On the Utility of Adding An Abstract
Domain and Attribute Paths to SQL

by

Weicong Ma

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2018

(© Weicong Ma 2018

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Albeit its popularity today, Relational Database Management Systems (RDBMSs) and
the relational model still have many limitations. For example, one needs to pay premature
attention to naming issues in the schema designing phase; and the syntax for conjunctive
queries is verbose and redundant, especially for multi-table joins and composite primary /-
foreign keys. In this thesis, we introduce and explain the method to handle and resolve
these issues that is proposed by Borgida, Toman, and Weddell [3]: the conceptual schema
that supports abstract relations and attributes, and an extended query language SQLP#!
built on top of standard Structured Query Language (SQL) that supports the usage of at-
tribute paths and abstract attributes in queries. We demonstrate a systematic approach to
map a database schema expressed in the relational model to the abstract relational model
and illustrate how to write SQLP*" queries with attribute paths to solve query problems
involving complex table joins. This thesis can serve as both an introduction and tutorial
to abstract database modelling and the SQLP*" query language.

Additionally, we performed an empirical experiment to evaluate the performance of
SQLPaI when solving real database query problems by employing students with prior ex-
perience with SQL to read and write SQLP*® queries and recorded their accuracy and time
consumption against usage of regular SQL. The result of this experiment is presented in
this thesis, including a statistical analysis of the results. In short, we uncover evidence that
SQLP*! is more efficient to use for both reading and writing conjunctive and alike queries,
especially for non-trivial cases where multiple constraints were required. However, while
SQLPah can hide explicit table joins when writing queries spanning multiple intermediate
tables, whether this benefit can make users produce more accurate results still remains
unclear as we were not able to draw any conclusion from collected data due to lack of
statistical significance.

1ii

Acknowledgements

First of all, I would like to show my sincere gratitude and appreciation to my supervi-
sor Prof. Grant Weddell. He suggested this idea at the very beginning and guided me
throughout my master study. He is always patient and conscientious. I really learn a lot
and improve a lot. Without his support, I could not make this thesis possible.

Second, I would like to thank my co-supervisors Prof. Wayne Oldford and Prof. David
Toman. Prof. Oldford helped me on designing the experiment and statistical analysis while
Prof. Toman provided great insight and advices throughout the progress of my thesis.

Last but not the least, I would also like to thank the readers of my thesis, Prof. Semih
Salihoglu and Prof. Mei Nagappan, for their constructive and valuable feedback.

v

Dedication

This is dedicated to my parents and sister for their unconditional love and support. Thanks
to my boyfriend Shengying Pan who is always by me side helping me and encouraging me.
Moreover, thanks to my dog Venus for letting me be a part of her life. Finally, I would
like to take this opportunity to thank all my friends for all the company and sharing all

the tears and joys.

Table of Contents

List of Tables
List of Figures
Abbreviations

1 Introduction

1.1 Contributions
1.2 Thesis Outline,

2 Preliminaries

3 The Abstract Relational Model

3.1 An Abstract Domaino
3.2 Referring Expression Types Lo
3.3 Mapping between Relational Model and Abstract Relational Model

3.4 SQLPME

vi

viii

ix

13
13
18
20

4 Empirical Study

4.1 Hypotheses
4.2 Study Design
4.2.1 Study Population o
4.2.2 Instruments
4.2.3 Measuremento Lo
4.2.4 Experimental Design L.
4.3 Data L
4.4 Analysis
4.4.1 Time Consumption vs. Correctness
4.4.2 Time Consumption Analysis
4.4.3 Correctness Analysiso
4.4.4 Syntax and Inconvenience
4.4.5 Other Explanatory Variables

5 Conclusion

5.1 Future Work

References

vii

33
33
35
35
36
38
41
43
44
45
49
54
29
60

65
66

68

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4

The Relational Model: Table Example (PROFESSOR)
The Relational Model: Table Example (DEPARTMENT)

Experiment Result
Experiment Result
Experiment Result

Experiment Result

. Readability Questions, Undergraduate Students

. Readability Questions, Graduate Students

: Writability Questions, Undergraduate Students

. Writability Questions, Graduate Students

viil

44
45
46

List of Figures

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14

Relational Model and Schema for A University 8
Abstract Relational Model and Schema for A University 17
Readability Questions: SQL(left) and SQLP®(right) 37
Writability Questions: SQL 38
Readability Questions: Time Consumption vs. Correctness, with SQL . . . 47

Readability Questions: Time Consumption vs. Correctness, with SQLP*! 47
Writability Questions: Time Consumption vs. Correctness, with SQL . . . 49
Writability Questions: Time Consumption vs. Correctness, with SQLP*t . 50
Time Consumption Difference: Graduate Students, Readability Questions . 52
Time Consumption Difference: Graduate Students, Writability Questions . 53

Correctness Difference: Graduate Students, Readability Questions 55
Correctness Difference: Graduate Students, Writability Questions 58
Native English Speaker vs. Non-Native English Speaker, Readability Ques-

tons L 61
Native English Speaker vs. Non-Native English Speaker, Writability Questions 62
Undergraduate vs. Graduate Students, Readability Questions 63
Undergraduate vs. Graduate Students, Writability Questions 64

ix

Abbreviations

ANSI American National Standards Institute 9

DDL Data Definition Language 9

DML Data Manipulation Language 9

ISO Organization for Standardization 9

ORM Object Relational Mapping 1

RDBMS Relational Database Management System iii, 1, 2, 4, 11, 18, 20, 31, 67

SQL Structured Query Language iii, 1, 3, 4, 8-14, 29-33, 66, 67

Chapter 1

Introduction

Many new database management systems and different technologies are emerging lately,
but an RDBMS is still the mostly used when dealing with real world data storage problems.
With an RDBMS, entity relationship notation is applied to design a relational model and
derive relational database schemata. Although this provides us a tool with object-centered
modelling notation to construct semantic data models [12], an RDBMS still faces many
limitations and problems, albeit its popularity. For example, the need to prematurely
commit to an “external key” (printable values) in designing relational schemas; and the
need to choose a single and simple way to refer to all entities/tuples in a class/table rather
than allow for variations [17]. Oftentimes, one needs to coin an attribute that is not part
of an object as its key to build relationships, and this will in turn require extra attention
from SQL developers to not forget them when writing queries, especially for conjunctive
and alike queries where table joins are extensively applied.

To help with these problems, many new models and tools have been proposed to extend
the usage of relational model and standard SQL. For instance, software engineers have used
Object Relational Mapping (ORM) tools to create a virtual object database on top of an
RDBMS to use within programming language to hide the detail of primary key and foreign
key constraints and perform database queries by invoking function methods on objects
rather than joining the keys explicitly. However, this does not solve the problem, but
only shifts the complexity to ORM developers. Moreover, as a programming language and
database system specific solution, none of the ORM tools can be universally applied due
to the differences between RDBMS engines.

On the other hand, recent work by Borgida, Toman and Weddell has proposed a new
abstract relational model and an extension to SQL, called SQLP*! that allows implicit

foreign key joins in the form of “path expressions” [3]. Built on top of their earlier work
in description logics [L1] [18] [L6] [19] [L7], they have claimed that the addition of the
“path expression” would make SQL programming more comfortable. As conjunctive and
alike queries are heavily used for data retrieval from RDBMS, the use of SQLP*" and the
abstract relational model is particularly beneficial as it significantly simplifies the syntax
of table joins by avoiding explicit column references. Moreover, as a lower level solution,
this extension can be integrated into the database engine directly, while providing users a
uniform interface to take advantage of.

However, they only provided definitions of the abstract relational model and SQLP**,
There lacks a systematic way to convert database schema from the relational model to the
abstract relational model and detailed explanation of how SQLP*® can be used to write
database queries. As a result, people who are interested in their work may not know how
to apply it to real world applications. Additionally, although they expected SQLP! to be
more efficient and accurate to use, this expectation is purely derived from assumptions and
theoretical analysis. Whether its benefits and advantages can lead to actual performance
improvement in real world applications was open.

To better understand and answer these questions, we first explain the abstract relational
model and SQLP*" in a more detailed fashion in this thesis. We present a systematic
way to map relational model to abstract relational model, and demonstrate how to write
database queries with SQLP*"’s attribute path with detailed steps and examples, with the
main focus on conjunctive queries. Additionally, we conducted an empirical experiment
to test and evaluate the performance of the abstract relational model and SQLP*" in real
world settings: used by people writing real database queries to perform actual tasks. It’s
interesting to discover whether SQLP*® can make conjunctive and alike queries easier to
understand and design, especially in complex settings where multiple tables need to be
joined to answer questions that involve a lot of constraints specified on multiple levels.

1.1 Contributions

We extend Borgida, Toman and Weddell’s work on the abstract relational model and
SQLP™ in this thesis. We provide a detailed explanation of their core concepts and a sys-
tematic approach to map between the relational model and the abstract relational model,
and how to write conjunctive queries with SQLP*. As a result, this thesis can be used
as an introductory guide and tutorial to learn how to apply the abstract relational model
and SQLP*" in real world applications for people who are interested in them.

Moreover, we conducted the first empirical study to evaluate the abstract relational
model and SQLP*" on comprehending and writing database queries with the main focus
on conjunctive queries. We recruited real people to work on database query problems with
both SQL and SQLP*" and compared their performance in two metrics: time consumption
and correctness, to have a better understanding of the actual benefits of SQLP*"’s added
features. We applied statistical analysis to our collected data and concluded that the
abstract relational model and SQLP" is more efficient to use, for both query reading and
writing questions, while the correctness difference is not statistically significant enough.
These analytical results not only can help researchers to find applications that are more
suitable for the abstract relational model and SQLP*!, but also give them future research
direction to further extend these tools to cover their weakness and enhance their strength.

1.2 Thesis Outline

The rest of this thesis is organized as follows:

In Chapter 2, we go through background knowledge on the relational database model
and SQL. We illustrate how people use them to create entities and relationships to model
real world applications, and how primary keys and foreign keys are used to identify objects
and enforce constraints on relationships. Additionally, we explain how SQL is used to
perform conjunctive and alike queries and discuss the problems of this traditional approach.

In Chapter 3, we introduce the abstract relational model. We first explain its two core
concept of abstract domain and referring expression types, then demonstrate how to map
a database schema from the relational model to the abstract relational model, with the
help of referring expression type assignment. In the end, we explain how SQLP*" and its
added attribute path work, and show how to use them to simplify the writing of database
queries.

In Chapter 4, we go through the design and detailed experiment procedure of our
empirical study at University of Waterloo to evaluate and compare the performance of
the abstract relational model and SQLP*! against the relational model and SQL. We use
statistical analysis to interpret our data collected from the experiment and present our
hypotheses, evaluation and statistical conclusion in this chapter.

In Chapter 5, we conclude our work and recommend future research directions.

Chapter 2

Preliminaries

Before diving any further into the abstract relational model and SQLP*", we would like to
first review the relational database model and SQL. In this chapter, we explain the core
concepts of the relational model, such as how to declare relational tables to model real
world applications, and the usage of primary key constraints and foreign key constraints
to identify objects and establish relationships between entities. Moreover, we demonstrate
how SQL queries can be used to retrieve information from database with examples.

2.1 The Relational Model

The relational data model was first proposed by Ted Codd from IBM in 1970 [7]. It uses
the mathematical relation as its basic building block, and first order predicate logic as its
base [8]. The relational data model is the primary data model for the majority of data
storage applications today due to its simplicity and its mathematical foundation [11]. All

of today’s popular commercial and open source RDBMSs implement the relational model,
such as DB2, Oracle, SQLServer, MySQL, and PostgreSQL.

A relational database consists of a collection of tables. A table stores rows of data
values, where a row commonly connects to a real world data entity or relationship. The
column names are used to help users interpret the stored data of entities and relationships,
where each column corresponds to an attribute, and all values stored in a column are of the
same data type, for example, INT, STRING, etc. In formal terms, a row is called a tuple, a
column header is called an attribute, and a table is called a relation. In rest of this thesis,
we will use the terms relation and table interchangeably. Table 2.1 shows an example

of a PROFESSOR table that stores information about professors at a university. The table
has four columns: pnum, pname, office, and deptcode. Each row of this table records
information about one professor, consisting of a number that uniquely identifies him in the
university, his name, his office, and a code represents the department he belongs to. For

instance, the number 2 professor in this university is called “Lucius Lois”, works at office
“MC_1536", and is part of the “MATH” department.

Table 2.1: The Relational Model: Table Example (PROFESSOR)

pnum pname office | deptcode
1 | Darrell Stacia DC_2020 | CS
2 | Lucius Lois MC_1536 | MATH
3 | Carla Valorie DC_2211 | CS
4 | Erskine Karin E5.2567 | ECE
5 | Primula Timothy | DC_3267 | CS

The relational model has some unique characteristics and enforces many constraints.
For example, the data type describing the types of values for each column in a table is
presented by a domain D. A domain contains all possible and indivisible values for a given
attribute. In our PROFESSOR table, the domain of office are all offices located within the
university. A data type is also specified for each domain. For instance, the data type of
office is the set of all character strings that represent valid office names. Relations also
possess some other characteristics: tuples in a relation do not have any particular order,
but ordering of attribute values is restricted and important. One may refer to Ramez’s
book [8] for a more thorough description and explanation of the common characteristics.
But in this thesis, we only focus on the constraints imposed by the relational model.

There are in general many different types of constraints in a relational database. Some
of them are inherent in the data model, some of them are specified in database schemas, and
some of them are enforced by the actual application’s business rules. Among the three,
we are mostly interested in schema-based constraints as they are the ones the abstract
relational model is trying to simplify. A relational database schema describes the logical
design of a relational database, and schema-based constraints include domain constraints,
key constraints, constraints on NULL values, entity integrity constraints, and referential
integrity constraints [3]. Since we are only interested in a subset of these constraints, here
we give a formal definition of a simplified relational model RM that only covers the set of
features/constraints we are interested in:

Definition 1 (RM). Let TAB, AT, and CD be sets of table names, attribute names, and
concrete domains (data types), respectively. A RM schema 3 is a set of table declarations

5

of the form
table 7" (Ay Dy, ... , Ap Dy, ©ls -+ 5 Pr)

where T € TAB, A; € AT, D; € CD, and ; are constraints attached to the table T. We
write Attrs(T) to denote all attributes {Aq, ..., Ay} of table T, and Dom(A;) to refer to
D;. U

In this thesis, we assume a constraint ¢; in a table declaration will be one of the two forms
in RM:

1. (primary keys) primary key (Ai, ..., Ay)

2. (foreign keys) foreign key (A, ..., Ay) references T

On primary keys, recall that a relation should contain a set of tuples. Therefore, all
tuples of a relation must be distinct and can be uniquely identified. A candidate key of
a relation is a minimal subset of its attributes that distinguishes any pair of tuples. One
designates one of the possible candidate keys to be the primary key of a relation, and its
values are then used to identify tuples in this relation. In our PROFESSOR table (Table 2.1),
the underlined pnum is the primary key. Underlining is the commonly used notation to
visualize primary keys in tables. A set of entity integrity constraints enforce requirements
on the properties of primary keys, such as NULL values are not allowed for primary keys.

Table 2.2: The Relational Model: Table Example (DEPARTMENT)

deptcode deptname

CS | Computer Science
MATH | Mathematics
ECE | Electrical and Computer Engineering

And on foreign keys, recall that many-to-one relationship between a pair of tuples n
and s are usually encoded by adding additional attributes to table N, and then adding
a foreign key constrain from the added columns to the primary key of S. For example,
deptcode in our PROFESSOR table is a foreign key referring to departments stored in the
DEPARTMENT table (shown in Table 2.2), where deptcode is its primary key. In this case,
PROFESSOR table is called the referencing relation and DEPARTMENT is called the referenced
relation of the foreign key. Referential integrity constraint enforces the consistency of a
foreign key, by stating that it must match the primary key of another table, and a tuple
in one relation can only refer to an existing tuple in another relation. Returning to our

PROFESSOR table, one cannot have a professor with deptcode set to “ART” as there is no
matching record in the DEPARTMENT table. Note that primary keys and foreign keys can be
composite, too, as sometimes a single attribute may not be enough to uniquely identify a
tuple in a relation.

With RM, the table declaration of our PROFESSOR table can be expressed as:

table PROFESSOR (

pnum INT,

pname STRING,
office STRING,
deptcode STRING,

primary key (pnum),
foreign key (deptcode) references DEPARTMENT

where we specify INT as the data type for pnum, and STRING for all other attributes.

A database schema including relations, primary keys and foreign keys can also be de-
picted by a diagram. The most commonly used diagram is the entity-relationship diagram
developed by Peter Chen [], which can be used to express multiple types of constraints.
In this thesis, as we are only interested in primary key and foreign key constraints, we
use a much simpler diagram called schema diagram to depict tables and relationships in-
stead [11]. Figure 2.1 shows the schema diagram for a university that stores information
regarding courses offered and students’ enrollments. In a schema diagram, each relation is
represented by a box with the corresponding table name on the top. Attributes are listed
inside the box and separated into two parts, where the ones on top form the relation’s
primary key. The data types of the attributes are not shown in the boxes as they are all
concrete and oftentimes can be inferred from attribute names. Foreign key dependencies
are illustrated as arrows from the foreign key attributes in the referencing relation to the
primary key of the referenced relation. Note that the origin of the arrows can span multiple
attributes, since a foreign key can be composite. In our university example (Figure 2.1), the
primary key of the SCHEDULE table is deptcode, cnum, term, section, day and time, while
the only attribute that is not part of the primary key is room. Additionally, deptcode,
cnum, term and section is a foreign key from the SCHEDULE table that is referring to the
CLASS table, ensuring that every schedule must have an associated class.

