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Abstract

The story of this work is dimensionality reduction. Dimensionality reduction is a
method that takes as input a point-set P of n points in Rd where d is typically large
and attempts to find a lower-dimensional representation of that dataset, in order to ease
the burden of processing for down-stream algorithms. In today’s landscape of machine
learning, researchers and practitioners work with datasets that either have a very large
number of samples, and or include high-dimensional samples. Therefore, dimensionality
reduction is applied as a pre-processing technique primarily to overcome the curse of di-
mensionality.

Generally, dimensionality reduction improves time and storage space required for pro-
cessing the point-set, removes multi-collinearity and redundancies in the dataset where
different features may depend on one another, and may enable simple visualizations of the
dataset in 2-D and 3-D making the relationships in the data easy for humans to compre-
hend. Dimensionality reduction methods come in many shapes and sizes. Methods such as
Principal Component Analysis (PCA), Multi-dimensional Scaling, IsoMaps, and Locally
Linear Embeddings are amongst the most commonly used method of this family of algo-
rithms. However, the choice of dimensionality reduction method proves critical in many
applications as there is no one-size-fits-all solution, and special care must be considered
for different datasets and tasks. Furthermore, the aforementioned popular methods are
data-dependent, and commonly rely on computing either the Kernel / Gram matrix or the
covariance matrix of the dataset. These matrices scale with increasing number of samples
and increasing number of data dimensions, respectively, and are consequently poor choices
in today’s landscape of big-data applications.

Therefore, it is pertinent to develop new dimensionality reduction methods that can be
efficiently applied to large and high-dimensional datasets, by either reducing the depen-
dency on the data, or side-stepping it altogether. Furthermore, such new dimensionality
reduction methods should be able to perform on par with, or better than, traditional meth-
ods such as PCA. To achieve this goal, we turn to a simple and powerful method called
random projections.

Random projections are a simple, efficient, and data-independent method for stably
embedding a point-set P of n points in Rd to Rk where d is typically large and k is on the
order of log n. Random projections have a long history of use in dimensionality reduction
literature with great success. In this work we are inspired to build on the ideas of random
projection theory, and extend the framework and build a powerful new setup of random
projections for large high-dimensional datasets, with comparable performance to state-of-
the-art data-dependent and nonlinear methods. Furthermore, we study the use of random
projections in domains other than dimensionality reduction, including prediction, and show
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the competitive performance of such methods for processing small dataset regimes.
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Notation

In the derivations below, scalar values are represented using lower-case italics, e.g.,
v1, v2, ..., vn, vectors are represented using bold lower-case notation, e.g, v ∈ Rn, and ma-
trices are represented using upper-case italics, e.g., V ∈ Rm×n.

Indexing matrix elements are as follows:

R: a matrix

Ri.: the ith column of a matrix

R.j: the jth row of a matrix

Rij: the coefficient of the matrix at the i, jth index
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Chapter 1

Introduction

Many information processing systems and intelligent decision-making systems operate on
measured real-world data that often have a large number of components and high dimen-
sionality. To adequately and efficiently handle this sort of data, these system may first
obtain lower-dimensional representations of the data samples. As a result, dimensionality
reduction enables, among others, data compression, data visualization, machine learning,
and handling of large volumes of high-dimensional data enabling researchers across a variety
of fields to overcome the curse of dimensionality that comes with having more information.

1.1 Traditional Dimensionality Reduction Methods

Methods for dimensionality reduction are plentiful and have been successfully applied to
applications such as head pose estimation [60], visualization of biomedical data [50], face
[45] and speech recognition [51], and gene expression analysis [78] among others. Different
techniques are used across various data setups taking into account assumptions about the
complexity and degrees of freedom of the input data, and performances and running-time
complexities vary based on the desired level of accuracy and assumptions made about the
underlying manifold.

Common methods for dimensionality reduction include Principal Component Analysis
(PCA) [77] that finds the optimal embedding with maximum variance, Multi-dimensional
Scaling (MDS) [74] that optimizes an eigenvalue problem to find an embedding that pre-
serves pair-wise Euclidean distances, and Isomap [73] which takes the distribution of neigh-
boring points into account in finding an embedding that preserves pair-wise geodesic dis-
tances. Along the lines of Isomap, Locally Linear Embedding (LLE) [61] preserves local

1



Figure 1.1: Examples of dimensionality reduction applied to high-dimensional data. This
Faces dataset was collected by Professor Brendan Frey at the University of Toronto. It
consists of 2000 frames of a sequential video capturing his face, where each frame is of
size 28× 20 pixels, meaning it is 560-dimensional. From looking at this data, it is evident
that there are only few degrees of variation in the data, including the angle / orientation
of his face, expression, etc., but not for example the relative positioning of the eyes and
nose. Therefore, we can maybe find a low (say 2-dimensional) representation of the high
560-dimensional data and use that for further processing. On the right, we see how one
method for dimensionality reduction was able to cluster together similar expressions and
orientations and plot them on the surface of this page, i.e., in 2 dimensions.

properties of the data manifold by attempting to preserve the reconstruction weights of
each sample obtained from writing / reconstructing each original sample as a linear com-
bination of its nearest neighbors in the original high dimensional space.

Despite the success of these methods, special care must be considered when choosing
an appropriate dimensionality reduction method. Specifically, the dependence on data of-
ten leads researchers to experiment with multiple dimensionality reduction methods before
moving on to the rest of their algorithms. The challenge with running multiple experi-
ments to settle on an appropriate method is further exacerbated when dealing with high
dimensional data or a large number of datapoints. In PCA, for example, computing the
covariance matrix for a large number of features becomes exponentially more expensive as
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Figure 1.2: Examples of dimensionality reduction applied to complex manifolds. Many
times datasets are generated by, or can be best-explained by, complex underlying processes.
For instance, inn this Swiss-Roll example, dimensionality reduction helps us by unfolding
this manifold through a process called “Manifold Discovery” to explain the locality and
geometry of the space. Here we can see that after the unfolding process all blue points
remain close together, and all yellow points remain clustered together.

the dimensionality increases, and in MDS or Kernel PCA, constructing pairwise distances
to feed into the optimization problem grows exponentially with the number of samples and
causes an efficiency bottleneck. As information processing systems tackle larger-scale ap-
plications, big-data scenarios are becoming the norm and there seems to be a more urgent
need to explore more efficient methods for dimensionality reduction that are universal in
their applicability to different datasets.

1.2 Random Projections and the Johnson-Lindenstrauss

Lemma

In contrast to traditional methods for dimensionality reduction, Random Projections (RP)
[14] are simple, efficient, and data-independent methods for dimensionality reduction. The
Johnson-Lindenstrauss (JL) theorem [39] asserts that, using a linear projection that is in-

3



dependent of the samples themselves, one can find an embedding in O(log n/ε2) dimensions
where n is the number of samples and ε is the error tolerance. Assuming the embedding
satisfies a minimum projected space dimensionality of k, this embedding will preserve
pair-wise Euclidean distances with high probability. As we shall review in the sections
that follow (full proof in Appendix A), this lower-bound depends only on the number of
samples n and the error margin ε, but not on the original data dimensionality d, rendering
random projections as an exceptionally powerful dimensionality reduction tool for very
high dimensional data. The simplicity and universal applicability of random projections
are further brought to light when one considers how to construct linear random projections:
all entries of a k×d projection matrix can be populated uniformly and independently from
a standard Normal distribution [15, 36], or can be independently drawn from

{
− 1, 0,+1

}
[1] resulting in sparse, and consequently more efficient, random projections.

While methods such as linear random projections have proven to be simple and highly
efficient in this regard, however, there is limited theoretical and experimental analysis for
nonlinear random projections. Recently a study demonstrated that the theory for linear
random projections can be extended to nonlinear random projections by applying the
Recitifed Linear Unit (ReLU) activation function elementwise on the embedding [25]. The
authors demonstrate that this form of nonlinear random projection performs a class-aware
embedding where the embedding places objects of the same class closer to one another
after the projection compared to objects of different classes.

1.3 Thesis Contributions

Thus, the general motivation of this thesis is designing new forms of random projection for
prediction and dimensionality reduction in big-data domains where traditional methods
suffer from exponentially more expensive compute power required. These domains include
classification of high-dimensional but scarce data samples, and dimensionality reduction
of high-dimensional data. In this regard, the contributions of the present thesis are as
follows: (i) proposes two new forms of linear random projections inspired by biology, and
comprehensively tests these setups on standard imaging datasets and against standard
linear random projections, (ii) proposes a new form of nonlinear random projection setup
called ensemble of nonlinear maximum random projections along with extensive emperical
tests on standard imaging datasets and against standard dimensionality reduction methods,
and (iii) provides a self-contained proof derivation of the JL Lemma for Gaussian random
matrices to build the theoretical foundation of the thesis.
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1.4 Thesis Layout

In Chapter 3, we explore an alternative method for linear random projections that are
inspired by distributions of biological synapses observed in the human visual cortex and
study its application for classifying high-dimensional datasets with few samples. Later in
Chapter 4, we build on recent ideas for nonlinear random projections and introduce ensem-
ble of nonlinear maximum random projections as a new form of random projection that
rival the performance of data-dependent dimensionality reduction setups while incurring a
fraction of the computational cost. Finally in Chapter 5.2.3, we present Supervised Random
Projections and posit it as a tractable approximate method for supervised dimensionality
reduction on large datasets.
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Chapter 2

Background

In this chapter, background information for the thesis and related works for each proposed
contribution are presented. In Section 2.1, we review the Johnson-Lindenstrauss lemma,
the fundamental theory supporting random projections. In Section 2.2 the various forms
of random projections are described with a comparative overview of scenarios suited for
each. Finally in Section 2.3, relevant theory from Compressed Sensing, Locality Sensitive
Hashing, and Random-Weighted Neural Networks are presented.

