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Abstract

We discuss problems in list coloring with an emphasis on techniques that utilize oriented
graphs. Our central theme is Galvin’s resolution of the Dinitz problem (Galvin. J. Comb.
Theory, Ser. B 63(1), 1995, 153–158).

We survey the related work of Alon and Tarsi (Combinatorica 12(2) 1992, 125–134) and
Häggkvist and Janssen (Combinatorics, Probability & Computing 6(3) 1997, 295–313). We
then prove two new extensions of Galvin’s theorem.
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Chapter 1

Introduction

It got started when we tried to solve
Jeff Dinitz’s problem.

Erdös Rubin and Taylor
Choosability in Graphs

In 1976, Vizing gave the first published account of list coloring in a Russian journal. His
work had not reached Erdös, Rubin, and Taylor by 1979, when the trio introduced the notion
of list coloring to the English speaking research community. Their paper, “Choosability in
Graphs” incited research on numerous problems in list coloring. See [42], [15].

Probably the most infamous such problem is the so called edge list coloring conjecture. This
conjecture asserts that the chromatic number and list chromatic number coincide for line
graphs. Over the course of the 1980’s, Bollobás and Harris, Chetwynd and Häggkvist, and
Bollobás and Hind, used probabilistic methods to give successively stronger upper bounds on
the list chromatic number of certain very general families of line graphs, see [6], [10], [7].

Following these probabilistic advances, Alon and Tarsi used algebraic techniques to prove
that planar bipartite graphs are 3-choosable. In so doing, they codified a powerful polynomial
method for proving upper bounds on the list chromatic number. Janssen employed the
methods of Alon and Tarsi to show that the edge list coloring conjecture is true for the
line graphs of complete bipartite graphs provided that the parts are of unequal size, see [3],
[23].

Finally, in 1995, Galvin gave a very surprising proof of the edge list coloring conjecture for
the line graph of any bipartite graph. This improved upon Jansen’s result, and resolved the
so called Dinitz Problem, which had served as an impetus for Erdös, Rubin, and Taylor so
many years before.

Galvin’s proof is neither probabilistic, nor algebraic. Rather, it employs an unpublished
lemma of Bondy, Boppana, and Siegel, which gives an upper bound on the list chromatic
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number under a very special structural assumption of the underlying graph. What is remark-
able about Galvin’s theorem is that this special structural assumption is precisely guaranteed
by the famed Gale-Shapely theorem of the 1960’s, see [17], [18].

The contribution of this thesis is to prove new generalizations of Galvin’s theorem.

We begin with two expository chapters. In Chapter 2 we discuss the algebraic approach to list
coloring pioneered by Alon and Tarsi. We also discuss the application of their technique to the
Dinitz problem. In Chapter 3 we discuss a further application of Alon and Tarsi’s methods
due to Häggkvist and Janssen, see [19]. This work expands upon Janssen’s techniques
in [23], in order to prove that the list coloring conjecture is true for complete graphs on an
odd number of vertices.

In Chapter 4 our main technical contribution is Lemma 33 (page 46), wherein we utilize
the matching theory of bipartite graphs to construct special preference systems and stable
matchings. This lemma will allow us to prove two new extensions of Galvin’s theorem.
Theorem 34 (page 47) shows that the coloring guaranteed by Galvin’s theorem is not unique
by finding two distinct list colorings, and Theorem 35 (page 49) finds a list coloring for a
more restrictive type of listing.

In Chapter 5 we introduce a natural generalization of the Dinitz problem by considering the
list chromatic number of the Hamming graph H(n, d). To our knowledge, this problem has
not previously been studied. In Lemma 44 (page 60) we give a non-trivial upper bound of
2n − 1 ≥ ch(H(n, 3)) and in Theorem 43 (page 60) we give a non-trivial lower bound of
ch(H(n, d)) ≥ n + 1 for all d ≥ 3. We conclude the chapter with Theorem 41 (page 57),
where we apply Kahn’s result from [24] to prove that for fixed d,

ch(H(n, d)) = n+ o(n).

In Chapter 6 we discuss the obstacles in improving the results of Chapters 4 and 5. We
formulate several related conjectures and open questions.

Before proceeding to our main content, we conclude our survey of related literature. The
proof of Galvin’s theorem makes use of an oriented digraph which is morally equivalent to a
latin square. For our extensions, we will touch upon the theory of latin squares, in particular,
the theory of the completions of partial latin squares.

M. Hall initiated this theory by proving that every latin rectangle is completable to a latin
square, see [20]. The statement analogous to M. Hall’s theorem in higher dimensions is
false. Kochol showed this by constructing 3-dimensional examples of non-completable latin
cuboids, see [26]. More recently Bryant et al. have generalized this work, see [9]. Although
there is no logical dependence between their work and ours, the ideas in Chapter 5 are of
a similar flavor. Evans conjectured that any partial latin square with at most n− 1 entries
can be completed, see [16]. This was proved by Smetaniuk, see [37].

Returning to the topic of list coloring, we note that the resolution of the Dinitz problem
did nothing to dissuade the research community from the subject. In fact, the opposite is
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probably true. For instance, immediately following Galvin’s proof, Borodin, Kostochka, and
Woodall gave a sharper theorem for bipartite multigraphs that are not necessarily complete,
see [8].

Probabilistic methods, predicated strongly on the Rödl nibble and the Lovász local lemma,
have continued to prove their worth in the study of list coloring, see [29]. Kahn used these
tools to show that the edge list coloring conjecture is asymptotically true, and in fact the
analogous statement for hypergraphs of bounded co-degree is also true, see [24]. This result
was later improved and simplified by Molloy and Reed, see [29]. In an alternate direction,
Reed showed that if each vertex in a graph is given a list of at least 2ek acceptable colors,
where k is the largest maximum degree of a color subgraph, then the graph may be colored
from these lists. The constant 2e from Reed’s result was then improved to 2 by Haxell (using
topological methods), and finally to (1+o(1)) by Reed and Sudakov, see [35], [22], [36].

A famous conjecture of Reed states that the chromatic number of a graph is at most the
average of its trivial upper and lower bounds see [34]. The most recent stride towards proving
this conjecture (also probabilistic) was taken by Delcourt and Postle. Their result is in fact
a stronger statement about list coloring, see [11].

Alon and Tarsi’s algebraic techniques were extended to a hypergraph coloring variant by
Ramamurthi and West, see [33]. In a different algebraic direction, Thomassen considered a
list coloring variant of the chromatic polynomial and showed that for sufficiently large lists,
the evaluation of this list chromatic polynomial always exceeds the same evaluation of the
classical version, see [39]. In a similar but more restricted vein, Haviar and Ivaska conjectured
a stronger statement for line graphs of the complete bipartite graph, see [21].

Another well studied problem is to give an upper bound on the list chromatic number of
graphs within some minor closed class. Voigt showed that, contrary to the classical case for
coloring, there are planar graphs which are not 4-choosable, see [43]. Thomassen later proved
that planar graphs are 5-choosable, see [38]. Woodall has worked extensively on questions of
this nature, many of which are described in his survey paper, see [44]. More recently, Postle
and Thomas have used the ideas from Thomassen’s proof to establish many new list coloring
results for graphs on surfaces, see [32].

Although the general case of the edge list coloring conjecture lives on in infamy, several other
conjectures have been conquered. For instance, the list square conjecture of Kostochka and
Woodall was disproved by Kim and Park, and a famous eponymous conjecture of Ohba was
recently proved by Noel, Reed, and Wu, see [25], [31], [30].

Finally, we must address the myriad generalizations of list coloring that have been stud-
ied. In his survey, Woodall discusses several variants such as deficient choosability, (a : b)-
choosability, and the total chromatic number. There have been fruitful papers on these vari-
ants by Borodin, Kostochka, Woodall, Tuza, and Voigt, among others, see [8], [40]. More re-
cently, Dvořák and Postle introduced correspondence coloring, a generalization of list coloring
currently being pursued by some members of the research community, see [13], [4], [5].

3



Chapter 2

The Polynomial Method

In this expository chapter we discuss an algebraic approach to list coloring. We closely follow
the pioneering work of Alon and Tarsi in [3]. We will prove the main result, and several of
the pertinent corollaries. We then give a short discussion of the application of this theorem
to the Dinitz problem. This serves as an appropriate precursor to the results of Häggkivst
and Janssen presented in Chapter 3.

2.1 Definitions and Notations

Throughout the following two chapters, the polynomials of interest will be multivariate
polynomials over Z. Unless otherwise stated the graphs described will posses the ordered
vertex set V = {v1, . . . , vn}. We take this moment to recall the necessary graph theoretic
definitions and notations.

We let A be a finite subset of Z whose elements are called colors. We will occasionally use
α to denote an arbitrary element of A.

A coloring of a graph G = (V,E) is a function c : V → A so that c(v) 6= c(u) if v and u are
adjacent. A family of sets L = {Lv}v∈V with Lv ⊆ A is a listing for G. The elements of L
are called lists. If |Lv| = k for all Lv ∈ L, then L is a k-listing. A coloring is an L-coloring
if c(v) ∈ Lv for all v ∈ V . If the listing L has not not been named, we will implicitly refer to
an L-coloring as a list coloring. The chromatic number χ(G) is the smallest integer k
so that |A| = k and there exists a coloring c : V → A. The list chromatic number of G,
denoted ch(G) is the smallest integer k so that for each k-listing L there exists an L-coloring.
If L is a listing for which there are no L-colorings, then L is an unsatisfiable listing. Let
G be a graph (or digraph) equipped with a listing L. We define the color subgraph Gα to
be the subgraph of G induced by the set of vertices {v : α ∈ Lv}.

Given a graph G = (V,E), an orientation of G is a digraph D = (V,A) such that if
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{x, y} ∈ E then exactly one of the arcs (x, y) or (y, x) is in A. Given an orientation D and
vertex v ∈ V (D), the vertices u such that (v, u) ∈ A are the out neighbors of v. The out
degree of v in G is the number of out neighbors of v in G; it is denoted δ+

G(v). We omit
the subscript when the underlying graph is clear from the context. We define in neighbors
and in degree analogously.

2.2 The Graph Polynomial

Roughly speaking the strategy of Alon and Tarsi proceeds as follows: Given a graph G
and a listing L, we define a multivariate polynomial whose roots correspond to improper
list colorings of G. We also require that the domain of the variables corresponds to the list
assignment given. If we can argue that this polynomial must take a nonzero value somewhere
in a domain, then such a point in the domain will be precisely a list coloring of G.

More formally, given a graph G = (V,E) we define the Graph Polynomial fG(x1, . . . , xn) =∏
(i,j)∈J(xi−xj) to be the product of all expressions of the form (xi−xj) where J = {(i, j) :

i < j, {vi, vj} ∈ E}. Each vertex vi of G corresponds to a variable xi in fG, and each edge in
G corresponds to an expression of the form (xi − xj) in fG. It is thus natural to interpret a
vertex coloring c as the evaluation fG(c) = fG(c(v1), c(v2), . . . , c(vn)) of fG. If c is a proper
coloring, then fG(c) is a product of non-zero integers, and if c is not a proper coloring, then
at least one of the expressions (xi − xj) corresponding to an edge of G is zero, and hence,
fG is zero. To address the more restricted notion of list coloring we need only restrict the
domain of each variable xi to some finite set Si that naturally corresponds to the list Lvi of
vi in a prescribed listing L = {Lvi}vi∈V .

The previous statements can be made more precise after we establish the following lemma.

Lemma 1 Let P = P (x1, . . . , xn). Suppose that for each i ∈ [n] the degree of P as a
polynomial in xi is at most di and let Si ⊂ Z be a set containing di + 1 distinct integers. If
P (x1, . . . , xn) = 0 for each n-tuple (x1, . . . , xn) ∈ S1 × · · · × Sn then P ≡ 0.

Proof. We proceed by induction on n. When n = 1, this is the statement that a nonzero
(single variable) polynomial P (x) has at most d distinct roots. To verify this statement,
suppose P (x) is a non-zero polynomial of degree at most d and let S = {s1, . . . , sd1+1} be a
set of d + 1 distinct integers. If P (s) = 0 whenever s ∈ S, then (x − s) is a factor of P (x)
for each of the d + 1 distinct elements of S. But then P (x) has degree at least d + 1, a
contradiction.

Suppose the statement holds for a polynomial in n − 1 variables. Let P = P (x1, . . . , xn)
be a polynomial satisfying the hypothesis. Since xn has degree at most dn we may write
P =

∑dn
i=0 Pi(x1, . . . , xn−1)xin, i.e., we view P as a polynomial of the single variable xn such

that the coefficient of xin is a polynomial Pi of the other n− 1 variables. By assumption, the
degree of xj in Pj is at most dj, thus the inductive hypothesis applies to each polynomial
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Pj. By assumption, P (s1, . . . , sn) = 0 for all (s1, . . . , sn) ∈ S1 × · · · × Sn. Hence, for each
choice of (s∗1, . . . , s

∗
n−1) ∈ S1 × · · · × Sn−1, the (single-variable) polynomial in xn given by

P (s∗1, . . . , s
∗
n−1, xn) =

∑dn
i=0 Pi(s

∗
1, . . . , s

∗
n−1)xin vanishes for all values of sn ∈ Sn. Thus

each coefficient of P =
∑dn

i=0 Pi(x1, . . . , xn−1)xin, namely, each Pi(x1, . . . , xn−1), is zero for
all values (s∗1, . . . , s

∗
n−1) ∈ S1 × · · · × Sn−1. Hence, by the inductive hypothesis, the Pj are

identically zero, and so P is identically zero. �

Now consider the graph polynomial fG and suppose that the sets Si have size at most di+1. If
fG is not identically zero, then by Lemma 1, there is some n-tuple (s1, . . . , sn) ∈ S1×· · ·×Sn
on which fG is non-zero. From the definition of the graph polynomial it can be seen that
this tuple is a list coloring of G where the list of vi, Lvi , is taken to be the set Si.

Notice that the maximum degree of a variable xi in the graph polynomial fG is exactly the
maximum degree of the vertex vi in the graph G. Thus, a naive application of Lemma 1 to
the graph polynomial does not improve over the easy upper bound of of ch(G) ≤ ∆(G) + 1
discussed in [15].

The innovation of Alon and Tarsi is to relate fG to orientations of the underlying graph. In
certain situations to be discussed, this allows us to improve the bound ch(G) ≤ ∆(G) + 1
by a factor of 2.