DEPARTMENT COURSE

)
f————) deptcode < deptcode
deptname cnum
—
cname
CLASS
ENROLLMENT STUDENT
deptcode
snum
cnum
term deptcode
cnum
PROFESSOR section €~
term
num
P \poum / section
pname
office
\— | deptcode
SCHEDULE
/ N snum
deptcode
cnum deptcode
]]
term cnum
section term
day section
time
\ room /

Figure 2.1: Relational Model and Schema for A University

2.2 SQL

In the previous section we discussed how to model and organize data with the relational
model in a relational database system. We also need query languages to retrieve stored
data from the database. A query language is a high-level programming language that
allows users to exchange information with the underlying database system, and can be
both procedural or non-procedural. For instance, the relational algebra is a procedural
query language, while the tuple and domain relational calculus is a non-procedural query
language [7]. Although there are a few implementations of these query languages, they are
not adopted by database systems.

Instead, SQL is the standard query language for today’s commercial and open source
relational databases. SQL is based upon the relational algebra and tuple relational calcu-
lus, and was originally developed by IBM Research as the interface to their experimental

relational database system R [5]. It was then standardized by American National Stan-
dards Institute (ANSI) and Organization for Standardization (ISO) in 1986 [1]. The SQL
standard has evolved over the years and the latest version was published in 2016 [2]. SQL
is a comprehensive database query language and contains multiple parts. It is both a
Data Definition Language (DDL) and a Data Manipulation Language (DML), thus not
only provides interfaces for relation schema definition, deletion, and modification, but also
gives users the ability to query, insert, delete, and modify tuples from and to the database.
We only cover the basics of the DML part, and more specifically SQL queries here, as we
mainly focus on conjunctive queries in this thesis. One may refer to Elmasri’s book for
more details regarding other parts of SQL [].

A SQL query is therefore the means to retrieve stored information from the underlying
tables. In this thesis, we assume such a query adheres to a basic select-from-where form
given as follows:

select distinct <results>
from <tables>
where <condition>

There are three clauses: select, from, and where. One specifies the input relations in the
from clause, conditions in the where clause, and the result columns in the select clause.
We assume the distinct keyword is used in every select clause to ensure the resulting
table is a set of tuples without duplication. One can apply advanced operations in the
select clause, such as mathematical computation, to manipulate the result relation. Ad-
ditionally, complex boolean expressions can be specified in the where clause as a predicate
to only select satisfying records from the result relation. Take our PROFESSOR table for
example, “the names of all professors that are from the computer science department” can
be specified with the following query:

select distinct p.pname
from professor p
where p.deptcode = ‘CS’

In real world applications, the usage of SQL targeting a single relation is very limited.
Oftentimes, we must access information from multiple relations. For instance, we may only
know the full name of the “Computer Science” department, but not its deptcode. In this
case, to retrieve the same result as before, we must match the tuples in the PROFESSOR
table with the tuples in the DEPARTMENT table, taking advantage of the foreign key reference

between them. This can be done by supplying multiple relations to the from clause of the
query statement, which by itself defines a Cartesian product of the relations listed in the
clause. By default, when multiple relations are present in the from clause, the result
relation will contain all attributes from these relations. We can assign relations aliases and
use them as prefixes to distinguish the same attribute names in different relations. For
example, if we assign aliases “p” and “d” to PROFESSOR and DEPARTMENT tables, we can
then use “p.deptcode” and “d.deptcode” to distinguish the deptcode column in them.

The Cartesian product is a special case of a table join, in particular an inner join. It
has the property that all tuples from all provided relations are matched, even if they are
unrelated to each other. Take our PROFESSOR and DEPARTMENT tables for example, each
tuple in PROFESSOR is combined with every tuple in DEPARTMENT, even if one professor
only belongs to one department. This will produce a very large result relation, where the
majority of its information is useless. We can then use the predicate in the where clause
to filter out the matched tuples that we are not interested in to overcome this problem.
In this example, we only want the join to combine tuples in PROFESSOR and DEPARTMENT
tables that have the same deptcode. The following SQL query ensures this requirement,
and generate a result relation containing the names of the professors that belong to the
“Computer Science” department:

select distinct p.pname

from professor p, department d
where p.deptcode = d.deptcode

and d.deptname = ‘Computer Science’

Note that we used aliases in the above query, and the first boolean expression in the where
clause is the predicate that filters out tuples that are not interesting to us. This type of
SQL query is often called the conjunctive query. Here we present a simplified version of
the SQL query syntax that covers everything we are interested in:

Definition 2 (SQLgyery). The following grammar gives the syntax for a simplified version

10

of SQL query language over instances of RM schema:

(SQLguery) = select distinct ty,ta,..., 1,
<SQLbody>

(SQLpogy) = from Ty x1,Ts xo,..., T,
where (cond)

(cond) ::==t op t/
| t op ¢
| (cond) and (cond)
| exists (select * (SQLpoay))
| not (cond)

where T; is a table name, x; is a variable name, c is a constant, and op represents a
conditional operator. t;, t and t' are terms and they must have the form “x.A”, such that
“T" x” occurs in a containing from clause and A € Attrs(T)). O

Note that the list of terms t1, %o, ..., t,, in the select clause can also be replaced by * to
select all attributes presented in the result relation. Additionally, we relaxed the definition
to allow the use of not operator in the query. Note that allowing not in a where clause
deviates from the conjunctive fragment of SQL’s query language, and is necessary in our
study as a consequence of one of our test cases. Additionally, we support the inequality
operator <> as a conditional operator since it can be translated to equality operator =
with the not operator. With this syntax, multiple tables can be included in the from
clause to produce the Cartesian product, and nested queries with exists keyword can be
included in the where clause to answer more complex questions.

Conceptually speaking, a conjunctive query first creates a Cartesian product of the
relations provided in the from clause, then apply the boolean expressions supplied in
the where clause as predicates to filter matched tuples in result relation, and output the
attributes specified in the select clause from the result relation. These steps can help
one to understand the idea of conjunctive queries better, but the actual execution plan in
database engine is actually very different and highly optimized in real RDBMS.

Although we only cover one of the simplest forms of SQL queries that can be expressed
over a database, it is powerful enough to answer many interesting questions. Given the
relational schema in Figure 2.1, consider the following SQL query to find all names of
professors in the department “Computer Science” that have taught the class “CS348”:

11

select distinct p.pname

from class cl, professor p, department d
where cl.pnum = p.pnum

and p.deptcode = d.deptcode

and cl.cnum = 348

and cl.deptcode = ‘CS’

and d.deptname = ‘Computer Science’

this time it joins three tables to provide the result relation we want. To solve problems
that are even more complex, we will notice that the number of boolean expressions within
the where grows as the number of joining tables and arity of foreign key attributes grow.
This will make such a SQL query extremely verbose and error prone. In next chapter, we
will introduce the abstract relational model, together with referring expression types and
SQLPah - They can not only simplify the syntax of SQL queries, but also help to resolve
other identification issues present in the relational model.

12

Chapter 3

The Abstract Relational Model

In Borgida, Toman, and Weddell’s work, they discovered that entity relationship modellers
oftentimes have trouble and have to pay premature attention to naming and identification
issues when they are deriving relational database schemata from conceptual models [3].
These problems have also been investigated by another researcher Richard Hull [10]. Al-
though object-centered modelling approaches can mitigate some of the observed problems,
the naming issues introduced by inheritance and generalization when heterogeneous sub-
classes are present and weak entities still remain unhandled by the relational model and

SQL.

To resolve such issues, Borgida, Toman, and Weddell first introduced a conceptual
modelling schema that extends traditional relational schema by adding abstract domain
of identifiers/surrogates. In this chapter, we first present and explain the definition and
properties of this conceptual schema with abstract domain. Then we demonstrate what
referring expression type is and how to map the abstract relational model back to the
relational model with the help of referring expression type assignment. In the end, we
present SQLP*! an extension to standard SQL, which supports the usage of abstract
domain attribute and attribute path. We will illustrate how SQLP*" and attribute path
can be used to simplify the syntax of complex conjunctive queries.

3.1 An Abstract Domain

The abstract relational model proposed by Borgida, Toman, and Weddell is built on top
of the conceptual modelling language Car [3]. Car supports data declaration and manip-

13

ulation, and has a syntax very close to SQL. In this thesis, we use a simplified version of
Car to define the abstract relational model ARM:

Definition 3 (ARM). Let TAB, AT, and CD be sets of table names, attribute names,
and concrete domains (data types), respectively, and let 0ID be an abstract domain of
identifiers/surrogates, disjoint from all concrete domains. An ARM schema ¥ is a set of
abstract table declarations of the form

table T (self 0ID, Ay Dq, ... , Ay Dy, ©1s - 5 Pr)

where T € TAB, self € 0ID is the primary key of T' (self is a distinguished attribute
identifying the aggregation (Aq,..., Ay € AT)), A; € AT, D; € CD U {0ID}, and ¢; are
constraints attached to the abstract table T. We write Attrs(T') to denote all attributes
{A1,..., A} of abstract table T', and Dom(A;) to refer to D;. d

A constraint ¢; in an abstract table declaration can be one of the five forms:

1. (path functional dependencies) pathfd Pfy,...,Pf, — Pf
2. (foreign keys) foreign key (A) references T

3. (specialization) isa T’

4. (cover constraints) covered by {711,...,T}

5. (disjointness constraints) disjoint with {71,...,T}

Primary keys constraint is not specified here since in ARM, self is the only primary key
for all the relations.

ARM with its basis in logic also gives users the ability to reason about constraints
in abstract table declaration as logical consequences. For an abstract table T in abstract
schema X, we can write ¥ |= (¢ € T') to denote the fact that a particular constraint ¢ for
T (may not be explicit) logically follows from the constraints in schema Y. The problem of
deciding when ¥ |= (¢ € T') holds can be reduced to reasoning about logical consequence
in the description logic DLFD and CFDY,. Details of such logic reasoning can be found
in Toman and Weddell’s work [15] [17].

In ARM, the definition of TAB and AT are the same as they are in the relational model.
Besides the concrete domains (CD) defined in the relational model, ARM also introduced
the concept of abstract attributes of the abstract domain. The abstract domain is an

14

abstraction of the actual data types, and is only present in an abstract table, where abstract
attributes associated to the abstract domain are not actual columns in the underlying
relational database tables, nor any of their values are actually stored.

In this thesis, we mainly focus on path functional dependencies and foreign keys con-
straints. Instead of using primary key constraints, abstract table declaration allows pro-
grammers to define abstract tables with a special abstract primary key self of the abstract
data type 0ID. The user visible object identifier 0ID is a set of abstract identifiers/surro-
gates, which is an abstraction of all primary keys in the corresponding relational database
schema, and can also be used as foreign key references.

Note that in an abstract table T', self is the only attribute forming its primary key,
thus there may be no one-to-one mapping between self and concrete attributes in the
relational model. We can then use the path functional dependencies constraint pathfd of
T to find those concrete attributes that can form the primary key of T’s corresponding
relational table. Inside pathfd, we assume Pf is always self in this thesis and each of
its component Pf; is an attribute path that is either a concrete attribute of 1" or a path
of the form A;.As..... A,, that refers to a concrete attribute A,, in another table following
foreign key constraints. More formally, Pf; € PF,(T), where PF,, (1) denotes the set of
well-formed attribute paths for table T', and its definition can be found later in the SQLP*"
section. For foreign keys, an attribute A; used in a foreign key constraint must be abstract,
and match the abstract primary key self in another table.

Now with ARM, the abstract table declaration of our previous PROFESSOR table can
be expressed as:

table PROFESSOR (

self 0ID,
pnum INT,
pname STRING,
office STRING,

department O0ID,
foreign key (department) references DEPARTMENT,
pathfd pnum — self

Note that the primary key and foreign key has been replaced by self and department
from the abstract domain 0ID. The path functional dependency constraint pathfd asserts
that any pair of PROFESSOR tuples agreeing on pnum also agree on self. This can be used

15

to figure out the primary key of the corresponding relational table, as pnum can be used to
uniquely identify professors.

For tables with composite primary key in the relational model, such as COURSE in the
university example (Figure 2.1), its abstract table declaration can be expressed as:

table COURSE (

self 0ID,
cnum INT,
cname STRING,

department O0OID,
foreign key (department) references DEPARTMENT,
pathfd cnum, department.deptcode — self

In this case, foreign key constraint asserts that each value of department must appear as
the self value of a DEPARTMENT tuple. Moreover, the path functional dependency pathfd
asserts that the course number cnum and the course’s associated department’s deptcode
form the primary key of the COURSE relation. Note that here we used attribute path
“department.deptcode” in pathfd, since deptcode is only defined in the DEPARTMENT table
not the COURSE table.

The abstract relational model also has support to generalization relations and sub-
relations. If we add a generalization relation person that contains all students and profes-
sors. Its abstract table declaration can be expressed as:

table PERSON (

self 0ID,
role enum{ ‘ STUDENT’, ‘PROFESSOR’},
snum INT,
pnum INT,

covered by {STUDENT, PROFESSOR},
foreign key (department) references DEPARTMENT,
pathfd snum, pnum — self

where the cover constraint makes sure that the generalization relation PERSON can be cov-
ered by its heterogeneous sub-relations STUDENT and PROFESSOR. Additionally, we need to

16

DEPARTMENT

self*

PROFESSOR
deptcode
deptname

COURSE

self*

cnum

cname

| department*
CLASS

course*

term

section

professor*

pnum

pname

office
| department*

MARK

self*

enrollment*

grade

ENROLLMENT

self*

student*

class*

STUDENT
self*

snum
sname
year

SCHEDULE

Figure 3.1: Abstract Relational Model and Schema for A University

add specialization constraint and disjointness constraint to our abstract relation PROFESSOR
and STUDENT. We only include the abstract table declaration for PROFESSOR here as STUDENT

would be very similar.

table PROFESSOR (

self 0ID,
pnum INT,
pname STRING,
office STRING,

department O0ID,

foreign key (department) references DEPARTMENT,
isa PERSON,

disjoint with {STUDENT},

pathfd pnum — self

17

where the specialization constraint asserts that self values of PROFESSOR tuples are a
subset of self values of PERSON tuples, and are disjoint from self values of STUDENT
tuples, since a person at the university is either a student or a professor, but not both.

Furthermore, like in the relational model, the abstract relational models and their asso-
ciated relationships can also be depicted using an abstract schema diagram. For example,
the relational schema of the university shown previously in Figure 2.1 can be depicted with
the abstract schema diagram and the new diagram is shown in Figure 3.1. In an abstract
schema diagram, we use boxes to represent abstract relations, with their names placed on
top of the boxes. Primary key attributes and other attributes are still separated. But in
this case, the primary key is always self for all abstract relations, and all of the abstract
attributes of 0ID are marked by “*”.

3.2 Referring Expression Types

By its design, ARM provides separation of concerns between identification issues and
data access requirements. It allows high level application developers to focus more on the
logic and relationships between abstract relations, without worrying much about the actual
attributes and how they are used to identify underlying entities. However, it comes with a
side effect that the values of some of the attributes are purely abstract and cannot be stored
in actual tables in the database. This must be resolved as eventually we must translate the
entire database schema from the abstract relational models back to the relational model
to make it work with today’s RDBMS. In Borgida, Toman, and Weddell’s work, this is
handled by the referring expression type language [1]. The definition of this language is
presented below:

Definition 4 (Referring Expressions, Types, and Assignments). Let 3 be a ARM schema.
A referring expression type Rt relative to X is an instance of a recursive pattern language
given by the grammar:

Rt == Pf=7? | Rt,Rt | G— Rt, | Rt;Rt

where Pf is an attribute path ending in a concrete attribute, and where G = {Ty,...,T;}
is a set of table names from Tables(X), called a guard. We write RE(Rt) to refer to a set
of referring expressions ¢; induced by a given referring expression type Rt relative to ¥ as

18

follows:

RE(Pf=7) = {x.Pf = a | a a constant}

RE(Rtl, Rtg) = {gbl A ¢ | 0; € RE(Rt,)}
RE({Ty,..., T} — Rt) = {N",Gu1, ...,y Ti(z, 91, ..., m)) AN b | ¢ € RE(Rt)}
RE(Rty; Rty) = RE(Rt;) U{¢ € RE(Rty) | -3¢ € RE(Rt1).(¢ =)}

Given T' € Tables(X), we say that Rt is strongly identifying for T' if, for all instances
I of ¥,
I'EVry,ze.(Fyr - u T (@, - u) A d(a /@) A
By, -y T (22,91,) Ao /22)) — 21 = 29,

holds for all ¢ € RE(Rt), and
I }: _\EL]?.((ﬁl VAN ¢2)

holds for all syntactically distinct ¢1, o € RE(RL).

A referring type assignment for 3 is a mapping RTA from Tables(X) to referring ex-
pression types relative to 3. 0

One can refer to Borgida, Toman, and Weddell’s papers [3] [1] for a more detailed
explanation of referring expression types. Overall, the referring expression type assigned
by RTA to an abstract table T', RTA(T'), provides us the attribute paths leading to concrete
attributes that can be used to identify tuples in table T". These attributes can be included
in the corresponding relational table to form its key. Generally speaking, we want to find
a RTA that can strongly identify all of our declared abstract tables and satisfy all of the
constraints in our abstract relational schema. A referring expression type, Rt has a normal
form given as follows [1] [3]:

Ty — (Pfl’lz?,...,Pkal:?);...;Tk — (Pfk’lz?,...,Pf]ﬁkk:?)

where T; is a table name and where each Pf; ; is a well-formed attribute path on table T;.
When specialization constraints are not present and all tables are disjoint, we can further
simplify RTA(T) for any T" to the form:

T — (Pf1=7,...,Pfp="7)

To illustrate with our example in Figure 3.1, RTA(PROFESSOR) can be assigned as “PROFESSOR
— (pnum =7)” (where pnum strongly identifies professors). Also, since referring expression
types Rt admit attribute paths as components (when foreign key constraints are present),
RTA(COURSE) would be “COURSE — (cnum =7, department.deptcode =7)".

19

Thus, a referring expression type assignment RTA may not be unique, and a Rt can
contain attribute paths that are not necessary. In Borgida, Toman, and Weddell’s paper
[3], they provided a way to handle this with non-redundant referring types and identify
resolving type assignments, by introducing referring expression Fix(Rt, T') and Prune(Rt, T')
that can be used to remove redundant referring types. In addition, they give a formal
definition of an identity resolving referring expression type assignment by introducing a
linear ordering of all tables in 3 such that when guards in RTA are in this exact order all
attribute paths in each component of the RTA are well defined and all tables are strongly
identified. We refer the readers to the reference mentioned early for further details.

