (2006), the covariance matrix Σε can be

estimated as

Σ̂εk =
∑n
i=1

∑lk
j=1(X∗ikj − X̄∗ik)(X∗ikj − X̄∗ik)T

n(lk − 1) .

With the availability of repeated measurements of confounders, the empirical SIMEX algo-
rithm developed by Devanarayan and Stefanski (2002) can also be adapted for our setting.
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Chapter 4

We explore IPW estimation of ATE in the presence of mismeasurement in outcome
variables. We investigate the impact of measurement error on the estimation of ATE and
develop valid statistical methods to adjust for measurement error by constructing unbiased
estimating functions. Several useful results are established. When a continuous outcome
variable is mismeasured under the additive measurement error model (4.3), we reveal that
the naive analysis still yields a consistent estimator of ATE. When the outcome is binary
with misclassification, we find that the naive analysis leads to a biased estimator of ATE
and then identify a closed-form for the resulting asymptotic bias. To address measurement
error effects, we develop valid estimation procedures for settings where either internal
validation data or replicates of outcome variable are available. With validation data, we
propose an efficient method for estimation of ATE. The efficiency gain can be substantial
relative to usual methods of using validation data. To provide protection against model
misspecification, we propose a doubly robust estimator which is consistent even when the
treatment model or the outcome model is misspecified. In such development, we assume
that the validation subsample is a simple random sample of the main study. When this
assumption is not true, the proposed procedures need to be modified properly. Let S = 1
if a subject is included in the validation subsample and S = 0 otherwise. Since

E(Y1 − Y0) = P (S = 1)E(Y1 − Y0|S = 1) + P (S = 0)E(Y1 − Y0|S = 0),

to obtain a consistent estimator of ATE, the IPW estimation procedure needs to be strat-
ified by the membership of being in the validation sample or the non-validation sample,
and propensity score models have to be formed to reflect the membership information by
further conditionally on S, in addition to X.

In the development with binary outcomes, we focus on studying the asymptotic bias
for ATE which can be interpreted as causal risk difference P (Y1 = 1) − P (Y0 = 1).
The same investigation applies to other causal effect measures, such as causal odds ratio
E(Y1)/{1− E(Y1)}
E(Y0)/{1− E(Y0)} and causal risk ratio E(Y1)/E(Y0), to accommodate outcome misclas-
sification. However, the asymptotic bias for the naive estimators of those measures does
not possess the same transparent analytic expressions as what we obtain for ATE. Con-
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sistent estimation of these measures hinges on consistent estimation of E(Y1) and E(Y0),
which is immediate by using (C.8) and (C.9) in Appendix C.

Chapter 5

We propose estimation methods to simultaneously address measurement error in covari-
ates and misclassification in outcomes. Under a class of logistic treatment models (5.11)
that is usually employed to model the treatment assignment in practice, we develop a
fully consistent estimation method. If the treatment model assumes a form different from
model (5.11), we further develop an augmented SIMEX method to account for measure-
ment error in covariates and misclassification in outcomes. These proposed methods are
straightforward to implement and have a broad scope of applications.

Our development in the previous sections assumes that Σε in the measurement error
model (5.3) and pab in the misclassification model (5.4) are known, which is suitable for
performing sensitivity analyses, as illustrated in Section 5.5. In practice, when Σε and pab
are unknown, we can estimate them using validation data or repeated measurements.

Finally, we comment that following our development lines, other estimators alternative
to (5.7) and (5.8) can also be developed. For instance, examining E{TG(Z,X∗, T )|X,Z}
and E{(1−T )G(Z,X∗, T )|X,Z} using the conditions (5.9) and (5.10) gives E{TG(Z,X∗, T )} =
1 and E{(1− T )G(Z,X∗, T )} = 1, which suggests that

Ê(Y1) = 1
(p11 − p10)∑n

i=1 TiĜi

n∑
i=1

TiY
∗
i Ĝi −

p10

p11 − p10
(9.1)

and
Ê(Y0) = 1

(p11 − p10)∑n
i=1(1− Ti)Ĝi

n∑
i=1

(1− Ti)Y ∗i Ĝi −
p10

p11 − p10
(9.2)

can be used to estimate E(Y1) and E(Y0), respectively.

Analogously, noticing E(T/e) = 1 and E{(1− T )/(1− e)} = 1, we obtain alternatives
to (5.5) and (5.6), given by

Ê(Y1) = 1
(p11 − p10)

(
n∑
i=1

Ti
êi

)−1 n∑
i=1

TiY
∗
i

êi
− p10

p11 − p10
(9.3)
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and

Ê(Y0) = 1
(p11 − p10)

{
n∑
i=1

1− Ti
1− êi

}−1 n∑
i=1

(1− Ti)Y ∗i
1− êi

− p10

p11 − p10
, (9.4)

respectively. Then the augmented SIMEX method based on (9.3) and (9.4) can be con-
ducted in the same manner as in Section 5.3.2.

Chapter 6

We consider causal inference on ATE with missing and misclassified outcome variable.
We analytically investigate the impact of ignoring outcome missingness and/or outcome
misclassification on IPW estimation of ATE and establish intrinsic connections between
missingness effects and misclassification effects. By using suitable weighting strategies, we
develop valid correction methods to eliminate the effects of missingness and misclassifi-
cation on causal inference. We further propose a doubly robust correction method which
yields consistent estimators even when either the treatment model or the outcome model is
misspecified. Our simulation studies show that ignoring missingness and misclassification
effects can result in severely biased results. The proposed methods present satisfactory
finite sample performance in our simulation studies.

There are two types of weighting in our proposed estimators. The first type is based
on the propensity score to conduct causal inference, as in the IPW estimator (6.2) with
complete and error-free data. The second type corresponds to the missingness probability
to account for missingness. Our proposed methods are simple in that we develop the
correction methods by adding an additional layer of weighting to the IPW estimators
without completely breaking the existing structure of the original IPW estimators.

The development is directed to estimation of ATE. It can be readily modified to handle
estimation of other causal effect measures such as the causal odds ratio and the causal risk
ratio.

Chapter 7

We consider multiple robust estimation of causal treatment effects with missing and/or
misclassified outcome variable. We develop three estimation methods applicable to situ-
ations where only misclassification occurs, only missingness occurs, or both misclassifica-
tion and missingness occur. Our proposed estimators are consistent when either the set
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of multiple postulated treatment models or the set of multiple postulated outcome models
contains a correctly specified model. They provide even more protection against model
misspecification than the doubly robust estimation methods.

Our simulation studies not only reveal that ignoring missingness and/or misclassifica-
tion effects can lead to severely biased results, but also show satisfactory finite sample
performance of the proposed methods under various settings.

The current development assumes both the misclassification mechanism (7.10) and
the missingness mechanism (7.14) hold. However, in many applications, the underlying
mechanisms for missingness and misclassification could be much more complex. It will be
interesting to consider more complex mechanisms for missingness and misclassification.

Chapter 8

Misclassified outcome data arise frequently in practice and present a challenge in con-
ducting causal inference. Discussion on addressing this issue is rather limited in the lit-
erature. Chapter 4 develops the IPW estimation methods for ATE with mismeasured
outcome effects incorporated. To expedite the application of these correction methods, we
develop an R package ipwErrorY. For practical settings where the treatment model and
the outcome model are specified as logistic regression models, we implement the correction
methods developed in Chapter 4 for settings with known misclassification probabilities,
validation data, or replicates of the outcome data as well as the doubly robust method
with known misclassification probabilities. Our package offers a useful and convenient tool
for data analysts to perform valid inference about ATE when the binary outcome variable
is subject to misclassification.

The source code for the developed R package ipwErrorY is available for download at
https://CRAN.R-project.org/package=ipwErrorY.

In summary, causal inference with measurement error is a new and rapidly growing
research area. While important contributions have been made in the last decade, many
exciting research problems remain unexplored. The problems we have studied in this thesis
are of practical importance as well as theoretical values.
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Appendix A

Proofs for the Results in Chapter 2

Let ∆(k) = X∗k + {A(k) − 1/2}ΣεkγXk, Gk = 1 + exp[{−γ0k − γT
AkĀ(k − 1) − γT

ZkZ(k) −
γT

Xk∆(k)}{2A(k)−1}] and Ĝi(k) = 1+exp[{−γ̂0k−γ̂T
AkĀi(k−1)−γ̂T

ZkZi(k)−γ̂T
Xk∆̂i(k)}{2Ai(k)−

1}]. Then ŵi = ∏K
k=0 Ĝi(k). We first show E

{
Y I(Ā = ā)∏K

k=0Gk

}
= E(Yā).