2.1 Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss (JL) lemma is concerned with the following problem. We are
given a point-set P of n points in Rd where d is typically large. We would like to embed these
points into a lower-dimensional Euclidean subspace Rk while approximately preserving the
geometry of the space and relative positioning of all pairs of points. Formally,

Theorem 1. For any point-set P =
{
x1,x2, · · · ,xn

}
⊂ Rd, any integer n (number of

samples), and any 0 < ε < 1 (error tolerance), let k be a positive integer satisfying

k ≥ 4(ε2/2− ε3/3)−1 log n (2.1)

then, there exists a map f : Rd → Rk such that for all xi,xj ∈ P, with probability greater
than 1− δ we have

(1− ε)||xi − xj||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj||2 (2.2)
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There are many potential benefits of operating in a low-dimensional feature space,
including reduced storage space and reduced computational complexity of subsequent al-
gorithms operating in the lower-dimensional space. Take for example the expectation
maximization (EM) algorithm that clusters datapoints based on squared intra-class dis-
tance. Both run-time and space complexity of the EM algorithm depends exponentially
on the dimensionality of the datapoints, and reducing this dimensionality improves the
algorithm’s performance exponentially.

Over the years, both the statement and the proof of the JL lemma have been sharpened
and simplified, while various forms of algorithms have been developed for efficiently con-
structing JL-embeddings satisfying the conditions of Theorem 1. Achlioptas beautifully
chronicles the evolution of these proofs in [1], while studying the works of [15, 36, 23]. One
such embedding function f(·) is simply a projection matrix R ∈ Rd×k where each coefficient
rij ∼ 1√

k
N (0, 1) = N (0, 1

k
). Therefore, Equation (2.2) can be written equivalently as:

Pr
[∣∣∣||yi − yj ||2 − ||xi − xj||2

∣∣∣ ≥ ε
]
≤ δ (2.3)

where yi = RTxi, yj = RTxj , and R has coefficients samples independently and identically
from certain distributions. One such distribution is the standard normal distribution where
rij ∼ N (0, 1), while other distributions are detailed below in Section 2.2. Such random
projection matrices will henceforth be referred to as RP matrices.

2.1.1 Proof Sketch

In all methods for producing JL-embeddings, the core of the proof revolves around showing
that the projection of any vector is sharply concentrated around its expected value. As
above, consider a set P =

{
x1,x2, · · · ,xn

}
⊂ Rd with n samples being projected into Rk

where k � d and 0 < ε < 1 is the error tolerance. The setup below depicts linear random
projections:

RT︷ ︸︸ ︷
r11 r12 · · · · · · r1d

r21 r22 · · · · · · r2d
...

...
...

. . .
...

rk1 rk2 · · · · · · rkd


k×d

∗

X︷ ︸︸ ︷
x11 x12 · · · x1n

x21 x22 · · · x2n
...

... · · · ...
...

...
. . .

...
xd1 xd2 · · · xdn


d×n

=

Y︷ ︸︸ ︷
y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
. . .

...
yk1 yk2 · · · ykn


k×n

where rij are drawn from certain distributions (detailed in 2.2), and xij are the features
for the datapoints provided. We shall represent each datapoint in the point-set P as

7



xi = [x1i, x2i, · · · , xdi]T ∀ i ∈ [n] which collectively populate the columns of the data
matrix X. Therefore, X represents the original data and Y represents the embedded data.

In order for such embeddings to be information-preserving, we must satisfy the condi-
tions of Theorem 1 and have a minimum dimensionality of k ≥ 4(ε2/2− ε3/3)−1 log n. The
proof sketch is as follows:

1. Show for fixed x1, x2: E[||f(x1)− f(x2)||22] = ||x1 − x2||22

2. Show variance is bounded and small for x1, x2

3. Using Bonferroni’s Union Bound, bound the failure probability for all pairs of points

For a detailed proof, refer to Appendix A. The important take-away from this proof is
that nothing is fundamental about using Gaussian random projections in particular. Many
distributions with unit variance and certain boundedness properties (or higher order mo-
ment conditions) suffice and satisfy the conditions of the Johnson-Lindenstrauss lemma.
Below, we shall study the various forms of random projections that provide a computa-
tionally simple yet exceptionally powerful method for embedding data in lower dimensional
space while preserving the information in the point-set.

2.2 Various Forms of Random Projections

2.2.1 Linear Random Projections

In Section 2.1.1 we saw how that many family of distributions have properties (i.e., unit
variance and certain boundedness properties) that satisfy the conditions for information
preserving embeddings of random projections. In this section, we briefly touch on some
of the most common distributions, as detailed in Table 2.1. While Gaussian random pro-
jections are the most common in the literature and easiest to derive bounds for, applying
this form of random projection requires multiplying out a dense matrix of floating point
numbers by the intended data matrix. This creates a two-fold challenge: i) random pro-
jections aim to design the simplest embedding strategy, and taking the product of a dense
matrix with a data matrix (which is naturally large because of operating in a big-data do-
main) is computationally expensive, and ii) random projections are often used directly on
the sensors that collect the data (see Compressed Sensing); these sensors are often costly
(mainly why compressed sensing is used in the first place) and have limited computational

8



Gaussian RP [39] +/− Bernoulli RP [1] (s = 1)

Sparse RP [1] (s = 3) Very Sparse RP [49] (s = 30)

Figure 2.1: Different forms of 25 × 25 linear random projections with varying sparsity
(in brackets). Note that the form of Very Sparse RP presented in Table 2.1 can be used
to generate both +/− Bernoulli RP (s = 1) and Sparse RP (s = 3). Green areas of
the projection matrix correspond to coefficients with magnitude 0 which when multiplied
by the data matrix do not constitute an add-multiply operation and hence are faster to
execute.

capacity; therefore designing random projection schemes that don’t involve floating point
operations is important.

Overcoming these two challenges is the general motivation of newer forms of linear
random projections. In [1], the +/− Bernoulli RP and Sparse RP schemes were put forth,
and in recent, [49] proposed Very Sparse RP that push the limits of the earlier method
even further. As depicted in Figure 2.1, these newer forms of random projections reduce
the number of operations required for stable random projections by a factor of 100 or
more compared to Gaussian random projections. Proofs and bound derivations for these
methods, albeit more involved, can be found in the corresponding references.

9



Table 2.1: Various family of distributions for linear random projections.

Gaussian [39] +/− Bernoulli [1] Sparse [1] Very Sparse [49]

rij ∼ N (0, 1) rij ∼

{
+1 w.p. 1

2

−1 w.p. 1
2

rij ∼
√

3


+1 w.p. 1

6

0 w.p. 2
3

−1 w.p. 1
6

rij ∼
√
s


+1 w.p. 1

2s

0 w.p. 1− 1
s

−1 w.p. 1
2s

2.2.2 Nonlinear Random Projections

While linear random projections have been studied extensively in the literature, recent
research has studied and formulized the effect of nonlinearities on the shape of embedding
space. Notably, Giryes et al. [25] postulate that element-wise rectification of randomly pro-
jected point sets are better suited for prediction tasks such as classification. In particular,
the authors show that nonlinear rectified RP activation functions will perform class-aware
embedding of the data that is sensitive to angles between points: such embeddings tend to
decrease the Euclidean distances between points with a small angle between them (“same
class”) more than the distances between points with large angles between them (“different
classes”). Nonlinear random projections will be explored in detail in Chapter 4.

2.3 Relevant Work & Applications

2.3.1 Compressed Sensing

Compressed Sensing [6, 18] is a signal processing technique concerned with the problem of
efficiently acquiring and reconstructing a signal. A wide variety of signals, including audio
and natural images are very high dimensional and can be costly to acquire. However, these
signals are often k-sparse and or compressible and therefore can be well-approximated
by a linear combination of a few atoms of some redundant dictionary [52, 7, 54]. The
sparsity of these signals allows for approximate recovery even when only a small number of
nonadaptive 1 linear measurements (including random projections) have been made of the
the data. This setup is very similar to that of random projections seen above. Here, y ∈ Rk

is the information we have obtained from the k−sparse signal x ∈ Rn, k � n via y =
Φx, where the encoder Φ ∈ Rk×n has its coefficients independently sampled from certain
distribution functions. To extract the information contained in y regarding x, a decoder ∆
maps from Rk back to Rn, and is designed to provide an approximation x̃ := ∆(y) = ∆(Φx)

1order-invariant
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to x. This mapping is typically nonlinear, and finding good encoder-decoder pairs is the
central question in Compressed Sensing. Properties of the sensing matrix Φ such as the
restricted isometry property [5] determine the distributions that generate good encoders
based on the likelihood of small error if the decoder is forced to reconstruct a k-sparse
signal. Therefore, the design of data-agnostic encoders for Compressed Sensing is based
on the same theory for random projections.

2.3.2 Locality Sensitive Hashing

In the field of information retrieval, the use of random projections was central to the em-
bedding of very high dimensional data for applications such as Locality Sensitive Hashing
(LSH). LSH provides an efficient approximate solution to the Nearest Neighbour Search
(NNS) problem, which is a problem defined by a collection of objects (represented by a
set of features in a high-dimensional attribute space) and a query object with the same
features represented in the same high-dimensional space. In the Nearest Neighbour Search
problem we are interested in finding an object (or k objects) in the collection that are most
similar to the query object. This problem has been well studied and efficient algorithms
have been proposed for objects with low-dimensional representations in Euclidean space
Rd under some lp norm, however, many practical problems operate on high-dimensional
data ranging anywhere from 10s to 1000s of features. Such applications include data com-
pression [24], databases and data mining [28], information retrieval [17, 21, 63], machine
learning [11], and pattern recognition [12, 19].