2.3 Oriented Graphs

Throughout this section we let G be a graph on n (ordered) vertices, and we let L =
{Lv1 , . . . , Lvn} be a fixed listing. Our goal is to describe conditions under which fG is not
identically zero. The method applied by Alon and Tarsi is to interpret fG in terms of
orientations of the graph G

Let D = (V,A) be an orientation of G. For each arc e = (vi, vj) ∈ A define the weight of
e by w(e) = xi if i < j and w(e) = −xi if i > j. The weight w(D) of the orientation D is
defined as the product Πe∈Aw(e).

We claim that if fG is expanded and written as a sum of monomials, these monomials are
precisely the weights of orientations of G.

Fact 1 We have fG =
∑
w(D), where D ranges over all orientations of D.

Proof. For any given edge e = {xi, xj} of G with i < j, the polynomial fG can be written
as (xi−xj)fG′ where G′ = G− e. The fact follows by noting that distributing the monomial
xi − xj into fG′ corresponds directly to considering the two directions in which the edge
{vi, vj} can be oriented in an orientation of G.

More formally, we proceed by induction on the number of edges of G. If G has exactly one
edge the claim is immediate. Suppose the claim holds for graphs on m− 1 edges, and let G
be a graph with m edges. Let G′ = G− e for some edge e = {xi, xj} with i < j, and let D′
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denote an arbitrary orientation of G′. By the inductive hypothesis, fG′ =
∑
w(D′) where

D′ ranges over all orientations of G′. Let D and D′ be the set of all orientations of G and G′

respectively. Let D+ be the set of all orientations of G in which (xi, xj) ∈ A, and let D− be
the set of all orientations of G in which (xj, xi) ∈ A. Observe that D is the disjoint union of
D+ and D−. We have

fG = (xi − xj) · fG′ = (xi − xj)
∑
D′∈D′

w(D′) =

=
∑
D′∈D′

(
xi · w(D′) + (−xj) · w(D′)

)
=
∑
D∈D+

w(D) +
∑
D∈D−

w(D) =
∑
D∈D

w(D)

as desired. �

We can now express the coefficient of each monomial
∏n

i=1 x
di
i in terms of the degrees di.

If D is an orientation of G we will say that an arc (vi, vj) is decreasing if i > j. We say
that an orientation is even if it has an even number of decreasing edges, and odd other-
wise. Let d1, . . . , dn be a sequence of non-negative integers. We denote by DE(d1, . . . , dn)
and DO(d1, . . . , dn) respectively the sets of all even and odd orientations of G in which the
out degree of vi is di for all i ∈ [n]. Moreover, we denote the sizes of these two sets by
#DE(d1, . . . , dn) and #DO(d1, . . . , dn), respectively. Notice that for each fixed sequence
d1, . . . , dn, the coefficient of

∏n
i=1 x

di
i in fG is the sum of the contributions from even orienta-

tions of G with out degree sequence (d1, . . . , dn) minus the contribution from odd orientations
of G with out degree sequence (d1, . . . , dn).

More concisely, the remarks above imply the following lemma.

Lemma 2 We have

fG(x1, . . . , xn) =
∑

d1,...,dn≥0

(
#DE(d1, . . . , dn)−#DO(d1, . . . , dn)

) n∏
i=1

xdii .

If there exists a degree sequence (d1, . . . , dn) such that #DE(d1, . . . , dn) 6= #DO(d1, . . . , dn),
then by applying Lemma 2 we will be able to show that fG is not identically zero.

In Chapter 3, a key step will be the construction of orientations in which #DE(d1, . . . , dn)
is not equal to #DO(d1, . . . , dn). However, for the purposes of Alon and Tarsi’s results, an
alternate formulation of this condition is more useful.

A (not necessarily connected) subdigraph H of a digraph D is Eulerian if the in degree of
vertex v is equal to the out degree of vertex v for each vertex v in the subgraph. H is even if
it has an even number of edges and odd otherwise. We let EE(D) and EO(D), respectively,
denote the set of even and odd Eulerian subgraphs of D, and we denote the sizes of these
two sets by #EE(D) and #EO(D), respectively.

Lemma 3 Let D1 be an orientation of G in which δ+
D1

(vi) = di, ∀i ∈ [n], i.e., let D1 ∈
DO(d1, . . . , dn) ∪DE(d1, . . . , dn). We have

|#DE(d1, . . . , dn)−#DO(d1, . . . , dn)| = |#EE(D1)−#EO(D1)|.
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Proof. For any orientation D2 ∈ DO(d1, . . . , dn) ∪ DE(d1, . . . , dn) we denote by D1 r D2

the set of arcs in D1 that are not in D2. This can be thought of as the set of arcs in D1

that must be “switched” in order to obtain D2. Note that the out degree of each vertex in
D1 is equal to its out degree in D2, consequently, each vertex has the same out degree w.r.t.
D1 rD2 as it has in degree w.r.t. D1 rD2. Hence, D1 rD2 is Eulerian.

We fix some orientation D1 ∈ DO(d1, . . . , dn)∪DE(d1, . . . , dn) and consider the map φ from
DO(d1, . . . , dn)∪DE(d1, . . . , dn) to EE(D1)∪EO(D1) given by φ(D) = D1 rD. We claim
that φ is a bijection. If D2 and D3 are elements of DO(d1, . . . , dn)∪DE(d1, . . . , dn) and D1r
D2 = H = D1 rD3 then D2 and D3 are both obtained from D1 by switching the orientation
on the same set of edges so D2 = D3. Hence, φ is injective. If H is an Eulerian subgraph of
D1, then H can be obtained by applying φ to the graph D′ obtained from D1 by switching
the orientation on all edges of H. As H is Eulerian, D′ ∈ DO(d1, . . . , dn) ∪DE(d1, . . . , dn).
Hence, φ is surjective.

Recall that an Eulerian digraph is odd exactly if it has an odd number of edges, whereas an
orientation is odd if the number of decreasing edges in that orientation is odd.

Claim. D1 rD2 is an odd Eulerian subgraph if and only if D1 and D2 do not have the same
parity.

Proof of Claim. Let S be the set of arcs in D1rD2 that are decreasing arcs of D1 and let T be
set of arcs in D1 rD2 that are not decreasing arcs in D1. The following are equivalent.

(i) D1 rD2 is an odd Eulerian subgraph.

(ii) An odd number of arcs must be switched to obtain D2 from D1.

(iii) |S| and |T | do not have the same parity.

(iv) The orientations D1 and D2 do not have the same parity.

The first two statements are equivalent by definition. The third statement is easily seen to
be equivalent to the first. Note that regardless of which set, S or T has an even number of
arcs, the net effect of reversing the direction of all arcs in S and in T is to reverse the parity
of the number of decreasing arcs in the orientation. Thus (iii) implies (iv). Moreover, if D1

and D2 have the same parity (as orientations), then the values |S| and |T | must have the
same parity. Thus (iv) implies (iii). �

Reframing the previous claim, we note that if D1 is even, then φ maps even orientations
to even Eulerian subgraphs and maps odd orientations to odd Eulerian subgraphs. On the
other hand, if D1 is odd, then φ maps even orientations to odd Eulerian subgraphs and odd
orientations to even Eulerian subgraphs. In either case, since φ is a bijection, we have

|#DE(d1, . . . , dn)−#DO(d1, . . . , dn)| = |#EE(D1)−#EO(D1)|

as desired. �

Combining Lemmas 2 and 3 yields the following.
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Corollary 4 Let D be an orientation of G and let di = δ+
D(vi), ∀i ∈ [n]. If fG is expanded

to the standard representation of a linear combination of monomials, then the absolute value
of the coefficient of the monomial

∏n
i=1 x

di
i is |#EE(D)−#EO(D)|.

Note that, in particular, if #EE(D) 6= #EO(D) then this coefficient is non-zero. We are
now prepared to prove the main result of [3].

2.4 The Alon-Tarsi theorem

Theorem 5 Let G = (V,E) be a graph and let L = {Lv}v∈V be a listing for G. Let D be
an orientation of G in which |Lv| = δ+

D(v) + 1, ∀v ∈ V . If #EE(D) 6= #EO(D) then there
exists an L-coloring of G.

Proof. Let G, L and D be as in the statement and suppose #EE(D) 6= #EO(D). Let
V = {v1, . . . , vn}, and let d̄i denote δ+

D(vi), ∀i ∈ [n]. Let Si = Lvi , ∀i ∈ [n].

Assume, for the sake of contradiction, that there is no L coloring of G. Then fG(s1, . . . , sn) =
0 for every n-tuple (s1, . . . , sn) ∈ S1 × · · · × Sn = Lv1 × · · · × Lvn .

We would like to apply Lemma 1 to show that fG is identically zero, and derive a contradic-
tion. However, we have no guarantee that the degree of xi is upper bounded by d̄i. In fact,
this is almost surely not the case. (Note that the numbers d̄i are defined by the particular
orientation D of G; there is no relation between these numbers and the degrees di of the
variables xi of fG.)

Our remedy is to consider a related polynomial f̄G of smaller degree, which is identical to fG
on our domain of interest. To this end we define Qi(xi) =

∏
s∈Si(xi−s) = xd̄i+1

i −
∑d̄i

j=0 qi,jx
j
i ,

where qi,j are simply the requisite coefficients to validate the equation. We note that for

xi ∈ Si we have Qi(xi) = 0 and thus xd̄i+1
i =

∑d̄i
j=0 qi,jx

j
i . We may now reduce powers

of xi to a more manageable form. In particular, we let f̄G be the polynomial obtained

from fG by repeatedly applying the substitutions xd̄i+1
i =

∑d̄i
j=0 qi,jx

j
i to each occurrence

of xkii for ki > d̄i. It is clear that the degree of f̄G as a polynomial in xi is at most d̄i,
and since our substitutions were valid whenever (x1, . . . , xn) ∈ S1 × · · · × Sn it follows that
f̄G(x1, . . . , xn) = fG(x1, . . . , xn) for all such n-tuples.

Thus Lemma 1 implies that f̄G ≡ 0.

On the other hand, since #EE(D) 6= #EO(D), Corollary 4 implies that the coefficient of∏n
i=1 x

d̄i
i in fG is nonzero. The degree of each xi in this monomial is d̄i, and thus this mono-

mial was not altered by any of our substitutions of large degree variables. Moreover, each
application of our substitution strictly reduces the total degree of each monomial involved.
As fG is homogeneous, this implies that our substitutions do not introduce any new multiples
of
∏n

i=1 x
d̄i
i that were not present in fG. Hence the coefficient of

∏n
i=1 x

d̄i
i is the same in fG

and f̄G. This contradicts the fact that f̄G ≡ 0. And so G must have an L-coloring. �
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By a similar argument we obtain the following.

Theorem 6 Let G = (V,E) be a graph, where V = {v1, . . . , vn}, and let L = {Lvi}vi∈V
be a listing for G. Let (d1, . . . , dn) be a fixed sequence of non-negative integers so that
#DE(d1, . . . , dn) − #DO(d1, . . . , dn) 6= 0. If |Lvi | = di + 1, ∀i ∈ [n], then there is an L-
coloring of G.

Proof. By Lemma 2, the condition #DE(d1, . . . , dn) −#DO(d1, . . . , dn) 6= 0 implies fG is
not identically zero. In particular, the coefficient of

∏n
i=1 x

di
i is non-zero. W assume that G

does not have an L-coloring and proceed as above to derive a contradiction. �

We will return to this formulation in Chapter 3.

2.5 Applications to list coloring

After presenting their proof of Theorem 5 in [3] Alon and Tarsi go on to give the first
application of the result to list coloring. In particular, they prove that planar bipartite
graphs have list chromatic number at most 3. We now present this result.

For a graph G define L(G) = maxH⊆G
|E(H)|
|V (H)| where H ranges over all subgraphs of G. It can

be seen that 2L(G) is the maximum value of the average degree of a subgraph of G.

As is to be expected, there is a strong relationship between L(G) and the maximum out de-
gree of an orientation of G.

Lemma 7 The graph G = (V,E) has an orientation D in which every out degree is at most
d if and only if L(G) ≤ d.

Proof. Suppose D has such an orientation and let H be any subgraph of G. We have

|E(H)| =
∑

v∈V (H)

δ+
H(v) ≤

∑
v∈V (H)

δ+
D(v) ≤ d|V (H)|.

The first equality is a consequence of the handshaking lemma and the fact that the sum of
the out degrees in a subgraph is half the sum of the degrees in that subgraph. The middle
inequality is immediate, and the last inequality follows since d is an upper bound on δ+

D(v)
for all v ∈ V . Thus we have |E(H)|/|V (H)| ≤ d and so L(G) ≤ d.

Suppose now that L(G) ≤ d. We must construct an orientation with maximum out degree
at most d. That is, we must choose an orientation for each edge of G without “overloading”
any vertex with too many out neighbors. A well known way to do this starts by constructing
a bipartite graph F whose vertices fall into classes A and B where A = E and B is the union
of d disjoint copies of V . In F we join the element e = {u, v} of A to the d copies of u in
B and the d copies of v in B. If F contains a matching which saturates all of A, then we
create an orientation of G by orienting each edge e = {u, v} of E away from the vertex m(e)
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α, γ α, β β, γ

β, γ α, β α, γ

Figure 2.1: A planar bipartite graph exhibiting an unsatisfiable 2-listing.

(where m(e) denotes u or v) such that the vertex e of A is matched with the vertex m(e) of
B. Each copy of the vertex u in B will be matched to at most one vertex in A (i.e., edge of
E), and thus the out degree of u in our corresponding orientation will be at most d. Thus
the orientation is as desired.

We now prove that F has such a matching saturating A, thus concluding the proof. Any
subset E ′ ⊆ E induces a subgraph H[E ′] of G; note that the vertex set of H[E ′], denoted
V (H), consists of the end vertices of the edges in E ′. Hence, by the definition of F , the set E ′

(as a set of vertices in F ) has exactly d|V (H)| neighbors. By the definition of L(G) we have
|E ′|/|V (H)| ≤ L(G) ≤ d, and so d|V (H)| ≥ |E ′|. As this argument holds for each subset
E ′, Hall’s theorem implies that the desired matching saturating A exists in F . �

We may now give an upper bound on the list chromatic number of bipartite graphs in terms
of L(G).

Theorem 8 Every bipartite graph G has list chromatic number at most dL(G)e+ 1.