In the next section, we will present a systematic approach to map the relational model
and database schema to the abstract relational model and schema, as well as produce the
associated strongly identifying RTA that assign referring expression types to all abstract
tables. Moreover, we will demonstrate how to convert the abstract relational model and
schema with its RTA back to the relational model and schema, thus one can derive the
relational tables that can be created and queried in real RDBMS.

3.3 Mapping between Relational Model and Abstract
Relational Model

From our definition of the abstract relational model in previous sections, an abstract re-
lation has two major differences when compared with its relational counterpart. First, its
primary key is no longer a concrete attribute, and becomes the user visible object identifier
self. Second, since a concrete attribute can only be declared in at most one abstract table,
all attributes that are part of foreign key constraints referring to another table’s primary
key in the original relational table are compressed and replaced by an 0ID attribute that
is used in the updated foreign key constraint. The replaced concrete attributes are only
declared in tables where they were originally defined as the primary key and not part of
any foreign key constraints.

Based on these properties, we present a procedure to convert a relational schema >
to a counterpart abstract relational schema together with a valid RTA that can strongly
identify all tuples. To perform this conversion, we need to first create a pending assignment
set PA and a stack of tables S. A 4-tuple (T,P£, 7", A) € PA states that the primary key
of T has component Pf o A, and depends via foreign key join path Pf, on table 7" having

20

attribute A. We also introduce the composition operator o such that:

Pty if Pf, is self
Pf, o Pf, = { Pf,, if Pf is self
Pf,.Pf,, otherwise

The procedure contains two parts where we initialize PA, S, and RTA first before generating
abstract tables.

(Initialization)

1. Assign PA <0, S < [].
2. For each T' € Tables(X) with primary key (Ay, ..., A,):

2.1. Assign RTA(T)as T — (A1 =7,...,An=17).
2.2. Add (T,self, T, A;) to PA for 1 <i < m.

3. Construct a directed graph G(Tables(X),), where E is obtained as follows: for
each T} € Tables(X) with primary key (A, ..., A,,), iterate through each foreign key

constraint ¢ for T} of the form “foreign key (B, ..., B,) references T5”. When

{A1,...,An}N{By,..., By} is not empty and 7} is not reachable from 75 in G, add
T1 — T2 to E.

4. While there exists T' € Vi where T’s outdegree is 0:

4.1. Push T on S.
4.2. Remove T from G together with incident edges.

(ARM Generation)

5. While S is not empty, do the following:

5.1. Pop T from S, where the primary key of T is (A1,..., An).
5.2. Add self to Attrs(T"), where Dom(self) = OID.

5.3. Find alist of tables T, ..., T, € Tables(X) where T;’s primary key is (A4;1, ..., A;x)
and {A4;1,..., Ak} #{As, ..., A, }. If this list is not empty, add disjointness
constraint “disjoint with {7%,...,7,}” to T.

21

5.4. For each foreign key constraint ¢ = foreign key (By,..., By) references 7"
defined for T" where the primary key of 7" is (C1, ..., Cy), do the following:

5.4.1. It {By,..., By} = {A,..., A}, then replace ¢ by specialization constraint
“isa T"7, assign NA <+ self, and proceed to 5.4.4.

5.4.2. When attributes (Ay,..., Ax) and (B, ..., By) are exactly the same, or ¢
is the only foreign key constraint of 7" that references 7", then assign NA <«
name(7"), where name(7"”) retrieves T"’s table name in lower case. Other-
wise, assign NA <= Byj-...-Bg-ref. Add NA to Attrs(T"), where Dom(NA) =
0ID.

5.4.3. Replace ¢ by foreign key constraint “foreign key (NA) references 7"

5.4.4. For each B;, 1 < i < k, if C; € Attrs(T") and if all remaining foreign key
constraints ¢’ for T" are free of B;, then do the following:
e Remove B; from Attrs(T).
o If B, € {Ay,..., Ay}, for every tuple t € PA of the form (T”,P£, T, B;),
for some 7" and Pf:
Replace “Pf o B; = 7" in RTA(T") by “Pf o NAo C; = 77, and replace t
itself by (T",Pf o NA, T',C;).

6. For each T' € Tables(X), replace the primary key constraint ¢ in 7' by path func-
tional dependencies “pathfd Pfy,...,Pf,, — self”, where RTA(T) = T — (Pf; =
7, ., PE, =7).

Going back to our university example and its relational database schema diagram de-
picted in Figure 2.1, we can follow the steps above to map it to the abstract relational table
declarations with RTA. Take the relation COURSE for instance, after initialization, its re-
lated tuples in PA are (COURSE, self, COURSE, deptcode) and (COURSE, self, COURSE, cnum).
When popped out for processing in step 5.1, its table declaration is:

table COURSE (
deptcode STRING,
cnum INT,
cname STRING,
primary key (deptcode, cnum),
foreign key (deptcode) references DEPARTMENT

After step 5.2 and 5.3, it becomes:

22

table COURSE (

self 0ID,
deptcode STRING,
cnum INT,
cname STRING,

disjoint with {DEPARTMENT, PROFESSOR, CLASS,
ENROLLMENT, SCHEDULE, STUDENT, MARK},
primary key (deptcode, cnum),
foreign key (deptcode) references DEPARTMENT
)

In step 5.4.2 and 5.4.3, we add abstract attribute department since deptcode matches
DEPARTMENT’s primary key. Also add its associated foreign key constraint to replace the
original foreign key constraint of deptcode in COURSE:

table COURSE (

self 0ID,
deptcode STRING,
cnum INT,
cname STRING,

department 0OID,
disjoint with {DEPARTMENT, PROFESSOR, CLASS,
ENROLLMENT, SCHEDULE, STUDENT, MARK},
primary key (deptcode, cnum),
foreign key (department) references DEPARTMENT
)

In step 5.4.4, the concrete attribute deptcode is removed:

table COURSE (

self 0ID,
cnum INT,
cname STRING,

department 0ID,

disjoint with {DEPARTMENT, PROFESSOR, CLASS,
ENROLLMENT, SCHEDULE, STUDENT, MARK},

primary key (deptcode, cnum),

foreign key (department) references DEPARTMENT

23

Tuple (COURSE, self, COURSE,deptcode) € PA is replaced by (COURSE, department,DEPA
RTMENT, deptcode), while RTA(COURSE) is updated to

RTA(COURSE) = COURSE — (department.deptcode = 7, cnum = 7)

as the concrete attribute deptcode for its primary key was replaced by 0ID department. In
the end, we add the path functional dependency based on the final version of RTA(COURSE)
to COURSE to replace its primary key constraint and complete its declaration:

table COURSE (

self 0ID,
cnum INT,
cname STRING,

department 0ID,

disjoint with {DEPARTMENT, PROFESSOR, CLASS,
ENROLLMENT, SCHEDULE, STUDENT, MARK},

foreign key (department) references DEPARTMENT,

pathfd cnum, department.deptcode — self

A more complex example is the CLASS relation, which based on our procedure is pro-
cessed right before COURSE. Its related tuples in PA after initialization are (CLASS, self, CLAS
S,deptcode), (CLASS, self, CLASS, cnum), (CLASS, self, CLASS, term), and (CLASS, self, CL
ASS, section). After step 5.3, its table declaration is:

table CLASS (

self 0ID,
deptcode STRING,
cnum INT,
term STRING,
section INT,
pnum INT,

disjoint with {DEPARTMENT, PROFESSOR, COURSE,

ENROLLMENT, SCHEDULE, STUDENT, MARK},
primary key (deptcode, cnum, term, section),
foreign key (deptcode, cnum) references COURSE,
foreign key (pnum) references PROFESSOR

24

Since there are two forgien key constraints, step 5.4 is iterated twice. In steps 5.4.2 and
5.4.3, the abstract attributes course and professor are added in the two iterations since
the attributes of the foreign keys are exactly the same as COURSE’s and PROFESSOR’s primary
key. In addition, the two foreign key constraints are replaced:

table CLASS (

self 0ID,
course 0ID,
deptcode STRING,
cnum INT,
term STRING,
section INT,
pnum INT,

professor 0ID,

disjoint with {DEPARTMENT, PROFESSOR, COURSE,
ENROLLMENT, SCHEDULE, STUDENT, MARK},

primary key (deptcode, cnum, term, section),

foreign key (course) references COURSE,

foreign key (professor) references PROFESSOR

Then in 5.4.4, concrete attributes deptcode, cnum, and pnum are removed, and tuples
(CLASS, self, CLASS, deptcode) and (CLASS, self, CLASS, cnum) € PA are replaced by (CLAS
S, course, COURSE, deptcode), and (CLASS, course, COURSE, cnum). Note that these tuples
may be further updated again when COURSE table is processed. Recall step 5.4.4 for the
COURSE table, after its own tuples being replaced, the first tuple for CLASS will eventually be
replaced by (CLASS, course.department, DEPARTMENT, deptcode). Therefore, RTA(CLASS)
in the end is updated to:

RTA(CLASS) = CLASS — (course.department.deptcode = ?,
course.cnum = 7, term = 7 section = 7)

When everything is done, the path functional dependency based on RTA(CLASS) is added
to CLASS to replace its primary key and the completed abstract table declaration becomes:

table CLASS (
self 0ID,
course 0ID,

25

term STRING,
section INT,
professor 0ID,
disjoint with {DEPARTMENT, PROFESSOR, COURSE,
ENROLLMENT, SCHEDULE, STUDENT, MARK},
foreign key (course) references COURSE,
foreign key (professor) references PROFESSOR,
pathfd course.department.deptcode,
course.cnum, term, section — self

On the other hand, given an abstract relational schema > and its associated RTA
for Tables(X) generated by our previous procedure, translate it back to the schema of

its corresponding relational model is much simpler. For each abstract relational table
T € Tables(¥), do the following:

1. Iterate through all components of RTA(T) =T — (Pf; = ?7,...,Pfx = 7). For iy,
component “Pf; = ?” where Pf; = ay..... a,.A; and A; is a concrete attribute, add
A; to T if it’s not already present.

2. Remove self from Attrs(7).

3. Replace path functional dependencies “pathfd Pf,,...,Pf, — self” by primary key
constraint “primary key (Aj,..., Ax)”

4. For any other concrete attribute in Attrs(7") that is not part of RTA(T'), keep them
unchanged in the relational table (not part of the primary key).

5. For each foreign key constraint ¢ = foreign key A references 7" defined for T', do
the following:

5.1. Iterate through all components of RTA(T") =17" — (P, =7,...,Pf,, = 7). For
1y, component Pf; = ? where Pf; = aq..... ay.A;, if “APf; = 7”7 doesn’t exist in
RTA(T), add A; to Attrs(T") with prefix “A-" to avoid duplicate attribute names.

5.2. Add foreign key constraint “foreign key (Ai,...,A,,) references T"”, where
A; has prefix “A-" if it was added to Attrs(7") in 5.1.

5.3. Remove ¢ from T

6. Remove all abstract attributes from Attrs(7").

26

Following these steps, we can map our previously declared abstract table COURSE with
RTA(COURSE) = COURSE — (department.deptcode = 7, cnum = ?) back to a relational
table. After step 1 and 2, the only abstract attribute left is department, while its con-
crete attributes are deptcode, cnum and cname. After step 3, pathfd is removed and
primary key constraint “primary key(deptcode, cnum)” is added. In step 5, there is only
one foreign key constraint “foreign key (department) references DEPARTMENT” to han-
dle. Since we have RTA(DEPARTMENT) = DEPARTMENT — (deptcode = 7) and the concrete
attribute deptcode was already added to COURSE, we only need to replace the foreign
key constraint by “foreign key (deptcode) references DEPARTMENT” . In the end, we
remove department to make sure no abstract attribute exists in the relational table.

With the steps proposed in this section, we can convert our relational schema dia-
gram shown in Figure 2.1 to its abstract relational counterpart and the abstract relational
schema diagram shown in Figure 3.1 back to its relational counterpart. Note that these
two diagrams are later used in our empirical study so we made some small changes to
make them cleaner for experiment participants. For instance, the abstract MARK table uses
explicit abstract attribute enrollment instead of self for its foreign key referrencing the
ENROLLMENT table, and no prefix is used as it’s not necessary in this database schema.
Therefore, they do not exactly match the resulting schema obtained by applying the steps
listed in this section. However, they are semantically equivalent to the results and will not
have any side effect on the result of our experiments.

3.4 SQLpath

Based on their conceptual modelling language and the abstract relational model, Borgida,
Toman, and Weddell also introduced SQLP*" an extension to SQL that adopts its core
relational algebra fragment and is specifically designed for conjunctive queries [3]. SQLPah
incorporates attribute paths and is expected to simplify the syntax for table joins to speed
up the composition of complex conjunctive queries, especially for chained foreign key con-
straints. Their definitions of attribute path and SQLP*" are presented below:

Definition 5 (PF,;: Well-Formed Attribute Path). Let PF,,¢(T") denotes the set of well-
formed attribute paths for table T. An attribute path Pf € PF,¢(T) if Pf is self or, when
Pf has the form A o Pf’, there exists tables Ty, ..., Ty such that:

1. ¥ | (covered by {T1,...,Tx}) € T,

2. A e Attrs(T;), 1 < i <k, and when A is abstract, there exists T!, 1 < i < k such
that:

27

(a) ¥ |= (foreign key A references T)) € T;, and
(b) Pt" € PF,;(T7).

Let Home(A) denote the set of tables Ty, ..., Ty for which A € Attrs(T;), 1 <i <k. When
Home(A) is a singular set for A, this simplifies to Pf € PF, (1) if Pf is self, or, when
Pf has the form A o Pf’, there exists T,, such that:

Y |= (covered by {Home(A)}) € Ty, and when A is abstract, there exists T, such that:

(a) ¥ |= (foreign key A references 7)) € Ty, and
(b) Pt € PF,¢(1}). O

The composition A o Pf’ is defined as

, A, if Pf’ is self
AoPf' = '
A.Pf’, otherwise

For example, with the abstract relational model depicted in Figure 3.1, “self”, “term”,
“course.cnum”, “course.department”, and “course.department.deptname” are well-formed
attribute paths for the abstract table CLASS, while “cname” and “enrollment.student.year”

are not since cname and enrollment are not attributes of CLASS.

Definition 6 (SQLP™ ..). The following grammar gives the syntax for (an idealized)
SQL-like query language over instances of ARM schema:

(SQLP™,,..,) = select distinct ty,ta,..., Iy
<SQLpathbody>

(SQLP ™4,y = from Ty 1, Ty xa,..., T, x,
where (cond)

(cond) ==t op t
| t op c
| (cond) and (cond)
| exists (select * (SQLP,.))
| not (cond)

where T; is a table name, x; is a variable name, ¢ is a constant, and op represents a
conditional operator. t;, t and t' are terms and they must have the form “x.Pf”, such that

28

“I' x” occurs in a containing from clause and Pf € PF,¢(T). Note that all variables are
required to be appropriately bounded with a “T' x” clause, and denote T' by Bound(z), that
Pf is well defined for Bound(x) for any term “z.Pf” O

As we can see, this adds a few new features to standard SQL conjunctive queries. First, it
allows the use of attribute paths in the select and where clause, where users are no longer
limited to only concrete attributes and can compare attributes of 0ID types for table joins.
Second, “T" z” is allowed as a independent query, where SQL would require “select from
T x”. Tt also adds syntactic sugar such as conjunction in where clause and multi-arity from
clauses instead of nested from for better readability.

The usage of attribute paths gives users the ability to walk along foreign key constraints
and refer to an attribute A; defined in abstract table T, = Home(Ay) from table T} with
chained attributes x.A;.,...,.Ag, given that 77 = Bound(z) and there exist abstract tables
Ti,..., Ty, where A; is an 0ID attribute such that ¥ |= (foreign key A; references Tj,;) €
T;, for 1 <7 < k — 1. This can drastically reduce the number of boolean expressions used
in the where clause to filter result relation for table joins. Recall our example SQL query
to find all names of professors in the department “Computer Science” that have taught the
class “CS348”. Now with SQLP*™ and the abstract relational model (Figure 3.1), it can be
expressed as:

select distinct cl.professor.pname

from class cl

where cl.professor.department.deptname = ‘Computer Science’
and cl.course.cnum = 348

and cl.course.department.deptname = ‘CS’

It now has 3 boolean expressions in the where clause instead of 5, as we no longer need to
explicitly assert the equality of the primary/foreign key attributes in intermediate tables
(they are hidden in the attribute paths).

In general, the benefit of SQLP*! is more noticeable when the number of tables that need
to be joined to answer the query is large, especially when majority of these tables are only
used as intermediate steps such that we are only involving them to use their associated
foreign key constraints to connect the tables we are actually interested in, rather than
using their own attributes. The reduction of boolean expression counts in the where clause
become even more significant when more attributes are combined to form foreign keys and
primary keys of these intermediate tables, as we have to assert equality for every attribute
of these keys in SQL. For example, with the relational database schema depicted in Figure

29

2.1, the SQL conjunctive query to select all professors that are from a department which
has ever offered a course that some student has scored a full mark (100) in it is:

select distinct p.pnum, p.pname
from professor p
where exists (
select * from department d
where d.deptcode = p.deptcode
and exists (
select * from course c
where c.deptcode = d.deptcode
and exists (
select * from mark m
where m.grade = 100
and m.cnum = c.cnum
and m.deptcode = c.deptcode

)

Note that although we are only interested in the PROFESSOR and MARK table, since they
are connected by the DEPARTMENT and COURSE tables, we have to include these two tables
in the nested subqueries as well as assert the equality of their primary/foreign keys. The
same query, when expressed in SQLP*" using the abstract database schema depicted in
Figure 3.1, is much simpler:

select distinct p.pnum, p.pname
from professor p
where exists (
select * from mark m
where m.grade = 100
and m.enrollment.class.course.department = p.department

)

where the usage of attribute path “enrollment.class.course.department” hides the details
of intermediate table joins for the abstract tables ENROLLMENT, CLASS, and COURSE.