E

{
Y I(Ā = ā)

K∏
k=0

Gk

}

= P (Ā = ā)
∫∫∫∫

yā
K∏
k=0

gkf(yā, z̄, x̄, x̄∗|Ā = ā)dx̄∗dz̄dx̄dyā

= P (Ā = ā)
∫∫∫

yā

{∫ K∏
k=0

gkf(x̄∗|z̄, x̄, yā, Ā = ā)dx̄∗
}
f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā

= P (Ā = ā)
∫∫∫

yā

{
K∏
k=0

∫
gkf{x∗k|x(k)}dx∗k

}
f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā

= P (Ā = ā)
∫∫∫

yā
K∏
k=0

1
P{a(k)|, ā(k − 1), z(k), x(k)}f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā

= P (Ā = ā)
∫∫∫

yā
K∏
k=0

1
P{a(k)|, ā(k − 1), z(k), x(k)}

P (Ā = ā|z̄, x̄, yā)f(z̄, x̄, yā)
P (Ā = ā)

dz̄dx̄dyā

=
∫∫∫

yā
1

P (Ā = ā|z̄, x̄)
P (Ā = ā|z̄, x̄)f(z̄, x̄, yā)dz̄dx̄dyā

= E(Yā).
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Using similar arguments, it can then be shown that

E

{
I(Ā = ā)

K∏
k=0

Gk

}

= P (Ā = ā)
∫∫∫∫ K∏

k=0
gkf(yā, z̄, x̄, x̄∗|Ā = ā)dx̄∗dz̄dx̄dyā

= P (Ā = ā)
∫∫∫ {∫ K∏

k=0
gkf(x̄∗|z̄, x̄, yā, Ā = ā)dx̄∗

}
f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā

= P (Ā = ā)
∫∫∫ {

K∏
k=0

∫
gkf{x∗k|x(k)}dx∗k

}
f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā

= P (Ā = ā)
∫∫∫ K∏

k=0

1
P{a(k)|, ā(k − 1), z(k), x(k)}f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā

= P (Ā = ā)
∫∫∫ K∏

k=0

1
P{a(k)|, ā(k − 1), z(k), x(k)}

P (Ā = ā|z̄, x̄, yā)f(z̄, x̄, yā)
P (Ā = ā)

dz̄dx̄dyā

=
∫∫∫ 1

P (Ā = ā|z̄, x̄)
P (Ā = ā|z̄, x̄)f(z̄, x̄, yā)dz̄dx̄dyā

= 1.

Therefore, the causal mean E(Yā) can be consistently estimated by

∑n
i=1 ŵiYiI(Āi = ā)

n

or ∑n
i=1 ŵiYiI(Āi = ā)

n

/∑n
i=1 ŵiI(Āi = ā)

n
=
∑n
i=1 ŵiYiI(Āi = ā)∑n
i=1 ŵiI(Āi = ā)

.
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Appendix B

Proofs for the Results in Chapter 3

Let Bi(k) = −γ0k−γT
AkĀi(k−1)−γT

ZkZ̄i(k)−γT
Xk∆i(k), and Gi(k) = 1+exp[Bi(k){2Ai(k)−

1}]. Let B̂i(k) and Ĝi(k) be Bi(k) and Gi(k) with (γ0k,γ
T
Ak,γ

T
Zk,γ

T
Xk)T replaced by the

consistent estimator (γ̂0k, γ̂
T
Ak, γ̂

T
Zk, γ̂

T
Xk)T which is obtained by solving (3.12). Weight ŵi

in Theorem 3.1 can be expressed by ∏K
k=0 Ĝi(k).

We first show that

E
{
Y I(Ā = ā)∏K

k=0Gk

}
= E(Yā).

By Assumption 2, we obtain

E

{
Y I(Ā = ā)

K∏
k=0

Gk

}
= E

{
YĀI(Ā = ā)

K∏
k=0

Gk

}
,

which equals

P (Ā = ā)E
{
YĀI(Ā = ā)

K∏
k=0

Gk|Ā = ā

}
+ P (Ā 6= ā)E

{
YĀI(Ā = ā)

K∏
k=0

Gk|Ā 6= ā

}

= P (Ā = ā)E
(
Yā

K∏
k=0

Gk|Ā = ā

)
.
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Let gk denote a realization of Gk, and yā denote a realization of Yā, we write

P (Ā = ā)E
(
Yā

K∏
k=0

Gk|Ā = ā

)

= P (Ā = ā)
∫∫∫∫

yā
K∏
k=0

gkf(yā, z̄, x̄, x̄∗|Ā = ā)dx̄∗dz̄dx̄dyā

= P (Ā = ā)
∫∫∫∫

yā
K∏
k=0

gkf(x̄∗|z̄, x̄, yā, Ā = ā)f(z̄, x̄, yā|Ā = ā)dx̄∗dz̄dx̄dyā

= P (Ā = ā)
∫∫∫

yā

{∫ K∏
k=0

gkf(x̄∗|z̄, x̄, yā, Ā = ā)dx̄∗
}
f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā.

By (3.8),
∫ ∏K

k=0 gkf(x̄∗|z̄, x̄, yā, Ā = ā)dx̄∗ =
∫ ∏K

k=0 gkf(x̄∗|x̄)dx̄∗.

Since X∗k1 ⊥⊥ X∗k2|X̄ for k1 6= k2, above becomes

K∏
k=0

∫
gkf(x∗k|x̄)dx∗k =

K∏
k=0

∫
gkf{x∗k|x(k)}dx∗k.

By (3.8), X∗k ∼ N(X(k),Σεk) and using the moment generating function of normal distri-
butions, we obtain that above equals

K∏
k=0

(
1 + exp[hk{2a(k)− 1} − {2a(k)− 1}γT

Xkx(k) + {2a(k)− 1}2γT
XkΣεkγXk/2]

)
,

where hk = −γ0k−γT
Akā(k−1)−γT

Zkz̄(k)−{a(k)−1/2}γT
XkΣεkγXk. Since {2a(k)−1}2=1

for both a(k) = 0 and 1, above equals

K∏
k=0

(1 + exp[{−γ0k − γT
Akā(k − 1)− γT

Zkz̄(k)− γT
Xkx(k)}{2a(k)− 1}])

=
K∏
k=0

1
P{a(k)|, ā(k − 1), z̄(k), x(k)} ,
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where the last identity comes from (3.4) and Assumption 5. Therefore,

E

{
Y I(Ā = ā)

K∏
k=0

Gk

}

= P (Ā = ā)
∫∫∫

yā
K∏
k=0

1
P{a(k)|, ā(k − 1), z̄(k), x(k)}f(z̄, x̄, yā|Ā = ā)dz̄dx̄dyā

= P (Ā = ā)
∫∫∫

yā
K∏
k=0

1
P{a(k)|, ā(k − 1), z̄(k), x(k)}

P (Ā = ā|z̄, x̄, yā)f(z̄, x̄, yā)
P (Ā = ā)

dz̄dx̄dyā

=
∫∫∫

yā
K∏
k=0

1
P{a(k)|, ā(k − 1), z̄(k), x(k)}P (Ā = ā|z̄, x̄, yā)f(z̄, x̄, yā)dz̄dx̄dyā

=
∫∫∫

yā
K∏
k=0

1
P{a(k)|, ā(k − 1), z̄(k), x(k)}P (Ā = ā|z̄, x̄)f(z̄, x̄, yā)dz̄dx̄dyā

=
∫∫∫

yā
1

P (Ā = ā|z̄, x̄)
P (Ā = ā|z̄, x̄)f(z̄, x̄, yā)dz̄dx̄dyā

=
∫∫∫

yāf(z̄, x̄, yā)dz̄dx̄dyā
= E(Yā),

where the fourth last identity is due to the Assumption 3 and the third last identity is due
to Assumption 5.

Let w = ∏K
k=0Gk. Similarly, it can be shown that

E
{
I(Ā = ā)w

}
= E

{
I(Ā = ā)

K∏
k=0

Gk

}
=
∫∫∫

f(z̄, x̄, yā)dz̄dx̄dyā = 1.

Now we consider the pseudo-population as a result of assigning weights w and let Y p

denote the observations of the pseudo-population. Fitting model (3.2) to the pseudo-
population implies

E(Y p|Ā = ā) = E(Y w|Ā = ā)
E(w|Ā = ā)

= E(Y w|Ā = ā)
E{wI(Ā = ā)}/P (Ā = ā)

= P (Ā = ā)E(Y w|Ā = ā),

where the first identity can be understood by the fact that E(Y p|Ā = ā) is consistently
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estimated by
∑n
i=1 yiwi|Āi = ā∑n
i=1wi|Āi = ā

, which converges in probability to E(Y w|Ā = ā)
E(w|Ā = ā)

. Note

that
P (Ā = ā)E(Y w|Ā = ā) = E

{
Y I(Ā = ā)w

}
= E(Yā) = h(ā; β).

So E(Y p|Ā = ā) = h(ā; β). It follows that fitting model (3.2) with weight ŵi which is wi
with (γ0k,γ

T
Ak,γ

T
Zk,γ

T
Xk)T replaced by a consistent estimator (γ̂0k, γ̂

T
Ak, γ̂

T
Zk, γ̂

T
Xk)T yields a

consistent estimator for the causal parameter β in model (3.1).