The random projection scheme used in LSH was capable of overcoming the curse of di-
mensionality for efficiently addressing the Approximate Nearest Neighbor Search (ε-NNS)
problem [2]. In their work, A. Andoni and P. Indyk demonstrated that the randomness
inherent to hashes resulted in an algorithm that doesn’t guarantee an exact answer, but
instead provided a high probability guarantee of finding the nearest neighbor, while ben-
efiting from having to search in a much lower dimensional space. The key idea here was
that upon randomly projecting a collection of objects through several hash functions (with
certain structural properties such as orthonormality), objects which are close to each other
in the input space have a higher probability of collision in the projection space, compared
to objects that are more distant in the input space. This in turn results in faster and more
accurate nearest neighbor lookup.
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2.3.3 Random-Weighted Neural Networks

Extreme Learning Machines

Extreme Learning Machines (ELMs) have recently emerged as an alternative learning strat-
egy to standard feedforward neural networks. Initially proposed for regression in single
hidden-layer feed-forward neural networks [34], ELMs have since been extended to multi-
layered networks [72], and have been applied for prediction (classification and regression
[33]), feature selection [44], as well as dimensionality reduction [43]. Unlike the back-
propogation (BP) algorithm typically employed in feed-forward neural networks, ELMs
enforce random weights for all-but-final layer of the network, and reduce learning to ana-
lytically solving the following linear system of equations:

Hβ = T

where H is the data matrix containing all data points projected to the penultimate network
layer, β are the weights between the penultimate and final network layer, and T are the
corresponding target outputs of the network for the input data. The claim is that even
random weighted layers with nonlinear activations have universal approximation charac-
teristics [31]. Experimental results with ELMs [32] demonstrate massive improvements in
training time and competitive generalization performance compared to their BP-equipped
counterparts. Random projections and ELM theory are similar in that both use random
weights to project into a space with desirable properties. In this work, however, we shall
show that random projections for prediction and dimensionality reduction can forgo the
need for analytically solving the system of equations above. This posits random projec-
tions as a very simple and universally applicable solution for prediction and dimensionality
reduction.

Random-weighted Deep Neural Networks

Initially observed by Jarrett et al. [38], and later extended by others to various architectures
and for various applications [58, 65, 13, 9], Deep Neural Network (DNN) architectures with
fixed (i.e., untrained) random weights have been surprisingly successful in supervised and
unsupervised classification. Jarrett et al. experimentally showed that the classification
error rate of a 1- or 2-layer convolutional neural network (CNN) with fixed random weights
is comparable to that of the network trained in supervised mode for small training sets
such as the Caltech 101 [22] or medical imaging datasets.
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Saxe et al. [65] demonstrated how the use of random weights can act as a proxy for rapid
prototyping of deep neural architectures by separately attributing network performance to
both the architecture, and the optimized / trained weights.

Pinto et al. [58] extended the use of randomness beyond kernel weights and into a
broader set of neural network parameters and hyperparameters. In their work, the archi-
tecture, learning rate, number of neurons, as well as the kernel weights themselves were
either randomly chosen from a pre-defined range of categorical possibilities, or indepen-
dently sampled from a 1-D Gaussian. In that work and in subsequent work [13] the same
group demonstrated state-of-the-art performance on a multitude of basic object recognition
tasks by blending the top performing models discovered using this search strategy.

Chung et al. [9] benchmarked the use of random projection kernels against various
kernel approximation methods, and demonstrated that a relatively shallow network with
3 layers outperforms state-of-the-art kernel approximations with the same number of basis
expansions.

We encourage the reader to note a crucial difference between the of previous authors
and that which is presented in this thesis. In this work, we demonstrate that any network
equipped with the proposed generated random kernels can perform really well, forgoing
the need for searching over a large parameter space to find optimal configurations. Fur-
thermore, the architectures presented in this section are similar to that of ELMs presented
above: both are comprised of one or more random layers followed by a learned stage which
adjusts weights analytically, or through back-propogation. In this thesis, we explore ran-
dom projection setups (shallow and deep) followed by a much simpler learning paradigm:
1-Nearest Neighbors. This allows us to decouple the effect of random projections and final
layer training, and sheds light on the geometry of the embedding through random projec-
tions itself. A good embedding is one that does not depend on powerful machine learning
algorithms to work, and we beleive random projections offer that.
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Chapter 3

Biologically Inspired Linear Random
Projections

In the previous chapter, we discussed various forms of linear random projections and com-
pared them in terms of efficiency, applicability, and ease of proof. This inspired us to search
for new forms of distributions that can provide similar embedding guarantees for specific
applications. One such application area is multi-class classification of imaging data, as
many recent machine learning algorithms are benchmarked on such datasets. In design-
ing new random projection setups, we were inspired by synaptic weight distributions in
the human cortex which empowers the human visual system, the source of inspiration for
many new machine learning architectures such as convolutional neural network (CNN).
This chapter outlines our process and the design of these new forms of linear random
projections, inspired by biology. In Section 3.1 we review the background and relevant lit-
erature detailing synaptic weight formation in the human brain. Section 3.2 proposes two
new linear random projection setups and Section 3.3 comprehensively tests these setups on
standard imaging datasets and against standard linear random projections. We summarize
our findings and discuss future work in Section 3.4.

3.1 Introduction

We have recently witnessed an explosive growth in machine learning research focused on
modelling and real-world inference problems. Notably, deep learning models such as deep
neural networks (DNN) are a particularly powerful and biologically inspired class of learn-
ing algorithms that have consistently demonstrated state-of-the-art performance on tasks
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such as object recognition, image classification, image segmentation, and speech recog-
nition. A particular type of DNN that has proven to be very effective in recent year are
convolutional neural networks (CNNs) (see [35]) which are architecturally made up of layers
of neurons modelled after simple and complex cells in the visual cortex.

In order to train a DNN for a prediction task such as classification, the synaptic
strengths of the network are optimized based on training data. Optimizing a large-scale
artificial neural architecture such as a CNN for classification in a generalizable manner,
however, requires a large number of input image samples. This may be prohibitive in
many practical scenarios where labeled data is limited. To ameliorate this dependence, we
explore whether it is possible to sidestep the training of a large portion of learnable parame-
ters—synaptic strengths—in a neural network. More particularly, we are motivated by [20]
where strong modelling and inference performance was exhibited when random synaptic
strengths are leveraged in modelling of functional brain computationally. This suggests
that the inherent structure of deep neural networks may itself be enough to elicit a pow-
erful modelling and inference performance even when the formation of synaptic strengths
are random.

In particular, we draw inspiration from a number of studies that investigated the dis-
tribution of synaptic strengths in the biological brain. For example, it has been observed
that the synaptic strengths of certain synapses such as the excitatory synapses can be
well modelled as random variables following well-known distributions such as truncated
Gaussians [3]. Furthermore, Song et al. [71] found that the underlying synaptic strengths
follows a log-normal distributions. Other studies [55, 8] suggested a correlated relation-
ship between synaptic strengths in earlier layers of the visual cortex, specifically circular
concentric receptive fields modelled after Lateral Geniculate (LGN) cells.

Inspired by the aforementioned observations [71, 55, 8], we perform an exploratory
study on different uncorrelated and correlated probabilistic generative models for synaptic
strength formation in deep neural networks and the potential influence of different distri-
butions on modelling performance particularly for the scenario associated with small data
sets.

3.2 Methodology

Here we model the synaptic strength distribution of the deep neural network as P (W)
where W is the set of synaptic strengths W =

{
wi
}n

1
and n is the number of synapses.

In order to explore the effect of different probabilistic generative models for synaptic for-
mation on modelling and inference performance in a focused manner, in this study we
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Figure 3.1: Examples of various CNN kernels. The top row depicts the 25× 25 covariance
matrix that generated each of the four 25-dimensional sample kernels below it. From left to
right we see a normal Gaussian distribution, a Log-Normal distribution, Center-Surround
kernels, and Gaussian blurred kernels.

restrict the network architecture to be a convolutional neural network (CNN) architecture.
More specifically, the synaptic strengths in the convolutional layers are synthesized based
on P (W) and are not fine-tuned, whereas the synaptic strengths of fully connected lay-
ers are synthesized and then trained to reach their complete modelling capabilities. This
setup allows us to localize the effect of P (W) on synaptic strengths and fairly compare
the modelling and inference performance of different synaptic formation drawn from var-
ious underlying biologically-inspired probability distributions. Furthermore, each random
variable corresponding to a synaptic strength denoted as wi are drawn from a probabilistic
generative model P (W). In this study, we explore three different distribution models based
on past biological studies:

I Normal Gaussian: P (W) =
∏n

i=1
1√
2π

exp(−w2
i /2)

II Log-normal: P (W) =
∏n

i=1
1

wiσ
√

2π
exp

(
ln(wi−µ)2

2σ2

)
III Correlated center-surround: P (W) =

∏n
i=1

1√
|2πΣi|

exp(−wT
i Σiwi

2
)1
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Table 3.1: Impact of different probabilistic generative models for synaptic strength gen-
eration on modelling performance for 3 small datasets (see text on how datasets were
generated). The synaptic strengths of the convolutional layers were generated from distri-
butions describing synaptic strengths in the visual cortex. The convolutional layer synapses
are frozen and not trained, whereas the fully connected layers of the CNN are trained over.
Accuracy out of %100. Highest performing setups are in bold.

Dataset Normal Log-Normal
Center-

Surround
Fully

Trained
CIFAR-10 19.83± 00.74 25.67± 00.17 26.40± 00.74 20.37± 00.62

MNIST 72.52± 00.21 80.89± 00.45 78.08± 01.19 79.01± 01.39

SVHN 26.40± 00.22 30.32± 00.17 30.86± 00.57 27.70± 01.79

This approach to synapse strength formation can enable a drastic reduction in the
number of parameters that need to be trained, which is an important factor in scenarios
with small number of training data.

3.3 Experimental Setup

Followed by biological observations, the effect of three different P (W) are examined on a
same convolutional neural network (CNN) architecture here: I) normal Gaussian distribu-
tion, II) log-normal Gaussian distribution (µ = −0.702, σ2 = 0.9355 from [71]), and III)
correlated center-surround distribution.

In order to experiment the effect of different synaptic strength distributions on mod-
elling performance, a CNN is utilized consisting of a convolutional layer comprising of 64
kernels with receptive fields of size 5× 5, a max-pooling layer with stride 2, and a rectified
nonlinear unit, as well as two fully connected layers inspired by LeNet’s fully connected
layer architecture [48] and have a 1024N −64N −10N structure (input - hidden - output).