Proof. Set d = dL(G)e. By Lemma 7 there is an orientation D of G in which the maximum
out degree is at most d. G is bipartite, and thus D contains no odd directed cycles. We
claim that this implies that #EO(D) = 0. It can be seen by induction on the number of
cycles in the underlying undirected graph that an Eulerian subgraph is the edge disjoint
union of directed cycles. Hence, if H is an odd Eulerian subgraph, then at at least one of
these edge disjoint directed cycles must be odd. Thus #EO(D) = 0. On the other hand,
#EE(D) ≥ 1 since, the empty subgraph is Eulerian and it is even (by definition). Thus
#EE(D) 6= #EO(D), and the result follows from Theorem 5. �

This implies the following.

Corollary 9 Every bipartite planar graph G is 3-choosable.

Proof. If G is a planar bipartite graph with the maximum number of edges possible, then
each facial cycle in an embedding ofG is a 4-cycle. Hence we may deduce from Euler’s formula
that the maximum number of edges in a planar bipartite graph on n vertices is 2n−4. Hence
L(G) ≤ 2 for all planar bipartite graphs. The result follows from Theorem 8.

We note that this result is tight as evidenced by the listing given in Figure 2.1.

This is also an appropriate time to note that the absence of odd directed cycles is a re-
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curring theme in the literature of list coloring. A result of Richardson says that a digraph
which contains no odd directed cycles is kernel perfect. This result, in conjunction with
the “Kernel Lemma” of Bondy, Boppana, and Siegel (See Chapter 4, section 4.1.3) allows
another approach to list coloring. However, the methods presented in this chapter are more
general than Richardson’s theorem. As we will see in Chapter 3, Theorem 6 can be used
to address interesting families of graphs for which the orientations of note may well contain
odd directed cycles.

2.6 The Alon-Tarsi conjecture

The work of Alon and Tarsi predates Galvin’s proof of the Dinitz conjecture by several years.
In Chapter 4 we will address Galvin’s theorem; at present we focus on Alon and Tarsi’s
attempt to employ Theorem 6 to solve the problem. Although they were unsuccessful, the
attempt that we outline in this section gave rise to an interesting conjecture that remains
open to this day.

A latin square of order n is an n × n array of cells in which each cell contains an integer
from the set {0, . . . , n − 1} so that each number occurs exactly once in each row and each
column of the array. Let L(n) denote the set of all latin squares of order n. Let L be a
latin square of order n. The rows of L can be thought of as permutations π1, . . . , πn of the
numbers 0 through n− 1 by reading the entries of a given row from left to right. Similarly,
the columns of L can be thought of as permutations πn+1, . . . , π2n of the numbers 0 through
n− 1 by reading the entries top to bottom. Let ε(L) denote

∏2n
i=1 sgn(πi).

Conjecture 1 (Alon-Tarsi) If n is even then∑
L∈L(n)

ε(L) 6= 0.

We note that the statement is false for all odd values of n. In this section we explicate the
connection between Conjecture 1 and (the statement of) Galvin’s Theorem.

Here we interpret Galvin’s Theorem as the statement that n is the list chromatic number of
the line graph of Kn,n. In the rest of this section, we use G to denote the line graph of Kn,n;
note that |V (G)| = n2. Suppose we wish to apply Theorem 6 to prove this statement. Then
we must construct a sequence (d1, . . . , dn2) satisfying the following conditions:

(i) di ≤ n− 1 for all i ∈ [n2].

(ii) There exists an orientation D of G with out degree sequence (d1, . . . , dn2) (i.e., δ+
D(vi) =

di, ∀i ∈ [n2]) such that #DO(d1, . . . , dn2) 6= #DE(d1, . . . , dn2).

Observe that the degree of each vertex in G is 2n − 2, and thus the inequality in (i) must
hold as an equation for each i ∈ [n2].
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There is a natural correspondence between latin squares and certain orientations of G satis-
fying condition (i).

In particular, a normal orientation of G is an orientation in which the subgraph induced
by each maximal clique is a transitive tournament. We consider the vertices of G to be the
(empty) cells of an n × n grid where two vertices are adjacent if they are in the same row
or in the same column. Let L be a latin square of order n whose cells contain the symbols
0 . . . n− 1. We obtain a normal orientation of G from L as follows.

For each pair of cells that occupy the same row, we orient the edge of G between those cells
towards the cell containing the larger entry. For each pair of cells that occupy the same
column, we orient the edge of G between those cells towards the cell containing the smaller
entry.

This orientation is normal since each entry occurs exactly once in each row and each column.
Moreover this orientation satisfies property (i) above because a cell whose entry is k has
exactly n− 1− k out neighbors in its row and k out neighbors in its column. In Chapter 4
we will discuss this correspondence more formally.

Although these normal orientations that arise from latin squares satisfy property (i), they
are not the only orientations which do. An important idea in this section and throughout
Chapter 3 is that these “latin” orientations are the only ones which contribute to the quantity
#DO(n− 1, . . . , n− 1) − #DE(n− 1, . . . , n− 1).

Lemma 10 Let G be the line graph of Kn,n, and let D be the set of all orientations of G
which are not normal orientations and in which δ+(v) = n − 1 for all v ∈ V . The number
of even orientations in D is equal to the number of odd orientations in D.

Alon and Tarsi do not comment on this idea or its proof. Fortunately, Janssen gives a nice
argument in [23]. A generalization of this argument will be a key first step in the work of
Chapter 3, and so we defer the proof until then. We require one more idea to motivate the
formulation of the Alon-Tarsi conjecture.

Lemma 11 Let G be the line graph of Kn,n. Let L be a latin square of order n and let D
be the corresponding orientation of G. ε(L) = 1 if and only if D is an even orientation.

Proof. We label the vertices of Kn,n left to right row-wise and top to bottom column-wise.
Recall that we also read the permutations given by the latin square L from left to right and
from top to bottom. For a given row i, the sign of the corresponding permutation πi is (−1)k

where k is the number of inversions in that row. Since the rows are labeled lexicographically,
the number of inversions is also the number of decreasing arcs in the sub-digraph of D
induced by vertices in the given row. Thus the (additive) contribution of this row to the
number of decreasing arcs in D is k and the (multiplicative) contribution of this row to the
value of ε(L) is (−1)k. As this is true for each row and column, the result follows. �

We can now conclude that the Alon-Tarsi conjecture implies Galvin’s theorem for even values
of n. If the conjecture holds, then

∑
L∈L(n) ε(L) 6= 0 and hence by Lemma 11 the contribution

13



to #DO(n− 1, . . . , n− 1) − #DE(n− 1, . . . , n− 1) from orientations that correspond to
latin squares is nonzero. On the other hand, by Lemma 10 we see that the contribution
from all other orientations satisfying the degree sequence (n − 1, . . . , n − 1) is zero. Thus
#DO(n− 1, . . . , n− 1)−#DE(n− 1, . . . , n− 1) is non-zero, and so Theorem 6 implies the
desired result.

2.7 The Combinatorial Nullstellensatz

For our purposes, Theorems 5 and 6 are an entirely adequate set of tools. However, it is
worth mentioning that there are many generalizations of these theorems. Chief among these
generalizations is the so called “Combinatorial Nullstellensatz”, which earns its name by
being a generalization of a special case of Hilbert’s Nullstellensatz, see [14].

Alon formulates the Combinatorial Nullstellensatz as follows, see [1].

Theorem 12 Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a polynomial in
F [x1, . . . , xn]. Suppose the degree of f is

∑n
i=1 ti where each ti is a nonnegative integer and

suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero. Then if S1, . . . , Sn are subsets of F with

|Si| > ti, there are si ∈ Si so that f(s1, . . . , sn) 6= 0.

It is not too difficult to see that Theorem 5 follows from Theorem 12 when the polynomial
f is taken to be the graph polynomial fG. Moreover, the proof of Theorem 12 is quite
similar to the proof of Theorem 5. The main difference is of course that the existence of a
non-zero coefficient for the specified monomial is now an explicit assumption, rather than a
consequence of the assumption that #EE(D) 6= #EO(D).

The generality of this theorem is such that the polynomial method has been applied to a host
of problems in combinatorics, many of which are outside the realm of list coloring. Alon sur-
veys many applications in [1]. This survey is already quite old, and many more applications
of the Combinatorial Nullstellensatz have been found. We mention one particularly concrete
example: An extension of Theorem 5 to hypergraph coloring proved by Ramamurthi and
West, see [33]. Here, a k-uniform hypergraph H is to be list colored under the proviso that
no hyperedge is monochromatic.

14



Chapter 3

A result of Häggkvist and Janssen

In this expository chapter we present Häggkvist and Janssen’s application of Theorem 6 to
edge list coloring found in [19]. We present their first main result: The list chromatic index
of the complete graph Kn is at most n. We then go on to sketch the second main result
which is an upper bound on the list chromatic number of all simple graphs.

3.1 The list chromatic index of the complete graph

Given a graph G with vertex set V , we consider a map ρ : V → N. We think of ρ as
specifying an out degree to each vertex of V , and we say that an orientation D of G obeys
ρ if ρ(v) = δ+

D(v) for all v. If G is a graph with vertices v1, . . . , vn we write DOG(ρ) =
DO(ρ(v1), . . . , ρ(vn)), and #DOG(ρ) = #DO(ρ(v1), . . . , ρ(vn)). We adopt the same notation
for DE and #DE.

Rather than explicitly address the list chromatic index of Kn, we will instead consider the
list chromatic number of the line graph Λ(Kn). In this language, the goal of this section is to
apply Theorem 6 to G = Λ(Kn) by constructing an appropriate map ρ so that #DEG(ρ) 6=
#DOG(ρ). We begin by reducing the orientations that must be considered to the class
of clique transitive orientations (defined below). This requires a series of three lemmas
regarding orientations of the complete graph.

Lemma 13 Let G be the complete graph on n vertices and let D be an orientation of G. D
contains a directed 3-cycle if and only if there are two vertices of D with the same out degree.

Proof. Let D be an orientation of G in which vertices u and v both have out degree k.
Without loss of generality, assume that the edge between u and v is directed towards v.
From among the n − 2 other vertices of G there are n − 1 − k in neighbors of u and there
are k out neighbors of v. As n− 1− k + k > n− 2, there must be at least one vertex that
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v w

Voi Vio

Voo Vii

Figure 3.1: A subgraph of Kn induced by edges incident with v and w. Edges are oriented
according to D. To obtain φ(D), the direction of the red edges is reversed.

is an out neighbor of v and an in neighbor of u. This vertex together with u and v induces
a directed 3-cycle.

For the converse direction, suppose that the out degrees of vertices in D are distinct. The
possible out degrees of vertices in D are 0, . . . , n − 1, and there are n such vertices. It is
easy to verify by induction that the only orientation of the complete graph in which the
out degrees of the vertices are 0, . . . , n − 1 is a transitive tournament. Such an orientation
does not contain a directed 3-cycle. �

Lemma 14 Let G = Kn and let D be the set of all orientations of G in which there is at
least one directed 3-cycle. The number of even orientations in D is equal to the number of
odd orientations in D.

Proof. We will construct a bijection φ : D → D that maps odd orientations to even
orientations and vice versa.

For each orientation D ∈ D let (v, w) be the first pair of vertices (lexicographically, according
to the ordering of V ) so that v and w have the same out degree in G. We assume without loss
of generality that the edge between v and w is directed towards w. Let δ+

D(v) = δ+
D(w) = k

be the out degree of v and w. We partition the other vertices of D into four sets, Voo, Voi,
Vio, and Vii as follows. See Figure 3.1.

Voo contains those vertices u that are out neighbors of both v and w.

Voi contains those vertices u that are out neighbors of v and in neighbors of w.

Vio contains those vertices u that are out neighbors of w and in neighbors of v.
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Vii contains those vertices u that are in neighbors of both v and w.

By counting the number of edges in D that are directed out of v and out of w respectively
we can see that |Voi|+ |Voo|+ 1 = k = |Vio|+ |Voo|, and thus |Vio| = |Voi|+ 1.

We define the image of D under φ by the following procedure. See Figure 3.1.

Reverse the direction of the arc (v, w).

Reverse the direction of arcs that are incident to v and to a vertex in Vio ∪ Voi.

Reverse the direction of arcs that are incident to w and to a vertex in Vio ∪ Voi.

We can see that in φ(D) the out degree of v is |Voo| + |Vio| = k and the out degree of w
is |Voo| + |Voi| + 1 = k. Each vertex in Voi ∪ Vio has had one outgoing arc changed to an
incoming arc and one incoming arc to an outgoing arc, thus the degrees of such vertices are
unchanged. So, since the degrees of all vertices in D are the same under D and under φ(D),
we see that φ(D) ∈ D.

The out degree of each vertex is the same in φ(D) as in D, and so (v, w) is the first pair of
vertices in φ(D) with the same out degree. Moreover, since the arc between v and w has
switched direction, the set Voi relative to D is the set Vio relative to φ(D) and vice versa.
Thus Voi ∪ Vio is the same set of vertices for both orientations. It follows that φ is “self
inverse,” i.e., φ(D) = φ(φ(D)). Moreover, φ reverses the direction of exactly 2|Voi ∪ Vio|+ 1
arcs. Since this number is odd, φ maps even orientations to odd orientations. Thus φ is
a bijection between even and odd orientations within D and the two sets are equicardinal.
�

We remark that Lemma 14 appears as stated in [19]. However, the proof we have presented
follows [23].

We now extend the result of Lemma 14 to edge disjoint unions of complete graphs. This
requires some definitions. A clique decomposition G = G1⊕ · · · ⊕G` is a partition of the
graph G into edge disjoint cliques G1, . . . , G`. A clique transitive orientation of G is an
orientation of G in which each Gi is a transitive tournament. Note that a clique transitive
orientation can only be defined relative to a particular clique decomposition.

Lemma 15 Let G = G1⊕· · ·⊕G` be a clique decomposition of G. For any map ρ : V (G)→
N, the number of even orientations obeying ρ that are not clique transitive is equal to the
number of odd orientations obeying ρ that are not clique transitive.

Proof. From Lemma 2 we know that in the graph polynomial fG, the (absolute value of
the) coefficient of

∏n
i=1 x

ρ
i (vi) is

∣∣#DEG(ρ)−#DOG(ρ)
∣∣. Since G is an edge disjoint union

of the subgraphs Gi, we may write fG =
∏`

j=1 fGj . Let ρi : V (Gi) → N be some degree
map for the subgraph Gi. We may similarly write the coefficient (in fGi) of the monomial∏|V (Gi)|

i=1 xρi (vi) as
∣∣#DOGi(ρ

i) − #DEGi(ρ
i)
∣∣. This gives us an alternate expression for the
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coefficient of
∏n

i=1 x
ρ
i (vi). Namely, we obtain∣∣#DEG(ρ)−#DOG(ρ)

∣∣ =∑
ρ1,ρ2,...,ρn

(
(
∣∣#DEG1(ρ

1)−#DOG1(ρ
1)
∣∣) . . . (∣∣#DEGn(ρn)−#DOGn(ρn)

∣∣)),
where the sum is taken over all maps ρi satisfying

∑
i ρ

i(v) = ρ(v) for each vertex v ∈
V (G).