Furthermore, the ability to compare 0ID attributes in SQLP*" can shorten primary key

equality checks, since it’s no longer necessary to check its compositing attributes one by one.

30

For instance, with the university database schema, to check whether two enrollments e;
and e, are of same class, with SQL we have to assert that e;.deptcode = e,.deptcode and
e;.cnum = e,.cnum and e;.term = e,.term and e;.section = e,.section, since the primary
key of the class table contains four attributes. But with SQLP*" the comparison can be
simplified to e;.class = ejy.class, as primary keys are replaced by 0ID attributes in ab-
stract tables.

To make SQLP*" applicable in real world applications, there must be a systematic way
to translate queries written in it back to SQL queries, as today’s RDBMS only supports
SQL. In Borgida, Toman, and Weddell’s work [3], they designed a Map function that
can compile any SQLP*" query over an abstract schema to a concrete SQL query, given
an identity resolving referring expression type assignment RTA for the abstract schema.
As the definition of Map is purely syntactic, its behavior is deterministic. Since we can
always systematically obtain an RTA when we map relational schema to abstract relational
schema as we discussed in previous section, this guarantees that we can obtain concrete
SQL queries for all of our SQLP*h queries.

The actual definition of the Map function is rather complicated, since it must handle
all five supported constraints of the abstract relational model. One may refer to Borgida,
Toman, and Weddell’s paper for the detailed definition if interested [3]. In general, RTA is
used to populate concrete attributes and figure out primary key and foreign key attributes,
as we discussed in previous section when translating the abstract relational model back to
the corresponding relational model. Then for all attribute paths, tables appear along the
paths are used for table joins, while RTA is used to determine primary key and foreign key
attributes for equality assertion. Then required attributes from the tables we are interested
in are selected for the result relation. For intermediate tables along an attribute path, if
its primary key is part of the primary key of a prior table and none of its non-primary key
attribute is used, it can be skipped in table joins. For example, the SQLP*" query to find
all students who have enrolled in class CS341 with the abstract relational database schema
in Figure 3.1 is

select distinct e.student.snum, e.student.sname
from enrollment e

where e.class.course.department.deptcode = ‘CS’
and e.class.course.cnum = 341

After applying Map to this query, we obtain RTA(STUDENT) = STUDENT — (snum = ?7),
RTA(ENROLLMENT) = ENROLLMENT — (student.snum = ?, class.course.cnum = 7, class.
course.department.deptcode = 7, class.term = 7, class.section = ?7), RTA(CLASS) =

31

CLASS — (course.department.deptcode = 7, course.cnum = 7, term = 7, section = 7),
RTA(COURSE) = COURSE — (department.deptcode = 7, cnum = 7), and RTA(DEPARTMENT)
= DEPARTMENT — (deptcode = 7), it can be translated to the following concrete SQL

query:

select distinct s.snum, s.sname
from student s, enrollment e
where s.snum = e.snum

and e.deptcode = ‘CS’

and e.cnum = 341

Note that from the given RTA we know the primary key of the concrete enrollment table
already covers the primary keys of class, course, and department tables. Additionally,
we are not interested in any of the non-primary key attributes of these tables. Therefore,
we don’t need to explicitly join them in the corresponding SQL conjunctive query.

In this chapter, we presented the definitions of the conceptual schema ARM based
on Cag, referring expression type, attribute path, and SQLP*" from Borgida, Toman, and
Weddell’s work. This can be used as both an introduction and tutorial on how to use
the abstract relational model and SQLP*! to solve conjunctive query problems. We also
explained how to map between the abstract relational model and the relational model,
with a systematic approach, and demonstrated how to write conjunctive SQLP*" queries
and convert them back to concrete SQL queries with examples.

However, one may question the actual usability and benefit of SQLP*" in real world

settings. Although syntactically it can simplify multi-table joins and redundant assertion
of composite primary/foreign keys involved in those joins, this may not be appreciated by
application developers. To answer this question, we designed and conducted an empirical
study at University of Waterloo, and hired students with SQL background to work on
real world queries with both SQL and SQLP*'. The experiment procedure, result, and
evaluation of the result data will be presented in next chapter.

32

Chapter 4

Empirical Study

In last chapter we presented the concept of the abstract relational model and SQLP",
To investigate their utility compared to the relational model and SQL, we conducted an
empirical study to evaluate their performance when solving real world query problems.
We hosted two experiments with undergrad students and graduate students respectively
at University of Waterloo. In this Chapter, we will present our hypotheses first, and then
explain the detailed experiments’ procedures as well as the results with statistical analysis.

4.1 Hypotheses

Recall that SQLP*" has two potential advantages over traditional SQL. First, by hiding
actual primary keys and foreign keys, there is no need to refer to the actual columns
when performing table joins. Second, using SQLP*! and “path expression” can speed up
query design by avoiding explicitly written column constraints, especially for tables with
complex keys. Particularly, joins spanning multiple tables can be replaced by a single
compressed “path expression”. This can simplify database queries and make them more
readable and easier to understand for other developers, as well as reduce the likelihood of
making mistakes thanks to shortened and simplified query syntax.

Naturally, there are two metrics to evaluate users’ performance with a query language:
readability and writability. Readability denotes the easiness of comprehending a query
written by someone else in the specific query language, and can be measured by letting users
translate given queries to English to explain their purposes. Furthermore, its performance
can be quantified in two ways. If SQLP*! is easier to use, it should not only take a user

33

less time, but also generate fewer errors when reading queries written in it. To verify it
statistically, we present the following two null hypotheses to represent its time consumption
and correctness measurements.

Null Hypothesis 1 (Readabilityny: Time Consumption). The average time taken to read
and translate a query written in SQLPY" to English is the same as when it is written in

SQL.

Null Hypothesis 2 (Readabilityxy: Correctness). The average correctness mark earned
for reading and translating a query written in SQLPY" to English is the same as when it is
written in SQL.

The definition of time taken and correctness mark will be explained later in the study
design section. Note that all queries we referred to previously and in the rest of this paper
are conjunctive with the addition of the not operator. On the other hand, writability
reflects how easily one can design and write a query with the given query language to solve
a specific problem. Two similar null hypotheses are presented here to measure the time
consumption and correctness perspectives of writability.

Null Hypothesis 3 (Writabilityng: Time Consumption). The average time taken using
SQLP to design and write a conjunctive query to solve a given problem is the same as
using SQL.

Null Hypothesis 4 (Writabilitynyy: Correctness). The average correctness mark rewarded
for using SQLP™™ to design and write a conjunctive query to solve a given problem is the
same as using SQL.

These four null hypotheses capture the two aforementioned advantages respectively, and
characterize them with quantitative attributes: time consumption and correctness, which
can in turn be measured empirically. To verify their validity, we specifically designed the
experiment to collect data, and performed statistical analysis to test whether none, some,
or all of these hypotheses should be rejected. This can help us answer the original question
of whether SQLPa" possesses its claimed benefits in real world applications. For example, if
SQLP*! was more efficient and faster to read when compared with SQL, we should be able
to reject Null Hypothesis 1 with an alternative hypothesis that is backed by data where the
corresponding time consumption of SQL is statistically significantly greater than SQLPah,

34

4.2 Study Design

4.2.1 Study Population

For this study, we recruited participants that fit the targeted user population of experi-
enced SQL users to have a more realistic and reliable evaluation of the abstract relational
model and SQLP*". While we conducted the experiment at University of Waterloo, the
most fitting study population of experienced SQL users were students who had taken
database related courses that covered SQL queries before. Additionally, we preferred par-
ticipants that were still using SQL regularly to avoid students who had put SQL aside for
extended time in case their memory of SQL had become rustic and no longer represented
our targeted user base. Moreover, we tried to recruit both undergraduate students and
graduate students to evaluate the ability to adopt abstract relational model and SQLPath
for participants of different academic levels and background.

Inclusion Criteria

For undergraduate participants, we only included the ones who were taking CS348 - “In-
troduction to Database Management” at University of Waterloo at the experiment time.
Additionally, we made sure the experiment took place right after they finished all SQL
related materials, while their knowledge of SQL queries were still fresh in their minds.
For their graduate counterparts, we only recruited from the data systems group (DSG), as
their researches were related to database systems. More specifically, we asked and made
sure they were using SQL queries regularly.

Recruitment Process

To recruit our sample participants, in-class recruitment sessions were held for undergradu-
ate students in both sections of the CS348 class at University of Waterloo during the Spring
2017 term, right after SQL related materials were covered and associated assignments were
done. Students were encouraged to join our study to become part of a real scientific ex-
periment as well as obtain an extra opportunity to practice what they had learned in class
to prepare for their midterm exams. Recruitment envelopes were distributed to students
in class, where all the information regarding the experiment, for example, times, locations
and how to register, were stated. We held two experiment sessions at different times but
at the same location in order to make sure everyone that were interested could join the
experiment.

35

For graduate students, in person recruitment was performed towards members of the
DSG thanks to the small size of the targeted group. Based on time availability, they were
formed into small groups of size up to 5 for different experiment sessions and they were
notified of the experiment date, time, location by email. Additionally, all participants were
rewarded a $15 gift card each after the experiment as an appreciation of their time. In the
end, 9 undergraduate and 15 graduate students were recruited.

4.2.2 Instruments

We created two sets of questions to evaluate the performance of SQLP*" in the readability
and writability perspectives, respectively. Each set contained three questions, ordered by
increasing difficulty, where level of difficulty was ranked by the complexity of constraints,
and number of tables that were required to be joined to yield the correct solution. By
setting up questions this way, we tried to first help the experiment participants become
familiar with the problem domain and the concept of SQLPa" before taking on questions
that were more complex and challenging.

Moreover, all participants worked on readability questions first before moving on to
writability ones. We arranged the question sets in this particular order to make sure
participants could first have access to some query examples to get familiar with the query
language, in an attempt to minimize their likelihood to produce syntax mistakes. Since
we were primarily interested in conjunctive queries, the core idea of all the questions were
based on table joins and the understanding of primary keys, foreign keys and their usage
in database queries.

Readability Questions

To evaluate whether complex queries are simpler to express and easier to understand with
SQLPath the first set of questions were composed of three pieces of query code, written
with either SQL or SQLP*! where experiment participants were asked to explain what
questions the queries were trying to answer by translating them into English. The three
readability questions we used is shown in Figure 4.1, where questions for SQL are listed
on the left side and questions for SQLP*! are listed on the right side. We mostly focused
on the basics of conjunctive queries (extended to include the not operator) and the most
difficult part was nested sub-queries with the “exists” operator.

36

Q1. Describe what the following database query computes in
English.
select distinct snum, sname
from student s
where exists (
select * from enrollment e
where e.snum = s.snum
and e.deptcode = ‘CS’
and (e.cnum = 341 or e.cnum = 348))

Q2. Describe what the following database query computes in
English. [hour(time) returns the hour part of a given time as an
integer between 0 to 23]
select distinct pnum, pname
from professor p
where exists (
select * from class cl
where cl.deptcode = ‘CS’
and cl.cnum =348
and cl.pnum = p.pnum)
and not exists (
select * from class cl, schedule sch
where cl.pnum = p.pnum
and cl.deptcode = sch.deptcode
and cl.cnum = sch.cnum
and cl.term = sch.term
and cl.section = sch.section
and hour(sch.time) < 12

)

Q3. Describe what the following database query computes in
English.
select distinct p.pnum, p.pname
from professor p
where exists (
select * from department d
where d.deptcode = p.deptcode
and exists (
select * from courses ¢
where c.deptcode = d.deptcode
and exists (
select * from mark m
where m.grade = 100
and m.cnum = c.cnum
and m.deptcode = c.deptcode

)

Q1. Describe what the following database query computes in
English.
select distinct e.student.snum, e.student.sname
from enrollment e
where e.class.course.department.deptcode = ‘CS’
and (e.class.course.cnum = 341 or e.class.course.cnum =
348)

Q2. Describe what the following database query computes in
English. [hour(time) returns the hour part of a given time as an
integer between 0 to 23]
select distinct cl.professor.pnum, cl.professor.pname
from class cl
where cl.course.cnum = 348
and cl.course.department.deptcode = ‘CS’
and not exists (
select * from schedule sch
where sch.class.professor = cl.professor
and hour(sch.time) < 12

)

Q3. Describe what the following database query computes in
English.
select distinct p.pnum, p.pname
from professor p
where exists (
select * from mark m
where m.grade = 100
and m.enrollment.class.course.department =
p.department
)

Figure 4.1: Readability Questions: SQL(left) and SQLP#! (right)

Q4. Write a SQL query that implements the following:

Find the distinct number (pnum) and name (pname) of all the professors from the
department named ‘Computer Science’ that have taught a class offered by a different
department (with different deptcode).

Q5. Write a SQL query that implements the following:

Find the distinct numbers (snum) and names (sname) of all students who have taken
Grant Weddell’s CS348 and received the mark greater than 90.

Q6. Write a SQL query that implements the following:

Find the distinct deptcode, cnum, and cname of all the courses that have failed
(received grade less than 50) some students in its classes offered in the morning (the
class has at least one schedule with hour(time) < 12) that are currently in their second
year and have enrolled in a class taught by ‘David Toman’ (either previously or
currently).

Figure 4.2: Writability Questions: SQL

Writability Questions

For the second set of questions, participants were asked to design and write down database
queries either using SQL or SQLP*! to solve specific problems looking for attributes of
entities satisfying certain constraints. All problems were based on the given relational
database model or abstract relational model shown previously. For each individual ques-
tion regarding SQL and SQLPa" the problem explanation was identical, while the only
difference was how the expected solution is going to be expressed. The query language
itself would not affect the underlying logic of the given question. The set of writability
questions for SQL are shown in Figure 4.2. Questions for SQLP#! is skipped here, as the
only difference was that the usage of attribute paths were allowed to write such queries.

4.2.3 Measurement
Response Variables
Based on our null hypotheses, we are interested in two performance metrics: time con-

sumption and correctness. These metrics can reflect whether SQLP! is faster and more
accurate to read and write when working with conjunctive and alike database queries, and

38

are considered as response variables to our experiment. During the experiment, a partici-
pant would work with either SQL or SQLP*h at a given time, and was not allowed to go
back to a previously question once it was finished. Therefore, their time consumption and
correctness marks for each question, with a specific query language can be easily recorded
and evaluated.

Time consumption can be measured for each individual question by calculating the
time difference in seconds between its starting time and ending time, which was logged by
each participant during the experiment. If SQLP*! was faster and easier to understand, we
would expect participants to consume less time on the set of readability questions expressed
in SQLP*!. The same can be said about the set of writability questions, which were used
in the experiment to evaluate the usability of SQLP*" in query design.

On the other hand, correctness is marked by three human markers in accordance to
a predefined marking scheme. We use a finer-grain marking scheme, as we are interested
in measuring the scale of how much more or less accurate SQLP*! solutions were when
compared with their SQL counterparts. We ask the three markers to go through all par-
ticipants’ solutions and evaluate their correctness independently on a scale from 0 to 4,
following the guideline shown below:

e O - the solution is completely wrong;

e 1 - the solution does not solve the question at all, but it can be observed that the
participant has grasped the basic concept of SQL or SQLP!;

2 - the solution contains mistakes, but is on right track and joined most of the required
tables correctly;

3 - the solution is mostly correct, and it may only contain minor mistakes;

4 - the solution solves the question completely and correctly.

Usage of half points are allowed if the marker deem the correctness of a solution fits between
two levels. In the end, the averaged marks is used as the final evaluation of correctness.
For readability questions, the average correctness marks are used as the sole measurement
of the correctness of solutions.

For writability questions, in addition to the previously defined scalar correctness grade
points, we have two extra labels for each question, recording participants’ syntax errors and
inconvenience. A solution is deemed to contain syntax error if any of the three markers can
find syntax mistakes in it. On the other hand, a solution is considered to be inconvenient

39

if any of the three markers can detect places where the participants used special notations
such as ellipsis or explanatory words to shorten their solutions, hence their solutions are
not syntactically correct. The combination of correctness grades and detection of syntac-
tical mistakes and inconvenience is used to reflect the correctness aspect of query writing
questions. Moreover, to make the marking process as fair as possible, the order of the

query language to mark for each marker is alternated. For example, if marker one marks
SQL first, marker two will mark SQLP*h first.

Explanatory Variables

The first and most important explanatory variable for each question is the query language
the given participant is asked to work with. This information was collected at the question
designing phase, as the query language itself was specified as part of the questions. It is
supposed to be the major factor affecting participants’ time consumption and correctness
of their solutions. For both readability and writability questions, if the proposed null hy-
potheses held, then the usage of SQLP" should not change participants’ time consumption
and correctness much.

Additionally, information regarding participants’ native speaking language was also
collected as an explanatory variable to the experiment, as it might affect the learning
speed of SQLPaM and the participants ability to understand the questions. Among the 9
undergraduate participants, two of them were native English speakers, while 5 of the 15
graduate participants were native English speakers. The participants’ education level was
also an explanatory variable.

We also have an extra explanatory variable that measures participants’ prior experience
with SQL. For undergraduate students, we asked them whether they had previous experi-
ence working with RDBMS and SQL before taking the CS348 class, such as internships.
We suspect that prior experience may affect their ability and speed to learn abstract rela-
tional model and SQLP*!. For graduate students, we specifically asked them whether they
have experience working with RDBMS and SQL in their study before. We suspect that if
some of the graduate students’ research directions had no relationship to SQL, they might
not be as familiar with database queries as their peers. In the collected results, three of the
undergraduate participants had previous experience with SQL while all of our recruited
graduate students had previous experience with SQL.

40

4.2.4 Experimental Design

While we treated undergraduate and graduate students slightly differently in their respec-
tive session, the details of their separate experiment process is explained below. The entire
experiment was conducted anonymously where participants’ names were never collected
nor stored.

Undergraduate Students

We held two sessions for undergraduate students. They both happened after students
finishing the first assignment which was related to SQL programming and before their
midterm exam. We had 4 students participated in session one and 5 students participated
in session two.