Weight sw can be expressed as w · l(Ā) no matter the model for A(k) given Ā(k − 1)
is misspecified or not, where l(·) is a function of Ā. Similar to the above development, we
can show E

{
Y I(Ā = ā)sw

}
= l(ā)E(Yā) and E

{
I(Ā = ā)sw

}
= l(ā).

Now we consider the pseudo-population as a result of assigning weights sw and let
Y p denote the observations of the pseudo-population. Fitting model (3.2) to the pseudo-
population implies

E(Y p|Ā = ā) = E(Y sw|Ā = ā)
E(sw|Ā = ā)

= E(Y sw|Ā = ā)
E{swI(Ā = ā)}/P (Ā = ā)

= P (Ā = ā)E(Y sw|Ā = ā)/l(ā).

Note that

P (Ā = ā)E(Y sw|Ā = ā)/l(ā) = E
{
Y I(Ā = ā)sw

}
/l(ā) = E(Yā) = h(ā; β).

So E(Y p|Ā = ā) = h(ā; β). It follows that fitting model (3.2) with weight ŝwi which
is swi with (γ0k,γ

T
Ak,γ

T
Zk,γ

T
Xk)T replaced by a consistent estimator (γ̂0k, γ̂

T
Ak, γ̂

T
Zk, γ̂

T
Xk)T

yields a consistent estimator for the causal parameter β in model (3.1).
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Appendix C

Proofs for the Results in Chapter 4

C.1 Proofs of Theorems 4.1 and 4.2

Let γ be the parameters for the treatment model, and φ(·) be an unbiased estimating
function of γ which is determined by the treatment model. Let θ = (γT, τ)T, then the
estimating function for the naive analysis is

Ψ∗(Y ∗i , Ti, Xi; θ) =


φ(Xi, Ti,γ)

TiY
∗
i

ei
− (1− Ti)Y ∗i

1− ei
− τ

 (C.1)

and solving
n∑
i=1

Ψ∗(Y ∗i , Ti, Xi; θ) = 0 (C.2)

for θ yields the naive estimator τ̂ ∗ = n−1∑n
i=1

TiY
∗
i

êi
− n−1∑n

i=1
(1− Ti)Y ∗i

1− êi
.

Proof of Theorem 4.1:

By Yi and Reid (2010), the solution of (C.2) converges in probability to θ∗0 which
solves E{Ψ∗(Y ∗, T,X; θ∗0)} = 0. We now show that θ∗0 = (γT

0 , τ0)T. Since φ(·) is an
unbiased estimating function of γ, by the form of (C.1), it suffices to show that E

(
TY ∗

e

)
−
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E

{
(1− T )Y ∗

1− e

}
= τ0. Let ε = α1Tε1 + α2(1− T )ε2 + ε3, then

E
(
TY ∗

e

)
= E

[
T{Y + ε+ g(X)}

e

]
= E

(
TY

e

)
+ E

(
Tε

e

)
+ E

{
Tg(X)
e

}
. (C.3)

By Lunceford and Davidian (2004), E
(
TY

e

)
= E(Y1) under causal inference assumptions.

Then, (C.3) becomes

E
(
TY ∗

e

)
= E(Y1) + E

(
Tε

e

)
+ E

{
Tg(X)
e

}
. (C.4)

Noticing that T · T = T and T · (1− T )=0, we obtain that

E
(
Tε

e

)
= E

[
T{α1Tε1 + α2(1− T )ε2 + ε3}

e

]

= E

{
T (α1ε1 + ε3)

e

}

= α1E
(
Tε1
e

)
+ E

(
Tε3
e

)
. (C.5)

Because ε1 and ε3 are both independent of T given X, and E(ε1|X) = E(ε3|X) = 0, we
obtain that

E
(
Tε1
e

)
= E

{
E

(
Tε1
e

∣∣∣∣∣X
)}

= E
{1
e
E(T |X)E(ε1|X)

}
= 0,

and
E
(
Tε3
e

)
= E

{
E

(
Tε3
e

∣∣∣∣∣X
)}

= E
{1
e
E(T |X)E(ε3|X)

}
= 0.

By (C.5), E
{
Tε

e

}
= 0. Since

E

{
Tg(X)
e

}
= E

[
E

{
Tg(X)
e

∣∣∣∣∣X
}]

= E

{
g(X)
e

E(T |X)
}

= E{g(X)},
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(C.4) reduces to
E
(
TY ∗

e

)
= E(Y1) + E{g(X)}. (C.6)

Similarly, by Lunceford and Davidian (2004), E
{

(1− T )Y
1− e

}
= E(Y0) under causal infer-

ence assumptions and we obtain

E

{
(1− T )Y ∗

1− e

}
= E(Y0) + E{g(X)}. (C.7)

Combining (C.6) and (C.7) yields that

E
(
TY ∗

e

)
− E

{
(1− T )Y ∗

1− e

}
= E(Y1)− E(Y0),

which is the ATE τ0.

Proof of Theorem 4.2:

By Yi and Reid (2010), the solution of (C.2) converges in probability to θ∗0 which
solves E{Ψ∗(Y ∗, T,X; θ∗0)} = 0. We now show that θ∗0 = (γT

0 , (p11 − p10)τ0)T. Since φ(·)
is an unbiased estimating function of γ, by the form of (C.1), it suffices to show that

E
(
TY ∗

e

)
− E

{
(1− T )Y ∗

1− e

}
= (p11 − p10)τ0.

Noting that E
(
TY ∗

e

)
= E

{
E

(
TY ∗

e

∣∣∣∣∣X
)}

, we derive that

E

(
TY ∗

e

∣∣∣∣∣X
)

= 1
e
E(TY ∗|X)

= 1
e
· P (T = 1, Y ∗ = 1|X)

= 1
e
· P (T = 1|X) · P (Y ∗ = 1|T = 1, X)

= P (Y ∗ = 1|T = 1, X)
= P (Y = 1, Y ∗ = 1|T = 1, X) + P (Y = 0, Y ∗ = 1|T = 1, X)
= P (Y ∗ = 1|Y = 1)P (Y = 1|T = 1, X) + P (Y ∗ = 1|Y = 0)P (Y = 0|T = 1, X)
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= p11P (Y = 1|T = 1, X) + p10P (Y = 0|T = 1, X)
= (p11 − p10)P (Y = 1|T = 1, X) + p10,

where the homogeneous misclassification probabilities assumption is used in the third last
step. So

E
(
TY ∗

e

)
= E

{
E

(
TY ∗

e

∣∣∣∣∣X
)}

= (p11 − p10) · E[{P (Y = 1|T = 1, X)}|X] + p10

= (p11 − p10) · E[{P (Y1 = 1|T = 1, X)}|X] + p10

= (p11 − p10) · E[{P (Y1 = 1|X)}|X] + p10

= (p11 − p10)E(Y1) + p10, (C.8)

where the consistency assumption is used in the third step and the no unmeasured con-
founding assumption is used in the second last step.

Similarly,

E

{
(1− T )Y ∗

1− e

}
= (p11 − p10)E(Y0) + p10. (C.9)

Therefore, by (C.8) and (C.9), we obtain that

E
(
TY ∗

e

)
− E

{
(1− T )Y ∗

1− e

}
= (p11 − p10) · {E(Y1)− E(Y0)}

= (p11 − p10)τ0, (C.10)

thus the result in (a) follows. Conclusion in (b) follows immediately form the convergence
theorem.
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C.2 Proof of Efficiency Loss Caused by Misclassifica-
tion

First, we obtain that

A(τ0) = E

{
− ∂

∂τ
ψ(Y ∗, T,X; τ0)

}
= p11 − p10.

Now we calculate that

B(τ0) = E{ψ2(Y ∗, T,X; τ0)}

= E

{TY ∗
e
− (1− T )Y ∗

1− e − (p11 − p10)τ0

}2


= E

[
TY ∗

e2 + (1− T )Y ∗
(1− e)2 + (p11 − p10)2τ 2

0 − 2(p11 − p10)τ0

{
TY ∗

e
− (1− T )Y ∗

1− e

}]

= E

{
TY ∗

e2 + (1− T )Y ∗
(1− e)2

}
+ (p11 − p10)2τ 2

0 − 2(p11 − p10)τ0E

{
TY ∗

e
− (1− T )Y ∗

1− e

}

= E

{
TY ∗

e2 + (1− T )Y ∗
(1− e)2

}
− (p11 − p10)2τ 2

0 , (C.11)

where we use that Y ∗ · Y ∗ = Y ∗, T · T = T and (1− T ) · (1− T ) = 1− T in the third step
and we use

E

{
TY ∗

e
− (1− T )Y ∗

1− e

}
= (p11 − p10)τ0

in the last step.