If D is an orientation obeying ρ that is not clique transitive, then there is at least one clique
Gi so that ρi assigns the same out degree to two vertices in Gi. But then, by Lemma 14
we have

∣∣#DEGi(ρi) − #DOGi(ρ
i)
∣∣ = 0 for all such orientations, thus the contribution to∣∣#DEG(ρ)−#DOG(ρ)

∣∣ is zero from any orientation that is not clique transitive. �

Given a clique decomposition of G, in order to determine
∣∣#DEG(ρ)−#DOG(ρ)

∣∣, we now
only need to consider the clique transitive orientations of G that obey ρ.

We remark that in the case of G = Λ(Kn,n), there is a natural clique decomposition in which
each clique has size n and is induced by the set of edges incident to a given vertex in Kn,n.
The application of Lemmas 13 and 15 to Λ(Kn,n) with this decomposition verifies Lemma 10
from the previous chapter.

Returning to the line graph of the complete graph, note that Λ(Kn) is 2n − 2 regular, and
thus any orientation of Λ(G) contains at least one vertex of out degree n − 1. Therefore,
if we wish to apply Theorem 6 to achieve an upper bound on ch(Λ(G)), the best bound
attainable is n. Moreover, such a bound can only be obtained if ρ is identically n− 1, that
is, if #DE(n− 1, . . . , n− 1) 6= #DO(n− 1, . . . , n− 1).

The simplest way to prove that #DE(ρ) 6= #DO(ρ) is to show that there is a unique clique
transitive orientation that obeys ρ. When ρ is identically n − 1, and G = Λ(Kn) this is
patently false. This is easy to see explicitly in the case of Λ(K4) where any clique transitive
orientation with out degree 2 at each vertex can be “rotated” 120 or 240 degrees to obtain
two additional distinct orientations.

Therefore we must either contend with analyzing a potentially very large number of clique
transitive orientations obeying ρ, or augment ρ in some way so that a unique clique transitive
orientation obeys ρ.

Häggkvist and Janssen take the latter approach and circumvent the issue of symmetry by
“blocking” certain out degrees from specified vertices. As an example, to block out the value
5 from some clique K in G, one adds a new vertex v to G and attaches it to each vertex
in K. We extend ρ so that ρ(v) = 5. There is a natural clique decomposition of this new
graph formed by extending clique K to include v and keeping the rest of the decomposition
unchanged. We will always implicitly reference this decomposition when adding blocking
vertices.
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Let D be a clique transitive orientation of this new graph. Then v is a member of exactly
one clique in the decomposition, and so the out degree of v in D must be 5. Moreover, since
K ∪ {v} is transitively oriented, no vertex of K has out degree 5 in the subgraph K ∪ {v}.
Thus 5 is “blocked” from K.

More formally, let G be a graph with a given clique decomposition let ρ be a map as above and
let Ḡ be the graph formed by extending some clique K by vertices u1, . . . , um. An orientation
D of G obeying ρ with values {b1, . . . , bm} blocked out in clique K is a orientation that
can be embedded in an orientation D̄ of Ḡ that has the following properties:

1. D̄ obeys ρ at each vertex of V (G).

2. For each i, ui has out degree bi in D̄i.

Note that D is clique transitive relative to the decomposition G = H1⊕· · ·⊕Hm if and only
if D̄ is clique transitive relative to Ḡ = (H1∪B1)⊕· · ·⊕ (Hm∪Bm). Moreover, if D is clique
transitive then the out degrees in D of vertices in the clique induced by K ∪ {u1, . . . , um}
take on exactly the values {0, 1, . . . , |K|+m+ 1}r {b1, . . . , bm}.

For convenience, we now codify the notion of blocking vertices and the conditions of Theo-
rem 6 into a key lemma.

Lemma 16 Let G = H1 ⊕ · · · ⊕Hm be a clique decomposition of G. Let B1, . . . , Bm be sets
of non-negative integers. Let L be a listing and let ρ : V (G) → N be such that ρ(v) < |Lv|
for all v ∈ V (G). If there exists a unique clique transitive orientation D of G with the values
in Bi blocked out on clique Hi for each i ∈ [m] then there exists an L-coloring of G.

Proof. We let Bi have size mi and set Bi = {bi1, . . . , bimi} for each i. Let Ḡ be the graph
containing G formed by extending each clique Hi by vertices vi1, . . . , vimi . Define the map
ρ̄ : V (Ḡ)→ N as follows:

ρ̄(v) =

{
ρ(v) if v ∈ V (G)

bij if v = vij for some i, j.

We extend L to a listing L̄ for Ḡ by assigning each vij an arbitrary list of size at least bij +1.
For each clique transitive orientation D on G with values Bi blocked out on Hi there is a
corresponding clique transitive orientation D̄ of Ḡ obeying ρ̄.

Moreover, since the only orientations considered are clique transitive, this correspondence is
one to one. To see this, note that in a clique transitive orientation of Hi∪{vi1, . . . , vimi} the
subgraph induced by {vi1, . . . , vimi} is a transitive tournament whose arcs are determined by
the set {bi1, . . . , bimi}.

So, since G has a unique clique transitive orientation obeying ρ, Ḡ has a unique clique
transitive orientation obeying ρ̄, hence by Lemma 15,

∣∣#DEḠ(ρ) − #DOḠ(ρ)
∣∣ = ±1. So
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Theorem 6 implies that there is an L̄-coloring of Ḡ. Since L and L̄ agree on vertices of G,
this coloring restricts to an L-coloring of G. �

We are now ready to prove the main result of this section. We note that this result is tight
for odd n.

Theorem 17 For each n, ch(Λ(Kn)) ≤ n.

Proof. We let G = Kn and we label the vertices of G as {0, 1, . . . , n−1}. We let H = Λ(Kn)
and consider V (H) = {(i, j) : 0 ≤ i < j < n}. Thus (i, j) and (i′, j′) are adjacent if and only
if i = i′, i = j′, j = i′, or j = j′. Moreover, H = C0 ⊕C1 ⊕ · · · ⊕Cn−1 where Ci is the clique
in H of size n− 1 whose vertices are edges of G incident with vertex i ∈ V (Kn).

We wish to apply Lemma 16, and so we must show that there is some map ρ and set of
blocking values for which there is a unique orientation. To this end, we define ρ : V (H)→ N
as follows:

ρ(i, j) =

{
n− 1 if i+ j ≥ n− 1

n− 2 otherwise.

We also define values bi, 0 ≤ i < n:

bi =

{
n− 2− i if i < bn

2
c

n− 1− i+ bn
2
c if i ≥ bn

2
c.

We will soon show that there is a unique clique transitive orientation of H that obeys ρ with
value bi blocked out in clique Ci. We first note the structure of H relative to Ci. Each vertex
(i, j) in H is a member of exactly two cliques Ci and Cj. Thus the assignment ρ(i, j) is equal
to an assignment ρi(i, j) + ρj(i, j) where ρi and ρj are the out degrees of (i, j) in Ci and Cj
respectively. If ρi(i, j) is assigned, then ρj(i, j) is called the complementary degree at
(i, j) and vice versa.

In order to prove the theorem, we describe an algorithm that assigns values ρi(v) and ρj(v)
sequentially to the vertices of H in such a way that ρ(v) = ρi(v) + ρj(v) and Ci contains
each out degree {0, 1, . . . , |Ci|}r {bi} on exactly one vertex.

Before we do this, however, we present two frameworks for understanding and exemplifying
the procedure. The first framework is the “obvious” one: a visual representation of the graph
Λ(Kn) containing the information specified by the map ρ. See Figure 3.2.

The second framework we present follows Häggkvist and Janssen’s treatment of their algo-
rithm. Their strategy is to associate G = Λ(Kn) to an n × n matrix whose cells represent
the vertices of G. See Figures 3.3 through 3.9.

We index the rows and columns by vertices of Kn; thus a cell and vertex are denoted by
(i, j). An orientation of Λ(Kn) then corresponds to a labeling of the remaining cells of this
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Figure 3.2: The line graph of K4 (left) and K4 (right) with our labeling scheme.

matrix by ordered pairs [x, y]. Given an orientation, a cell (i, j) is labeled [x, y] exactly if
the out degree of vertex (i, j) in Ci is x and the out degree of vertex (i, j) in Cj is y. Note
that the cells on the main diagonal are empty. Moreover, all cells below the main diagonal
are empty.

We will think of a specific map ρ by specifying which cells of the matrix are to receive which
out degrees. We will also denote which values bi are blocked out on clique Ci by placing the
label [bi, bi] in cell (i, i). As we are interested in maps ρ where the vertices take only one of
two values, it is sufficient for our purposes to shade the cells (i, j) for which ρ(i, j) = n− 2
and leave the other cells (for which ρ(i, j) = n− 1) unshaded.

We may now interpret an orientation of G obeying ρ with bi blocked out on Ci as a labeling
of the cells of the matrix described above by ordered pairs satisfying the following pair of
properties.

(1) If (i, j) is a shaded cell with label [x, y] then x+y = n−2, and if (i, j) is an unshaded
cell with label [x, y] then x+ y = n− 1.

(2) For each row, the x-coordinates in the labels [x, y] of all cells in that row are distinct
entries from {0, . . . , n − 1}. For each column, the y-coordinates in the labels [x, y] of
all cells in that column are distinct entries from {0, . . . , n− 1}.

Property (1) is equivalent to the fact that the orientation specified obeys ρ. Property (2) is
equivalent to the fact that bi is blocked out on Ci and the orientation is clique transitive.

In order to prove the theorem, we will now describe an algorithm that labels the entries
of this matrix in adherence with properties 1 and 2. In other words, the algorithm assigns
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values ρi(v) and ρj(v) sequentially to the vertices of H in such a way that ρ(v) = ρi(v)+ρj(v)
and Ci contains each out degree {0, 1, . . . , |Ci|}r {bi} on exactly one vertex. We then prove
that at each step, there is exactly one valid choice for the next step in the algorithm. The
only steps where this is not immediate are 4,7,10 and 14. In these steps we specify a vertex
to receive a certain degree and it is not clear, a priori, that these choices are always unique.
We will prove that they are. We now present the algorithm:

1. Set i = 0.

2. Set t = 0.

3. If t = bn
2
c − i then go to step 6.

4. Assign degree n − i − 1 to a vertex in clique Ct+2i. The unique choice is vertex
(t+ 2i, n− 1− t). The complementary degree of this vertex becomes i.

5. Set t = t+ 1. Go to step 3.

6. If t = n− 1− 2i then go to step 9.

7. Assign degree n − 1 − i to a vertex in clique Ct+2i+1. The unique choice is vertex
(t+ n− 1− t, t+ 2i+ 1). The complementary degree of this vertex becomes i.

8. Set t = t+ 1. Go to step 6.

9. If t = n− 1− i then go to step 12.

10. Assign degree n − 2 − i to a vertex in clique Ct+2i−(n−1). The unique choice is vertex
(t+ 2i− (n− 1), n− 1− t). The complementary degree of this vertex becomes i.

11. Set t = t+ 1 go to step 9.

12. If n is even and i+ 1 ≥ bn
2
c then go to step 17.

13. If t > n− 1 then go to step 16.

14. Assign degree n− 2− i to a vertex in clique Ct+2i+1−(n−1). The unique choice is vertex
(n− 1− t, t+ 2i+ 1− (n− 1)). The complementary degree of this vertex becomes i.

15. Set t = t+ 1. Go to step 13.

16. Set i = i+ 1. If i < bn
2
c then go to step 2.

17. End.

Before we prove the correctness of this algorithm, we present an example of its execution.
Our example will be on the line graph of K4. See Figures 3.3 through 3.9.

We set i = 0, t = 0 and as t 6= 2 we go to step 4. We assign degree 3 to a vertex in clique C0.
By construction of ρ, all but one of the vertices in C0 have a specified out degree (in G) of at
most 2, hence there is a unique choice of vertex to obtain out degree 3, namely (0, 3).
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[1] [3]

[2]

[2]
C0 C1 C2 C3

C0

C1

C2

C3

[2,2]

[1,1]

[3,3]

[2,2]

Figure 3.3: The initial state for the example. Blocking value bi is placed on a (dashed) vertex
adjoined to Ci and is denoted by [bi].

[3,0]

[1] [3]

[2]

[2]
C0 C1 C2 C3

C0

C1

C2

C3

[2,2]

[1,1]

[3,3]

[2,2]

[3,0]

Figure 3.4: After the first out degree is assigned.
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[3,0]
[1] [3]
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C0 C1 C2 C3

C0

C1

C2

C3

[2,2]

[1,1]

[3,3]

[2,2]

[3,0]

[3,0]

Figure 3.5: After the second out degree is assigned.
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C0

C1

C2

C3

[2,2]

[1,1]

[3,3]

[2,2]

[3,0]

[3,0] [0,3]

Figure 3.6: After the third out degree is assigned.
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[2,0][2,0]

[3,0]

[3,0]

[0,3]

[1] [3]

[2]

[2]
C0 C1 C2 C3

C0

C1

C2

C3

[2,2]

[1,1]

[3,3]

[2,2]

[3,0]

[3,0] [0,3]

[2,0]

Figure 3.7: After the fourth out degree is assigned.

[2,0][2,0]

[3,0]

[3,0]

[0,3] [2,1]

[1] [3]

[2]

[2]
C0 C1 C2 C3

C0

C1

C2

C3

[2,2]

[1,1]

[3,3]

[2,2]

[3,0]

[3,0] [0,3]

[2,0]

[2,1]

Figure 3.8: After the fifth out degree is assigned.
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[2,0] [1,1][2,0] [1,1][2,0] [1,1]

[3,0]

[3,0]

[0,3] [2,1]

[1] [3]
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[2]
C0 C1 C2 C3

C0

C1

C2

C3
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[1,1]

[3,3]

[2,2]

[3,0]

[3,0] [0,3]

[2,0]

[2,1]

[1,1]

Figure 3.9: The completed orientation.