1Σi is the covariance matrix at synapse i, where the non-zero off-diagonal elements characterize the
correlation between neighboring synapses. This correlated distribution can be thought of as a 2D Gaussian
fitler whose center is located in the middle of the receptive field (i.e., convolutional kernel). In our
experiments, the coefficient at any point in the 5×5 receptive field was sampled from a noisy 2D Gaussian
filter as follows:

wi ∼ exp
(−(x− x0)2 − (y − y0)2

2σ2

)
+ λ N (0, 1)
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In this exploratory study, we examined three standard and publicly available object
classification datasets including MNIST hand-written digits [48], Street View House Num-
bers SVHN [56], and CIFAR-10 object recognition dataset [46] for the scenario of small
training datasets. To mimic such a scenario 38 samples per each class label (i.e., 10 class
labels for each dataset) were randomly selected from the available training data in each
dataset to form a small dataset. However to compute the test accuracy, the models are
tested with all available testing samples. The reported results (mean and std) are computed
based on three runs.

3.4 Summary

Table 3.1 summarizes the results of our experiments. We also report the classification
performance of the same CNN architecture on these datasets where the CNN is com-
pletely trained, and all synaptic strengths are fine-tuned. As expected, the small number
of training samples (i.e., 38 per class) results in the CNN’s relatively poor classification
performance, as is evident from the right-most column of Table 3.1 named “Fully Trained”.

Interestingly, sampling the convolutional synaptic strengths from a normal Gaussian
distribution (“Normal” column) yields a classification performance very similar to that of
“Fully Trained”. This may suggest that in the scenario with very little data, learning a
generalizable classification system may not be worth the effort put into training as the
performance is similar to that of random valued convolutional synaptic strengths.

The most surprising of the preliminary results can be seen in the “Log-Normal” and
“Center-Surround” columns. One possibility that these results suggest is that sampling the
synaptic strengths of a CNN from well-known distributions that model synaptic strengths
in the visual cortex can result in a classification system that potentially outperforms care-
fully fine-tuned CNNs on small datasets. This result is a powerful first step towards
designing deep neural networks that do not require many data samples to learn, and can
sidestep / reduce the burden of current training procedures while maintaining or boosting
classification and modelling performance.

There are a number of exciting avenues of future research in this regard. Firstly, we
are excited to explore this same effect on deeper networks with more synapses, and to
investigate how and whether these synaptic strength distributions may be used to design
more efficient architectures and training algorithms. Another interesting direction is to
explore the effect of increasing datasets size on classification performances — we expect
that the performance of random-weighted neural networks to break down as we move to
operate in larger datasets regimes. Finally, the current results were inspired by synapse
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distributions emperically observed in the visual cortex of humans, however, it is important
that future research ground these observations in theory of random projections (similar to
Appendix A) as such theory may suggest newer forms of random projections and derivations
thereof that have not yet been explored.
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Chapter 4

Nonlinear Random Projections

In the previous chapters, we took a deep dive into various forms of linear random pro-
jections. The methods discussed were all data- and task-agnostic in their construction of
random projections, and provided guarantees of geometry preservation in the embedding.
Linear methods are attractive due to their simplicity and because the assumption that the
data lies near a low-dimensional manifold applies broadly to many datasets. However, as
is common in machine learning, nonlinear extensions can provide powerful generalizations
of linear methods and potentially provide more appropriate methods for complex natural
datasets. Therefore in this chapter, we focus on exploring a new form of nonlinear random
projection setup called ensemble of nonlinear maximum random projections. In Section
4.1 we outline the motivation of this chapter. In Section 4.2 we review the background
and relevant studies detailing current nonlinear random projection setups and detail the
aforementioned new setup. Section 4.3 comprehensively tests this setup on standard imag-
ing datasets and against standard dimensionality reduction methods. Our findings are
discussed in Section 4.4 and summarized in Section 4.5.

4.1 Introduction

In this study, we review the theoretical framework for random projections and nonlinear
rectified random projections, and introduce ensemble of nonlinear maximum random pro-
jections. We empirically evaluate the embedding performance on 3 commonly used natural
datasets and compare with linear random projections and traditional techniques such as
PCA, highlighting the superior generalization performance and stable embedding of the
proposed method.
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Nonlinear dimensionality reduction methods such as this hold promise to offer an ad-
vantage over their linear counterparts for real-world data, as real-world data is likely to lie
on or near a highly nonlinear manifold. This is the question we explore in this study. We
extend the line of work above in this experimental study by employing an ensemble of ran-
dom projections and using the maximum activations as the embedding coefficient. In the
work that follows, we empirically demonstrate how this form of random projection leads
to stable low-dimensional embeddings that perform better than linear random projections
[23], nonlinear rectified random projections [25], and PCA [77].

4.2 Methodology

Inspired to extend linear random projection to nonlinear random projections to tackle
complicated real-world datasets, we first review the theory on linear RPs in the context
of dimensionality reduction. Dimensionality reduction attempts to find an embedding
Y ⊂ Rk of the original set X =

{
x1,x2, · · · ,xn

}
⊂ Rd. In particular, dimensionality

reduction based on random projections rely on the Johnson-Lindenstrauss (JL) theorem
[39] to assert the existence of an embedding that preserves all pair-wise Euclidean (l2)
distance, with high probability. More specifically,

Theorem 2.1 For any set X =
{
x1,x2, · · · ,xn

}
⊂ Rd, any integer n (number of sam-

ples), and any 0 < ε < 1 (error tolerance), let k be a positive integer satisfying

k ≥ 4(ε2/2− ε3/3)−1 log n (4.1)

then, there exists a map f : Rd → Rk such that for all xi,xj ∈ X, with probability greater
than 1− δ we have

(1− ε)||xi − xj||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj||2 (4.2)

One such embedding function f(·) is simply a projection matrix R ∈ Rd×k where each
coefficient rij ∼ 1√

k
N (0, 1) = N (0, 1

k
). Therefore, the above can be written equivalently as

Pr
[∣∣∣||yi − yj ||2 − ||xi − xj||2

∣∣∣ ≥ ε
]
≤ δ (4.3)

where yi = RTxi and yj = RTxj . For a proof of the above theorem, as well as other forms
of embeddings, refer to [15, 36, 1]. Linear random projections are depicted as follows:
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Giryes et al. [25] extended this line of work to nonlinear RPs by applying an activation
function on the embedded samples, yi ∀ i ∈ [n]. In particular, a ReLU operator (ρ(w) =
w · 1{w ≥ 0}) was applied element-wise to each coefficient of the embedded samples, as
depicted below:

This resulted in the introduction of an additional term in (2.3) which depends on the
angular distance between samples in the original space (i.e., the xis)

Pr
[∣∣∣||yi − yj||2 − (1

2
||xi − xj||2 + ||xi|| ||xj || Ψ(xi,xj)

)∣∣∣ ≥ ε
]
≤ δ (4.4)

where yi = ρ(RTxi), yj = ρ(RTxj), Ψ(xi,xj) = 1
π

(
sin(θ)− θ cos(θ)

)
, and θ = ∠(xi,xj),

the angular distance between xi and xj . The authors show that Ψ(xi,xj) is approximately
equal to 0.5(1 − cos(θ)), helping us understand that the probability bound (4.4) suggests
that nonlinear rectified RPs activation function will perform class-aware embedding of
the data that is sensitive to angles between points: such embeddings tend to decrease the
Euclidean distances between points with a small angle between them (“same class”) more
than the distances between points with large angles between them (“different classes”).

In addition to ReLU as an activation function for nonlinear RPs, the authors of [25]
claim a similar analysis can be derived for the spatial pooling operation commonly used in
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Figure 4.1: Effect of Nonlinear Rectified Random Projections on intra- and inter-class
Euclidean distances. The distance between the blue and red points shrinks less than the
distance between the red points as the angle between the latter is smaller. Source: [25].

convolutional neural networks (CNNs). In this work, we explore the effect of choosing the
max activation as the embedded feature on the quality of the embeddings for the application
of dimensionality reduction. In contrast to spatial pooling used in CNNs, that supports
embedding-robustness via spatial invariance, our strategy selects the maximum activation
of m randomly selected features as the embedded coefficient. This form of nonlinearity is
supported by an ensemble of random projection matrices { R(1), · · · , R(m)} ⊂ Rd×k that
embed each input sample xi into yi via

yij = max
{

(Rj
(1))Txi, · · · , (Rj

(m))Txi

}
∀ j ∈ [k] (4.5)

where yij is the jth coefficient of embedded point yi, and Rj
(l) is the jth column of the

lth projection matrix R(l). We refer to this method as Ensemble of Nonlinear Maximum
Random Projections, as depicted below:
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4.3 Experimental Setup

In this section, we describe our experimental setup, parameters, and metrics used to com-
pare the performance of the proposed method against other dimensionality reduction meth-
ods. In the experiments below, n is the number of samples, d is the original dimensionality,
and k is the projected dimensionality of the embedded space. Table 4.1 summarizes the
results averaged over 10 runs.

4.3.1 Evaluation Metric

We assess the quality of the embedding by evaluating how the local structure is retained
in the projected space. This is accomplished by measuring the generalization error of
1-nearest neighbor (1-NN) classifier trained on the low-dimensional representation of the
data (as is done, e.g., in [64, 75]). Ideally, dimensionality reduction reduces the number
of data features while maintaining a certain level of generalization performance. As we
shall see, in many cases dimensionality reduction methods lead to improved generalization
errors in the lower dimensions, a characteristic much desired.

4.3.2 Datasets

For our experiments, we selected three datasets that represent tasks from a variety of
domains: (i) the CIFAR-10 dataset [46], (ii) the STL-10 dataset [10], (iii) the ImageNet
Tiny dataset. These datasets were selected because they satisfy the theoretical conditions
for stable embedding using random projections1.

The first two datasets comprise of 10 classes of natural scene images with image size
32×32×3. This value constitutes the original dimensionality of the samples. The CIFAR-
10 and STL-10 datasets contain 50, 000 and 5, 000 training samples, respectively. For
computational reasons, we randomly selected 250 samples from each of the 10 classes as
the training set, and used the entire test set to compute 1-NN performance.