Let q1 = P (Y = 1|T = 1, X) and q0 = P (Y = 1|T = 0, X), then

E
(
TY ∗

e2

)
= E

{
E
(
TY ∗

e2

) ∣∣∣∣∣X
}

= E
{ 1
e2P (T = 1, Y ∗ = 1|X)

}
= E

{
q1p11 + (1− q1)p10

e

}
,

and similarly,

E

{
(1− T )Y ∗
(1− e)2

}
= E

{
1

(1− e)2P (T = 0, Y ∗ = 1|X)
}

= E

{
q0p11 + (1− q0)p10

1− e

}
.
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Therefore, (C.11) becomes

E{ψ2(Y ∗, T,X; τ0)} = E

{
q1p11 + (1− q1)p10

e

}
+E

{
q0p11 + (1− q0)p10

1− e

}
− (p11−p10)2τ 2

0 .

Consequently, the asymptotic variance of
√
n(τ̃ ∗ − τ0) is

VP = A(τ0)−1B(τ0){A(τ0)−1}T

= 1
(p11 − p10)2

[
E

{
q1p11 + (1− q1)p10

e

}
+ E

{
q0p11 + (1− q0)p10

1− e

}]
− τ 2

0 .

When there is no misclassification of Y , the asymptotic variance of
√
n(τ̂ − τ0) can be

written as
V = E

(
q1

e

)
+ E

(
q0

1− e

)
− τ 2

0 .

Now we compare VP and V , assuming that 0 < p11 − p10 < 1. Noticing that

E

{
q1p11 + (1− q1)p10

e

}
= E

{
q1(p11 − p10) + p10

e

}
≥ E

{
q1(p11 − p10)

e

}

and

E

{
q0p11 + (1− q0)p10

1− e

}
= E

{
q0(p11 − p10) + p10

1− e

}
≥ E

{
q0(p11 − p10)

1− e

}
,

we obtain that

1
(p11 − p10)2E

{
q1p11 + (1− q1)p10

e

}
≥ 1

(p11 − p10)E
(
q1

e

)
> E

(
q1

e

)

and

1
(p11 − p10)2E

{
q0p11 + (1− q0)p10

1− e

}
≥ 1

(p11 − p10)E
(

q0

1− e

)
> E

(
q0

1− e

)
.

Therefore, VP > V , suggesting that the misclassification reduces the efficiency.
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C.3 Estimates of V ar(τ̂V), V ar(τ̂N) and Cov(τ̂V, τ̂N)

To work out covariance between τ̂V and τ̂N, we jointly examine the estimation procedures
for τ̂V and τ̂N by combining associated estimating functions. Directly stacking the esti-
mating functions for τ̂V and τ̂N creates estimating function with a dimension twice of the
parameter τ , which generates a scenario with over-constrained estimating functions. To
overcome this problem, we artificially enlarge the parameter space by using τV and τN

to respectively replace τ in the estimating functions of τ̂V and τ̂N , where the true value
of τV and τN is required to be identical to that of τ (i.e., τ0). Specifically, in combina-
tion with the parameters for the treatment model and the misclassification models, we let
θ = (γT, p11, p10, τV, τN)T, and consider the combined unbiased estimating functions

Ψc(Y ∗i , Ti, Xi, Yi; θ) =



φ(Xi, Ti; γ)
g1(Y ∗i , Yi; p11)
g2(Y ∗i , Yi; p10){

TiYi
ei
− (1− Ti)Yi

1− ei
− τV

}
· I(i ∈ V) · n

nV{
TiY

∗
i

ei
− (1− Ti)Y ∗i

1− ei
− (p11 − p10)τN

}
I(i /∈ V) · n

n− nV


,

where I(·) is the indicator function. Then solving ∑n
i=1 Ψc(Y ∗i , Ti, Xi, Yi; θ) = 0 for θ yields

an estimator of θ, θ̂ = (γ̂T, p̂11, p̂10, τ̂V, τ̂N)T.

By estimating function theory, the variance of θ̂ can then be estimated by the empirical
sandwich estimator:

V̂ ar(θ̂) = 1
n
An(θ̂)−1Bn(θ̂){An(θ̂)−1}T,

where An(θ̂) = 1
n

∑n
i=1

{
− ∂

∂θT
Ψc(Y ∗i , Ti, Xi, Yi; θ̂)

}
,

and Bn(θ̂) = 1
n

∑n
i=1 Ψc(Y ∗i , Ti, Xi, Yi; θ̂)ΨT

c (Y ∗i , Ti, Xi, Yi; θ̂). Let V̂i,j be the element of the
ith row and the jth column of V̂ ar(θ̂). Then V̂ ar(τ̂V) = V̂d+3,d+3, Ĉov(τ̂V, τ̂N) = V̂d+3,d+4,
and V̂ ar(τ̂N) = V̂d+4,d+4, where d is the dimension of γ.
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C.4 Proof of Theorem 4.3

Let l1 and l0 be q̂1 and q̂0 with estimated parameters of the postulated outcome models
replaced by the true parameters of the postulated outcome models. It suffices to show

E

{
TY ∗

e(p11 − p10) −
T − e
e

l1 −
T

e

(
p10

p11 − p10

)}
= E(Y1)

and
E

{
(1− T )Y ∗

(1− e)(p11 − p10) + T − e
1− e l0 −

1− T
1− e

(
p10

p11 − p10

)}
= E(Y0).

Note

E

{
TY ∗

e(p11 − p10)

}

= E

[
E

{
TY ∗

e(p11 − p10)

∣∣∣∣∣X
}]

= 1
p11 − p10

E

{
P (T = 1, Y ∗ = 1|X)

e

}

= 1
p11 − p10

E

{
P (T = 1|X){q1p11 + (1− q1)p10}

e

}

= E

{
P (T = 1|X)q1

e

}
+ p10

p11 − p10
E

{
P (T = 1|X)

e

}
,

E
(
T − e
e

l1

)
= E

{
E

(
T − e
e

l1

∣∣∣∣∣X
)}

= E

{
P (T = 1|X)− e

e
l1

}
,
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and

E

{
T

e

(
p10

p11 − p10

)}

= p10

p11 − p10
E

[
E

(
T

e

∣∣∣∣∣X
)]

= p10

p11 − p10
E

{
P (T = 1|X)

e

}
.

So

E

{
TY ∗

e(p11 − p10) −
T − e
e

l1 −
T

e

(
p10

p11 − p10

)}

= E

{
P (T = 1|X)q1

e

}
− E

{
P (T = 1|X)− e

e
l1

}

=

 E(q1), when treatment model is correct, i.e., e = P (T = 1|X)
E(q1), when outcome model is correct, i.e., l1 = q1, l0 = q0

,

which equals E(Y1), since E(q1) = E {P (Y = 1|T = 1, X)} = E(Y1).

Similarly, we calculate

E

{
(1− T )Y ∗

(1− e)(p11 − p10)

}

= E

[
E

{
(1− T )Y ∗

(1− e)(p11 − p10)

∣∣∣∣∣X
}]

= 1
p11 − p10

E

{
P (T = 0, Y ∗ = 1|X)

1− e

}

= 1
p11 − p10

E

{
P (T = 0|X){q0p11 + (1− q0)p10}

1− e

}

= E

{
P (T = 0|X)q0

1− e

}
+ p10

p11 − p10
E

{
P (T = 0|X)

1− e

}
,

E
(
T − e
1− e l0

)
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= E

{
E

(
T − e
1− e l0

∣∣∣∣∣X
)}

= E

{
P (T = 1|X)− e

1− e l0

}

= E

{
1− P (T = 0|X)− e

1− e l0

}
,

and

E

{
1− T
1− e

(
p10

p11 − p10

)}

= p10

p11 − p10
E

[
E

(
1− T
1− e

∣∣∣∣∣X
)]

= p10

p11 − p10
E

{
P (T = 0|X)

1− e

}
.

So

E

{
(1− T )Y ∗

(1− e)(p11 − p10) + T − e
1− e l0 −

1− T
1− e

(
p10

p11 − p10

)}

= E

{
P (T = 0|X)q0

1− e

}
+ E

{
1− P (T = 0|X)− e

1− e l0

}

=

 E(q0), when treatment model is correct, i.e., e = P (T = 1|X)
E(q0), when outcome model is correct, i.e., l1 = q1, l0 = q0

,

which equals E(Y0), since E(q0) = E {P (Y = 1|T = 0, X)} = E(Y0).
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Appendix D

Proofs for the Results in Chapter 5

D.1 Proof of Theorem 5.1

To show the conclusion, it suffices to show

1
(p11 − p10)E{TY

∗G(Z,X∗, T )} − p10

p11 − p10
= E(Y1)

and
1

(p11 − p10)E{(1− T )Y ∗G(Z,X∗, T )} − p10

p11 − p10
= E(Y0).