We set t = 1 and return to step 3, which sends us to step 4. We now must assign out degree
3 to some vertex in C1. The potential choices are vertices (1, 2) and vertices (1, 3). However,
in our previous application of step 4 we have assigned out degree 0 to a vertex in C3. If
we were to assign out degree 3 to (1, 3) in C1 we would simultaneously be assigning out
degree 0 to (1, 3) in C3, this contradicts the fact that we are constructing a clique transitive
orientation.

Note that the discussion of the previous paragraph is most easily read off of the matrix
interpretation of the problem, wherein the fact that vertex (1, 3) cannot receive out degree
[3, 0] is an immediate consequence of property 2.

After we have assigned out degree 3 to both (0, 3) and (1, 2), we now have t = 2 and find
ourselves at step 7. Here we must assign degree 3 to some vertex in clique C3. Since no
vertex has out degree greater than four, the complementary degree at this vertex must be
zero. Out degree 0 has already been assigned to cliques C3 and C2, thus the out degree
δ+
C2

(2, 3) is not 0. Thus δ+
C3

(2, 3) is not 3. The only remaining vertex in C3 that could be
assigned out degree 3, is (1, 3).

We set t = 3 in step 8 and then pass to steps 6, 9, 12, and 13, to arrive at step 14 with t = 3.
We must assign out degree 2 to some vertex in C1. The only valid choice is (0, 1). This is
again because if we assigned out degree 2 to (0, 2) then the complementary out degree would
be 0. We would then have two vertices in C2 with out degree 0, a contradiction.

We now set t = 4 in step 15 and pass through steps 13, 16, 2, 3, and arrive at step 4 with
i = 1 and t = 0. We must now assign out degree 2 to some vertex in C2. Vertex (2, 3) is the
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only vertex in C2 that has not been assigned, and so we choose it.

Finally, we set t = 1 in step 4 and traverse steps 3, 6, 9 and arrive at step 10. Here we must
assign out degree 1 to a vertex in C3. The only choice is vertex (0, 2).

We then set t = 2 in step 11, pass to steps 9, and 12, and then end at step 17.

We now verify the correctness of the algorithm. Note that for each i ≤ bn
2
c, the out degree

n−1− i is assigned to all cliques Cj except those where j = bn
2
c+ i. Moreover, bj = n−1− i

precisely when j = bn
2
c+ i. Similarly, for each i ≤ bn

2
c the out degree n−2− i is assigned to

all cliques except to Ci, and bi = n− 2− i. Thus each out degree is assigned to each clique
Ci with the exception of the out degree blocked out on that clique.

We now prove that the “choices” made in steps 4, 7, 10, and 14 are unique. The method of
proof is to verify that a certain predicate holds before and after each iteration of the given
step. We then apply the predicate to show the uniqueness within each step. The predicate
P is as follows. We note that this is exactly the strategy followed within the example.

P:

(i) The out degrees 0, . . . , i− 1 have been assigned in all cliques.

(ii) The out degree i has been assigned in cliques Cn−1, . . . , Cn−t.

(iii) The following sets of vertices have all been assigned an out degree and corresponding
complementary out degree.

(a) Vertices (x, y) with x+ y = d (mod n− 1), where 0 ≤ d < 2i

(b) Vertices (x, y) with x + y = 2i (mod n − 1) satisfying one of 2i ≤ x < t + 2i or
0 ≤ x < t+ 2i− (n− 1).

(c) Vertices (x, y) with x+ y = 2i+ 1 (mod n− 1) and bn
2
c+ i+ 1 ≤ y < t+ 2i+ 1.

The statement of parts (i) and (ii) are clear from the example. Part (iii) specifies the order
in which vertices are assigned their out degrees. This is easiest to interpret in terms of
the matrix representation described above. In this interpretation, property (a) states that
vertices on the main anti-diagonal of this matrix are filled first, and that after this main anti-
diagonal is filled. The next anti-diagonals to be filled are those directly above and below.
Parts (b) and (c) address the “zigzagging” behavior of the subsequently filled cells. This is
illustrated in Figure 3.10.

We now show that predicate P is satisfied before and after each iteration of steps 4, 7, 10,
and 14, and that this predicate implies each step has a unique choice. (In what follows, we
refer to (i) of P as property (i), and similarly for (ii) and (iii) of P.)

Suppose P holds before step 4. Certainly this is true when i = 0 and t = 0. The out degree
n − 1 − i must be assigned to one of the vertices (`, t + 2i) or (t + 2i, `) in clique Ct+2i. If
` + t + 2i < n − 1 then the complementary out degree at this vertex will be ρ(`, t + 2i) −
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[7,7] 9 16 18 23 27 30 369 16 18 23 27 30 36 1

[6,6] 17 24 26 31 3517 24 26 31 35 2 8

[5,5] 25 32 3425 32 34 3 7 10

[4,4] 3333 4 6 11 15

[8,8] 5 12 14 19

[7,7] 13 20 22

[6,6] 21 28

[5,5] 29

[4,4]

Figure 3.10: The matrix for K9 with blocking values on the main diagonal. Cells above the
main diagonal are labeled in the order that they are assigned out degrees by the algorithm.

(n − 1 − i) = i − 1, but this would contradict property (i), and so ` + t + 2i ≥ n − 1 and
the complementary out degree is i. By property (ii) the out degree i has been assigned in
cliques Cn−1, . . . , Cn−t, so ` is at most n− 1− t. Since `+ t+ 2i ≥ n− 1, the representative
of ` + t + 2i when taken modulo n − 1 is ` + t + 2i − (n − 1). By property (iii)(a), all
vertices with x+ y = d (mod n− 1) where d < 2i have already received an out degree. Thus
` + t + 2i − (n − 1) ≥ 2i, or equivalently, ` ≥ n − 1 − t. Since (i, j) is only a vertex when
(i < j), the only vertex in Ct+2i that could receive out degree n− 1− i is (t+ 2i, n− 1− t).
It is easy to see that properties (i), (ii) and (iii) are again satisfied once t is augmented to
t+ 1 in the application of step 5 that follows each application of step 4.

Suppose P holds before step 7. The out degree n − 1 − i must be assigned to one of the
vertices (`, t + 2i + 1) or (t + 2i + 1, `) in clique Ct+2i+1. Again, the out degree i − 1 has
already been assigned in all cliques, and so the complementary out degree at our vertex of
interest must be i. The definition of ρ again implies that `+ t+ 2i+ 1 ≥ n− 1. Property (ii)
implies that out degree i has been assigned in cliques Cn−1 through Cn−t, thus ` ≤ n− 1− t.
Since ` + t + 2i + 1 ≥ 2i, the representative of ` + t + 2i when taken modulo n − 1 is
` + t + 2i + 1 − (n − 1). By property (iii)(a), all vertices with x + y = d (mod n − 1)
where d < 2i have already received an out degree. Thus ` + t + 2i + 1 − (n − 1) ≥ 2i, or
equivalently, ` ≥ n − 2 − t. Suppose ` = n − 2 − t, then ` + t + 2i + 1 = 2i (mod n − 1).
But this vertex already has had its out degree assigned by property (iii)(c). This is because
bn

2
c−i ≤ t < n−1−2i implies 2i ≤ ` < bn

2
c+i ≤ t+2i. Thus the only vertex in Ct+2i+1 that
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could receive out degree n−1− i is (n−1− t, t+ 2i+ 1). It is easy to see that properties (i),
(ii) and (iii) are again satisfied once t is augmented to t+ 1 in the application of step 8 that
follows each application of step 7.

Suppose P holds before step 10. Now out degree n − 2 − i must be assigned to either
(`, t+2i− (n−1)) or (t+2i− (n−1), `) within clique Ct+2i−(n−1). By a similar calculation as
in the previous steps, it can be seen that if t+2i− (n−1)+` ≥ n−1 then the representative
of this number modulo n− 1 is at most 2i. Again, by property (iii)(a), all such vertices
have already been assigned out degrees, thus n − 1 > t + 2i − (n − 1) + `. Moreover,
t + 2i − (n − 1) + ` ≥ 2i and hence ` ≥ n − 1 − t. Since t + 2i − (n − 1) + ` < n − 1, the
complementary degree of our vertex is n−2− (n−2− i) = i. Out degree i has been assigned
in cliques Cn−1, . . . , Cn−t, so ` ≤ n− 1− t as well. Thus ` = n− 1− t and the only vertex in
Ct+2i−(n−1) that could receive out degree n− 2− i is (t+ 2i− (n− 1), n− 1− t). It is easy
to see that properties (i), (ii) and (iii) are again satisfied once t is augmented to t+ 1 in the
application of step 11 that follows each application of step 10.

Suppose P holds before step 14. Then out degree n − 2 − i must be assigned to either
(`, t+ 2i+ 1− (n− 1)) or (t+ 2i+ 1− (n− 1), `) within clique Ct+2i+1−(n−1). By a similar
calculation as in the previous steps, it can be seen that if t + 2i + 1 − (n − 1) + ` ≥ n − 1
then the representative of this number modulo n− 1 is upper bounded by 2i + 1. By
property (iii)(a) all vertices (x, y) with x+y = d (mod n−1) where d < 2i or d = 2i already
have assigned out degrees. If equality holds, then ` = t = n − 1, and so bn

2
c+ i+ 1 ≤ ` <

t + 2i + 1 and thus property (iii)(c) implies that this vertex has already been assigned an
out degree. Thus n − 1 > t + 2i − (n − 1) + ` and so t + 2i + 1 − (n − 1) + ` ≥ 2i. This
implies ` ≥ n − 1 − t − 1. Suppose for the sake of contradiction that equality holds, then
t+ 2i+ 1− (n− 1) + ` = 2i or t+ 2i+ 1− (n− 1) = 2i− `. Now since n− 1− i ≤ t ≤ n− 1
we obtain t+ 2i+ 1−n > n− 1− t− 1 = `. Since ` ≥ 0 this gives t+ 2i+ 1 > 0, hence, this
vertex has already been assigned an out degree, a contradiction. Thus ` ≥ n − 1 − t. Now
since t + 2i + 1 − (n − 1) + ` < n − 1, we again see that the complementary degree of our
vertex is n− 2− (n− 2− i) = i. Out degree i has been assigned in cliques Cn−1, . . . , Cn−t,
so ` ≤ n − 1 − t as well. Thus ` = n − 1 − t and the only vertex in Ct+2i+1−(n−1) that
could receive out degree n − 2 − i is (n − 1 − t, t + 2i + 1 − (n − 1)). It is easy to see that
properties (i), (ii) and (iii) are again satisfied once t is augmented to t+ 1 in the application
of step 15 that follows each application of step 14. Moreover, it can be seen that after the
augmentation of i to i+ 1 in step 16, the predicate holds as well.

Thus predicate P holds throughout, and the orientation constructed by the algorithm is the
unique clique transitive orientation obeying ρ with bi blocked out on Ci. Thus Lemma 16
implies that the list chromatic number of Λ(Kn) is at most n. �
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3.2 A bound for simple graphs

In this section we outline Häggkvist and Janssen’s use of Theorem 5 to prove the following
upper bound on the list chromatic index of any simple graph of maximum degree d.

Theorem 18 Let G be a simple graph of maximum degree d. The list chromatic index of G
satisfies ch′(G) ≤ d+O(d2/3

√
log d).

Very roughly, the strategy is as follows. We use Theorem 5 and ideas from the proof of
Theorem 17 to obtain an upper bound on a class of graphs obtained from the complete
graph (Theorem 19). We then show that any graph which may be written as the edge
disjoint union of graphs from the aforementioned class has a suitably bounded list chromatic
index (Theorem 20). We then employ a probabilistic lemma (Lemma 21), to show that any
simple graph can be embedded in another graph that can be written as such an edge disjoint
union (Theorem 22). We combine these results to prove Theorem 18.

Our first step is to extend Theorem 17. Let G = (V,E) be a graph, and let H = {He :
e ∈ E} be a family of bipartite graphs He, wherein each He has bipartition (W 1

e ,W
2
e ), and

|W 1
e | = |W 2

e | = m for all e ∈ E. We define the edge composition graph G〈H〉 to be the
graph obtained from G by replacing each vertex with m copies of that vertex, and replacing
edge e with the bipartite graph He.

More formally, let W 1
e = {w1

e,1, . . . , w
1
e,m} and W 2

e = {w2
e,1, . . . , w

2
e,m} for each e ∈ E and

define a set Sv = {sv,1, . . . , sv,m} for each v ∈ V . We may then characterize G〈H〉 = (V , E)
where V = ∪v∈V Sv, and (su,i, sv,j) ∈ E exactly when (u, v) = e ∈ E and w1

e,i is adjacent
to w2

e,j in He; we assume that some ordering has been imposed on V and u < v in this
ordering.

For our purposes, the graph G will be a complete graph, and the family H will contain only
1-regular graphs.

Theorem 19 Let H be a family of 1-regular graphs on 2m vertices and let G = Kn〈H〉.
Then ch′(G) ≤ n.

Proof Sketch. As before, we label the vertices of Kn by 0, . . . , n − 1 and the edges of Kn

by (i, j) with i < j. We let H = {Hi,j} where Hi,j is the 1-regular graph that replaces edge
(i, j). We label the vertices of G so that all vertices which originate from a single vertex
of Kn are sequentially labeled. That is to say, vertex vim+k is the k-th vertex in the set of
vertices that replace vertex i of Kn.

Notice that the structure of Λ(G) is similar to the structure of Λ(Kn). As before, we may
denote V (Λ(G)) = {(i, j) : i < j, (vi, vj) ∈ E} and (i, j) ∼ (i′, j′) if and only if i = i′, i = j′,
j = i′, or j = j′.

Now, when we consider the line graph Λ(G) we note that the edges of Λ(G) are partitioned
into nm edge disjoint cliques each of size n− 1. We label by Cim+k the clique in Λ(G) which
corresponds to vertex vim+k in G.
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The idea of the proof is to utilize the map ρ and blocking values bi for 0 ≤ i < n defined
in the proof of Theorem 17. In particular, we use ρ to define a map ρ̄ on the vertex set of
Λ(G), and we use the blocking values bi to define blocking values b̄j for 0 ≤ j < nm. More
concretely, the out degree that ρ assigns to vertex (i, j) in Λ(G) is assigned to all vertices
of Λ(G) which correspond to edges of Hij. The blocking value bi is assigned to all cliques
Cmi+k for 0 ≤ k < m− 1 that arise as copies of the clique Ci in Λ(G).