For each session, undergraduate students were invited to the experiment and were
asked to fill in a questionnaire. In the questionnaire, they were assigned a unique study id
and asked to answer two very simple questions regarding their native speaking language
and experience working with SQL before taking the database course. Once finished the
questionnaire, students were asked to keep one copy of their study id and the experimenter
collected all the questionnaires. After that, the experimenter divided participants into four
sets: students with previous experience and whose first language was English, students with
previous experience and whose first language was not English, students without previous
experience and whose first language was English, and students without previous experience
and whose first language was not English. Next, we randomly shuffled the study ids in
each of the four set of participants into two partitions. The students whose study id fell
into the first partition were assigned to Group A while the rest were assigned to Group
B. During this process, we tried to balance the overall number of students in these two
groups. For example, if the number of students in one set was odd, we would first assign
more to Group A. If we later encountered another set with odd number of students, we
would try to balance it by assigning more participants from this set to Group B.

Students in Group A were asked to solve their given questions with SQL while the ones
in Group B were asked to solve a similar set of questions with SQLP". Combining two
sessions, we had 4 participants worked with SQL and 5 participants worked with SQLP,
Each student in Group A was given an envelope containing the experiment instruction,
technical background and instruction of SQL and relational model, a specific relational
model illustrating the problem domain, and a set of questions. Similarly, students in
Group B obtained an envelope with similar experiment instruction, technical background

41

and instruction of SQLP*" and an abstract relational model illustrating the same problem
domain, and a similar set of questions.

When the experimenter distributed the envelope based on study id, the answers to the
two questions in participants’ corresponding questionnaires as well as the study id were
recorded on the envelope. Participants first spent 5 minutes reading the experiment instruc-
tion, and then given ten minutes to read their own technical instructions that demonstrate
how SQL/SQLP*! and relational /abstract relational model works. In the mean while,
they would go through some examples explaining the proper way to solve both types of
questions. The corresponding relational/abstract relational diagram that illustrated the
problem domain (entities with attributes and relations that were needed to solve the ques-
tions) would later be used in the problem solving phase. After the experimenter started
the problem solving phase, each participant was given an hour to solve all six questions,
in the sequential order provided (order number was labeled on the questions beforehand).
Readability questions were always solved before writability questions, and once a question
is finished, the participant was not allowed to return to it. The start and end time for
solving each question was logged by the student in the format of “hour:minute:second”.
The participants were asked to place everything back into the envelope and return it to
the experimenter after the experiment. Their solutions were then collected and stored for
marking later.

Graduate Students

Different from undergraduate students, although the questions were still the same, graduate
students were asked to work in small sized groups with the experimenter (at most 5 people
in one session). Furthermore, each graduate participant was asked to solve the questions
with both SQL and SQLP*". Therefore, their experiment session was divided into two
parts where the participants either worked on SQL questions or SQLP*" questions.

We had 15 graduate participants in total. Similar to the experiment among under-
graduate students, graduate students were asked to fill in the questionnaire with a unique
study id and the same two questions regarding their first language and prior experience
with SQL. After that, participants kept their own study id and the experimenter collected
all the questionnaires. The experimenter then shuffled the study ids and students were
assigned by their ids alternatively into Group A and Group B. For example, the first id on
the pile after shuffling was assigned into Group A and the second was assigned into Group
B, so on so forth. Afterwards, Group A (total of 8) worked on SQL first while the other 7
(Group B) worked on SQLP#™! first.

42

Each graduate participant received two envelopes, A and B. For participants in Group
A, envelope A contained the same material as the undergraduate participants who worked
on SQL were given, and envelope B contained the same material as the undergraduate
participants who worked on SQLP*" were given. The materials given for participants in
Group B was in the opposite order. The experimenter then wrote down the study id on
both envelopes and recorded the answers to the questions on the questionnaire, too. After
reading the experiment instruction, different from the undergraduate experiment sessions,
the experimenter spent 10 mins to explain an example with both SQL and SQLP*" solutions
to give a general idea of these two query languages. Then, participants were allowed to
open their own envelope and read the technical instruction inside. Next, the participants
were asked to start solving the questions sequentially in the same order using the given
relational /abstract relational diagram as their undergraduate counterparts. Once they
finished envelope A, the first part of experiment was done. Participants could take a short
break and then start the second part. During the second part of the experiment, envelope
B was opened and the process was the same as when they were working with envelope
A. Same to undergraduate experiment, the start and end time for solving each question
was logged by the student in the format of “hour:minute:second”. By having two groups
that started with different query languages, we hope to eliminate the bias introduced by
familiarity when working on second set of questions. After they were done, everything was
put into envelopes and the solutions were still collected and organized anonymously.

The relational /abstract relational model and database schemas used by both undergrad-
uate and graduate participants to solve SQL and SQLP*! questions were shown previously
in Figure 2.1 and Figure 3.1, while the readability and writability questions are shown in
Figure 4.1 and Figure 4.2, respectively.

4.3 Data

After all participants’ solutions were collected and their correctness was graded by the three
markers, the final results were aggregated and organized for further statistical analysis. The
raw data for undergraduate participants is displayed in Table 4.1 for readability questions
and Table 4.3 for writability questions, while Table 4.2 and Table 4.4 hold the raw data
for graduate participants. We separate data from graduate students and undergraduate
students here due to the different setups of their respective experiment sessions.

In all four tables, the “ID” column specifies a participant’s assigned study ID in the
experiment; “English” column denotes whether a participant is a native English speaker;
and “Query Type” column indicates either a participant was working with SQL or SQLPath

43

to solve the given questions. For the “Experience” column, it is “True” for an undergrad-
uate student if he had previous experience working with SQL prior to taking class CS348.
For graduate students, since they all had experience working with SQL before in their
research, this column is discarded. However, graduate participants has a special “SQL
First” column indicating whether one worked with SQL first or SQLP*" first at his own
experiment session.

Additionally, the “Start” and “End” columns for each question are used to record the
starting and ending time of the question logged by the student during the experiment. The
values are in the format of “hour:minute:second”. The following “Diff” column contains the
associated time difference between the starting and ending time, in seconds. It will later
be used as the measurement of time consumption in our analysis. The “Grade” column for
each question lists the raw grade marks given by all three markers, without averaging. For
writability questions, we also include two extra columns of “Syntax” and “Inconvenience”,
indicating the discovery of syntax errors and purposely shortened solutions, independently
from the three markers, in the same order as the “Grade” column. These tables display
the raw information we collected from the experiment, without any further processing. All
of our analysis in the following section is based on the results contained in them.

. . Readability: Q1 Readability: Q2 Readability: Q3
ID | English | Experience | Query Type Start End D(i%‘f Grade Start End D% Grade Start End . DQlff Grade
1 True True SQLP™ [17:09:44 | 17:11:27 | 103 3/4/4 | 17:11:37 | 17:14:00 | 143 3/4/4 | 17:14:21 | 17:15:34 | 73 | 4/4/4
2 False False SQL | 17:07:48 | 17:10:24 | 156 4/4/4 | 17:10:43 | 17:15:11 | 268 2/3/2 | 17:15:26 | 17:19:33 | 247 | 1/4/2
3 False True SQL | 17:15:20 | 17:17:14 | 114 4/4/4 | 17:18:18 | 17:22:01 | 223 2/3/2 | 17:23:30 | 17:28:03 | 273 | 0/2/2
4 False True SQLP™ [17:09:18 | 17:11:21 | 123 | 4/3/3 | 17:12:07 | 17:14:26 | 139 | 2/3/2 | 17:14:40 | 17:15:58 | 78 | 2/2/2
5 False False SQL | 17:14:23 | 17:15:59 96 4/4/4 | 17:16:27 | 17:18:51 | 144 1/3/2 17:19:14 | 17:21:45 | 151 | 0/2/2
6 False False SQLPY [17:13:48 | 17:15:12 | 84 4/4/4 | 17:17:06 | 17:20:20 | 194 1/2/2 | 17:20:48 | 17:29:06 | 498 | 4/4/4
7 True False SQLpath 17:15:22 | 17:18:17 | 175 3/4/3 | 17:18:37 | 17:22:59 | 262 1/2/2 17:23:19 | 17:25:40 | 141 | 3/4/4
8 False False SQLPY [17:14:47 | 17:18:05 | 198 4/4/4 | 17:18:22 | 17:21:19 | 177 2/2/2 | 17:21:34 | 17:24:17 | 163 | 4/4/4
9 False False SQL | 17:15:43 | 17:17:11 88 | 3.5/4/4 | 17:17:36 | 17:19:13 97 | 1.5/2/2 | 17:19:35 | 17:21:53 | 138 | 0/2/2

Table 4.1: Experiment Result: Readability Questions, Undergraduate Students

4.4 Analysis

Based on our null hypotheses, we expect the usage of SQL and SQLP*! to be the major
deciding factor of a participant’s efficiency, which can be measured by time consumption,
and accuracy, which can be measured by correctness marks. However, one may suspect that
there is some internal correlation between time consumption and correctness themselves.
For example, a participant may achieve a higher mark on a question due to spending more
time to think through the question more thoroughly. If that was the case, we would not be

44

Readability: Q1 Readability: Q2 Readability: Q3

ID | English | SQL First | Query Type

Start End | Diff | Grade Start End | Diff | Grade Start End | Diff | Grade
10 True True SQL | 13:11:23 | 13:14:16 | 173 4/4/4 | 13:14:53 | 13:19:40 | 287 3/3/4 | 13:19:57 | 13:26:55 | 418 4/4/4
10 True True SQLPA™ 1714:02:29 | 14:03:33 | 64 | 3.5/4/3 | 14:03:55 | 14:06:00 | 125 1/3/3 | 14:06:20 | 14:07:48 | 88 4/4/4
11 False False SQLP™ [13:43:27 | 13:45:37 | 130 4/4/4 | 13:46:27 | 13:50:05 | 218 2/3/3 | 13:52:38 | 13:55:21 | 163 3/4/4
11 False False SQL | 14:29:29 | 14:30:30 | 61 4/4/4 | 14:30:41 | 14:34:55 | 254 2/3/4 | 14:35:10 | 14:36:59 | 109 4/4/4
12 False True SQL | 13:42:53 | 13:45:13 | 140 4/4/4 | 13:45:26 | 13:49:23 | 237 1/3/2 | 13:49:36 | 13:54:11 | 275 0/2/2
12 False True SQLP™ [14:33:05 | 14:35:06 | 121 4/4/4 | 14:35:21 | 14:38:24 | 183 1/4/4 | 14:39:37 | 14:41:55 | 138 0/2/2
13 False False SQLPA™ [713:43:00 | 13:46:00 | 180 3/2/4 | 13:47:50 | 13:49:20 | 90 4/4/4 | 13:49:40 | 13:51:59 | 139 4/4/4
13 False False SQL | 14:14:15 | 14:16:45 | 150 4/4/4 | 14:17:10 | 14:20:10 | 180 4/4/4 | 14:20:20 | 14:23:15 | 175 4/4/4
14 False True SQL | 13:11:07 | 13:12:50 | 103 3/4/4 | 13:13:17 | 13:16:30 | 193 2/3/2 | 13:17:37 | 13:20:36 | 179 0/2/3
14 False True SQLPA™ [13:43:17 | 13:45:25 | 128 3/4/4 | 13:45:45 | 13:47:20 | 95 3/4/4 | 13:47:36 | 13:49:26 | 110 4/4/4
15 False False SQLPA™ [13:12:50 | 13:13:50 | 60 4/4/4 | 13:14:10 | 13:15:05 | 55 3/4/4 | 13:15:15 | 13:15:50 | 35 0/1/1
15 False False SQL | 13:24:40 | 13:25:21 41 4/4/4 | 13:25:32 | 13:26:28 | 56 4/4/4 | 13:26:40 | 13:27:50 | 70 0/2/2
16 False True SQL | 13:09:55 | 13:13:40 | 225 2/4/4 | 13:14:06 | 13:18:02 | 236 4/3/4 | 13:19:24 | 13:23:38 | 254 0/2/1
16 False True SQLPA™ [13:55:20 | 13:58:50 | 210 4/4/4 | 14:06:50 | 14:09:38 | 168 4/4/4 | 14:10:16 | 14:12:40 | 144 0/3/2
17 True False SQLP™ [713:07:10 | 13:08:03 | 53 3/4/4 | 13:08:26 | 13:11:15 | 169 1/2/2 | 13:11:57 | 13:13:00 | 63 0/2/2
17 True False SQL | 13:49:25 | 13:50:12 | 47 4/4/4 | 13:50:24 | 13:52:37 | 133 4/4/4 | 13:52:53 | 13:55:06 | 133 4/4/4
18 True True SQL | 13:06:28 | 13:08:17 | 109 | 3.5/4/4 | 13:08:33 | 13:10:23 | 110 1/3/2 | 13:10:46 | 13:13:01 | 135 0/2/2
18 True True SQLP™ [13:50:49 | 13:51:24 | 35 | 2.5/4/3 | 13:51:45 | 13:53:14 | 89 | 3.5/4/4 | 13:53:40 | 13:54:38 | 58 | 3.5/4/4
19 False False SQLP™ [713:18:50 | 13:20:20 | 90 3/4/3 | 13:21:22 | 13:22:30 | 68 1/2/2 | 13:22:49 | 13:24:28 | 99 1/4/4
19 False False SQL | 13:48:21 | 13:49:07 | 46 3/3/4 | 13:49:42 | 13:51:40 | 118 1/2/1 | 13:52:00 | 13:53:09 | 69 0/2/2
20 False True SQL | 13:32:05 | 13:34:14 | 129 4/4/4 | 13:34:32 | 13:38:04 | 212 2/3/2 | 13:16:06 | 13:19:11 | 185 4/4/4
20 False True SQLPA™ [13:48:27 | 13:49:41 | 74 4/4/4 | 13:50:01 | 13:51:14 | 73 1/2/2 | 13:51:34 | 13:53:42 | 128 3/4/4
21 False False SQLPA™ [13:17:17 | 13:19:59 | 162 3/4/4 | 13:20:10 | 13:22:43 | 153 1/2/2 | 13:23:04 | 13:25:05 | 121 4/4/4
21 False False SQL | 13:47:12 | 13:48:08 | 56 3/3/4 | 13:48:30 | 13:50:24 | 114 2/3/2 | 13:50:50 | 13:52:05 | 75 4/4/4
22 True True SQL | 13:21:30 | 13:23:32 | 122 4/4/4 | 13:24:22 | 13:30:00 | 338 3/3/3 | 13:32:41 | 13:35:10 | 149 0/2/2
22 True True SQLPY™ [14:02:34 | 14:03:30 | 56 | 4/4/4 | 14:04:01 | 14:05:18 | 77 | 3/4/4 | 14:05:30 | 14:07:03 | 93| 0/2/2
23 False False SQLP™ [713:14:27 | 13:16:26 | 119 2.5/3/3 | 13:16:50 | 13:19:13 | 143 2/2/2 | 13:19:25 | 13:20:55 | 90 0/2/2
23 False False SQL | 13:40:12 | 13:41:57 | 105 3/3/4 | 13:42:09 | 13:45:56 | 227 | 4/4/4 | 13:46:08 | 13:51:45 | 337 1/3/1
24 True True SQL | 13:05:07 | 13:05:40 | 33 2/3/3 | 13:05:48 | 13:06:45 | 57 1/2/2 | 13:06:51 | 13:07:42 | 51 0/2/2
24 True True SQLP™ [713:32:03 | 13:32:28 | 25 2/3/2] 13:32:35 | 13:33:25 | 50 2/4/4 | 13:33:44 | 13:35:07 | 83 | 2.5/4/4

Table 4.2: Experiment Result: Readability Questions, Graduate Students

able to explain the correctness difference from the selection of query languages. Therefore,
before diving any further, we want to first test whether such a correlation can be validated
statistically. In all of our following analysis, the correctness marks from three markers are
averaged to create a numerical measure.