The final dataset comprised of 200 classes of natural images, with 500 training samples
and 50 test samples per class. Each image was the result of a crop of an original image
in the ILSVRC dataset [62], where the crop was done using accompanying bounding box
information. Even this tiny version was prohibitively large to compute 1-NN for, therefore
we opted to first resize all cropped images to 32× 32× 3, and instead of computing gener-
alization error on the collective of 200 classes, we evaluated performance on 10 randomly
selected pairs2 and computed average performance in each projected dimension. Running
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1-NN on the entire 200-class dataset resulted in generalization performance of around %2
accuracy for data projected using the proposed method; although the proposed method
outperformed other methods, the performances were hardly distinguishable, thus we opted
the pairwise strategy.

4.4 Discussion

We first address the surprising result that lower-dimensional representations of the afore-
mentioned datasets often lead to improved generalization performance while having fewer
dimensions. A possible explanation for this increase in performance after dimensionality
reduction is due to the nature of the datasets, where pixels / features in natural images
contain local information that is repeated across neighboring pixels / features. Further-
more, dimensionality reduction is known to make the representations more robust to noise
and outliers, potentially leading to improved generalization performance. We note that this
trend does not continue to improve performance as we continue to reduce dimensionality
further. This is expected because ultimately the dimension is reduced to 1 feature where
almost all of the features are discarded and hence we cannot expect superior performance.
Results for really low dimensions are not included due to brevity.

We also note that PCA almost always outperforms linear RP, potentially because PCA
actively considers the data in its optimization process. Many studies have compared PCA
and linear RP. Dasgupta’s seminal work [14] studies the tradeoffs between these two meth-
ods, demonstrating that although PCA often performs better than linear RP, linear RP
enjoys superior time-complexity (O(dn) for linear RP vs O(d3) for PCA). Furthermore,
while linear RP can always stably embed the input set into k = O(log n/ε2) dimensions,
PCA can at worst case embed into k = Ω(n) dimensions.

Furthermore recall that PCA focuses on solving a global minimization (i.e., min
∑n

i=1 ||xi−
yi||2 where xi is the original sample and yi is the projected sample). This form of optimiza-
tion does not guarantee that local pairwise distances are preserved. In contrast to PCA,
random projections have provably converging bounds on the distortion of local pairwise
distances between all pairs of samples in the embedding space with respect to the original
space.

1To accommodate the theoretical conditions for highly accurate random projections, the embedded
space Rk must satisfy a minimum dimensionality of O(log n/ε2). This minimum dimensionality is > 100
for the number of samples in our experiments.

2Sample pairs: (school bus, remote control), (brown bear, german shepherd), (brown bear, lion), (lion,
monarch butterfly), (monarch butterfly, steel-arch bridge), · · ·
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It is also interesting to see the results for nonlinear maximum RP outperform both
linear RP and nonlinear rectified RP at higher dimensions. This difference in performance
is observed while [25] suggest similar performance for ReLU and spatial pooling activation
functions. We hypothesize that the low performance of nonlinear rectified RP in high
dimensions may be because roughly half of the features are being set to zero, while the low
performance of nonlinear maximum RP in low dimensions may stem from the relatively
tighter distribution of features in the embedded space (i.e., (4.5)) and the quality of the
l2 norm in high dimensions. This comparison and reasons for varying performances merit
further study.

Furthermore, we observe that the performance of linear RP and nonlinear rectified RP
is consistent as the projected dimension k decreases from 3072 to 128 and then drops as k
drops from 128 to 64. This suggests that we have crossed the theoretical lower bound for
highly stable embedding. In contrast to this, the performance of nonlinear maximum RP
follows a gradual decrease in performance as the projected dimension k drops from 3072
to 64.

Finally, a surprising observation in our experiments for ensemble of nonlinear maximum
RP was its similar performance to that of ensemble of nonlinear minimum RP, as long as
we were consistent in applying the max / min functions on each output dimension. This
observation will likely be of importance in future work when deriving theoretical probability
bounds for nonlinear maximum RP.

4.5 Summary

In this study, we introduced a new method for nonlinear maximum RPs for stable and
class-aware embedding of n data samples from Rd into Rk. Inspired by theoretical work
on linear RPs and nonlinear rectified RPs, and following their stipulation surrounding
theory for the proposed method, we perform an experimental study showing the stable
and superior embedding of nonlinear maximum RPs compared to prior RP methods on 3
different real-world datasets. Furthermore, we compare the performance of the proposed
method with PCA, a commonly used dimensionality reduction technique, and show that
the proposed method performs comparatively (in the theoretically allowed range for k)
while being computationally much more efficient.

In future work, we would like to derive a theory for the probability bounds of the
nonlinear embedding of samples into lower dimensions using the max activation function.
Specifically, we would like to assert the claim of [25] that this bound is similar for spatial
pooling and ReLU activation functions, and to explore the differences and the interplay
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between these two nonlinearities, and variants thereof. Additionally, our preliminary ex-
periments on multi-layered nonlinear RPs (not included here for brevity) hint at the com-
pounded power of such projections in further boosting performance. Theory in this vein is
promising for theoretically backing empirical results observed by [38] and [42] where CNNs
with random weights competitively performed on classification tasks.
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Chapter 5

Supervised Random Projections

Previous chapters have been concerned with positing random projections as an efficient and
data-independent method for dimensionality reduction. There, we reviewed standard ran-
dom projections, presented biologically inspired linear random projections, and attended to
ensembles of maximum random projections as extensions of the random projections frame-
work for modeling datasets with few samples and or with nonlinear relationships. This
chapter presents one final strategy for random projections, this time suggesting the use of
the labels present in the data as a guide for random projections. The presented method is
referred to as Supervised Random Projections. In Section 5.1, we review the motivation for
supervised random projections, and outline the problem we attempt to solve. In Section
5.2, we present relevant work on information maximization between predictor and response
random variables, and review the seminal work on kernel approximation relevant to super-
vised random projection derivation. It is based on these foundations that we are able to
derive the formulation for supervised random projections. Section 5.3 then describes our
experimental setup including dataset and evaluation metrics. Finally, in Section 5.4 we
discuss the results and conclude with future recommendations.

5.1 Introduction

In previous chapters, we have seen random projections posited as a tractable approach
for dimensionality reduction for datasets containing many samples or samples with high
dimensionality. There, linear random projections were portrayed as transformations that
preserve the geometry and relative positioning of the data manifold with high probability,
and nonlinear random projections were shown to cluster samples of the same class together
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in the embedding space based on the likelihood that samples of the same class have smaller
angles between them. While previous random projection setups were data-independent in
that the same architecture and distribution were used across different datasets, this chap-
ter suggests an alternative that considers the independent high-dimensional explanatory
random variable as well as its corresponding dependent response random variable in the
embedding process. Specifically, we seek to devise a random projection scheme where the
cross-correlation between projected samples and their labels (in a classification setting) is
maximized. We refer to this new setup as Supervised Random Projections. In this chap-
ter, we will explore the setup for supervised random projections, and base the derivation
in relevant work on Supervised Principal Component Analysis (SPCA), a dimensionality
reduction and feature extraction method that has found many applications in data vi-
sualization, regression, and classification. While SPCA and its nonlinear extension (i.e.,
KSPCA) demonstrated highly competitive performance compared to various supervised
dimensionality reduction methods [4], the derivation and implementation include a spec-
tral decomposition stage which is a major bottleneck for high-dimensional data (SPCA)
or for datasets with many samples (KSPCA). The motivation for this work is to overcome
this bottleneck by employing the power of kernel approximation.

5.2 Methodology

In this section, we will review the foundations of Supervised Principal Component Analysis
[4], a method to optimally find a projection of our data in a potentially lower-dimensional
space that has maximum cross-correlation with the labels. We also present the motivation
for, and present an elegantly simple way of, approximating kernel machines, popular meth-
ods used broadly in machine learning. Finally, we detail the derivations of the proposed
method.

5.2.1 Kernel Approximation

Kernel methods are successful techniques used broadly in many machine learning for prob-
lems ranging from classification [67] and regression [80] to metric learning [76, 16] and
dimensionality reduction [79, 66]. Kernel methods evaluate a kernel function k(x,y) =
〈φ(x), φ(y)〉 for all pairs of training samples and store the evaluated pairwise similari-
ties (defined as inner product between samples in some potentially high-dimensional space
[37]) in a Kernel matrix 1, Kij, to be used in downstream algorithms. Here, φ : X → F is

1also Gram matrix
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known as a lifting function which maps elements of the observation space X into a high-
dimensional feature space F . The “kernel trick” allows us to evaluate the inner product
between any pair of samples in a high-dimensional space by directly plugging in the values
of x and y into the closed-form formula for k(x,y), essentially evaluating the similarity
between these samples in a nonlinear, potentially infinite dimensional space. A commonly
used kernel is the RBF kernel: k(x,y) = exp

(
||x− y||2/2σ2

)
with variance σ.

Despite the success of these methods, kernel methods have limited applicability in large-
scale problems due to poor scaling in the face of increasing number of training samples.
This problem presents itself when storing the Kernel matrix, and later when the Kernel
matrix is used to evaluate a decision function for a new test sample becomes increasingly
computationally expensive as the number of training samples increase. In their seminal
work, Rahimi and Recht [59] proposed that mapping the data (both train and test) into
a relatively low-dimensional randomized feature space can ameliorate the problem of eval-
uating the kernel function on all pairs of samples. Their method essentially bypasses the
reliance on the implicit lifting function φ and instead, uses an explicit mapping that trans-
forms the data from its original space into a low-dimensional Euclidean inner product space
using a random feature map z : Rd → Rk. This randomized feature map is constructed in a
manner ensuring that the inner product between a pair of transformed points approximates
their kernel evaluation:

k(x,y) = 〈φ(x), φ(y)〉 ≈ ψ(x)Tψ(y) (5.1)

where the parameters of z are random bases sampled independently from the inverse
Fourier transform of the desired shift-invariant kernel. Incidentally, this covers a wide
class of kernel functions including Gaussian RBF, Laplace, Matern, etc. Thus, instead of
evaluating the entries of the kernel matrix individually, the entire kernel matrix K can be
approximated via a fixed set of random bases drawn from the above distribution applied
to the data samples. This method came to be known as Random Fourier Features and
was later extended and referred to as Random Kitchen Sinks. For a Gaussian RBF kernel
with variance σ, one can simply approximate the training data kernel using the following
Matlab code:

% N: number of training samples in X

% d: dimensionality of training samples in X

% k: dimensionality of random feature and/or number of random bases

W = randn(k,d) / σ;
b = 2 * pi * rand(k,1);

Ψ = sqrt(1 / k) * cos(W * X + b * ones(1,N));

kernel_approx = Ψ’ * Ψ;
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Inspired by the work above on approximating shift-invariant kernels, other extensions
were proposed for various other types of kernels including polynomial kernels [27, 41, 57],
and for learning the kernel itself [70]. Parallel to this, while the Random Kitchen Sinks
approach presented an efficient way to approximate kernels, it operated in O(kd) space and
time, where k is the expansion/embedded dimension, and d is the input dimension. The
FastFood method [47] accelerates Random Kitchen Sinks to O(k log d) time complexity and
O(k) storage complexity, making this approach better suited for high-dimensional datasets
such as image datasets. While this method would render our results presented in Section
5.3 even more impressive, we decided to base our approximations on the more widely used,
and simpler to implement, Random Kitchen Sinks approach.