To prove that there is a unique clique transitive orientation of Λ(G) obeying ρ̄ with blocking
values b̄j, we augment the algorithm so that whenever it assigns an out degree to a clique
Cs it also assigns an out degree to a vertex in the cliques Csm, Csm+1, . . . , Csm+(m−1) that
correspond to copies of Cs.

We alter predicate P so that the conditions which hold for clique Cs after a certain step
in the original algorithm also hold for the cliques Csm, Csm+1, . . . , Csm+(m−1) after the same
step in our modified algorithm.

Suppose that at a certain step the original algorithm assigns out degree n− 1− i to a vertex
in Cs, then by predicate P there is a unique vertex (s, t) (or (t, s)) to which this out degree
is assigned.

Since ρ̄ and b̄j are defined analogously on each clique Csm+r with 0 ≤ r < m, the same
argument shows there is a unique vertex (sm + r, tm + r′) (or (tm + r′, sm + r)) for each
such clique which must receive out degree n− 1− i.

Since Hs,t is one-regular, there is exactly one vertex vtm+r′ in G that is incident to vsm+r

and hence within Λ(G) there is exactly one clique Ctm+r′ that intersects Csm+r. The unique
vertex at the intersection of these cliques receives out degree n− i− 1. Hence the “choices”
made at each step of the modified algorithm are unique.

So the orientation given by the modified algorithm obeying ρ̄ with prescribed blocking values
is the unique such clique transitive orientation. Since the maximal value that ρ̄ takes is n−1,
we may apply Lemma 16 to obtain the desired bound. �

The next step is to extend the bound of Theorem 19 to the edge disjoint union of the edge
composition graphs discussed above. We note that in this context, an edge disjoint union of
graphs is obtained by identifying vertices but not edges; e.g., the edge disjoint union of two
copies of K2 on the same vertex set is the multigraph on two vertices with two edges. This
is the only place throughout this thesis where multigraphs make an appearance.

Theorem 20 Let G be a regular graph of degree d which is the edge disjoint union of q
graphs, each of which is an edge composition graph Kn〈Hi〉, where Hi is a family of one-
regular graphs each on the same number of vertices. Then ch′(G) ≤ d+ 2q − 1.

Proof sketch. The idea of the proof is again to define a carefully chosen map ρ and sets of
blocking values and to prove that there is a unique clique transitive orientation satisfying
this assignment.
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The graph G is a disjoint union of graphs Gi = Kn〈Hi〉. Denote by Es the edge set of
Gs. Thus we may write the vertex set of the line graph Λ(G) as V (Λ(G)) = ∪q−1

s=0V
Λ
s where

V Λ
s = {(i, j, s) : i < j, (vi, vj) ∈ Es}.

We define a map ρ on V (Λ(G)) and a set B` of k blocking values for each clique Cj with
0 ≤ j < nm. We also define a family of functions βs : V Λ

s → N× N which we interpret as a
specific orientation of Gs. That is to say, in this specified orientation, if βs(i, j) = (r, `) then
vertex (i, j, s) has out-degree r in clique Ci and out degree ` in clique Cj.

The maps βs and ρ are defined so that the restriction of the specified orientation to the
subgraph Λ(Gs) is the unique clique transitive orientation obeying the restriction of ρ to
Λ(Gs). Using the argument from Theorem 19 it is then shown that the orientation of Λ(G)
specified by the maps βs is the unique clique transitive orientation satisfying ρ.

A heuristic argument for the additive factor of 2q in the bound obtained is that in order
to define a map ρ which admits a unique orientation we must sufficiently distinguish the k
subgraphs Λ(Gs) from one another. To do this, ρ must take on a maximum value of d+2q−2.
The details are given in [19]. �

In order to use these results to achieve a bound on the list chromatic index of any simple
graph G, we must represent G as a subgraph of some graph satisfying the conditions of
Theorem 20. In order for the bound ch′(G) ≤ d+ 2k− 1 to be meaningful, both the number
of graphs k and the degree d should be relatively small.

We will show that any simple graph can be suitably embedded in such a graph J ∪ Γ via a
two step process. The first step is to apply a probabilistic lemma, found in [10]. If S is a
subset of the vertices of a graph, let d(v, S) denote the number of neighbors of v in S.

Lemma 21 (Chetwynd and Häggkvist) Let G be a simple graph of maximal degree d.
Then, for every integer p = 2k such that d

60 log 3d
> 2k there exists a partition of the vertices of

G into p parts V1, . . . , Vp such that the degree d(v, Vi) from any vertex v to any set Vi, i ∈ [p],

differs from its expected value of δG(v)/p by at most 3
√

d
p

log 3d.

Lemma 21 states that if we wish to partition the vertex set of a graph of maximum degree
d into parts that have about the expected number of edges between them, then we may do
so provided the number of parts is small enough as a function of d.

The proof of Lemma 21 is probabilistic and employs the Lovász local lemma, along with
some standard concentration bounds for the binomial distribution. See [10].

Let G be a simple graph. We now use the partition {V1, . . . , Vp} from Lemma 21 in order to
embed G in the union of s edge composition graphs Kp〈Hs〉, where p is as given in Lemma
21 and s is to be determined later.

Note that G cannot be embedded in a single edge composition graph Kp〈H〉 since the
bipartite subgraph of G induced by any two of the sets Vi and Vj is not necessarily a union
of 1-regular graphs. Note also that the sets Vi are not necessarily independent sets of G.

32



V1

V2

(a)

V ′1

V ′2

(b)

Figure 3.11: The simple graph pictured in (a) can be embedded in the graph pictured in (b).
This latter graph is the edge disjoint union of three perfect matchings (Red, Blue, Green)
along with two extra edges (dashed) that disobey the bipartition. Hence the graph from (a)
can be embedded into the disjoint union of three edge compositions of K2 along with two
additional edges.

(In fact, by Lemma 21, there are roughly δ(v)/p edges between a vertex v ∈ Vi and other
vertices in Vi.)

We now show that G can be embedded in a graph Γ which is a union of edge compositions
of Kp along with a sufficiently small set of extra edges J ; the latter set is used to embed the
edges of G within each of the sets Vi, i ∈ [p]. See Figure 3.11.

Theorem 22 Let G be a simple graph of maximum degree d on n vertices. Then for every
integer p = 2k such that d

60 log 3d
> 2k, G can be embedded in a graph J ∪ Γ, where Γ is the

edge disjoint union of s = d/p+ 3
√

d
p

log 3d graphs, each of which is the edge composition of

the complete graph Kp with a family of one-regular graphs, and J is a graph of maximum
degree at most s.

Proof. We let the graph G and integer p be as in the statement. From Lemma 21 and the
fact that each vertex of G has degree at most d, there exists a partition of the vertex set V
of G into p parts, V1, . . . , Vp, in which d(v, Vi) ≤ s for each v ∈ V and for all i ∈ [p]. Let t
denote the maximum size of any of the sets Vi. We form a graph G′ by adding vertices to
each of the sets Vi, i ∈ [p], until all the sets have size t; we denote these “padded” sets by
V ′i , i ∈ [p].

We let G′i,j be the subgraph of G′ induced by all edges between V ′i and V ′j . Since each G′ij is
bipartite and has maximum degree at most s, Hall’s theorem implies that G′ij can be edge
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colored with s colors. We use the same set of colors {c` : 0 ≤ ` < s} to properly edge color
each subgraph G′ij. We now “sort” our colored edges into subgraphs G′b for b ∈ [s] where G′b
is induced by the set of edges of G′ colored cb.

For any given pair i, j, the set of edges of G′b whose end vertices are in both V ′i and V ′j is
some matching of the vertices in V ′i with the vertices in V ′j . We may extend this matching
to a perfect matching M ′

b,ij between V ′i and V ′j . We denote by Γb the graph given by the
union over all pairs i, j of the graphs M ′

b,ij. We extend the coloring so that all edges in Γb
receive color cb.

Hence, for each color cb, and pair i, j, the edges of Γb contained in the subgraph induced by
V ′i ∪ V ′j yield a 1-regular subgraph. So Γb is an edge composition of Kp and Γ = ∪bΓb is
an edge disjoint union of edge compositions of Kp. Moreover, each edge of G with ends in
distinct sets Vi, Vj is an edge of Γ.

To address edges between two vertices within Vi, we define J to be the graph with vertex
set ∪iV ′i ; the edge set of J consists of all edges {v, w} of G for which v and w are in the
same set Vi. J is a union of disconnected components, each of which is contained within the
vertex set of some Vi. We have chosen Vi so that d(v, Vi) ≤ s for all i and all v ∈ V , so the
maximum degree of any such induced subgraph is at most s as desired. It follows that G′,
and thus also G, can be embedded in J ∪ Γ. �

We may now prove a slightly more specific instantiation of Theorem 18 by embedding any
simple graph in an appropriate union of edge compositions and applying Theorem 20.

Theorem 23 For all simple graphs G of maximal degree d where d is such that d2/3 >
60 log 3d, the list chromatic index satisfies ch′(G) ≤ d+ 23d2/3

√
log 3d.

Proof. Let G be a simple graph of maximal degree d. By Theorem 22, for every integer
p = 2k for which d

60 log 3d
> 2k, we know that G can be embedded in a graph J ∪ Γ where

J has maximum degree at most s and Γ is the edge disjoint union of s = d/p+ 3
√

d
p

log 3d

graphs, each one an edge composition of the complete graph Kp with a family of one-regular
graphs. Note that Γ has degree ps.

By Theorem 20, we have ch′(Γ) ≤ ps+ 3s− 1 = d+ 3
√
dp log 3d+ 3(d/p+ 3

√
d
p

log 3d)− 1.

Moreover, since J has maximum degree s, we may greedily list color the edges of J provided
each edge has a list of size at least 2s. Thus, if we supply the edges of J ∪ Γ with lists of
size at least ch′(Γ) + 2s, then we may greedily edge color J with enough colors left over to
edge color Γ. Thus ch′(J ∪ Γ) ≤ ps+ 3s− 1 + 2s. Since G is a subgraph of J ∪ Γ we have
ch′(G) ≤ ps + 3s − 1 + 2s. This expression is minimized if we take p to be the power of 2

closest to d1/3, in which case ps+ 5s− 1 = d+ 3
√
d4/3 log 3d+ 5(d2/3 + 3

√
d2/3 log 3d)− 1 ≤

23d2/3
√

log 3d. �
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Chapter 4

Extensions of Galvin’s Theorem

In this chapter we will introduce and expand upon Galvin’s proof of the Dinitz conjecture.
All pertinent definitions and notations are found in Section 2.1.

Informally, we will think of Galvin’s theorem as an algorithm. The input to this algorithm
is an edge n-list assignment L for the complete bipartite graph G = Kn,n. The output of
the algorithm is an L-coloring of G.

The algorithm proceeds as follows. Choose some color α and consider the color subgraph Gα.
Choose an appropriate subset Mα from E(Gα). Color Mα with color α, and then remove α
from the lists of all other edges in Gα. Repeat with a new color β. Continue repeating this
process until all edges are colored.

We will sometimes refer to this procedure as Galvin’s algorithm, and refer to the process of
choosing a color β, and coloring the edges of Mβ as one iteration of the algorithm. Notice
that each iteration involves several non-trivial choices. First, some new color β must be
selected. Second, an appropriate subset of the edges of Gβ must be colored.

The main technique introduced in this chapter is to choose the color used in the first iteration
and the “appropriate subset” to be colored with some care. By doing this we are able to
obtain several extensions of Galvin’s theorem.

Our first result is Theorem 34 (page 47). Here we exhibit two distinct list colorings for any
given n-listing. This expands upon the single coloring guaranteed by Galvin’s theorem, and
generalizes the main result of [21].

Our second result is Theorem 35 (page 49). Here we construct an L-coloring for a more
restrictive type of listing: Namely, a listing where all lists save for one have size n and a
special “weakened” list has size n− 1.

Lemma 33 (page 46) is the main technical lemma of this chapter. It establishes the existence
of special latin squares that facilitate our careful choices of colors and subsets. Lemma 33 is
morally a sort of converse of the Gale-Shapley theorem: It states that if we have a bipartite
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graph with a certain specified matching, we can construct a preference system on the vertices
for which that matching is stable.

Throughout this chapter, and particularly in the proof of Lemma 33, we will employ classical
results from the theory of bipartite matchings. We will also require several results about
completions of partial latin squares. For the most part we include the proofs of these results.
We will also make extensive use of the Gale-Shapely theorem and the so called Kernel Lemma
of Bondy, Boppana, and Siegel.

4.1 Preliminaries

We now introduce the notations and definitions pertinent to this chapter. Our discussion of
coloring in Subsection 4.1.1 follows [12]. Our description of oriented graphs and the kernel
lemma follows Chapter 17 of [41]. Theorem 24 originates in [17] where the terminology of
stable matchings is introduced. The terminology of Subsection 4.1.5 is nonstandard but is
encompassed by the material of Chapter 17 in [41]. The definition of the Hungarian forest
and the statement and proof of Lemma 31 are reproduced from [27].

4.1.1 Coloring

A is a finite set whose elements are called colors. We will denote these colors by the greek
letters α, β, and γ.

A coloring of a graph G = (V,E) is a function c : V → A so that c(v) 6= c(u) if v and u are
adjacent. A family of sets L = {Lv}v∈V with Lv ⊆ A is a listing for G. The elements of L
are called lists. If |Lv| = k for all Lv ∈ L, then L is a k-listing. A coloring is an L-coloring
if c(v) ∈ Lv for all v ∈ V . If the listing L has not not been named, we will implicitly refer to
an L-coloring as a list coloring. The chromatic number χ(G) is the smallest integer k
so that |A| = k and there exists a coloring c : V → A. The list chromatic number of G,
denoted ch(G) is the smallest integer k so that for each k-listing L there exists an L-coloring.
If L is a listing for which there are no L-colorings, then L is an unsatisfiable listing. Let
G be a graph (or digraph) equipped with a listing L. We define the color subgraph Gα to
be the subgraph of G induced by the set of vertices {v : α ∈ Lv}.

We give a set of completely analogous definitions for edge coloring.

An edge coloring of a graph G = (V,E) is a function c : E → A so that c(e) 6= c(f)
if e and f are incident. A family of sets L = {Le}e∈E with Le ⊆ A is an edge listing
for G. The elements of L are called lists. If |Le| = k for all Le ∈ L, then L is a edge
k-listing. An edge coloring is an L-edge coloring if c(e) ∈ Le for all e ∈ E. If the listing
L has not not been named, we will implicitly refer to an L-coloring as a edge list coloring.
The chromatic index χ′(G) is the minimum, over all colorings of G, of |c(E)|. The list
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chromatic index of G, denoted ch′(G) is the smallest integer k so that for each edge k-
listing L there exists an L-coloring. If L is an edge listing for which there are no L-colorings,
then L is an unsatisfiable edge listing. Let G be a graph equipped with an edge listing
L. We define the edge color subgraph Gα to be the subgraph of G induced by the set of
edges {e : α ∈ Le}.