4.4.1 Time Consumption vs. Correctness

We use scatterplots to draw all of the participants’ time consumption and correctness
marks, for each individual question. Furthermore, we split the graphs by query languages,
in case dealing with the unfamiliar SQLP*" may affect a participant’s performance. The
results for readability questions are shown in Figure 4.3 (SQL) and Figure 4.4 (SQLP#),
while the results for writability questions are shown in Figure 4.5 (SQL) and Figure 4.6
(SQLPa™M) | In the scatterplots, we use x-axis to represent time consumption in seconds, and
y-axis to represent the averaged correctness marks, as we defined previously. A dot in a
graph represents one participant’s time consumption and correctness mark for one question,

45

SIUOPNIG 9)enpeIr) ‘SUOIISONy) AIQRILIAN :H[NSOY JuowLIodXy ' 9[qR],

0/0/0 0/0/1 e/v/1 Tees |sg1ger 0/0/0 o/1/t [v/v/v GOEVEL 0/0/0 0/T/1 [¥/v/ee [191 | CGLEET [PICEET | ua1OS ondy, oy, [1g
0/0/0 0/0/0 [v/e/e | 088 |oz0eer 0/0/0 0/0/0 |e/v/e CTILEL 0/0/0 0/0/1 962 | SPILEL | 67:L0:€1 | TOS ondy, oy, |72
0/0/0 0/0/0 [¥/¥/T | 668 |80:9T:F1 0/0/0 0/0/1_|¥/¥/¢ €0 10T 0/0/0 0/0/0 L6T | ETGGET | 961G ET | TOS osed oSl | €2
0/0/t 0/0/1 [e/e/e | eve |seoeen 0/0/0 0/0/0 | v/v/v £T08€T 0/0/0 0/0/0 86T | GOGTET | LOTTTET | qeaIDS os[ed osed | €2
0/0/0 o/t/o [v/v/1 |1e |9zcert 0/0/0 0/0/1 | v/v/e 0/0/0 0/0/1 66¢ | PEVLFL | GEL0:1 | qra1OS ony ony, |2z
0/0/0 1/0/0 | €e/v/e | 8¥9 | 8T:10:F1 0/0/0 0/0/0 | e/e/e 0/0/0 1/0/0 0¥ | 00:EFET s 44
0/0/0 0/0/0 | €/¥/2_ | 08¢ | LG0TFT 0/0/0 0/0/0_ | v/v/¥ 0/0/0 0/0/0 oF% | TH:9¢:€1 08 12
0/0/0 0/0/1 [¥/v/0 181 |ozcriet 0/0/0 0/1/0 [v/v/v 0/0/0 0/0/0 002 | 26821 | 26:62€1 | yra1OS os[eg i
0/0/0 0/0/0 [e/e/1 |e0s |10°1T91 0/0/0 0/0/0 | v/v/v L1:8G:ET | 0/0/0 0/0/0 2¥e | 6GLGET | LGECEL | rua1OS ondy, osped | 02
0/0/0 0/0/0 [&/¥/1 | 9TF | ST:GHEl 0/0/0 0/1/0 | t/¢/1 10:62:€1 | 0/0/0 0/0/T | ¥/¥/v | 80€ | seFeel | LE6TEL | TOS ondy, osfed | 02
U/1/1 1/1/0 |e/e/e o 0/0/0 0/0/0 | 1/2/0 80:00:71 0/0/0 0/0/0 [v/e/z | o081 08:7¢:€1 | TOS os osed | 61
0/0/0 0/0/1 [¥/v/z | <09 0/0/0 0/0/0 | v/v/v 8GPEET 0/0/0 0/0/0 y CT6TEL | STGTEL | quaTOS as[edq osped | 61
0/0/0 0/0/1 | v/v/ce]| 91e 0/0/0 0/0/0 | ¥/v/v STT0:1 0/0/0 0/0/1 OP:LEET | 6EFEET | qeaTDS ondy, onay, |81
0/0/0 1/1/1 | 1/¢/€ | 8SIT | GTi6¥€l 0/0/0 0/1/0 | ¥/€/S2 | L0L | €F6TET | 9GLT:ET | 0/0/0 0/0/0 SULT:ET | GEETET | TOS onip, onar, 81
0/0/0 0/0/0 [v/v/vr | ctv [oe9orpt 0/0/0 0/0/0_v/v/e 61:60:71 | 17:6¢:€T | 0/0/0 0/0/0 £1:65:€1 08 os[eg onay, [U1
0/0/0 0/0/0 [e/v/v |1l |erirer 0/0/0 0/0/0 | v/v/v 08781 0/0/0 0/0/0 RG:BTET ed 10S os[e] onay, |1
0/0/0 1/1/1 |2/z/0 | eoe | 8p:8Til 0/0/0 /1 | 1/e/e G0:CE L 0/0/0 0/1/0 OL:6LFL e 10S ondy, 91
0/0/t 1/0/1 | 1/¥/e | 0¥8 | 92:FG:€T 0/0/0 0/0/0 | g/e/e GO:0FET 0/0/0 0/0/0 /P12 ET 08 ani, 91
0/0/0 1/t/1 [1/e/1 ee |seseer | egeeer | 0/0/0 0/0/0 [1/e/z 061661 0/0/0 0/0/1 CPi6TE1 08 s o1
0/0/0 1/0/1 e/e/1 |81 |8rezel 0/0/0 1/1/1 | 1/e/z 00:02:€1 0/0/0 1/1/1 LOSLEL ed 1OS os[e a1
0/0/0 1/1/1 | ¢e/e/1 |86 0/0/1 1/1/0 | v/¢/v CELGEL 0/0/0 0/0/0 9T:6GET wa 1O onay, Al
0/0/1 1/0/0 |e/e/z | as 0/0/1 1/1/0 | ¢/¢/t 91:TE €T 0/0/0 0/0/1 0Z:9z°€1 108 auiy, ¥I
0/0/0 0/0/0 | v/v/v |98 0/0/0 0/0/0 [v/v/e 0/0/0 0/0/1 oS os[eq €1
0/0/0 0/0/1_|¥v/s/c | ceL 0/0/0 0/0/1 0/0/0 0/0/0 e 10S s[4 1
0/0/0 0/0/0 | ¥/¥/¢ | 86 | 00:00:GT 0/0/0 0/0/0 0/0/0 0/0/0 s onay, 4
0/0/0 0/0/0 [¥/¥/v | gs11 | 6ogedt 0/0/0 0/0/0 LY 0/0/0 0/0/0 08 onuy, 41
0/0/0 0/0/0 [€/v/0 |oLL | 0z:90:¢1 0/0/0 0/0/0 8¥¢ 0/0/0 0/0/0 s os[ed il
0/0/0 1/0/0 | %/¥/v | <801 | 01:82:F1 0/0/0 0/0/0 LLE 0/0/0 0/0/0 ZHGEET | e TOS s I
0/0/0 0/1/0 | ¥/¥/¢ | €9% | L&:8TFIL 0/0/0 0/0/0 [2SI | 0/0/0 0/0/0 0Z:80°F1 | e TOS onay, 01
0/0/0 0/0/0 [v/v/e 118 [or:1091 0/0/0 0/0/0 088 [6e:9r:¢T | 6¢18:€T | 0/0/0 0/0/0 [v/v/v | esc criLzel [0S ony, 01
QIURIUDATOIU] | XRJUAG mw,fo _ Ba | pug UDIUOAUODU] | XeJUAG m.f,,,EO _ Ba | puy RIS QOUDIUDAUOIU] | XRJUAG m.t,fmu . na g od&1, £1ond) | 4S04 TOS ar
[ORACHEIEHENN GO Anpqeim PO Apqenin
mpﬂ@@ﬁpm @p@ﬁ@dpwhwwgb ﬁwdosmwsg .%ﬁﬂ@@ﬁ@(/ HﬁSwwm QGQEEQQXM o 74 olqel,

0/0/0 0/0/0 [v/v/1 [219 |zzerLl | coielt | 0/0/0 1/0/t | v/v/e |66t | ¥pireLt 0/0/0 0/0/1 [e/v/1 |8¢e | 90:8z:21 | 80°Tz:Ll | TOS os[ug 6
0/0/0 0/0/0 | ¢&/v/e | z6r LyigeiL1 | 0/0/0 0/0/0 | v/e/e | 1ge | gegeiLt 0/0/0 0/o/1 [v/v/e [1¢ |9z6zLl ed 10S 8
0/0/0 0/1/0 | €/v/e | 119 0F:8€:L1 | 0/0/0 0/0/1 [v/v/v |11€ |21 0/0/0 0/0/1 [v/v/v | €ov | arigeLt ed IOS L
0/0/0 0/0/0 | v/¢/e | 69 0/0/0 0/0/0 | v/v/v | 1ze 0/0/0 0/0/0 | v/¥/¥ | 9¥F | 8G:9€:LT wed 1OS 9
0/0/0 0/0/0 | ¥#/¥/¥ | 066 0/0/0 0/0/0 | v/¥/c¢ | ege 0/0/0 0/0/1 | v/¥/c¢ | €82 | ¥6:9z:LT s os[ed os[ed

0/0/0 U1/ le/e/t | 1e 0/0/0 0/1/1 [e/e/c |osz [veezit 0/0/0 0/0/0 [z/e/0 [€s1 [0z6TLL ed 1O onyy, os[ed

0/0/0 0/0/0 | v/e/v [109 | €0:1¢:LT 0/0/0 0/0/0 | v/v/v LF:0P:L1 0/0/0 0/0/0 | e/e/e | eve | 0eigeLt 08 ouy, osped | €
0/0/0 0/0/0 | v/e/v | er9 | 8%:0F:LT 0/0/0 0/0/0 | v/v/v Y0:06:L1 0/0/0 0/o/1 |e/e/e |12 08 os[eg sy | ¢
0/0/0 0/1/0 | g/e/e | zoot | 1r:GriLT 0/0/0 o/1/0 | €/e/v 2h8TLT 0/0/0 1/1/0 |g/e/e | g1 1 TOS oy, owyg |1
wu:v::@»:O_q:H Mﬁu—ﬁzw m—u an mﬁg T:m vu:mw:m\w:;:: Kmu:hw _wﬁ —nu t-Q T:m uhﬁuw vu:mw:m\w:;va: K_\E:AAW mﬁuﬁ ”v t-Q T:m uE\..uw wa_,».,ﬁ >>.—$=~u vu:mﬁwa_xm ﬁ:

90 AVIqRIN

<O T

VO e

46

Correctness

Correctness

Readability: Q1 Readability: Q2 Readability: Q3

~ o X OO fos o ~ 4 X x X X ~ 4 XXX M
e B
) o) . o o
§ ® el =} ﬁ o
= =
— o - -
[a] g o o [+] § [a]
=} =] =
s} s}
X K b &
> Undergraduate Student > Undergraduate Student _ = Undergraduate Student
Graduate Student, SQL First Graduate Student, SQL First Graduate Student, SQL First
o 4 ¥ Graduate Student, SQL Last o | * Graduate Student, SQL Last o 4 ¥ Graduate Student, SQL Last
6 5IO 160 15|O 260 (IJ ﬁb 1(IJO 150 260 25|U 6 160 260 360 460 5(IJU
Time Consumption (seconds) Time Consumption (seconds) Time Consumption (seconds)

Figure 4.3: Readability Questions: Time Consumption vs. Correctness, with SQL

Readability: Q1 Readability: Q2 Readability: Q3
< o s ae] > =] < X < o GO o]
= o ® X o %
X o o
© - X) © - Y
x
X
o o 8
C j
o~ 4 ‘uu: o A WO g o - o
5 bt KK o = 5
O)
X
X
@ Undergraduate Student * Undergraduate Student @ Undergraduate Student
Graduate Student, SQL First Graduate Student, SQL First Graduate Student, SQL First
o 4 * Graduate Student, SQL Last o 4 * Graduate Student, SQL Last o 4 * Graduate Student, SQL Last
[Il 5IO 160 15;0 260 (IJ 5b 1(|JO 150 2[|)O 25|0 [Il 160 2[|)O 360 460 560
Time Consumption (seconds) Time Consumption (seconds) Time Consumption (seconds)

Figure 4.4: Readability Questions: Time Consumption vs. Correctness, with SQLP*"

with either SQL or SQLPa" as the used query language. Moreover, we use different color
and dot type to denote undergraduate student, graduate student who worked with SQL
first, and graduate student who worked with SQLP*" first.

From these graphs, we are not able to see any clear relationship between time con-

sumption and correctness. To verify it statistically, we aggregated all data points from
both graduate (disregard the working order of SQL and SQLP*") and undergraduate stu-

47

dents in each graph and performed linear regression analysis upon them. For readability
questions, the obtained p-values for SQL queries are Q1: 0.2816, Q2: 0.3207, Q3: 0.8073,
and Q1: 0.3824, Q2: 0.0757, Q3: 0.1708 for SQLP*! queries. For writability questions,
the obtained p-values for SQL queries are Q4: 0.1506, Q5: 0.0896, Q6: 0.1507, and Q4:
0.7901, Q5: 0.0168, Q6: 0.0439 for SQLP*® queries.

Other than the fifth and sixth questions of SQLP*" all other p-values are greater than
0.05 - the commonly used cutoff threshold. Hence overall it is statistically insignificant
to suggest any linear relationship between time consumption and correctness. In another
word, in most cases, spending more time on any of the questions will not produce more
accurate answers nor the other way around, regardless the query language used. However,
participants tend to write complex SQLP*" queries better when they spend more time on
them. Since the concept of SQLP*" is new to them, spending more time may help them
understand it better.

The only outlier is the fifth question of SQLP*" where its p-value is calculated to
be 0.02017 and is below significance cutoff of 0.05. This suggests a positive linear rela-
tionship between time consumption and correctness for this specific question. In fact, its
counterpart in SQL also has the lowest p-value among all questions. We suspect that the
underlying logic of this type of question is rather straightforward. It may have multiple
conditional constraints to satisfy, but contains less nesting (not as complicated as question
six). Therefore, the reduction of correctness marks come more from missing constraints,
which is less likely to happen when a participant spends more time double checking his
answer. However, this still needs some formal verification. But as it was not the focus of
this paper, we will not discuss it any further. Overall, the statistical results discovered here
suggest no significant correlation between time consumption and correctness, and we can
therefore attribute their changes to other explanatory variables, such as the query language
used.

Additionally, the average time taken in seconds across all participants for SQL are
104.95 (Q1), 183.37 (Q2), 180.16 (Q3) seconds for readability questions and 298.89 (Q4),
394.89 (Q5), 711.58 (Q6) for writability questions. The average correctness marks are 3.75
(Q1), 2.71 (Q2), 2.24 (Q3) for readability questions and 3.26 (Q4), 3.16 (Q5), 3.04 (Q6) for
writability questions. This confirms our design of questions that for both set of questions
the difficulty level is sequentially increasing. However, for SQLP*" the average time taken
in seconds are 109.50 (Q1), 133.55 (Q2), 125.25 (Q3) for readability questions, and 262.10
(Q4), 281.05 (Q5), 585.65 (Q6) for writability questions. The average correctness marks
are 3.58 (Q1), 2.71 (Q2), 2.95 (Q3) for readability questions, and 3.30 (Q4), 3.54 (Q5), 2.86
(Q6) for writability questions. Although the order of measured difficulty is the same for
writability questions, a more difficult readability question in SQL may not be as difficult

48

Writability: Q4 Writability: Q5 Writability: Q6

~ o D ~ 4 x> R & ~ o . EO]
oo =)
> [s2s)
[}
@ X OO o - © - X X
[
8 o 8 = ®
C C C
IR b4 S o g oA
5 5 % 5 *
o] s} s}
~— 4 — = — o
> Undergraduate Student > Undergraduate Student _ = Undergraduate Student
Graduate Student, SQL First Graduate Student, SQL First Graduate Student, SQL First
o 4 ¥ Graduate Student, SQL Last o | * Graduate Student, SQL Last o 4 ¥ Graduate Student, SQL Last
[Il 160 2(IJU 3[|)O 4(IJU (IJ 1[|)O 260 360 460 [Il 260 460 GEIIO BEIIO WOIOO
Time Consumption (seconds) Time Consumption (seconds) Time Consumption (seconds)

Figure 4.5: Writability Questions: Time Consumption vs. Correctness, with SQL

in SQLPa" | This is a very interesting observation and we will discuss it later when we start
analyzing each question individually.

Going back to our previous discussion, SQLP* is claimed by researchers to have two
advantages over traditional SQL. First, by providing a more simplified syntax together with
the compressed notation of “attribute path”, SQLPa! is expected to be easier to work with,
hence reduce the time needed to think the question through as well as actually write down
the query. Furthermore, this shall also make reading and understanding queries written by
others easier. Second, with its simplified syntax and the ability to hide explicit reference
to foreign keys for table joins, it shall also be less likely for users to make mistakes working
with SQLP*! questions, especially for complex conjunctive queries where multiple table
joins and complicated constraint checking are required. Here we perform our evaluation,
analysis, and comparison of SQL and SQLP*" based on these two metrics.

4.4.2 Time Consumption Analysis

Recall that our Null Hypotheses 1 and 3 aimed at evaluating the time consumption differ-
ence between SQL and SQLP! for readability and writability questions. If Null Hypothesis
1 held, it should take a participant the same amount of time to read, understand a database
query written in SQLP*" and translate it into English. Similarly, if Null Hypothesis 3 held,
a participant should consume the same amount of time to design and write a database query
with SQLP*". This can be analyzed by comparing the recorded time consumption of the

49

Writability: Q4 Writability: Q5 Writability: Q6

~ o D 3 . [ERE e} T x> P X ~ o
s} 2
* o o B
e X = © - o0 Ox
X < X o)
8 o s} 8 ><
C C C
§ o o el x o
5 5 * 5
o] s} s}
o
> Undergraduate Student > Undergraduate Student _ = Undergraduate Student
Graduate Student, SQL First Graduate Student, SQL First Graduate Student, SQL First
o 4 ¥ Graduate Student, SQL Last o | * Graduate Student, SQL Last o 4 ¥ Graduate Student, SQL Last
[Il 160 2(IJU BEIIO 4(IJU (IJ 160 260 360 460 [Il 260 460 GEIIO 860 WOIOO
Time Consumption (seconds) Time Consumption (seconds) Time Consumption (seconds)

Figure 4.6: Writability Questions: Time Consumption vs. Correctness, with SQLP !

questions. For this analysis we discard the data collected for undergraduate students, as
we are only interested in the behavioural difference of the same student when working with

SQL and SQLPath,

For each question, we define a participant’s time consumption difference as his con-
sumed time working with SQL minus his consumed time working with SQLP*" | in seconds.
Therefore, if the final value is positive, then the participant spent less time with SQLPath
in the experiment. Furthermore, the larger the value is, the faster he was when working
with SQLP2h which in turn indicates better efficiency and ease to use of SQLP*!. The
box-plots of all graduate participants’ time consumption differences for each readability
question and writability question are shown at the top part of Figure 4.7 and Figure 4.8,
respectively.

However, one may suspect that since graduate participants worked on both SQL and
SQLP*! questions, they might perform better on the second set of questions to work with,
as these questions were very similar to their counterparts in the first part, which would
in turn reduce participants’ time consumption. To answer this, we further split graduate
participants into two groups, one worked with SQL first and the other worked with SQLPa®
first. The group split results are plotted at the bottom part of Figure 4.7 and Figure 4.8.
For all plots, the portion above the red line (0) represents lower time consumption and
better efficiency for SQLPath,

20

Readability Questions

As we can see from the box-plots, participants are significantly more efficient with SQLPat!
when working on question 2 and 3, while question 1 is the only one where time consumption
for SQL and SQLPa is very close. This may be explained due to the fact that question
1 is the easiest of all six questions. Going back to Table 4.2, we can see that the average
time consumption for question 1 across all graduate participants is less than 2 minutes
and majority of them have perfect or near perfect correctness marks. Therefore, it may be
too simple to provide any meaningful comparison result as participants can come to the
solution right away and they are highly unlikely to make any mistake. On the other hand,
it’s quite clear that for any non-trivial questions involving conjunctive and alike queries,
SQLP*! takes less time and is more efficient to work with.