5.2.2 Maximizing Information Dependence

Suppose we have a dataset S =
{

(xi,yi)
}n
i=1
⊆ X × Y where X ∈ Rd is the space of

all d-dimensional explanatory variables, Y ∈ R` is the space of all `-dimensional response
variables. Let X ∈ Rd×n and Y ∈ R`×n be particular realizations of n random pairs of
variables sampled independently from PX ,Y . We aim to find an orthogonal projection U of
X to maximize the cross-correlation (dependence) between UTX and Y .

To maximize the dependence of Y on UTX, we turn to the commonly used Hilbert-
Schmidt Independence Criterion (HSIC) introduced by Gretton et al. [26]. HSIC is an ef-
fective tool for “measuring” (nonlinear) dependence between two random variables. While
the exact value of HSIC is measured by computing the cross-covariance between F and G
(where F and G are separable reproducing kernel Hilbert spaces containing all continuous
bounded real-valued functions of x from X to R and y from Y to R, respectively), empir-
ical approximations to the HSIC value between random variables X and Y can simply be
calculated by evaluating the following on the finite number of available observations

HSIC(S,F ,G) =
tr(KHLH)

(n− 1)2
(5.2)

where H,K,L ∈ Rn×n, Kij := k(xi,xj), Lij := l(yi,yj), and Hij := I − eeT/n is the
centering matrix. Therefore, to maximize the dependence between UTX and Y , K becomes
the kernel of UTX and therefore we must maximize the following

tr(KHLH) = tr(XTUUTXHLH) (5.3)

= tr(UTXHLHXTU) (5.4)
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To construct the final optimization problem, we add the condition for orthogonality of
the transformation matrix U (incidentally, this condition makes the optimization problem
well-defined by bounding the objective function), and we obtain the following:

argmax
U

tr(UTXHLHXTU)

subject to UTU = I
(5.5)

This optimization problem can solve for U in closed-form. To obtain the final form, and
to motivate the randomized approach, we make note of the following facts.

Fact 1) The trace is maximized when U = [ud,ud−1, · · · ,ud−k+1] contains the eigen-
vectors corresponding to the top k eigenvalues of the symmetric and real matrix Q =
XHLHXT . This can be derived by writing out the Lagrangian form of the optimization
problem. Note that when k = d, U becomes an orthogonal projection of X into the same
space as X, and when k < d, U becomes a projection of X into a sub-space of X.

Fact 2) Because Q is a symmetric and real matrix, it can be written as Q = V ΣV T via
singular value decomposition (SVD). Here, V is equal to the eigenvectors of QTQ.

Fact 3) Because Q is a positive semi-definite matrix, the eigenvectors of Q are equal to
the eigenvectors of QTQ.

Combining Fact 2 with Fact 3, we can conclude that V is equal to the eigenvectors
of Q in addition to being equal to the eigenvectors of QTQ (and QQT ). Adding this to
the intuition gained from Fact 1, we can see that U = V for the optimal solution of the
optimization problem above. This means that we can simply find the best projection U of
X by decomposing Q via SVD, and taking the first k columns as V (i.e., eigenvectors cor-
responding to top k singular values of Σ) as the optimal projection matrix. This approach
was first presented by Barshan et al. in their work on Supervised Principal Component
Analysis (SPCA) [4].

Now that we have established the derivation of SPCA, it is worth noting that exact
SVD of Q ∈ Rn×n has time complexity O(n3) [30]. This is a major obstacle in the face
of large-scale data common to today’s machine learning problems. As an example, finding
an embedding using SPCA for the standard hand-written character classification dataset,
MNIST [48], which contains 60, 000 784-dimensional training samples will approximately
require 4.8 × 108 floating-point operations just for decomposition (2 × 1014 for KSPCA).
Approximating the SVD by decomposing subsets of Q, instead of Q itself, is one approach
to overcome this challenge. An alternative approach is to consider using an approximation
to the L kernel present in Q = XHLHXT in place of the exact L kernel. We shall see how
this will allow us to bypass SVD completely.
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5.2.3 Supervised Random Projections

The high-level goal of this section is to combine ideas from kernel approximation into
the Supervised Principal Component Analysis (SPCA) framework to achieve a random-
ized approach for SPCA, namely Supervised Random Projections. It is noteworthy that
PCA is itself a special case of SPCA when labels are either not present, or not used 2.
Therefore, the proposed Supervised Random Projections method is also a novel approach
for performing PCA in a randomized manner, namely Randomized Principal Component
Analysis. Essentially for many applications, the proposed method makes PCA tracatable
on large datasets. We defer these derivations to future work.

Borrowing ideas from kernel approximation, we can approximate the labels kernel L =
ΨTΨ, which results in an updated form for Q

Q = XHLHXT (5.6)

= XHΨT︸ ︷︷ ︸
V Σ

1
2

ΨHXT︸ ︷︷ ︸
Σ

1
2 V T

(5.7)

where V and Σ contain the eigenvectors of eigenvalues of Q respectively as obtained from
SVD where Q = V ΣV T . Recall also from Section 5.2.2 that V = U is the optimal solution
of the optimization problem for SPCA (i.e., (5.5)). Therefore, we have that UΣ

1
2 and

Û = XHΨT are equal up to a rotation. This means that Û is not identical to U , but is a
projection whose columns are scaled according to the square-root of the singular values of
Q. This method will henceforth be referred to as Supervised Random Projections (SRP).
Recall that in SPCA, when the data was to be down-projected into k dimensions, the
eigenvectors corresponding to the top k eigenvalues were selected in U . In SRP, however,
we have

Ûd×k = Xd×n Hn×n ΨT
n×k (5.8)

which suggests that using k random bases in Ψ when approximating the L kernel will
down-project the data into k dimensions, as follows:

2 In such a case, the L kernel is set equal to the identity matrix, i.e., a kernel
which only captures the similarity between a point and itself. Therefore,
(from [4]), Q becomes the covariance matrix of mean-subtracted samples
X, and decomposing the covariance matrix is the same as decomposing
Q and consequently the same as maximizing tr(UTQU). In other words,
setting L = I means that we retain the maximal diversity between obser-
vations, and therefore PCA is a special case of SCPA.

Q = XHLHXT

= XHIHXT

= (XH)(XH)T

= (X − µx)(X − µx)T

= Cov(X)
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X̂ = ÛTX (5.9)

= ΨHXTX (5.10)

where X̂ is the down-projected data. A simple extension of the above linear down-
projection to replace XTX with a kernelized version of the data, i.e.,

X̂ = ΨHK (5.11)

which shall be referred to as Kernel Supervised Random Projections (KSRP).

5.3 Experiments

5.3.1 Datasets

The motivation of this chapter is to make tractable the use of Supervised Principal Com-
ponent Analysis (SPCA) and Kernel Supervised Principal Component Analysis (KSPCA)
for large-scale data applications, hence the introduction of Supervised Random Projections
(SRP) and Kernel Supervised Random Projections (KSRP). Therefore, it is pertinent to
experiment with a variety of datasets: small datasets, so to compare the proposed method
with the baseline; large datasets, which become intractable for SPCA; datasets with obvi-
ous nonlinearities, so to compare the performance of linear methods (i.e., SPCA and SRP)
with nonlinear methods (i.e., KSPCA and KSRP). For this purpose, we experiment with
the following datasets: i) UCI-Ionosphere3 [69] as was used in [4], ii) MNIST4 [48], and iii)
synthetic XOR dataset5.

3251 34-dimensional samples; 2-class; %70/%30 train/test split.
412, 500 784-dimensional samples; 10-class; %80/%20 train/test split. Although MNIST contains 60, 000

training samples and 10, 000 test samples, we randomly sampled 1, 000 train and 250 test samples from
each class to form our dataset. This was done to allow for tractable computation of the U in SPCA.

5500 10-dimensional samples; 2-class; %70/%30 train/test split. The synthetic 2-class XOR dataset was
constructed by generating 500 2-dimensional multivariate normal random variables with identity covarince
and four different means at

{
(α, α), (−α, α), (α,−α), (−α,−α)

}
where α > 1 to prevent blending, in our

case was set to 5. The samples generated from the distributions with the first and third mean were set
to class 1, and the other samples were set to class 2. Finally, 8-dimensional random noise was added
independently to each sample, yielding the final 500 10-dimensional samples.
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Figure 5.1: 1-NN and time performance comparison on synthetic XOR (top-row),
UCI-Ionosphere (middle row), and MNIST (bottom row) datasets. The left figures
show 1-NN performance whereas the right plots compare time performance. All
results are averaged over 40 runs.
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5.3.2 Metrics

As with previous chapters, because we are assessing the quality of the embedding in the
setting of dimensionality reduction, we shall employ 1-Nearest Neighbor (1-NN) classifi-
cation to measure and compare the performance of the embeddings obtained from each
method. Furthermore, we keep track of the clock-time duration of each dimensionality
reduction setup and compare for efficiency. To measure the clock-time, we only consider
the duration for computing the projection U , and do not include the time for finding the
embedding or the time required for computing 1-NN classification performance, as these
are highly dependant on the dimensionality of the embedding space.