Let q1 = P (Y = 1|T = 1, X, Z) and q0 = P (Y = 1|T = 0, X, Z). Noting that

E{TY ∗G(Z,X∗, T )} = E[E{TY ∗G(Z,X∗, T )|X,Z}], (D.1)

we evaluate

E{TY ∗G(Z,X∗, T )|X,Z}
= P (T = 1|X,Z)E{Y ∗G(Z,X∗, T )|X,Z, T = 1}
= P (T = 1|X,Z)[P (Y = 1|X,Z, T = 1)E{Y ∗G(Z,X∗, T )|X,Z, T = 1, Y = 1}

+P (Y = 0|X,Z, T = 1)E{Y ∗G(Z,X∗, T )|X,Z, T = 1, Y = 0}]
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= P (T = 1|X,Z)[q1E{Y ∗G(Z,X∗, T )|X,Z, T = 1, Y = 1}
+(1− q1)E{Y ∗G(Z,X∗, T )|X,Z, T = 1, Y = 0}]

= P (T = 1|X,Z)[q1P (Y ∗ = 1|X,Z, T = 1, Y = 1)E{G(Z,X∗, T )|X,Z, T = 1, Y = 1, Y ∗ = 1}
+(1− q1)P (Y ∗ = 1|X,Z, T = 1, Y = 0)E{G(Z,X∗, T )|X,Z, T = 1, Y = 0, Y ∗ = 1}]

= P (T = 1|X,Z)[q1p11E{G(Z,X∗, T )|X,Z, T = 1, Y = 1, Y ∗ = 1}
+(1− q1)p10E{G(Z,X∗, T )|X,Z, T = 1, Y = 0, Y ∗ = 1}], (D.2)

where the second equality comes from that E(U) = ∑1
k=0 P (Y = k)E(U |Y = k) for a

random variable U , and the last equality is due to (5.4).

Next, we show that

E{G(Z,X∗, T )|X,Z, T = 1, Y, Y ∗} = E{G(Z,X∗, T )|X,Z, T = 1}. (D.3)

Indeed, let f(·|·) represent the conditional probability density or mass function for the
corresponding random variables indicated by the arguments. Then we have that

E{G(Z,X∗, T )|X,Z, T = 1, Y, Y ∗}
=

∫
G(Z, x∗, 1)f(x∗|X,Z, T = 1, Y, Y ∗)dx∗

=
∫
G(Z, x∗, 1) · f(x∗, X, Z, T = 1, Y, Y ∗)

f(X,Z, T = 1, Y, Y ∗) dx∗

=
∫
G(Z, x∗, 1) · f(X,Z, T = 1)f(x∗|X,Z, T = 1)f(Y |x∗, X, Z, T = 1)f(Y ∗|Y, x∗, X, Z, T = 1)

f(X,Z, T = 1)f(Y |X,Z, T = 1)f(Y ∗|Y,X,Z, T = 1) dx∗

=
∫
G(Z, x∗, 1) · f(x∗|X,Z, T = 1)f(Y |X,Z, T = 1)f(Y ∗|Y )

f(Y |X,Z, T = 1)f(Y ∗|Y ) dx∗

=
∫
G(Z, x∗, 1)f(x∗|X,Z, T = 1)dx∗

= E{G(Z,X∗, T )|X,Z, T = 1},

where the fourth equality is due to (5.3) and (5.4).

Then applying (5.9) and (D.3) to (D.2), we obtain that

E{TY ∗G(Z,X∗, T )|X,Z}
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= P (T = 1|X,Z)
{
q1p11

1
P (T = 1|X,Z) + (1− q1)p10

1
P (T = 1|X,Z)

}
= q1p11 + (1− q1)p10.

Therefore, using (D.1) gives

E{TY ∗G(Z,X∗, T )}
= (p11 − p10)E(q1) + p10

= (p11 − p10)E{P (Y = 1|T = 1, X, Z)}+ p10

= (p11 − p10)E(Y1) + p10,

and hence
1

(p11 − p10)E{TY
∗G(Z,X∗, T )} − p10

p11 − p10
= E(Y1).

Similarly, examining E{(1− T )Y ∗G(Z,X∗, T )|X,Z} yields

1
(p11 − p10)E{(1− T )Y ∗G(Z,X∗, T )} − p10

p11 − p10
= E(Y0).

D.2 Justification for the Use of (5.12)

We now show that (5.12) meets the two conditions (5.9) and (5.10). By (5.12),

E{G(Z,X∗, T )|X,Z, T = 1}
= 1 + E[exp{(−α0 −αT

ZZ −αT
X∆)(2T − 1)}|X,Z, T = 1]

= 1 + E{exp([−α0 −αT
ZZ −αT

X{X∗ + (T − 1/2)ΣεαX}])|X,Z, T = 1}
= 1 + E{exp(−α0 −αT

ZZ −αT
XX

∗ −αT
XΣεαX/2)|X,Z, T = 1}

= 1 + exp(−α0 −αT
ZZ −αT

XΣεαX/2)E{exp(−αT
XX

∗|X,Z, T = 1)}. (D.4)
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By (5.3), X∗|(X,Z, T ) ∼ N(X,Σε). Then using the moment generating function of normal
distributions, we obtain that (D.4) equals

1 + exp(−α0 −αT
ZZ −αT

XΣεαX/2) exp(−αT
XX + αT

XΣεαX/2)
= 1 + exp(−α0 −αT

ZZ −αT
XX)

= 1
P (T = 1|X,Z) ,

where the last step is due to model (5.11).

Similarly,
E{G(Z,X∗, T )|X,Z, T = 0} = 1

P (T = 0|X,Z) .

Therefore, (5.12) meets the two conditions (5.9) and (5.10).
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Appendix E

Proofs for the Results in Chapter 6

E.1 Proof of Theorem 6.1

Asymptotic Bias of τ̂ ∗∗:

Note that τ̂ ∗∗ can be re-written as

τ̂ ∗∗ = 1∑n
i=1Ri

n∑
i=1

TiY
∗
i Ri

êi
− 1∑n

i=1Ri

n∑
i=1

(1− Ti)Y ∗i Ri

1− êi

= n∑n
i=1Ri

{
1
n

n∑
i=1

TiY
∗
i Ri

êi

}
− n∑n

i=1Ri

{
1
n

n∑
i=1

(1− Ti)Y ∗i Ri

1− êi

}
,

τ̂ ∗∗
p→ 1
E(R)E

{
TY ∗R

e

}
− 1
E(R)E

{
(1− T )Y ∗R

1− e

}
.

Calculate

E

(
TY ∗R

e

∣∣∣∣∣X
)

= 1
e
E(TY ∗R|X)

= 1
e
P (T = 1, Y ∗ = 1, R = 1|X)
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= 1
e
P (T = 1|X)P (R = 1|T = 1, X)P (Y ∗ = 1|T = 1, R = 1, X)

= P (R = 1|T = 1, X)P (Y ∗ = 1|T = 1, R = 1, X)
= P (R = 1|T = 1, X){P (Y = 1, Y ∗ = 1|T = 1, R = 1, X) + P (Y = 0, Y ∗ = 1|T = 1, R = 1, X)}
= P (R = 1|T = 1, X){p11P (Y = 1|T = 1, R = 1, X) + p10P (Y = 0|T = 1, R = 1, X)}
= P (R = 1|T = 1, X){(p11 − p10)P (Y = 1|T = 1, X) + p10}
= P (R = 1|T = 1, X){(p11 − p10)P (Y1 = 1|T = 1, X) + p10}
= P (R = 1|T = 1, X){(p11 − p10)P (Y1 = 1|X) + p10} (E.1)

By (E.1),

E
{
TY ∗R

e

}
= E

{
E

(
TY ∗R

e

∣∣∣∣∣X
)}

= E[P (R = 1|T = 1, X){(p11−p10)P (Y1 = 1|X)+p10}],

Similarly,

E

{
(1− T )Y ∗R

1− e

∣∣∣∣∣X
}

= 1
1− eE{(1− T )Y ∗R|X}

= 1
1− eP (T = 0, Y ∗ = 1, R = 1|X)

= 1
1− eP (T = 0|X)P (R = 1|T = 0, X)P (Y ∗ = 1|T = 0, R = 1, X)

= P (R = 1|T = 0, X)P (Y ∗ = 1|T = 0, R = 1, X)
= P (R = 1|T = 0, X){P (Y = 1, Y ∗ = 1|T = 0, R = 1, X) + P (Y = 0, Y ∗ = 1|T = 0, R = 1, X)}
= P (R = 1|T = 0, X){p11P (Y = 1|T = 0, R = 1, X) + p10P (Y = 0|T = 0, R = 1, X)}
= P (R = 1|T = 0, X){(p11 − p10)P (Y = 1|T = 0, X) + p10}
= P (R = 1|T = 0, X){(p11 − p10)P (Y0 = 1|T = 0, X) + p10}
= P (R = 1|T = 0, X){(p11 − p10)P (Y0 = 1|X) + p10} (E.2)
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By (E.2),

E

{
(1− T )Y ∗R

1− e

}
= E

[
E

{
(1− T )Y ∗R

1− e

∣∣∣∣∣X
}]

= E[P (R = 1|T = 0, X){(p11 − p10)P (Y0 = 1|X) + p10}].