One may argue that as SQLP®" has a much simpler syntax, it shall benefit more from
the familiarity factor when being worked with later. This may be the reason of its time
consumption advantage we observed. From the bottom part of Figure 4.7, we find that
SQLPah’s time consumption advantage is more noticeable when worked with later, as the
box on the left is always higher than the box on the right. This confirms that participants
indeed perform better on their second set of questions. But for more complex question
such as 2 and 3, SQLP*" still beats SQL when worked with first.

Overall, the observed results tend to reject our Null Hypothesis 1, as SQLP*! is shown

to be noticeably easier and faster to read and understand. To prove this statistically,
we apply Wilcoxon signed rank test to analyze the time consumption difference for all
graduate students, as our data is paired, randomly collected from the same population,
and measured on an interval scale where the underlying distribution is unknown. When we
use the alternative hypothesis that the time consumption of SQLP*" is less than SQL, the
obtained p-values for the three readability questions become 0.5, 0.0027, and 0.0034. With
the commonly used probability threshold of 0.05, the Null Hypothesis 1 can be rejected
for question 2 and 3 where reading and comprehending SQLP*! is significantly less time
consuming and more efficient.

For question 1, if we switch the alternative hypothesis to that the time consumption of
SQLPath is greater than SQL, then the obtained p-value becomes 0.5227. This is statistically
insignificant and cannot be used to reject our null hypothesis. All of these results prove
that for readability questions, SQLP*! is at least as efficient as SQL, and significantly more
efficient when dealing with more complex problems.

ol

Readability: Q1 Readability: Q2 Readability: Q3

o o o
o - o A o -
w w w
w o w o =1
T 2+ o 9 A o 9
C T [=_— C T
o o o
(=] o (=]
&g LN 28
®» ® @ @ @
st 5] . st
c C c
Lo Lo Lo
@O O - o O @O O -
=] = o =
[a] fa] — [a]
58 — 535 * 58 ;
B - | B < B -
E ; E E E
2 L] g 2
@ @ @
o — [} 1 o 1
[&]] [&] —_— 6] !
g8/ = =N £ 2]
[[=
o o o
(= o 4 (=
o o o
SQLPath faster above 0 SQLPath faster above 0 SQLPath faster above 0
Readability: Q1 Readability: Q2 Readability: Q3
o (=) o
27 B 27
O saL First O saL First O saL First
=] =] w o
€ 2 E sqLPaihFirst € 21 H saLPathFirst € S B saLPathFirst
53 3 53
22 2g] &g
© o ® @ @ @
o o —_— o
[C 1 [
2 o L o ! 2 o
T O o T O H T O o
=] = o I = o
[a] fa] ! [a]
58 o — 58] s8. W
= ! B - — B~ .
> =1 T > '
w w w !
cC o i C O T C O+ R
o L | —— o o
[s] &} O p——
g8/ = ggl g8/
= [SE E =
o (=) o
[=] o 4 [=]
o o o
T T T T T T
SQLPath faster above 0 SQLPath faster above 0 SQLPath faster above 0

Figure 4.7: Time Consumption Difference: Graduate Students, Readability Questions

Writability Questions

On the other hand, for writability questions, it takes participants significantly less time
with SQLP*" on question 5. There is also a quite noticeable advantage of SQLP*" for
question 4 and 6. When we split the participants by order of query language to work with,
similar to our previous observation for readability questions, the advantage of SQLPah
gets mitigated when worked with first. This time, question 5 become the only one where

o2

Writability: Q4 Writability: Q5 Wiritability: Q6
o o
(S o
w w
— —_— —_ g
o w w O
e o ! T O
5 5 1 57 N
o o o o | < H
25 23 : @ =
| i
® @ 1 ['
1 % |
o 8 o8 fa}
c ™ N c ™ c
] : S S o q----e----- - - EEEEEEEEEEEEE
B | a b=
5 : g £ .
2 I 2 2 !
£o- — : ‘ £ e
o - : o° ! O o
@ ! © 1 o 9
£ ! E | £
[H = | =
o o b=
g1 8 S
) D -
l
SQLPath faster above 0 SQLPath faster above 0 SQLPath faster above 0
Wiritability: Q4 Writability: Q5 Wiritability: Q6
S S
“ | O saLFirst © | O saLFist O saL First
— —_— —_ g
z O sQLPath First I O satrafFist & S 1 O salPath First
c c ! c -
2] | g _
o O o o 1 o 1
29 LA ! 3 :
|
@ @® [-]
o o o O
o o s
= £ — 3 .
5 . s ' 5o L [
a -1 a a _
= : g =
w H w 1 w
5 : s : 5 o
o o] o —
3 ﬁ ! g "OF
£ ! E ' £
i~ ! = 1 =
T

-200

-1000

SQLPath faster above 0

SQLPath faster above 0

SQLPath faster above 0

Figure 4.8: Time Consumption Difference: Graduate Students, Writability Questions

SQLP! i clearly faster even when worked with before SQL. The time difference slightly
favors SQL for question 4, but SQL has very significant advantage over SQLP*" for question
6 when worked with after it.

We suspect that the unique observation of question 6 in Figure 4.8 is due to its extra
complexity. Being the hardest question in this experiment with complicated and most
number of constraints, it is more time consuming to read and understand the question
itself and comprehend the logic behind it, thus more time can be saved working on it the

93

second time. Result data in Table 4.4 backs this observation as the average time consumed
on question 6 is significantly longer than any other question.

Overall, from our observation, we can conclude that SQLP*" is more efficient to work
with for designing and writing conjunctive database queries. After applying Wilcoxon
signed rank test again, with alternative hypothesis that the time consumption of SQLPa! ig
less, the obtained p-values are 0.0677, 0.0027, and 0.0820 for the three writability questions.
With the cutoff threshold of 0.05, our Null Hypothesis 3 can only be rejected for question
2. If we revert the alternative hypothesis to SQL’s time consumption was less, the p-
values for question 4 and 6 become 0.9397 and 0.9263. This result states that our null
hypothesis holds for most of the writability questions, or in another word, SQLPa" query is
not slower to design and write, while in some special case it can even be faster. Statistically
speaking, it is more likely that writing SQLP*" queries is faster as its associated p-values
are much smaller. This efficiency advantage become bigger when users are familiar with
the problem domain, i.e., worked with the same questions in SQL beforehand. For queries
that are excessively more complicated, this advantage may not be seen when working with
unfamiliar problems, since a user have to spend time understanding the problem domain
as well as the concept of SQLP#" which may be too overwhelming.

Combined with our previous observation, SQLP*" is equal or more efficient to work

with, for both readability and writability questions, depending on the complexity level.
The next question we want to answer is whether it can improve users’ correctness level
when reading and writing conjunctive and alike queries. Recall from our earlier definition,
correctness can be measured by marks rewarded, as well as detection of syntax errors and
purposely shortened solutions.

4.4.3 Correctness Analysis

We are more interested in the correctness marks of the participants’ solutions, as it can
be used to verify the validity of Null Hypothesis 2 and 4. Following the same approach
we applied with our time consumption analysis, we define each graduate participant’s
correctness difference as the correctness marks of SQLP*! minus the correctness marks of
SQL for each question. Similarly, a positive difference value is an indicator that working
with SQLP*" produces more accurate answer for a question, and the greater the value
is, the more accurate the SQLP*!" answer is. The data of undergraduate students is also
excluded here, since we only want to analyze the correctness performance of the same
participant on the same question, to remove external influence.

The box-plots of all graduate students’ correctness difference for readability questions

o4

are shown at the top part in Figure 4.9, while the plots of writability question correctness
difference are shown in Figure 4.10. We also split the participants into groups based on
the sequence of query language they worked with, and the box-plots of the grouped results

are shown at the bottom part of Figure 4.9 and Figure 4.10.

Readability: Q1 Readability: Q2 Readability: Q3

~ A ~ ~

o o ™ i
@ ® ‘:7 [} 1
o 5] st |
c c ' c I
@ [| @
] © .]
= - = =
[a] — fa] [a]
w O w O A w O
@ @ @
g — g g :
5] 5 £ R —
153 ! o | 153
o — o ! o
51 S ! 51
[&] (8] | o]

N oA i A

9 T A 9

SQLPath more accurate above 0 SQLPath more accurate above 0 SQLPath more accurate above 0
Readability: Q1 Readability: Q2 Readability: Q3
= - = = -
[0 saL First [saL First [0 saL First
E saqLPath First E sQLPath First E saqLPath First

o™ o™ o o™
[0} 11} [0}
o [5] ! o
[C [
[o [
o] o
= = =
[a] S m— fa] —_ [a]
» o . w o .- {Saeseeaaee | ® o~ T
8 | o] 8 L
= R i = | I p——
153 ! o ! 153
o — o — o
53 5] ! 53
[&] (8] | o]

N oA 1 oA

55 ¥ A 55

SQLPath more accurate above 0

SQLPath more accurate above 0

SQLPath more accurate above 0

Figure 4.9: Correctness Difference: Graduate Students, Readability Questions

95

Readability Questions

Overall, the correctness difference between SQL and SQLP*! is relatively smaller. From
Figure 4.9, SQLP" has no clear edge over SQL for any of the readability questions. In
fact, the result is very mixed. It is slightly less accurate for question 1, more or less
the same for question 2, and slightly more accurate for question 3. However, none of
the correctness difference is significant. Overall, this mixed result does not provide us
any evidence indicating whether a participant tends to make more or less mistakes when
reading queries written in SQLP*® when compared to SQL.

From the grouped plots, the correctness advantage of SQLP*" is only observed when
being worked with after SQL. In fact, for question 2, its performance is the exact opposite
when worked with before SQL. Question 3 also displays a similar pattern. Additionally, for
question 1, SQLP*! actually performs worse in both cases, although slightly better when
worked with after SQL. This observation confirms the belief we had in previous discussion,
that SQLP*! with its added feature would not help nor hinder one’s understanding of
a conjunctive or alike query expression, where the correctness difference is mostly due
to taking advantage of the similarity when working on the same questions repetitively.
Moreover, for extremely simple questions such as question 1, it may even cause slight
trouble to a first time SQLP*" user. When the SQL query for a question itself is very
straightforward that most participants can arrive at the correct solution right away, the
unfamiliarity with SQLP*"’s syntax and added features may prompts undesired mistakes.

Similar to our time consumption analysis, we apply Wilcoxon signed rank test to our
correctness data with the alternative hypothesis that SQLP*! queries can be understood
more accurately first. The correctness difference between SQLPa" and SQL solutions are
used for the test and the obtained p-values are 0.8968, 0.4624 and 0.2376 for question
1, 2, and 3. If we reverse the alternative hypothesis to assume SQL solutions are more
accurate, then the p-values become 0.1307, 0.5624, and 0.7927 respectively. Therefore, Null
Hypothesis 2 cannot be rejected as none of the p-values are less than the cutoff threshold
of 0.05.

This result leads us to the conclusion that queries written with SQLP*® although are
easier and faster to read (shown in our time consumption analysis), will not help people to
understand better, i.e. the likelihood of a participant to make any mistakes when reading
and translating a database query written in SQLP*! to English more or less stays the same
as the queries are written in SQL. This conclusion yields two results. First, the addition
of “attribute path” will not introduce any confusion to users given they understand the
concept. Second, as a well defined and established query language, SQL itself is already
clear to understand, although its verboseness may require more time to read through.

o6

Writability Questions

From the plots in Figure 4.10, for writability questions, SQLP" has clear edge over SQL
for question 5. It is slightly more accurate for question 4, and slightly less accurate for
question 6. Similar to readability questions, this mixed result does not give us any proof
of SQLP*" being more or less accurate when compared to SQL. When we apply Wilcoxon
signed rank test to the data with the alternative hypothesis that SQLP" solutions are more
accurate, the obtained p-values are 0.3328, 0.0081, and 0.6392 for questions 4, 5, and 6.
With the cutoff threshold of 0.05, the Null Hypothesis 4 can only be rejected for question
5. For questions 4 and 6, after reversing the alternative hypothesis, p-values become 0.6954
and 0.3908. The change in correctness in these two questions can not draw any conclusion
that is statistically significant enough. Although SQLP*" is only significantly better in one
question, it is not shown to be statistically worse than SQL.

The observation for writability questions makes us suspect that SQLP*" may be easier to

design and write for conjunctive queries that are not too complicated, where the challenge
is not to understand the question and come up with the logic, but rather to capture all the
constraints and write them down completely without making any minor mistakes. This can
also explain the clear advantage of SQLP*" for question 5. As it has multiple constraints
involving table joins that are on the same level without any deep nesting, participants are
more likely to make mistakes of missing matching columns in table joins, which is hidden
by SQLP’s yse of “OID” and “attribute path”.

Question 6 is different as it contains deeper level table joins and nested constraints.
This may in turn cause trouble to first time SQLP*" users as the thinking process with
“attribute path” on nested joins and constraints is rather counter intuitive for someone
with prior SQL experience. For example, to save lines one may need to start from terminal
tables (with reference to but not referenced by other tables) or shared tables (referring or
referred by multiple other tables). With SQL, the thinking process almost always start
from the table where entities are going to be selected. Hence the most challenging and
error prone points for this type of questions is in regard to the logic, rather than writing
all of the constraints down completely and correctly. SQLP*" as shown here, may not be
novice friendly enough on that front.

Although we suspect users with more experience of SQLP*" may grasp its intuition bet-
ter and can then take advantage of the power of “attribute path” to deal with more complex
queries more naturally, we don’t have enough data here to validate this assumption. In
this study we are only aiming to gain some overall insight into SQLP*"’s performance. It
can become a future research direction to look into the performance difference of SQLPah
on database queries with different number or depth of constraints, as well as on study

57

Correctness Difference

Correctness Difference

Writability: Q4

Writability: Q5

Writability: Q6

11} [0}
- o o
H c c
I © @
!] o
= =
H @ E— @
1 E E 1
i 3 3 i
— o o —
5] 53
(8] o]
N oA N
55 ¥ A 55
SQLPath more accurate above 0 SQLPath more accurate above 0 SQLPath more accurate above 0
Wiritability: Q4 Writability: Q5 Wiritability: Q6
~ - = q ~ -
O saL First O saL First O saL First
[0 sQLPath First [0 saLPath First [0 sQLPath First
o o o o ! o~ 4
11} 1 [0} _
- o ' o H
1 c ! c 1
H o ! o i
] o !
= =
o — o
o 4 w o - | O .- . |
w 7] :|
® [0
E 5 '
1 g 5]
1 o ° RN S
! 5 53
| (8] (o]
N 1 oA N
9 ¥ A 9

SQLPath more accurate above 0

SQLPath more accurate above 0

SQLPath more accurate above 0

Figure 4.10: Correctness Difference: Graduate Students, Writability Questions

population of different experience level of both SQL and SQLPth,

For grouped box-plots, writability questions still yield mixed result. The result for ques-
tion 5 confirms that for queries with multiple same level constraints, the ability to avoid
writing explicit table joins is less error prone and a deciding factor of the correctness differ-
ence. Combining with the result for question 4, we can see that SQLP*" is more accurate to
use for database queries, especially conjunctive queries that are not too complicated. For
the more difficult question 6, SQLP" answers are always less accurate. Moreover, when

o8

worked with first, the correctness difference has a bigger gap and wider spread, which may
reflect that different participants were trying to come up with solutions from very different
perspectives without thinking through the question in SQL idioms first. When worked
with after SQL, participants might have tried an approach that was similarly to what they
did with SQL. This result leads us to believe that the lack of experience with SQLP3!,
combined with its unique thinking process may have contributed to its worse performance
in writing more complicated conjunctive queries with deeper and nested table joins and
associated constraints.

In conclusion, we cannot reject our Null Hypothesis 4, as for writability questions,
SQLP™ s not better than SQL when correctness of participants’ solutions is considered.

4.4.4 Syntax and Inconvenience

Recall for query writing questions we also recorded participants’ syntax errors and incon-
venient solutions. This can help us discover whether the syntax of SQLP*! can easily be
understood for first time users. We counted number of solutions containing syntax errors
in Table 4.3 and Table 4.4. We deem a solution to contain syntax errors if any of the three
markers noticed one while they were marking. We find that solutions written in SQLP! in
general contain more syntax errors: 9, 6, and 7 syntax errors were detected for SQL while
8, 10, 14 syntax errors were detected for SQLP#" for question 4, 5, and 6 respectively.

Recall that majority of our study population had prior experience with SQL, this obser-
vation is actually expected because of the novelty of SQLP2"’s added feature. By scanning
the solutions containing syntax errors, we find that some of the participants tried to in-
tegrate SQL’s table joins into SQLP*" due to the lack of understanding of its “attribute
path”. Moreover, unlike SQL, the number of syntax errors increases as the complexity of
the query increases for SQLP*? | as more tables are needed to be joined and the attributes’
“chaining” gets more complicated. In conclusion, we suspect that although SQLP*" has a
rather simplistic syntax, it can be quite challenging for new users.

On the other hand, there are 4 inconvenience solutions for SQL and 2 inconvenience
solutions for SQLP*" . This may suggest that SQLP*" could be more convenient to work
with when compared against SQL, since the usage of “attribute path” can save a lot of
manual work when multiple tables are joined, especially in nested sub-queries. However,
the sample size may be too small to have any statistical meaning. Overall, we don’t find
any of the two query languages can be regarded as inconvenient for our experiment.

29

4.4.5 Other Explanatory Variables

As discussed earlier in the study design section, we have collected data on other explanatory
variables: participants’ first language, prior experience with SQL and education level. For
prior experience, we can only compare it for undergraduate students since all graduate
students have worked with SQL before. Since we have only recruited 9 undergraduate
participants, the sample size is too small after splitting into two groups to draw any
meaningful conclusion. A further experiment with a larger sample size will be required to
look into the influence of this as an explanatory variable.