5.3.3 Setup

The results presented here compare the 1-NN and time performances of SPCA, SRP,
KSPCA, and KSRP on the aforementioned datasets. The results are averaged over 40
independent runs of the same script, and the datasets were either generated anew in each
run (in the case of synthetic XOR), or different slices of the dataset were randomly selected
for train/test from the available data (in the case of UCI-Ionosphere and MNIST). Each
feature of all data samples was mean-subtracted based on the mean of the features in the
training samples. Figure 5.1 shows the results for the synthetic XOR, UCI-Ionosphere, and
subsampled MNIST datasets. Confidence bounds were measured over 40 trials, but not
shown on the plots for clarity (plots become messy due to overlapping regions), however,
they are all comparatively small.

5.4 Discussion

When analyzing the results of Figure 5.1, we make a number of interesting observations.
Firstly, we note that increasing the number of random bases / projected dimension (i.e.,
k) results in better 1-NN performance. This is expected because with higher ks, we are
retaining more information about the dataset in the embedding space. Assuming the test
data is sampled from the same distribution as the training data (which may include the
same noise distribution), higher k should result in better performance 1-NN on the test set
in the embedding space.

When comparing the time performances of various methods, we immediately notice
the burdensome compute time required for KSPCA compared to that of KSRP and linear
SPCA and SRP. We should keep in mind that, as mentioned in Section 5.2.1, there are
kernel approximation schemes that are much faster than Random Kitchen Sinks which was
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Table 5.1: Comparing time complexities of SPCA, KSPCA, SRP, and KSRP. Reminder:
Xd×n, Kn×n, Ln×n, Hn×n, Ψk×n where n is the number of training samples, d is the
original dimensionality, and k is the embedding space dimensionality or the number of
random bases. The subscript under Ψ refers to whether we are approximating the data
kernel K (via explicit mapping ΨX with kx random bases) or the labels kernel L (via
explicit mapping ΨY with ky random bases).

Method Matrix Multiplication Kernel Computation (K,Ψ) SVD
USPCA = eig(XHLHXT ) O(max{d2n, dn2}) - O(d3)
UKSPCA = eig(KHLHKT ) O(n3) O(dn2) O(n3)

ÛSRP = XHΨT
Y O(max{dn2, kyn

2}) O(ndky) -

ÛKSRP = ΨXHΨT
Y O(max{kxn2, kyn

2}) O(max{nkdx, nkdy}) -

used in our setup. This suggests that the efficiency gains observed here can be even more
dramatic if we employ a kernel approximation method such as FastFood [47]. Furthermore,
it is interesting to observe that as the projected dimension k increases, the time required for
SPCA and KSPCA neither increases or decreases (as expected, because the SVD remains
unchanged) while the time complexity of SRP and KSRP increases as the number of
random bases increase (e.g., bottom-right plot of Figure 5.1).

It is worth reiterating that the SVD stage of SPCA scales with O(d3) (i.e., the dimen-
sionality of the data) whereas KSPCA’s SVD stage scales with O(n3) (i.e., the cardinality
of the dataset). This is because, in SPCA, Q = XHLHXT is decomposed, whereas in
KSPCA Q = KHLHKT is decomposed using SVD [4]. This explains why KSPCA should
perform worse than SPCA in time complexity: i) the datasets that we experiment with
typically contain many more training samples than features, and ii) KSPCA must con-
struct the data kernel matrix K in addition to performing SVD. This further elucidates
the competitive advantage of using KSRP which is both nonlinear compared to SPCA, and
has faster run-time than KSPCA as it bypasses kernel construction altogether. In fact,
Table 5.1 compares the complexities of these method 6. Bearing in mind that the number
of samples of many datasets is typically larger than the dimensionality of the samples (i.e.,
n > d), this shows that while KSPCA has a total complexity of O(n3), SPCA and SRP
have a complexity of O(dn2) and KSRP has a time complexity of O(max{kxn2, kyn

2}).
This aligns perfectly with the observed time duration results of Figure 5.1.

For the synthetic XOR plots (i.e., bottom row) of Figure 5.1, it agrees with our intuition
that KSPCA and KSRP outperform their linear counterparts in lower dimensions. For

6Multiplying an m× n matrix by an n× p matrix has complexity O(mnp).
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the subsampled MNIST plots (i.e., bottom row) of Figure 5.1, we omitted the results of
KSPCA as they were very expensive to compute while they did not give the best performing
embedding: initial experiments suggested KSPCA required almost 100× more time to run,
while the performance was worse than SPCA. For this latter reason, we also do not report
the performance of KSRP. These plots do demonstrate the superior performance of SPCA
compared ro SRP, but at the cost of 40× increased time complexity.

5.5 Conclusion

Previous chapters saw various data-independent random projection schemes for dimension-
ality reduction. In contrast, this chapter suggests the use of label information present in
some datasets to assist in the random projection by finding an embedding that maximizes
the dependence of the labels on the embedding data. To achieve this, we are inspired
by Supervised Principal Component Analysis (SPCA) and Kernel Supervised Principal
Component Analysis (KSPCA) where an optimization function is solved in closed-form
where the optimal solution is the desired embedding matrix U . This chapter builds on the
theory of SPCA and that of kernel approximation to construct Supervised Random Projec-
tions (SRP) and Kernel Supervised Random Projections (KSRP). Evaluated on 3 different
datasets for classification, SRP and KSRP performed very competitively with SPCA and
KSPCA, yielding a small drop in 1-NN classification performance while providing orders
of magnitude better time performance.
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Chapter 6

Conclusion

In this chapter, a brief summary of the thesis and the key contributions are described in
Section 6.1. Potential future work for this research is outlined in Section 6.2.

6.1 Summary of Thesis and Contributions

The general motivation of this thesis concerned the design of new forms of random pro-
jection for prediction and dimensionality reduction in big-data domains where traditional
methods suffer from exponentially more expensive compute power required. Such domains
include classification of high-dimensional but scarce data samples, and dimensionality re-
duction of high-dimensional natural data. In this regard, this thesis explored new forms of
linear and nonlinear random projection setups and comprehensively tested and compared
these setups against traditional methods.

In Chapter 3, we explored an alternative method for linear random projections that
were inspired by distributions of biological synapses observed in the human visual cor-
tex and studied its application for classifying high-dimensional datasets with few samples.
Here we constructed linear random projections with the goal of performing prediction
(classification) on natural imaging data. With this in mind, the coefficients of the random
matrices used for projection were spatially correlated to extract and make use of local in-
formation in the original images. We constructed two new linear random projection setups
and compared their classification performance using a standard multi-layered perceptron
classifier in Table 3.1. The results presented a powerful first step towards designing deep
neural networks that do not require many data samples to learn, and can sidestep / reduce
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the burden of current training procedures while maintaining or boosting classification and
modelling performance.

In Chapter 4, we extended the ideas of Chapter 3 and proposed an extension of linear
random projections called ensemble of nonlinear maximum random projections. Inspired
by ideas in the literature on nonlinear random projections [25], we showed that this form of
nonlinear random projection is well-suited for dimensionality reduction of highly complex
natural datasets. Based on the theory in [25], we argued that the resulting embedding
differs from traditional linear random projection embeddings in that pairwise distances are
not necessarily preserved for all pairs of points. Instead, based on the common assumption
that data samples from the same class have smaller angular distance with higher prob-
ability, the proposed form of nonlinear random projection creates an embedding where
inter-class distance while reducing intra class distance, essentially individually clustering
each sample with members of its own class making it ideal for downstream applications
such as classificaiton. Table 4.1 showed a comparison of the proposed method against
traditional linear random projections, nonlinear rectified random projections, and princi-
pal component analysis, detailing the superior classification performance of the proposed
nonlinear method for high-dimensionsal data.

Finally, in Chapter 5.2.3 introduces the use of label information present in some datasets
to assist in the random projection by finding an embedding that maximizes the dependence
of the labels on the embedding data. To achieve this, we are inspired by Supervised Prin-
cipal Component Analysis (SPCA) and Kernel Supervised Principal Component Analysis
(KSPCA) where an optimization function is solved in closed-form where the optimal so-
lution is the desired embedding matrix U . This chapter builds on the theory of SPCA
and that of kernel approximation to construct Supervised Random Projections (SRP) and
Kernel Supervised Random Projections (KSRP). Evaluated on 3 different datasets for clas-
sification, SRP and KSRP performed very competitively with SPCA and KSPCA, yielding
a small drop in 1-NN classification performance while providing orders of magnitude better
time performance (Figure 5.1).

6.2 Future Work

6.2.1 Random Projections for Larger Networks and Data Regimes

There are a number of exciting avenues of future research that build on random projections
from biologically inspired distributions. Firstly, we are excited to explore this same effect on
deeper networks with more synapses, and to investigate how and whether these synaptic
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strength distributions may be used to design more efficient architectures and training
algorithms. Another interesting direction is to explore the effect of increasing datasets
size on classification performances — we expect that the performance of random-weighted
neural networks to break down as we move to operate in larger datasets regimes. Finally,
the current results were inspired by synapse distributions emperically observed in the visual
cortex of humans, however, it is important that future research ground these observations
in theory of random projections (similar to Appendix A) as such theory may suggest newer
forms of random projections and derivations thereof that have not yet been explored.

6.2.2 Nonlinear Random Projections Theory

In future work, we would like to derive a theory for the probability bounds of the nonlinear
embedding of samples into lower dimensions using the max activation function. Specifically,
we would like to assert the claim of [25] that this bound is similar for spatial pooling and
ReLU activation functions, and to explore the differences and the interplay between these
two nonlinearities, and variants thereof. Additionally, our preliminary experiments on
multi-layered nonlinear RPs (not included here for brevity) hint at the compounded power
of such projections in further boosting performance. Theory in this vein is promising for
theoretically backing empirical results observed by [38] and [42] where CNNs with random
weights competitively performed on classification tasks.