Therefore,

τ̂ ∗∗
p→ E[P (R = 1|T = 1, X){(p11 − p10)P (Y1 = 1|X) + p10}]

E(R)

−E[P (R = 1|T = 0, X){(p11 − p10)P (Y0 = 1|X) + p10}]
E(R)

and the asymptotic bias of τ̂ ∗∗ is

Bias(τ̂ ∗∗) = E[P (R = 1|T = 1, X){(p11 − p10)P (Y1 = 1|X) + p10}]
E(R)

−E[P (R = 1|T = 0, X){(p11 − p10)P (Y0 = 1|X) + p10}]
E(R) − τ0.

Asymptotic Bias of τ̂ ∗:

Since τ̂ ∗ = τ̂ ∗∗/(p11 − p10), it is immediate that the asymptotic bias of τ̂ ∗ is

Bias(τ̂ ∗) = E[P (R = 1|T = 1, X){P (Y1 = 1|X) + p10/(p11 − p10)}]
E(R)

−E[P (R = 1|T = 0, X){P (Y0 = 1|X) + p10/(p11 − p10)}]
E(R) − τ0.

Asymptotic Bias of τ̃ ∗:

Since

τ̃ ∗ = 1
n

n∑
i=1

TiY
∗
i Ri

eiP̂ (Ri = 1|Ti = 1, Xi)
− 1
n

n∑
i=1

(1− Ti)Y ∗i Ri

(1− ei)P̂ (Ri = 1|Ti = 0, Xi)
,
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we obtain

τ̃ ∗
p→ E

{
TY ∗R

eP (R = 1|T = 1, X)

}
− E

{
(1− T )Y ∗R

(1− e)P (R = 1|T = 0, X)

}
.

Similarly, we can show

E

(
TY ∗R

eP (R = 1|T = 1, X)

∣∣∣∣∣X
)

= (p11 − p10)P (Y1 = 1|X) + p10 (E.3)

and
E

{
(1− T )Y ∗R

(1− e)P (R = 1|T = 0, X)

∣∣∣∣∣X
}

= (p11 − p10)P (Y0 = 1|X) + p10. (E.4)

Therefore

τ̃ ∗
p→ E{(p11 − p10)P (Y1 = 1|X) + p10} − E{(p11 − p10)P (Y0 = 1|X) + p10}
= (p11 − p10)[E{P (Y1 = 1|X)} − E{P (Y0 = 1|X)}]
= (p11 − p10)τ0

and the asymptotic bias of τ̃ ∗ is Bias(τ̃ ∗) = (p11 − p10 − 1)τ0.

E.2 Proof of Theorem 6.2

Theorem 6.2(a):

It suffices to show

E

{
TY ∗R

eP (R = 1|T = 1, X)(p11 − p10)

}
− p10

p11 − p10
= E(Y1)

and
E

{
(1− T )Y ∗R

(1− e)P (R = 1|T = 0, X)(p11 − p10)

}
− p10

p11 − p10
= E(Y0),

which is immediate by using (E.3) and (E.4).

Theorem 6.2(b):
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Note that

E

(
RT

eP (R = 1|T = 1, X)

∣∣∣∣∣X
)

= E(RT |X)
eP (R = 1|T = 1, X)

= P (R = 1, T = 1|X)
eP (R = 1|T = 1, X)

= P (T = 1|X)P (R = 1|T = 1, X)
eP (R = 1|T = 1, X)

= 1,

and

E

(
R(1− T )

(1− e)P (R = 1|T = 0, X)

∣∣∣∣∣X
)

= P (R = 1, T = 0|X)
(1− e)P (R = 1|T = 0, X)

= P (T = 0|X)P (R = 1|T = 0, X)
(1− e)P (R = 1|T = 0, X)

= 1.

So

E

(
RT

eP (R = 1|T = 1, X)

)−1

E

{
TY ∗R

eP (R = 1|T = 1, X)(p11 − p10)

}
− p10

p11 − p10
= E(Y1)

and

E

(
R(1− T )

(1− e)P (R = 1|T = 0, X)

)−1

E

{
(1− T )Y ∗R

(1− e)P (R = 1|T = 0, X)(p11 − p10)

}
− p10

p11 − p10
= E(Y0),

and the consistency is justified.
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E.3 Proof of Theorem 6.3

Let q1 = P (Y = 1|T = 1, X) and q0 = P (Y = 1|T = 0, X), l1 and l0 be q̂1 and q̂0 with
estimated parameters replaced by the true parameters. It suffices to show

E

{
TY ∗R

e(p11 − p10)P (R = 1|T = 1, X) −
T − e
e

l1 −
T

e

(
p10

p11 − p10

)}
= E(Y1)

and

E

{
(1− T )Y ∗R

(1− e)(p11 − p10)P (R = 1|T = 0, X) + T − e
1− e l0 −

1− T
1− e

(
p10

p11 − p10

)}
= E(Y0).

Note

E

{
TY ∗R

e(p11 − p10)P (R = 1|T = 1, X)

}

= E

[
E

{
TY ∗R

e(p11 − p10)P (R = 1|T = 1, X)

∣∣∣∣∣X
}]

= 1
p11 − p10

E

{
P (T = 1, Y ∗ = 1, R = 1|X)

eP (R = 1|T = 1, X)

}

= 1
p11 − p10

E

{
P (T = 1|X)P (R = 1|X,T = 1){q1p11 + (1− q1)p10}

eP (R = 1|T = 1, X)

}

= E

{
P (T = 1|X)q1

e

}
+ p10

p11 − p10
E

{
P (T = 1|X)

e

}
,

E
(
T − e
e

l1

)
= E

{
E

(
T − e
e

l1

∣∣∣∣∣X
)}

= E

{
P (T = 1|X)− e

e
l1

}
,
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and

E

{
T

e

(
p10

p11 − p10

)}

= p10

p11 − p10
E

[
E

(
T

e

∣∣∣∣∣X
)]

= p10

p11 − p10
E

{
P (T = 1|X)

e

}
.

So

E

{
TY ∗R

e(p11 − p10)P (R = 1|T = 1, X) −
T − e
e

l1 −
T

e

(
p10

p11 − p10

)}

= E

{
P (T = 1|X)q1

e

}
− E

{
P (T = 1|X)− e

e
l1

}

=

 E(q1), when treatment model is correct, i.e., e = P (T = 1|X)
E(q1), when outcome model is correct, i.e., l1 = q1, l0 = q0

,

which equals E(Y1), since E(q1) = E {P (Y = 1|T = 1, X)} = E(Y1).

Similarly, we calculate

E

{
(1− T )Y ∗R

(1− e)(p11 − p10)P (R = 1|T = 0, X)

}

= E

[
E

{
(1− T )Y ∗R

(1− e)(p11 − p10)P (R = 1|T = 0, X)

∣∣∣∣∣X
}]

= 1
p11 − p10

E

{
P (T = 0, Y ∗ = 1, R = 1|X)
(1− e)P (R = 1|T = 0, X)

}

= 1
p11 − p10

E

[
P (T = 0|X)P (R = 1|T = 0, X){q0p11 + (1− q0)p10}

(1− e)P (R = 1|T = 0, X)

]

= E

{
P (T = 0|X)q0

1− e

}
+ p10

p11 − p10
E

{
P (T = 0|X)

1− e

}
,

E
(
T − e
1− e l0

)
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= E

{
E

(
T − e
1− e l0

∣∣∣∣∣X
)}

= E

{
P (T = 1|X)− e

1− e l0

}

= E

{
1− P (T = 0|X)− e

1− e l0

}
,

and

E

{
1− T
1− e

(
p10

p11 − p10

)}

= p10

p11 − p10
E

[
E

(
1− T
1− e

∣∣∣∣∣X
)]

= p10

p11 − p10
E

{
P (T = 0|X)

1− e

}
.

So

E

{
(1− T )Y ∗R

(1− e)(p11 − p10)P (R = 1|T = 0, X) + T − e
1− e l0 −

1− T
1− e

(
p10

p11 − p10

)}

= E

{
P (T = 0|X)q0

1− e

}
+ E

{
1− P (T = 0|X)− e

1− e l0

}

=

 E(q0), when treatment model is correct, i.e., e = P (T = 1|X)
E(q0), when outcome model is correct, i.e., l1 = q1, l0 = q0

,

which equals E(Y0), since E(q0) = E {P (Y = 1|T = 0, X)} = E(Y0).
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Appendix F

Proofs for the Results in Chapter 7

F.1 Proof of Theorem 7.1

Consistency when E contains a correctly specified model:

Suppose the set of postulated treatment models E contains a correctly specified model.
Without loss of generality, let the first model e1(γ1;X) be correctly specified. Let γ1

0 be
the true value of γ1, i.e., e1(γ1

0 ;X) = e(X) = P (T = 1|X).