When it is is contextually clear that we are working with an edge list assignment we will
sometimes omit the prefix “edge” from the above definitions.

Finally, in Chapter 5 we will make use of a result from [24] that is phrased in terms of an
analogous definition for hypergraph edge coloring. If H is a hypergraph we denote by χH the
edge list chromatic index of a hypergraph H, which is defined to be the minimum cardinality
k so that for every assignment of k colors to the edges of H there is a valid assignment of
one color from each list to the corresponding edge, so that no two incident edges receive the
same color.

4.1.2 Stable Matchings

Whenever G = (V,E) is a bipartite graph we let X and Y denote the color classes of the
bipartition. A vertex named x or xi is always an element of X. A vertex named y or yi is
always an element of Y . All figures are drawn so that vertices of X are at the top of the
figure and vertices of Y are at the bottom.

Let EG(v) denote the set of all edges in G incident with vertex v. A preference graph
(G,P ) is a bipartite graph G, together with a collection P of (reflexive) total orders >v on
the sets EG(v). If e >v f we say that v favors e over f .

Given a preference graph (G,P ) and a matching M ⊆ E, we say that an edge e ∈ E(G) is
stable if at least one end (say v) of e favors an edge of M over e. In this case, we say that
the edge e is M-stable, and that v stabilizes e. If e is not M -stable then e is M-blocking.
A matching M is stable if every edge of G is M -stable. Note that the total orders imposed
by the preference system P are reflexive, and so each edge of M is stabilized by both of its
ends regardless of the choice of G,P, or M . The main result of [17] is to introduce the notion
of stable matchings and prove the following.

Theorem 24 (Gale-Shapley) There exists a stable matching for any preference graph.

4.1.3 Oriented graphs

Given a graph G = (V,E), an orientation of G is a digraph D = (V,A) such that if
{x, y} ∈ E then exactly one of the arcs (x, y) or (y, x) is in A. Given an orientation D and
vertex v ∈ V (D), the vertices u such that (v, u) ∈ A are the out-neighbors of v. The
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y2

x2

y1

x1

y3

x3

ge i
f h

v >v

x1 e > f
x2 g
x3 h > i
y1 e
y2 f > g > h
y3 i

Figure 4.1: A bipartite graph G and preference system P . The matching {e, g, i} is stable
for this preference system. In particular, f is stabilized by x1, and h is stabilized by y2.

out-degree of v in G is the number of out-neighbors of v in G; it is denoted δ+
G(v). We

omit the subscript when the underlying graph is clear from context.

A kernel of D is a set K ⊆ V satisfying two properties:

1) Independence: v, u ∈ K implies neither (v, u) ∈ A nor (u, v) ∈ A.

2) Absorption: For all w ∈ V rK, there is some x ∈ K with (w, x) ∈ A.

A digraph D is kernel perfect if each induced subgraph of D contains a kernel.

Lemma 25 (Bondy-Boppana-Siegel) If D is kernel perfect, and L is a listing for D in
which |Lv| ≥ δ+

D(v) + 1 for all v ∈ V , then there is an L-coloring of D.

Proof. We proceed by induction on n = |V (D)|. The cases n = 1, 2, 3 are easy to verify.
Suppose |Lv| ≥ δ+

D(v) + 1 for all v ∈ V (D) and let α be some color occurring in at least one
list. Consider the color sub(di)graph Dα induced by the set of vertices {v : α ∈ Lv}. Since
D is kernel perfect, Dα contains a kernel Kα. Let D1 be the graph induced by V (D) rKα

and define the listing L′ = {L′v}v∈V (D1) by

L′v =

{
Lv r {α} if v ∈ Dα

Lv otherwise

We claim that |L′v| ≥ δ+
D1

(v) + 1 for all v ∈ V (D1).

Certainly this is true for all v ∈ V (D1) r V (Dα) since for these vertices, |L′v| = |Lv|, and
since δ+

D1
(v) ≤ δ+

D(v).

Since Kα is a kernel of Dα, we have δ+
D(u) − 1 ≥ δ+

D1
(u) for each vertex u ∈ V (Dα) rKα.

Moreover, |Lu| − 1 = |L′u| for such vertices. Thus the hypothesis of the lemma is satisfied
for all vertices in D1. By induction, there is an L′-coloring c1 of D1. Since α is not in any
list in L′, the map c defined by
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x3 h i

x2 g

x1 e f

y1 y2 y3

Figure 4.2: The orientation Λ(G,P ) of the preference graph (G,P ) shown in Figure 4.1.

c(v) =

{
α if v ∈ Kα

c1(v) if v ∈ V (D) rKα

is an L-coloring as desired. �

4.1.4 A convenient correspondence

Galvin’s resolution of the Dinitz problem is an elegant synthesis of Theorem 24 and Lemma
25. The key element in combining these results can be articulated as the following corre-
spondence.

Let G = (V,E) be a bipartite graph and let Λ(G) be the line graph of G. Let P be a
preference system for G.

Each vertex v ∈ V (G) corresponds to a clique Cv in Λ(G) whose vertices are the members
of EG(v). Thus, since G is bipartite, the preference system P induces a total order on the
vertices of each clique Cv in Λ(G).

We define the orientation Λ(G,P ) = (E,A) to be the digraph with vertex set E(G) and arc
set A = {(e, f) : {e, f} ∈ Cv, e >v f}. See Figure 4.2.

Lemma 26 S is stable with respect to (G,P ) if and only if S is a kernel of Λ(G,P ).

Proof. From the definition of Λ(G,P ), the following are equivalent. The result follows.

(1) S is a matching and for each edge e = (x, y) ∈ E(G) r S, there is an edge f ∈ S for
which either f >x e or f >y e.

(2) S is an independent set and for each vertex e ∈ V (Λ(G,P ))r S, there is a vertex f ∈ S
for which (e, f) ∈ A(Λ(G,P )). �

Armed with this correspondence Galvin’s approach is as follows. Choose a preference system
P so that in the orientation Λ(G,P ), we have δ+(v) = n− 1 for all v. By Theorem 24, this
orientation is kernel perfect. Since δ+(v) + 1 = n, any n-listing satisfies the inequality
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1
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v >v

x1 x1y1 > x1y3 > x1y2

x2 x2y2 > x2y1 > x2y3

x3 x3y3 > x3y2 > x3y1

y1 x3y1 > x2y1 > x1y1

y2 x1y2 > x3y2 > x2y2

y3 x2y3 > x1y3 > x3y3

Figure 4.3: A preference map Φ on K3,3 and the preference system [Φ]. Notice that vertices
in X favor edges assigned larger numbers, whereas vertices in Y favor edges assigned smaller
numbers.

|Lv| ≥ δ+(v) + 1 = n for all v. Lemma 25 implies that there is a list coloring for any such
n-listing.

The final piece of the puzzle is of course to construct an appropriate preference system P .
Galvin’s approach is to use a preference system naturally associated to a 1-factorization of
Kn,n. This is equivalent, via the correspondence just described, to the use a latin square of
order n.

For our purposes we must either translate the idea of latin squares to the setting of bipartite
graphs or translate the matching theory of bipartite graphs to setting of their line graphs.
We have chosen the former. For this reason the definitions and notations in subsection 4.1.7
are quite standard, whereas those in the following section are not.

4.1.5 Preference maps and completions

Like Galvin, we will construct our preference systems from 1-factorizations of Kn,n. Because
we wish to impose extra conditions on these preference systems, it will be useful to build
our 1-factorizations via a two step process.

Let [n] denote the set {1, 2, ...n}, let G = (V,E) be a subgraph of Kn,n, and let S be a
subset of E. A partial preference map φ : S → [n] is an edge coloring of the subgraph
(V, S) whose set of colors is [n]. If S = E then φ is a preference map. We reiterate that
if G = Kn,n then a partial preference map on G and a partial latin square of order n are
essentially the same notion.

If Φ is a preference map, the preference system induced by Φ is denoted [Φ] and defined
as follows. See Figure 4.3.

For x ∈ X, and each pair of edges e = {x, y}, f = {x, y′}

e >x e
′ if and only if Φ(e) ≥ Φ(f).

For y ∈ Y , and each pair of edges e = {x, y}, g = {x′, y}
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(a) A completable partial preference map.

y1 y2 y3

x1 x2 x3
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(b) An incompletable partial preference map.

Figure 4.4: The 1-factorization in Figure 4.3 is a completion for the partial preference map
shown in (a). Note that the preference system induced by this map is the system given in
Figure 1. In (b), the only 1-factor of K3,3 that contains both Red edges also contains the
blue edge, thus no 1-factorization completes this partial preference map.

e >y e
′ if and only if Φ(e) ≤ Φ(g).

A 1-factorization F = (F1, . . . , Fn) of the complete bipartite graph Kn,n is a partition of
the edges into n perfect matchings Fi, called 1-factors. We may also consider F to be a
preference map for Kn,n given by the function F (e) = i if e ∈ Fi.

A partial preference map φ is completable if there is a 1-factorization (F1, . . . , Fn) of Kn,n

such that for all i ∈ [n] we have e ∈ Fi implies φ(e) = i. In this case, we call (F1, . . . , Fn) a
completion of φ. We will denote partial preference systems by the lower case greek letters
φ and ψ. We denote their completions by Φ and Ψ respectively. If φ is a completable partial
preference map, and M is a matching that is stable with respect to any completion of φ, we
say that M is stable with respect to φ.

If φ is a completable partial preference map, and Φ is a completion of φ, then we say that
the preference system induced by Φ is latin. Most of the work in this chapter will be in
constructing completable preference maps with certain special properties and then applying
Galvin’s theorem using the associated latin preference systems.

In Section 4.2 we will employ the following result from the theory of completable partial
preference maps.

Theorem 27 (Smetaniuk) If G is a bipartite graph, S ⊆ E(G), φ : S → [n] a partial
preference map, and |S| ≤ n− 1, then φ is completable.

In reality, we will only require the much weaker statement that for n ≥ 4, if |S| ≤ 3 then
φ is completable. For another application we require a different special case of Smetaniuk’s
theorem: If φ is a partial preference map whose domain is a matching of size at most n− 1,
and if φ assigns at most two colors to the edges of M , then φ is completable. The proof of
this statement is pertinent to our discussion in Section 4.3, and therefore included.

Lemma 28 Let M be some matching of size at most n− 1 in Kn,n and let φ : M → {i, j}
be a partial preference map. If n ≥ 3 then φ is completable.
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GjGi

(a)

GjGi

(b)

Figure 4.5: The two cases from Lemma 28. The 1-factor F consists of all vertical edges.
Boldface vertical edges are in M and dashed vertical edges are not. The sets Ti and Tj are
colored Green and Purple respectively.

Proof. We show that there are disjoint 1-factors Fi containing φ−1(i) and Fj containing
φ−1(j). The result then follows from Hall’s theorem.

Let F be a 1-factor of Kn,n that contains M . If one of φ−1(i) or φ−1(j) is empty, then F is a
1-factor containing the other. If both are empty, there is nothing to show. Thus we assume
neither is empty.

Case 1. |M | ≤ n − 2. Then there is some partition of F of the form F = Si∪̇Sj where
φ−1(i) ⊆ Si and φ−1(j) ⊆ Sj and both Si and Sj have size at least 2. The subgraphs Gi and
Gj induced by Si and Sj are regular complete bipartite graphs with parts of size at least 2.
Thus, by Hall’s theorem, Gi contains a perfect matching Ti disjoint from Si and Gj contains
a perfect matching Tj disjoint from Sj. The sets Fi = Si∪Tj and Fj = Sj∪Ti are the desired
1-factors. See Figure 4.5 (a).

Case 2. |M | = n− 1. Then there is a single edge e ∈ F that is not in the image of φ. Let Gi

be the subgraph induced by the edges φ−1(i)∪{e} and Gj the subgraph induced by the edges
φ−1(j) ∪ {e}. Again, Gi and Gj are regular complete bipartite graphs with parts of size at
least 2. Thus Gi contains a perfect matching Ti disjoint from φ−1(i)∪{e} and Gj contains a
perfect matching Tj disjoint from φ−1(j)∪{e}. Note that e is the only edge in E(Gi)∩E(Gj)
and that e is not in Ti ∪ Tj. Thus the sets Fi = φ−1(i) ∪ Tj and Fj = φ−1(j) ∪ Ti are the
desired 1-factors. See Figure 4.5 (b). �

In Section 4.3 we will require an easy corollary of the proof of lemma 28.

Corollary 29 Let M be some matching in Kn,n and let φ : M → {i, j} be a partial preference
map. If n ≥ 3 and min{|φ−1(i)|, |φ−1(j)|} ≥ 2 then φ is completable.

Proof. As in Case 1 above, we have sets Si and Sj of size at least two. The same construction
applies. �
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4.1.6 Galvin’s Theorem

We have now amassed the components requisite to prove Galvin’s theorem and take this
opportunity to do so.

Theorem 30 (Galvin) For any n-listing L of Λ(Kn,n) there is an L-coloring.

Proof. Let Φ be any 1-factorization of Kn,n and let D = Λ(Kn,n, [Φ]) be the associated
orientation. Then δ+(v) = n − 1 for each vertex v ∈ V (D). By Theorem 24, any subgraph
of Kn,n contains a stable matching, and thus by Lemma 26, each induced subgraph of D
contains a kernel. Thus the conditions of Lemma 25 are satisfied and there exists an L-
coloring for any n-listing L of Λ(Kn,n). �

4.1.7 The Hungarian Forest

The main results of this chapter will require the construction of a certain partial preference
map in a bipartite graph G relative to a maximum cardinality matching M . To construct this
preference map, we will use a classical structural characterization of bipartite graphs.

Let G = (V,E) be a bipartite graph with color classes X and Y . Let M be a maximum
matching of G. Let A0 and B0 respectively denote the sets of vertices in X and Y that are
not M -saturated. A Hungarian forest rooted at A0 denoted FA0 is a forest in G with
the following properties.

(i) For each y ∈ Y ∩ V (F ), the degree of y in F is 2 and there is an edge of E(F ) ∩M
incident with y.