Native vs. Non-Native English Speaker

After grouping all participants by their first language, the time consumption and correct-
ness performance for SQL and SQLP*! is shown in Figure 4.11 for readability questions
and Figure 4.12 for writability questions. From the figures, native and non-native English
speakers perform very differently. For readability questions, there is no clear indication
whether SQLP#" is more efficient or accurate than SQL for native speakers. They are faster
and more accurate with SQLP*! for question 3 but slower and less accurate for question
1 and 2. On the other hand, non-native speakers are in general faster for all three ques-
tions, and noticeably more accurate for question 2 and 3 with SQLP*®. Question 1 is the
simplest question in the entire experiment hence the familiarity of SQL and unfamiliarity
of SQLP*® may play a bigger role than comprehension of the logic itself. But in general,
for more complex questions involving reading comprehension and translating to English,
SQLP* appears to be more friendly towards non-native speakers as its usage leads to
their improvement in efficiency and accuracy, and the performance of non-native speakers
is overall better than their native counterparts.

For writability questions, similar performance behavior can be observed. Regarding
correctness, native speakers still yield mixed results, but noticeably faster with SQLPath
across the board. Non-native speakers on the other hand are more efficient on all three
questions with SQLPa" . Their correctness performance with SQLP*! is the same for ques-
tion 6, but significantly better for questions 4 and 5. Overall, SQLP*" seems to be more
friendly towards non native speakers for writability problems. Its advantage over SQL is
more appreciated for writing database queries than reading database queries for native
speakers. However, as our sample size is relatively small, we suggest this observation to be
more of a guideline than conclusion.

60

Readability: Q1 Readability: Q2 Readability: Q3

o o o
o [o
© O Native, SQL o B Native, SQL © O Native, SQL
[0 Native, SQLPath [MNative, SQLPath [0 Native, SQLPath
= | O Mon-Mative, SQL 3 | O Mon-Native, SQL = | O Mon-Mative, SQL
e [0 Mon-Native, SQLPath e [Mon-Native, SQLPath &z [0 Mon-Native, SQLPath
g g g
o o —T o —T
[iT] ® 1 [i1) 1
w o w o 1 w o 1
— G o = O ! = O - 1
s ® 5 © . s ® !
S o —_ o i
o - ! I a
E - £ : E
8- ’ £ 54 i 23
o ™ H R o ™ ' o ™
o . : | o —| : o —_ —_
2 : : ‘ 2 — 2 = :
E ; ! E E
" s mll ; £ :
- - ! - !
—_ i .
[
= L= =
T T T T T T T T T T
Readability: Q1 Readability: Q2 Readability: Q3
T T ' B h
H | h
i
H
1
|
© 1) ©
i
|
|
@ | » @ H
@ J—— w @ H
i @ i 1
£ £ £ !
H
5 o~ § o : : ! 3 ™ ’
S S i | i S i
&) o ! o !
| : i
! 1
H
H
7 @ mative, SQL 7 @ wative, SQL 7 @ mative, SQL H
i
O native, SQLPath O wNative, SQLPath O native, SQLPath —
O Non-Native, SQL O Non-Mative, SQL O Non-Native, SQL
O Non-Native, SQLPath O Mon-Native, SQLPath O Non-Native, SQLPath
[=l o [=l

Figure 4.11: Native English Speaker vs. Non-Native English Speaker, Readability Ques-
tions

Undergraduate Students vs. Graduate Students

We also analyze the influence of different education levels by splitting the results into
groups of undergraduate participants and graduate participants. The grouped box-plots
are shown in Figure 4.13 for readability questions and Figure 4.14 for writability questions.

For readability questions, the change of time consumption and correctness moving from

61

Writability: Q4 Writability: Q5 Writability: Q6
[=} o [=}
S S 2
-~ O Native, SQL - O native, SQL N O Native, SQL
[0 Native, SQLPath _ [Mative, SQLPath [0 Native, SQLPath
1
= | O Mon-Mative, SQL 2 ! O Mon-Native, SQL - O Mon-Mative, SQL
—_ —_ H —_
& ® [0 Mon-Native, SQLPath e ® ! [Mon-Native, SQLPath 52 [0 Mon-Native, SQLPath
g S : g
o o o
[iT] (1] [iT]
2 3 | . 23 @
c © . c @ c T
=]] S o I B
= —_ = = o i
=3 | a —_ o 5 ' —_
£ : E ! —_ g2 . .
2 i 3 ! i 5 : 1
2 g i i 2 3 ! @ !
5 < ! ! 5 < T] 5 !
O 8] ! 6] i
a @® ' a !
E E — E S : x i ij
F g : . F 2 3 ! SR : |
3 ' : : w ; | : : : '
1 I — — ! I i — 1
H —_ —_— —_ —_
i
= L=} L=}
T T T T T T T T T T
Wiritability: Q4 Writability: Q5 Wiritability: Q6
7 \ | T - - = - -
I I I I
— ' —] IR
i
© T © T © H
| i | 1
| ' ! |
i ! T |
@ | ! | m @« | T
w _ ! ' w w _ !
i} | | @ ! a T 1 H
5 i ! £ | 5 ! ! 1
B 1 - g o | B = L
S | 5 ! S i :
O ! O i [&] !
_ | L
I
|
7 @ mative, sQL 7 - E native, SQL - E native, SQL
O Native, SQLPath O Native, SQLPath O Native, SQLPath
O Non-Native, SQL O Non-Mative, SQL O Non-Native, SQL
O Non-Native, SQLPath O Mon-Native, SQLPath O Non-Native, SQLPath
[=2 o =}

Figure 4.12: Native English Speaker vs. Non-Native English Speaker, Writability Questions

SQL to SQLP*! for the same question is almost always mirrored between undergraduate
and graduate students. The only outlier is question 2, where graduate students are faster
with SQLP#! while no significant time consumption difference can be observed for un-
dergraduate students. Overall, this result suggests that the difference of participants’
education level does not affect ones ability to adopt and work with SQLP*!. This conclu-
sion can also be backed by the scatterplots we drew earlier in Figure 4.3 and Figure 4.4,
where no clear relationship between education level could be seen.

62

Readability: Q1 Readability: Q2 Readability: Q3
[=] [=] [=]
o~ (=] o -
© B Undergraduate, SQL o E Undergraduate, SQL © B Undergraduate, SQL
[0 Undergraduate, SQLPath [0 Undergraduate, SQLPath [0 Undergraduate. SQLPath
S O Graduate, SQL =1 O Graduate, SQL S O Graduate, SQL *
e O Graduate, SQLPath e 0O Graduate, SQLPath &z O Graduate, SQLPath
g g g
o o — o —T
@ @ i @ H
(2=} @ O | (2=} 1
g = — O | =] 1
I g @ ! I !
= = e I = —— 1
o a L i | a H
£ —_ E i £ '
o 2 ! — o 2 ! - o 2
gs T ; 3 g : : &
| '
2 ' = | 2 2 == '
- o - o 1 T = o
°1 BE= s1 —+ | = ; :
T i _:_ H :
i -
o
(=1 o o
T T T T T T T T T T
Readability: Q1 Readability: Q2 Readability: Q3
~ 4 - - - - ~ —
; :
-
1
1]
© o H i ©)
= i
|
@ | w @
w _ w w
@ @ @
i £ ; £
§ o o @ o T ! § o~
S 5] | | i S
O (5] ! ! (o]
o _ . :
1 1 1
1 1 !
T 7 B Undergraduate, SQL - E Undergraduate, SQL - @ Undergraduate, SQL H
1
O Undergraduate, SQLPath O Undergraduate, SQLPath O Undergraduate, SQLPath ——
O Graduate, SQL O Graduate, SQL O Graduate, SQL
O Graduate, SQLPath O Graduate, SQLPath O Graduate, SQLPath
(=T [=1 =1

Figure 4.13: Undergraduate vs. Graduate Students, Readability Questions

For writability questions, the accuracy of SQL and SQLP*! solutions is very close for
both undergraduate and graduate students, hence we can not arrive at any conclusion.
The trend of efficiency improvement is the same for all participants, but the reduction
of time consumption is more noticeable for graduate students. This observation suggests
that graduate students are faster at writing SQLP*" queries. However, generally speaking,
we do not think education level is a major factor deciding one’s ability to learn and use

SQLP=th,

63

Writability: Q4

Writability: Q5

Writability: Q6

[=] [=] [=]
(=3 o =]
=] =] o
- B Undergraduate, SQL - E Undergraduate, SQL o~ B Undergraduate, SQL
[0 Undergraduate, SQLPath [0 Undergraduate, SQLPath [0 Undergraduate. SQLPath
S] O Graduate, SQL = O Graduate, SQL o O Graduate, SQL
& ® O Graduate, SQLPath e ® 0O Graduate, SQLPath =l O Graduate, SQLPath
g g —_ s
(5] o ! (5]
@ @ | @
2 3 | . 23 I @
5« g @ | c -
=l | o ! S o ! —_
o ! - | a2 R i 1
£ i £ — g2 1 ! |
=1 o 1 -t 3 — —_ ' 5 I 1
= ' ' i = T 1 @ I 1
c 27 ! ' c o 1 ! c H
o L ' o ' ! o H
O H ! Q H I]
o ’—‘—‘ ® o —
= E ; : = - L
=N — 1| gl L 3 : =8 !
I3 T !] [' ! 1
1 I T 1 ! i
H —_ —_— —_
i
(=1 o o
T T T T T T T T T T
Wiritability: Q4 Writability: Q5 Writability: Q6
= = - - - -
] | -
T 1
' 1
1 1
.
T
1
© @ 1 ©
' ; :
T
: ' : — : ;
@ i ! i ® I 1 T @
o 1 ! i @ ' I @
it} H ' H] H ' @ 1 1 '
5 ' : ' £ : ‘ 5 : : :
§ o i ; - @ I i i § ™ ! . 1 H
5 | 5 ! ! 5 . - |
O ! (5]] | (o] !
4 i } 4
| |
T 7 B Undergraduate, SQL - [Undergraduate, SQL - @ Undergraduate, SQL
O Undergraduate, SQLPath O Undergraduate, SQLPath O Undergraduate, SQLPath
O Graduate, SQL O Graduate, SQL O Graduate, SQL
O Graduate, SQLPath O Graduate, SQLPath O Graduate, SQLPath
(=T [=1 =1

Figure 4.14: Undergraduate vs. Graduate Students, Writability Questions

Overall, although some of the explanatory variables may somewhat affect the under-
standability and usability of SQLP", their influence is minimal, and cannot be held against
the usage of SQLP*!. Moreover, due to very limited sample size, the observation and con-
clusion for these explanatory variables still requires further validation. This can become a
future research project where larger and more balanced groups of participants specifically
designed for these explanatory variables shall be recruited.

64

Chapter 5

Conclusion

In this thesis, we introduced Borgida, Toman, and Weddell’s work on the abstract relational
model and SQLP*". We explained and demonstrated how to use the conceptual abstract
database schema ARM to model entities and relationships and how to map traditional
relational database tables to abstract tables in ARM. Additionally, we explained how
to use SQLPaM to design and write conjunctive and alike queries and how the usage of
“attribute path” can help reduce the verboseness and redundancy of boolean expressions
used in table joins.

To validate the benefit of using the abstract relational model and writing SQLP®
queries in real world settings, we proposed four null hypotheses that embodies the time
consumption and correctness advantages of SQLP®! over SQL, for both query reading and
writing problems. To verify the validity of these null hypotheses, we set up an empirical
study on selected undergraduate and graduate students at University of Waterloo. We de-
signed the experiment to include questions testing readability and writability of SQLP**" on
various levels of difficulty, and measured and compared the participants’ performance with
both time consumption and correctness metrics to gain insight into its overall performance
in real world applications.

We presented the results with our statistical analysis in this thesis. Overall, we found
that we were able to reject the null hypotheses regarding time consumption improvement,
and confirmed that SQLP*! takes participants less time to read and write, thanks to its
simplistic syntax and ability to hide explicit table joins. Furthermore, this observation was
more noticeable for more complicated queries where the query rendered in SQLP*! was
much shorter and clearer.

On the other hand, correctness wise, for people with prior experience, we found no

65

evidence that SQLPa! either helps or hinders one’s ability to read and understand database
queries, as SQL queries are already well defined and structured. Hence it is not conclusive
to suggest SQLP*M is more accurate for readability questions. This was implied by our
statistical analysis as none of the null hypotheses regarding correctness could be rejected
by the Wilcoxon signed rank test.

In fact, SQLP*! yielded mixed correctness results for designing and writing conjunctive
queries. From the results, we can draw the conclusion that its benefits and advantages are
better appreciated for queries of less complexity but a lot imposed constraints on the same
level. For this type of problems, the most common mistakes are writing queries that are
missing constraint or foreign key columns for table joins. The ability to hide underlying
details with “attribute path” makes SQLP" a better tool to handle them. However, for
more complicated queries where multi-level constraints and nested table joins are involved,
the different thinking process of SQLP*"’s chained table joins may cause trouble to users
with prior SQL knowledge as the intuition is rather different in these scenarios. Our
experimental result showed that for this type of problems a user in general performed
worse with SQLP*!, This in turn rejected our correctness null hypothesis for writability
questions.

5.1 Future Work

The obtained different results of our experiment for different types of questions for the
correctness comparison leads us to believe that SQLP*"’s added features may be more
suitable to handle certain types of queries. We also suspect that by having more experience
with SQLP*! one may grasp its intuition better to take advantage of its added new features.
This shall lead us to some future research directions. For instance, we can compare the
correctness difference for queries of different numbers and levels of constraints, as well as
towards study population of different experience level on both SQL and SQLPath,

Furthermore, although the usage of “attribute path” is expected to reduce database
queries’ verboseness and complexity, the actual extent of improvement is not quantified.
It would be interesting to collect SQL queries from real world software applications and
compare the line count or boolean expression count against equivalent queries expressed
in SQLPh,

On the other hand, in our empirical study we only evaluated the usage of the abstract
relational model and SQLP*® mostly at solving conjunctive query focused questions. In
fact, they can be used to work with other query types, too. One can design more compre-
hensive experiments to measure its readability and writability performance and compare

66

its difference between different query types. This can lead us to find out the most suitable
query types for these tools. In addition, we can experiment with more complex database
schemata.

Moreover, although we provided a systematic approach to map relational database
schema to abstract relational database schema, its validity is not formally proved. We are
expected to present a formal proof for both forward and backward mapping in future work.

Last but not least, the abstract relational model and SQLP*" have only been used in the-
ory. Although systematic approaches to map the relational model to the abstract relational
model and compile SQLP*! to concrete SQL queries are proposed, they are not actually
implemented in any of today’s RDBMS. It’s an interesting direction to build actual compil-
ers that can convert abstract table declaration, referring expression type assignments, and
SQLP* queries to standard SQL programs, either as a standalone application or plugin to
some of the major relational database engines. This can help database developers to get
their hands on SQLP! for real world software applications.

67

References

[1] ANSI and ISO. Information Technology — Database languages — SQL. Switzerland,
1st edition, 1986.

2] ANSI and ISO. Information Technology — Database languages — SQL. Switzerland,
5th edition, 2016.

[3] Alexander Borgida, David Toman, and Grant Weddell. On referring expressions in
information systems derived from conceptual modelling. In Conceptual Modeling,
pages 183-197, 2016.

[4] Alexander Borgida, David Toman, and Grant E Weddell. On referring expressions in
query answering over first order knowledge bases. In KR, pages 319-328, 2016.

[5] Donald D Chamberlin, Morton M Astrahan, Michael W Blasgen, James N Gray,
W Frank King, Bruce G Lindsay, Raymond Lorie, James W Mehl, Thomas G Price,
Franco Putzolu, et al. A history and evaluation of system r. Communications of the
ACM, 24(10):632-646, 1981.

(6] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view of data.
ACM Trans. Database Syst., 1(1):9-36, March 1976.

[7] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377-387, June 1970.

[8] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems. Addison-
Wesley Publishing Company, USA, 6th edition, 2010.

[9] Terry Halpin. Modeling of linguistic reference schemes. International Journal of
Information System Modeling and Design (IJISMD), 6(4):1-23, 2015.

68

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Richard Hull and Roger King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys (CSUR), 19(3):201-260, 1987.

Vitaliy L. Khizder, David Toman, and Grant Weddell. Reasoning about duplicate
elimination with description logic. In Computational Logic — CL 2000, pages 1017—
1032, 2000.

John Mylopoulos, Philip A. Bernstein, and Harry K. T. Wong. A language facility for
designing database-intensive applications. ACM Trans. Database Syst., 5(2):185-207,
1980.

Nicole Schweikardt, Thomas Schwentick, and Luc Segoufin. Database theory: Query
languages. In Algorithms and theory of computation handbook, pages 19-19. Chapman
& Hall/CRC, 2010.

Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al. Database System
Concepts. McGraw-Hill New York, 6th edition, 2011.

David Toman and Grant Weddell. On attributes, roles, and dependencies in descrip-
tion logics and the ackermann case of the decision problem. In In Proceedings of
Description Logics, CEUR-WS, vol.49, pages 76-85, 2001.

David Toman and Grant Weddell. Conjunctive query answering in CFD,,.: A ptime
description logic with functional constraints and disjointness. In Australasian Joint
Conference on Artificial Intelligence, pages 350-361, 2013.

David Toman and Grant Weddell. On adding inverse features to the description logic
CFD,. In PRICAI 2014: Trends in Artificial Intelligence, pages 587-599, 2014.

David Toman and Grant E Weddell. Applications and extensions of ptime description
logics with functional constraints. In IJCAI pages 948-954, 20009.

David Toman and Grant E Weddell. Pushing the CFD,,. envelope. In Description
Logics, pages 340-351, 2014.

69

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Contributions
	Thesis Outline

	Preliminaries
	The Relational Model
	SQL

	The Abstract Relational Model
	An Abstract Domain
	Referring Expression Types
	Mapping between Relational Model and Abstract Relational Model
	SQLpath

	Empirical Study
	Hypotheses
	Study Design
	Study Population
	Instruments
	Measurement
	Experimental Design

	Data
	Analysis
	Time Consumption vs. Correctness
	Time Consumption Analysis
	Correctness Analysis
	Syntax and Inconvenience
	Other Explanatory Variables

	Conclusion
	Future Work

	References