6.2.3 Random Proxy Networks

An exciting direction of research is using random-weighted neural networks as a proxy for
model selection. To evaluate a Deep Neural Network (DNN), it must first be trained, and
then the generalizability of the model is assessed on unseen data. DNN training is iterative
and can take many hours and consume many resources, especially as models become more
complex. In my thesis work, I have demonstrated the effectiveness of random weighted
networks in resource-constrained scenarios, such as embedded hardware. These networks
are DNNs with any desired architecture, with random untrained weights, positioning them
as very efficient alternatives to trained DNNs. Therefore, exploring the application of such
networks as a proxy for evaluating the performance of a DNN seems like a natural next
step, and is actively being explore by members of the community [29, 68].
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6.2.4 Convolutional Random Projections

Finally, in addition to multi-layered random projections, it is pertinent to study convolu-
tional random projections (i.e., random weights used in convolutional kernels). In Chapter
3, we studied a setup where coefficients of convolutional kernels were sampled from biologi-
cal distributions, because convolutional architectures are also loosely inspired by the visual
cortex. This played well with the nature of the imaging datasets that were experimented.
Further studies can dive deep into the various parameters that effect the performance of
convolutional kernels such as width, stride, number of kernels, etc.
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Appendix A

Proof of JL Lemma for Gaussian
Random Matrices

Appendix A details the proof of the Johnson-Lindenstrauss lemma for Gaussian random
matrices. This section is inspired by the many great work done by [39, 15, 1, 40, 53]. As
a reminder,

Theorem 2. For any point-set P =
{
x1,x2, · · · ,xn

}
⊂ Rd, any integer n (number of

samples), and any 0 < ε < 1 (error tolerance), let k be a positive integer satisfying

k ≥ 4(ε2/2− ε3/3)−1 log n (A.1)

then, there exists a map f : Rd → Rk such that for all xi,xj ∈ P, with probability greater
than 1− δ we have

(1− ε)||xi − xj||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj||2 (A.2)

Here, we walk through a simple example for Gaussian random projections where all
coefficients of the projection matrix R ∈ Rd×k are sampled independently from a standard
normal distribution, i.e., rij ∼ N (0, 1/k) or equivalently rij ∼ 1√

k
N (0, 1). The proof

follows the steps below:

1. Show for fixed x1, x2: E[||f(x1)− f(x2)||22] = ||x1 − x2||22
2. Show variance is bounded and small for x1, x2

3. Using Bonferroni’s Union Bound, bound the failure probability for all pairs of points
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A.1 Step 1. Show E[||f (x1)− f (x2)||22] = ||x1 − x2||22
E
[
||f(x1)− f(x2)||22

]
= E

[
||RTx1 −RTx2||22

]
= E
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d∑
j=1

x1ix1jδij

=
1

k

d∑
i=1

x2
1i

=
||x1||22
k

aδij =

{
0, i 6= j

1/k, i = j

Deriving B:

E
[
(RT

l x2)2
]

= E
[
(
d∑
i=1

rlix1i)
2
]

= · · ·

=
1

k

d∑
i=1

x2
2i

=
||x2||22
k

Deriving C:

E
[
RT
l x1 R

T
l x2

]
= E

[
(
d∑
i=1

rlix1i) · (
d∑
j=1

rljx2j)
]

= · · ·

=
1

k

d∑
i=1

x1ix2i

=
〈x1,x2〉

k
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Putting it all together, we get:

=⇒ E
[
||f(x1)− f(x2)||22

]
=

k∑
l=1

(
A + B− 2C

)

=
k∑
l=1

(
||x1||22
k

+
||x2||22
k
− 2
〈x1,x2〉

k

)

=
k∑
l=1

(
||x1 − x2||22

k

)
= ||x1 − x2||22

Note that all we require for this step of the proof is independence and unit variance
in constructing the random matrix R, suggesting that there are other distribution families
other than standard normal that support random projections.

A.2 Step 2. Show variance is bounded and small for

one pair of points

In this step, we attempt to bound the probability of failure. Hence, we start with:

Pr
[
||f(x1)− f(x2)||2 > (1 + ε)||x1 − x2||2

]
= Pr

[
||RTx1 −RTx2||2 > (1 + ε)||x1 − x2||2

]
= Pr

[
||RT (x1 − x2)||2 > (1 + ε)||x1 − x2||2

]
= Pr

[
||RTxd||2 > (1 + ε)||xd||2

]

where we observe that the random projection matrix R is doing a linear operation, and so
the second line follows from the distributive property of linear matrix-vector multiplication.
Let’s now define y = RTx as the embedding vector for x, and recall that R is a k × d
matrix, where each entry is sampled i.i.d from a Gaussian N (0, 1/k). Furthermore, note
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that each coefficient of y (yl = RT
l.x ∀ i ∈ [k]) is distributed as 1√

k
N (0, ||x||2), and yl are

independent. Alternatively, we can define A as a k×d matrix, where each entry is sampled
i.i.d from a Gaussian N (0, 1) and conclude that each coefficient of y (yl = 1√

k
ATl.x ∀ i ∈ [k])

is distributed as 1√
k
N (0, ||x||2) or that zl = ATl.x/||x|| is distributed as N (0, 1). Hence we

have:

Pr
[
||RTx||2 > (1 + ε)||x||2

]
= Pr

[
|| 1√

k
ATx||2 > (1 + ε)||x||2

]
= Pr

[
||z||2 > (1 + ε)k

]
= Pr

[ k∑
l=1

z2
l > (1 + ε)k

]
= Pr

[
χ2
k > (1 + ε)k

]

where χ2
k is the chi-squared distribution with k degrees of freedom. To solve this, we make

use of the Markov Inequality1 and the moment generating function of the chi-squared
distribution2 in the following form:

Pr
[
χ2
k > (1 + ε)k

]
= Pr

[
eλχ

2
k > eλ(1+ε)k

]
∀ λ ≥ 0

≤
E
[
eλχ

2
k

]
eλ(1+ε)k

using Markov Inequality

=
(1− 2λ)−k/2

eλ(1+ε)k
using MGF of χ2

k

=
(1 + ε)k/2

eλ(1+ε)k
choose λ =

ε

2(1 + ε)
to minimize failure

=
(
(1 + ε)e−ε

) k
2

≤ exp
(
− k

4
(ε2 − ε3)

)
using 1 + ε ≤ exp

(
ε− (ε2 − ε3)/2

)
1Markov Inequality: Pr[x ≥ a] ≤ E[x]/a
2Moment generating function of X ∼ χ2

k: MX(t) = E[eλX ] = (1− 2λ)−k/2
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This proves the failure probability for Pr[||RTx||2 > (1 + ε)||x||2] ≤ exp
(
− k

4
(ε2− ε3)

)
is bounded. The lower bound Pr[||RTx||2 < (1 − ε)||x||2] is proved in a similar manner.
Therefore the probability of failure for x1,x2 is:

Pr
[
||RTx1 −RTx2||2 > (1 + ε)||x1 − x2||2

]⋃
Pr
[
||RTx1 −RTx2||2 < (1− ε)||x1 − x2||2

]
≤ 2 exp

(
− k

4
(ε2 − ε3)

)

It is worth noting that this proof shows that nothing is fundamental about using Gaus-
sian in particular. Many distributions with unit variance and certain boundedness proper-
ties (or higher order moment conditions) suffice.

A.3 Step 3. Bound the failure probability for all pairs

of points

In the previous step we were able to bound the failure probability for 2 points x1,x2. In
the final step, we would like to bound the failure probability for xi,xj i, j ∈ [n], i 6= j,
any two points in the dataset. For this, we refer to Bonferroni’s Union Bound which states

Pr
[⋃

Ei

]
≤
∑

Pr
[
Ei

]
where Ei represents a probability event and i ranges from 1 to the number of events in
consideration. In this case, the dataset contains n distinct points, and hence n(n−1)

2
distinct

pairs of points, which is the number we enumerate. Therefore

Pr
[
failure for any two points

]
≤ n(n− 1)

2
× 2 exp

(
− k

4
(ε2 − ε3)

)
= n(n− 1) exp

(
− k

4
(ε2 − ε3)

)
≤ δ

where we have shown that δ can be chosen based on the tolerance ε, number of samples in
the point-set n, and the embedding dimension k.

56


	List of Tables
	List of Figures
	Notation
	Introduction
	Traditional Dimensionality Reduction Methods
	Random Projections and the Johnson-Lindenstrauss Lemma
	Thesis Contributions
	Thesis Layout

	Background
	Johnson-Lindenstrauss Lemma
	Proof Sketch

	Various Forms of Random Projections
	Linear Random Projections
	Nonlinear Random Projections

	Relevant Work & Applications
	Compressed Sensing
	Locality Sensitive Hashing
	Random-Weighted Neural Networks


	Biologically Inspired Linear Random Projections
	Introduction
	Methodology
	Experimental Setup
	Summary

	Nonlinear Random Projections
	Introduction
	Methodology
	Experimental Setup
	Evaluation Metric
	Datasets

	Discussion
	Summary

	Supervised Random Projections
	Introduction
	Methodology
	Kernel Approximation
	Maximizing Information Dependence
	Supervised Random Projections

	Experiments
	Datasets
	Metrics
	Setup

	Discussion
	Conclusion

	Conclusion
	Summary of Thesis and Contributions
	Future Work
	Random Projections for Larger Networks and Data Regimes
	Nonlinear Random Projections Theory
	Random Proxy Networks
	Convolutional Random Projections


	References
	APPENDICES
	Proof of JL Lemma for Gaussian Random Matrices
	Step 1. Show E[ || f(bold0mu mumu x1x1johnson1984extensions, dasgupta2003elementary, achlioptas2003database, kakade2009jlproof, mahoney2009jlproofx1x1x1x1) - f(bold0mu mumu x2x2johnson1984extensions, dasgupta2003elementary, achlioptas2003database, kakade2009jlproof, mahoney2009jlproofx2x2x2x2) || 2 2 ] = || bold0mu mumu x1x1johnson1984extensions, dasgupta2003elementary, achlioptas2003database, kakade2009jlproof, mahoney2009jlproofx1x1x1x1 - bold0mu mumu x2x2johnson1984extensions, dasgupta2003elementary, achlioptas2003database, kakade2009jlproof, mahoney2009jlproofx2x2x2x2 || 2 2
	Step 2. Show variance is bounded and small for one pair of points
	Step 3. Bound the failure probability for all pairs of points