By arguments of Han and Wang (2013), we have

ŵi = 1
m

θ̂1/e1(γ̂1;Xi)
1 + λ̂Tĝi(γ̂, β̂)/e1(γ̂1;Xi)

,

where λ̂ = Op(n−1/2) and θ̂1 = n−1∑n
i=1 e

1(γ̂1;Xi). Then 1 + λ̂Tĝi(γ̂, β̂)/e1(γ̂1;Xi)
p→ 0

and θ̂1 p→ E{e1(γ1
0 ;X)} = P (T = 1). As a nonparametric estimator of P (T = 1), m/n

well approximates P (T = 1) as sample becomes larger. Thus, with regularity conditions
satisfied,

Ê(Y1) =
m∑
i=1

ŵiY
∗
i

p11 − p10
− p10

p11 − p10
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= 1
n

n∑
i=1

TiY
∗
i

p11 − p10

n

m

θ̂1/e1(γ̂1;Xi)
1 + λ̂Tĝi(γ̂, β̂)/e1(γ̂1;Xi)

− p10

p11 − p10

= 1
n

n∑
i=1

TiY
∗
i

e1(γ̂1;Xi)(p11 − p10) −
p10

p11 − p10
+ op(1).

We observe that
1
n

n∑
i=1

TiY
∗
i

e1(γ̂1;Xi)(p11 − p10) −
p10

p11 − p10

is consistent estimator for Ê(Y1) by Chapter 4. Therefore, the consistency of Ê(Y1) is
established.

Similarly, with regularity conditions satisfied, we have

Ê(Y0) = 1
n

n∑
i=1

(1− Ti)Y ∗i
{1− e1(γ̂1;Xi)}(p11 − p10) −

p10

p11 − p10
+ op(1).

Observe that
1
n

n∑
i=1

(1− Ti)Y ∗i
{1− e1(γ̂1;Xi)}(p11 − p10) −

p10

p11 − p10

is a consistent estimator Ê(Y0) by Chapter 4. Therefore, the consistency of Ê(Y0) is
established.

Consistency when Q contains a correctly specified model:

Suppose the set of postulated outcome models Q contains a correctly specified model.
Without loss of generality, let the first model q1

t (β1;X) be correctly specified and β1
0 be

the true value of β1. Then q1
t (β1

0;X) = qt(X) = P (Y = 1|X,T = t).

By constraint ∑m
i=1 ŵi = 1 and ∑n

i=m+1 w̃i = 1, we observe that Ê(Y1) and Ê(Y1) can
be re-written as

Ê(Y1) =
m∑
i=1

ŵi

(
Y ∗i

p11 − p10

)
− p10

p11 − p10
=

m∑
i=1

ŵi

(
Y ∗i − p10

p11 − p10

)

and
Ê(Y0) =

n∑
i=m+1

w̃i

(
Y ∗i

p11 − p10

)
− p10

p11 − p10
=

n∑
i=m+1

w̃i

(
Y ∗i − p10

p11 − p10

)
.
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We have
m∑
i=1

ŵi

(
Y ∗i − p10

p11 − p10

)
=

m∑
i=1

ŵi

{(
Y ∗i − p10

p11 − p10

)
− q1

1(β̂1;Xi)
}

+
m∑
i=1

ŵiq
1
1(β̂1;Xi).

The constraint
m∑
i=1

ŵi{q1
1(β̂1;Xi)− n−1

n∑
i=1

q1
1(β̂1;Xi)} = 0

gives
m∑
i=1

ŵiq
1
1(β̂1;Xi) =

m∑
i=1

ŵi
1
n

n∑
i=1

q1
1(β̂1;Xi) = 1

n

n∑
i=1

q1
1(β̂1;Xi),

where
1
n

n∑
i=1

q1
1(β̂1;Xi)

p→ E{q1
1(β1

0;X)} = E(Y1).

Thus it remains to show ∑m
i=1 ŵi

{(
Y ∗i − p10

p11 − p10

)
− q1

1(β̂1;Xi)
}

p→ 0.

m∑
i=1

ŵi

{(
Y ∗i − p10

p11 − p10

)
− q1

1(β̂1;Xi)
}

= 1
m

m∑
i=1

(Y ∗i − p10)/(p11 − p10)− q1
1(β̂1;Xi)

1 + ρ̂Tĝi(γ̂, β̂)

/{
1
m

m∑
i=1

1
1 + ρ̂Tĝi(γ̂, β̂)

}

= n

m

1
n

n∑
i=1

Ti{(Y ∗i − p10)/(p11 − p10)− q1
1(β̂1;Xi)}

1 + ρ̂Tĝi(γ̂, β̂)

/{
n

m

1
n

n∑
i=1

Ti

1 + ρ̂Tĝi(γ̂, β̂)

}
p→ 1

P (T = 1)E
[
T{(Y ∗ − p10)/(p11 − p10)− q1

1(β1
0;X)}

1 + ρT
∗g(γ∗,β∗)

]/[
1

P (T = 1)E
{

T

1 + ρT
∗g(γ∗,β∗))

}]
,

where ρ∗, γ∗ and β∗ are the limiting values of ρ, γ and β, respectively. Note

1
P (T = 1)E

(
E

[
T{(Y ∗ − p10)/(p11 − p10)− q1

1(β1
0;X)}

1 + ρT
∗g(γ∗,β∗)

∣∣∣∣∣X
])

= 1
P (T = 1)E

(
1

1 + ρT
∗g(γ∗,β∗)

E

[
T{(Y ∗ − p10)/(p11 − p10)− q1

1(β1
0;X)}

∣∣∣∣∣X
])

,
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where

E

[
T{(Y ∗ − p10)/(p11 − p10)− q1

1(β1
0;X)}

∣∣∣∣∣X
]

= P (T = 1|X)E
{

Y ∗i
(p11 − p10) −

p10

(p11 − p10) − q
1
1(β1

0;X)
∣∣∣∣∣X,T = 1

}

= P (T = 1|X)
{
P (Y ∗i = 1|X,T = 1)

(p11 − p10) − p10

(p11 − p10) − q
1
1(β1

0;X)
}

= P (T = 1|X)
[
p11q1(X) + p10{1− q1(X)}

(p11 − p10) − p10

(p11 − p10) − q
1
1(β1

0;X)
]

= P (T = 1|X){q1(X)− q1
1(β1

0;X)}
= 0.

Therefore Ê(Y1) p→ E(Y1). Similarly, Ê(Y0) p→ E(Y0). The consistency is established.

F.2 Proof of Theorem 7.2

Consistency when E contains a correctly specified model:

By arguments in Appendix F.1, we have

Ê(Y1) =
m∑
i=1

ŵiYiRi/π11(α̂;Xi)

= 1
n

n∑
i=1

TiRiYi
π11(α̂;Xi)

n

m

θ̂1/e1(γ̂1;Xi)
1 + λ̂Tĝi(γ̂, β̂)/e1(γ̂1;Xi)

= 1
n

n∑
i=1

TiRiYi
e1(γ̂1;Xi)π11(α̂;Xi)

+ op(1).

We observe that

E

{
TRY

e1(γ1
0 ;X)π11(α;X)

}

= E

[
E

{
TRY

e1(γ1
0 ;X)π11(α;X)

} ∣∣∣∣∣X
]
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= E

[
P (T = 1, R = 1, Y = 1|X)

e1(γ1
0 ;X)π11(α;X)

]

= E

[
P (T = 1|X)P (Y = 1|T = 1, X)P (R = 1|Y = 1, T = 1, X)

e1(γ1
0 ;X)π11(α;X)

]
= E{P (Y = 1|T = 1, X)} (by MAR assumption)
= E(Y1).

Therefore, the consistency of Ê(Y1) is established.

Similarly, with regularity conditions satisfied, we have

Ê(Y0) = 1
n

n∑
i=1

(1− Ti)RiYi
{1− e1(γ̂1;Xi)}π10(α̂;Xi)

+ op(1),

and
E

[
(1− T )RY

{1− e1(γ1
0 ;X)}π10(α;X)

]
= E(Y0).

Therefore, the consistency of Ê(Y0) is established.

Consistency when Q contains a correctly specified model:

Ê(Y1) =
m∑
i=1

ŵiYiRi/π11(α̂;Xi) =
m∑
i=1

ŵi{YiRi/π11(α̂;Xi)− q1
1(β̂1;Xi}+ ŵiq

1
1(β̂1;Xi).

The constraint
m∑
i=1

ŵi{q1
1(β̂1;Xi)− n−1

n∑
i=1

q1
1(β̂1;Xi)} = 0

gives
m∑
i=1

ŵiq
1
1(β̂1;Xi) =

m∑
i=1

ŵi
1
n

n∑
i=1

q1
1(β̂1;Xi) = 1

n

n∑
i=1

q1
1(β̂1;Xi),

where
1
n

n∑
i=1

q1
1(β̂1;Xi)

p→ E{q1
1(β1

0;X)} = E(Y1).
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Thus it remains to show ∑m
i=1 ŵi{YiRi/π11(α̂;Xi)− q1

1(β̂1;Xi}
p→ 0. Calculate

m∑
i=1

ŵi{YiRi/π11(α̂;Xi)− q1
1(β̂1;Xi}

= 1
m

m∑
i=1

YiRi/π11(α̂;Xi)− q1
1(β̂1;Xi)

1 + ρ̂Tĝi(γ̂, β̂)

/{
1
m

m∑
i=1

1
1 + ρ̂Tĝi(γ̂, β̂)

}

= n

m

1
n

n∑
i=1

Ti{RiYi/π11(α̂;Xi)− q1
1(β̂1;Xi)}

1 + ρ̂Tĝi(γ̂, β̂)

/{
n

m

1
n

n∑
i=1

Ti

1 + ρ̂Tĝi(γ̂, β̂)

}
p→ 1

P (T = 1)E
[
T{RY/π11(α;X)− q1

1(β1
0;X)}

1 + ρT
∗g(γ∗,β∗)

]/[
1

P (T = 1)E
{

T

1 + ρT
∗g(γ∗,β∗))

}]
,

where ρ∗, γ∗ and β∗ are the limiting values of ρ, γ and β, respectively. Note

E

[
T{RY/π11(α;X)− q1

1(β1
0;X)}

1 + ρT
∗g(γ∗,β∗)

∣∣∣∣∣X
]

= P (T = 1|X)E{RY/π11(α;X)− q1
1(β1

0;X)|X,T = 1}
1 + ρT

∗g(γ∗,β∗)

= P (T = 1|X)
1 + ρT

∗g(γ∗,β∗)
[E{RY/π11(α;X)|X,T = 1} − q1

1(β1
0;X)]

= P (T = 1|X)
1 + ρT

∗g(γ∗,β∗)
[P (R = 1|X, Y = 1, T = 1)P (Y = 1|X,T = 1)/π11(α;X)− q1

1(β1
0;X)]

= P (T = 1|X)
1 + ρT

∗g(γ∗,β∗)
[P (Y = 1|X,T = 1)− q1

1(β1
0;X)] (by MAR assumption)

= 0.

Therefore Ê(Y1) p→ E(Y1). Similarly, Ê(Y0) p→ E(Y0). The consistency is established.

F.3 Proof of Theorem 7.3

Consistency when E contains a correctly specified model:
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By arguments in Appendix F.1, we have

Ê(Y1) =
m∑
i=1

ŵiY
∗
i Ri

π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10

= 1
n

n∑
i=1

TiRiY
∗
i

π11(α̂;Xi)(p11 − p10)
n

m

θ̂1/e1(γ̂1;Xi)
1 + λ̂Tĝi(γ̂, β̂)/e1(γ̂1;Xi)

− p10

p11 − p10

= 1
n

n∑
i=1

TiRiY
∗
i

e1(γ̂1;Xi)π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10
+ op(1).

Caculate

E

{
TRY ∗

e1(γ1
0 ;X)π11(α;X)(p11 − p10)

}
− p10

p11 − p10

= 1
p11 − p10

E

[
E

{
TRY ∗

e1(γ1
0 ;X)π11(α;X)

} ∣∣∣∣∣X
]
− p10

p11 − p10

= 1
p11 − p10

E

{
P (T = 1, R = 1, Y ∗ = 1|X)

e1(γ1
0 ;X)π11(α;X)

}
− p10

p11 − p10

= 1
p11 − p10

E

{
P (T = 1|X)P (R = 1|X,T = 1)P (Y ∗ = 1|X,T = 1, R = 1)

e1(γ1
0 ;X)π11(α;X)

}
− p10

p11 − p10

= 1
p11 − p10

E{p11P (Y = 1|X,T = 1, R = 1) + p10P (Y = 0|X,T = 1, R = 1)} − p10

p11 − p10
= E{P (Y = 1|T = 1, X)} (by MAR assumption)
= E(Y1).

Therefore, the consistency of Ê(Y1) is established.

Similarly, with regularity conditions satisfied, we have

Ê(Y0) = 1
n

n∑
i=1

(1− Ti)RiY
∗
i

{1− e1(γ̂1;Xi)}π10(α̂;Xi)(p11 − p10) −
p10

p11 − p10
+ op(1),

and
E

[
(1− T )RY ∗

{1− e1(γ1
0 ;X)}π10(α;X)(p11 − p10)

]
− p10

p11 − p10
= E(Y0).

Therefore, the consistency of Ê(Y0) is established.
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Consistency when Q contains a correctly specified model:

By constraint ∑m
i=1 ŵi = 1 and ∑n

i=m+1 w̃i = 1, we observe that Ê(Y1) and Ê(Y1) can
be re-written as

Ê(Y1) =
m∑
i=1

ŵiY
∗
i Ri

π11(α̂;Xi)(p11 − p10)−
p10

p11 − p10
=

m∑
i=1

ŵi

{
Y ∗i Ri

π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10

}

and

Ê(Y0) =
n∑

i=m+1

w̃iY
∗
i Ri

π10(α̂;Xi)(p11 − p10)−
p10

p11 − p10
=

n∑
i=m+1

w̃i

{
Y ∗i Ri

π10(α̂;Xi)(p11 − p10) −
p10

p11 − p10

}
.

We have
m∑
i=1

ŵi

{
Y ∗i Ri

π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10

}

=
m∑
i=1

ŵi

{
Y ∗i Ri

π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10
− q1

1(β̂1;Xi)
}

+
m∑
i=1

ŵiq
1
1(β̂1;Xi)

The constraint
m∑
i=1

ŵi{q1
1(β̂1;Xi)− n−1

n∑
i=1

q1
1(β̂1;Xi)} = 0

gives
m∑
i=1

ŵiq
1
1(β̂1;Xi) =

m∑
i=1

ŵi
1
n

n∑
i=1

q1
1(β̂1;Xi) = 1

n

n∑
i=1

q1
1(β̂1;Xi),

where
1
n

n∑
i=1

q1
1(β̂1;Xi)

p→ E{q1
1(β1

0;X)} = E(Y1).

Thus it remains to show∑m
i=1 ŵi

{
Y ∗i Ri

π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10
− q1

1(β̂1;Xi)
}

p→ 0.

Denote Zi = Y ∗i Ri

π̂11(α̂;Xi)(p11 − p10) −
p10

p11 − p10
, then

m∑
i=1

ŵi

{
Y ∗i Ri

π11(α̂;Xi)(p11 − p10) −
p10

p11 − p10
− q1

1(β̂1;Xi)
}

238



= 1
m

m∑
i=1

Zi − q1
1(β̂1;Xi)

1 + ρ̂Tĝi(γ̂, β̂)

/{
1
m

m∑
i=1

1
1 + ρ̂Tĝi(γ̂, β̂)

}

= n

m

1
n

n∑
i=1

Ti{Zi − q1
1(β̂1;Xi)}

1 + ρ̂Tĝi(γ̂, β̂)

/{
n

m

1
n

n∑
i=1

Ti

1 + ρ̂Tĝi(γ̂, β̂)

}
p→ 1

P (T = 1)E
[
T{Z − q1

1(β1
0;X)}

1 + ρT
∗g(γ∗,β∗)

]/[
1

P (T = 1)E
{

T

1 + ρT
∗g(γ∗,β∗))

}]
,

where ρ∗, γ∗ and β∗ are the limiting values of ρ, γ and β. Note

E

[
T{Z − q1

1(β1
0;X)}

1 + ρT
∗g(γ∗,β∗)

∣∣∣∣∣X
]

= E[T{Z − q1
1(β1

0;X)}|X]
1 + ρT

∗g(γ∗,β∗)

= P (T = 1|X)E{Z − q1
1(β1

0;X)|X,T = 1}
1 + ρT

∗g(γ∗,β∗)
,

where

E{Z − q1
1(β1

0;X)|X,T = 1}

= E

{
Y ∗R

π11(α;X)(p11 − p10) −
p10

p11 − p10
− q1

1(β1
0;X)

∣∣∣∣∣X,T = 1
}

= P (R = 1|X,T = 1){p11P (Y = 1|X,T = 1, R = 1) + p10P (Y = 0|X,T = 1, R = 1)}
π11(α;X)(p11 − p10)

− p10

p11 − p10
− q1

1(β1
0;X)

= P (Y = 1|X,T = 1) + p10

p11 − p10
− p10

p11 − p10
− q1

1(β1
0;X) (by MAR assumption)

= 0

Therefore Ê(Y1) p→ E(Y1). Similarly, Ê(Y0) p→ E(Y0). The consistency is established.
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