(ii) Each component of F contains a vertex in A0.

(iii) FA0 is a maximal forest with properties (i) and (ii). That is, for each x ∈ X ∩ V (F ), all
edges incident to x are in F .

The impetus for this definition is that the set FA0 ∩X consists of all vertices of X that can
be reached from A0 by traversing an alternating path. The following characterization can
be found in [27].

Lemma 31 If F = FA0 is a Hungarian forest rooted at A0, then M is maximum if and only
if no vertex in F is adjacent to a vertex in B0.

Proof. Suppose there is a vertex x ∈ F adjacent to some b ∈ B0. Since x ∈ X, properties
(ii) and (iii) imply that that there is an alternating path P from A0 to x. But then P ∪ {y}
is an M -augmenting path, and M is not maximum.

For the converse direction, suppose no vertex of F is adjacent to a vertex of B0. Let
S = X r V (F ) and let T = Y ∩ V (F ). We claim that S ∪ T is a vertex cover of G and that
|S ∪ T | = |M |.
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A0

B0

Figure 4.6: The Hungarian forests rooted at A0 and B0 and the induced M -partition. M
consists of the five bold vertical edges. Vertices of A, B, and C are colored Red, Blue, and
Black, respectively.

Each element of S is M -saturated since S is a subset of X disjoint from A0. Each element
of T is M -saturated since B0 is disjoint from F . Moreover, if {s, t} ∈M and t ∈ F (V ) ∩ Y ,
then by (i), s ∈ V (F ), and so s /∈ S. Thus no edge of M contains two vertices of X ∪ Y .
Hence |M | = |S ∪ T |.

It remains to show that S ∪ T is a cover of G. Suppose some edge {a, b} is not covered by
S ∪ T . Then a ∈ V (F ) and b /∈ V (F ). Moreover, by hypothesis, b /∈ B0. Thus M covers
b, with some edge e = {a′, b}. But now F can be extended to a larger forest containing the
path {a, b, a′}, contradicting (iii).

Thus S ∪ T is a cover of size |M | and M is maximum. �

If FB0 is a Hungarian forest rooted at B0, then it can be seen from a symmetric argument
that M is maximum if and only if no vertex in FB0 is adjacent to a vertex in A0. For our
purposes, it will be useful to consider forests FA0 and FB0 simultaneously, and to partition
the vertices of G according to these forests.

Let G be a bipartite graph, let M be a maximum matching in G, let A = V (FA0), and let
B = V (FB0). Note that A and B must be disjoint, since any element of their intersection
would be a member of an augmenting path from A0 to B0. Thus (A,B,C) where C =
V (G) r (A ∪B) is a partition of V (G). We call this the M-partition of G.

If P = (P1, P2, . . . , Pk) is partition of the vertex set of a bipartite graph G, we say that
e = {x, y} ∈ E(G) is type PiPj if x ∈ Pi and y ∈ Pj. We now note several important
properties of M -partitions.

Lemma 32 If (A,B,C) is the M-partition of a bipartite graph G

(a) (A,B,C) is a partition of V (G).

(b) No edge of G is type AB, AC, or CB.

(c) Each edge of M is type AA, BB, or CC.
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A0

B0

Figure 4.7: If the graph from Figure 4.6 were to contain the dashed edge of type AB, then
this edge, together with the other green edges would form an augmenting path with respect
to the matching formed by the vertical edges.

Proof of (a). This was noted above.

Proof of (b). Let f = {x, y} be an edge of G. If f is type AB then there are alternating
paths from A0 to x and from B0 to y whose union with f is M -augmenting. This contradicts
the maximality of M . See Figure 4.7.

If f is type AC, then there is an alternating path from A0 to x. By property (iii), y ∈ A.
This contradicts (a) since y ∈ C.

If f is type CB, then there is an alternating path from B0 to y. By property (iii), x ∈ B.
This contradicts (a) since x ∈ C.

�

Proof of (c). Observe that the restriction of M to the induced subgraph H[C] is a perfect
matching of H[C]. Thus there are no edges of M of type AC,CA,BC, or CB. Moreover,
by (b), there are no edges (at all) of type AB.

Suppose e = {x, y} in M is of type BA. Since y ∈ A, by property (ii) of the Hungarian
forest, y is incident to an edge of M that is in FA0 . This edge must be e and so x ∈ A ∩B.
This contradicts (a). �

4.2 Non-uniqueness of Galvin colorings

In this section we develop our main technical lemma and use it to show that Galvin’s algo-
rithm is always capable of producing at least two list colorings.

Note that the proof of Lemma 25 (page 38) did not make any particular demands on the
1-factorization of Kn,n used to obtain a latin orientation. Moreover, in that proof we may
choose any color α from the set A, and then any kernel for the subgraph Gα.
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The key observation of this chapter is that making these choices carefully yields stronger
results. To this end we formulate exactly what is meant by these choices. We define the
procedure in terms of edge listings of Kn,n so that we may employ the matching theory of
bipartite graphs described in Section 4.1.7.

Given an edge-listing L = {Le}e∈E for Kn,n, let α be some color in A, let φ be a partial
preference map for Gα, and let Φ be a completion of φ.

Define the initial choice ([Φ], α,Mα) to be a triple consisting of the latin preference system
[Φ], the color α, and a stable matching Mα for the preference graph (Gα, [φ]).

Observation 1 Given an edge-listing L for Kn,n, if ([Φ], α,Mα) is any initial choice, then
there is an L-coloring c : E → A of Kn,n so that c(e) = α for all e ∈Mα.

Proof. Apply Galvin’s theorem using the latin preference system [Φ], the color α, and the
stable matching Mα. �

The main result of this section will be to show that one can always construct two distinct
list colorings for a given listing. To do so, we will prove that there are two initial choices
([Φ], α,Mα) and ([Ψ], α,Nα) so that Mα 6= Nα. The L-colorings that arise from Galvin’s
algorithm with these initial choices will necessarily be distinct.

We remark that the preference systems [Φ] and [Ψ] must be chosen with some care. For
example, if Φ and Ψ are both completions of the preference map in Figure 4.1, and Gα

is the subgraph given in the figure, then there is a unique matching Mα that is stable for
this color subgraph. We are thus tasked with constructing completable preference systems
systematically. Our main tool in doing so is the following sufficient condition for a matching
to be stable.

Lemma 33 Let H be a subgraph of Kn,n and let M be a maximum matching in H. Then
M is stable with respect to some latin preference system.

Proof. We assume H is connected. If not, we apply the following argument to each compo-
nent. Let (A,B,C) be the M -partition of H. By Lemma 32 (c) we see that M is partitioned
into three sets MA, MB, and MC whose members are edges with ends in A,B, and C re-
spectively.

Define the partial preference map ψ : M → {1, n} by

ψ(e) =


1 if e ∈MA

n if e ∈MB

n if e ∈MC .

We first verify that ψ is completable. If |M | = n then M = MC and the domain of ψ is a
1-factor. Hall’s theorem implies that ψ is completable. If |M | < n then the hypothesis of
Lemma 28 (page 41) is satisfied, and a completion exists.
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Let Ψ be some completion of ψ. We now show that the restriction of Ψ to E(H) induces a
preference system on H for which M is stable. Certainly all edges of M are M -stable. Let
f = {x, y} be an edge of E(H) rM .

If f is type BA, BB, or BC, then x is incident with an edge eB ∈ MB. Any completion of
ψ assigns eB the value n. Thus eB is favored by x over all other edges. This implies that f
is M -stable.

If f is type AA, BA, or CA, then y is incident with an edge eA ∈ MA. Any completion of
ψ assigns eA the value 1. Thus eA is favored by y over all other edges. This implies that f
is M -stable.

If f is type CC, then x is incident with an edge eC ∈MC . Any completion of ψ assigns eC the
value n. Thus eC is favored by x over all other edges. This implies that f is M -stable.

By Lemma 32 (b) each edge of G is of one of the types addressed above. Thus M is stable
in (H, [Ψ]). �

We call the partial preference map ψ in the proof of Lemma 33 the M-stabilizing map.
We will make use of this map presently, as well as in Section 4.3. In Section 4.3 we will also
make use of a very similar map

ψ′(e) =


1 if e ∈MA

n if e ∈MB

1 if e ∈MC ,

which we call the alternate M-stabilizing map.

Note that we may have just as easily carried out the proof of Lemma 33 using the alternate
M -stabilizing map. Lemma 28 implies that ψ′ is completable. Moreover, it can be seen that
the only edges that could be stable with respect to ψ and blocking with respect to ψ′ are
type CB. We have argued in Lemma 32 (b) that there are no such edges.

We are ready to prove the main result of this section.

For any color α, if Gα has two (or more) maximum matchings, then Lemma 33 allows us
to exhibit two initial choices as desired. On the other hand, if Gα has a unique maximum
matching M we will require a different approach. In this case we will construct a completable
partial preference map for which M cannot be stable. See Figure 4.8. We then conclude
from Theorem 24 that some stable matching N must exist. This allows us to construct two
initial choices leading to two distinct colorings: one in which M is colored α, and one in
which N is colored α.

Theorem 34 Suppose n ≥ 3. If L is an edge n-listing of Kn,n then Galvin’s algorithm
exhibits two distinct L-colorings of Kn,n.
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(a) A partial preference map.
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(b) A completion of that map.

Figure 4.8: With respect to the partial preference map in (a) the edge x1y2 is blocking for any
matching that contains both x1y1 and x2y2. Such a matching is not stable in any preference
system induced by a completion of this partial preference map. A completion of this map is
given in (b).

Proof: Suppose first that there is some color α in A so that Gα contains two distinct
maximum matchings M1 and M2. By Lemma 33, there are latin preference systems [Φ]
and [Ψ] for which M1 and M2 are stable respectively. Thus ([Φ], α,M1) and ([Ψ], α,M2) are
initial choices that yield distinct L-colorings.

Suppose now that each color subgraph has a unique maximum matching.

Case 1. There is no color β so that Gβ contains a path of length three.

Then Gβ is the disjoint union of components isomorphic to K1,k for various values of k.
Since M is a unique maximum matching, k is 0 or 1 for each component, and for all choices
of β, Gβ is a matching. Thus for any function that assigns each edge a color from its list,
it is never the case that two incident edges are assigned the same color, so all (n2)

n
such

functions are L-colorings.

Case 2. There is a color β such that Gβ contains a path of length three.

Let H be a component of Gβ containing a path of length three and let f be an edge of M in
H, and let e be an edge incident with f . Since e is not in M , the uniqueness of M implies
there is some third edge g of M incident with e. Without loss of generality, suppose f and
e are incident at a vertex x ∈ X and e and g are indecent at a vertex y ∈ Y . Consider the
partial preference system φ defined by φ(f) = 1, φ(e) = 2, φ(g) = n.

If n = 3, there is a (unique) completion of φ, see Figure 4.8 (b). If n ≥ 4 then φ is completable
by Theorem 27.

Let Φ be any completion of φ. M cannot be a stable matching in the latin preference system
[Φ]. In particular, e is M -blocking since x favors e over f and y favors e over g. However
Theorem 24 implies the existence of some stable matching N for [Φ].

By Lemma 33 there is also a latin preference system [Ψ] for which the maximum matching M
is stable. Thus ([Ψ], α,M) and ([Φ], α,N) are initial choices that yield distinct L-colorings.
�
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α, β, δ β, δ, γ β, δ, γ

α, β, δ β, δ, γ β, δ, γ

α α, β, γ α, β, γ

L1

α, β, δ β, δ, γ β, δ, γ

α, β, δ β, δ, γ β, δ, γ

α, β, γ β, γ β, γ

L2

Figure 4.9: Two copies of Λ(K3,3), equipped with unsatisfiable listings. In each example,
the top left vertex must receive color α. The neighbors to the right of this vertex must each
receive one of β and γ and the neighbors below must receive one of β and δ. The vertices of
the remaining 2× 2 sub-graph cannot be properly colored from their lists.

4.3 Weakening the hypothesis

In this section we show that Galvin’s theorem can be applied to a more restrictive kind of
listing.

We say that a listing L of Λ(Kn,n) is weakened if there is a single vertex v0 so that |Lv0| =
n− 1 and |Lv| = n for all other vertices. We call v0 the weak vertex in this listing. The aim
of this section is to prove the following.

Theorem 35 Let n ≥ 3. Let L be a weakened listing for Λ(Kn,n). There is an initial choice
for which Galvin’s algorithm exhibits an L-coloring.

Before proceeding we note that for n = 3, Theorem 35 is tight in two different ways. In Figure
4.9 we demonstrate two listings L1 and L2 for Λ(K3,3). L1 contains a “doubly weakened”
list of size n − 2, and L2 contains two weakened lists of size n − 1. It is not difficult to
check that there are no L1-colorings or L2-colorings. We will return to these examples in
the subsequent chapters.

To prove Theorem 35 we would like to apply Lemma 25 (page 38). We are still free to
choose a kernel perfect orientation as in the proof of Galvin’s Theorem. However, in any such
orientation the inequality |Lv| ≥ |δ+(v)|+ 1 will now be violated at the weak vertex.

The key observation of this section is that the violation of this inequality is not fatal to the
argument of Lemma 25 so long as it can be addressed in some iteration of Galvin’s algorithm
before the violating vertex runs out of available colors. We begin with an example and then
articulate this idea formally.
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α, β, γ α

γ β, γ

(a)

β, γ

γ β, γ

(b)

γ

γ

(c)

α, β α

(d)

Figure 4.10: The graphs in (a), (b), and (c) violate |Lv| ≥ |δ+(v)| + 1 and illustrate an
execution of Galvin’s algorithm that does not produce a list coloring. The graph in (d)
satisfies the inequality at all vertices.

Suppose we wish to apply Lemma 25 to the (kernel perfect) digraph in Figure 4.10 (a). The
inequality |Lv| ≥ |δ+(v)| + 1 is violated at the vertex of degree three. Lemma 25 does not
apply. In fact, the following sequence of choices for Galvin’s algorithm does not produce a list
coloring: We choose the color α and then color the (unique) kernel of Dα, then the digraph
induced by the uncolored vertices is as in (b). If we then choose color β and color the (unique)
kernel Dβ, then the remaining digraph is as in (c). Again, the inequality |Lv| ≥ |δ+(v)|+ 1
is violated, and only one of the remaining vertices can receive a color from its list.

Suppose instead that we first choose color γ and then color the (unique) kernel of Dγ. The
subgraph remaining is as in (d). This subgraph satisfies |Lv| ≥ |δ+(v)| + 1 for all v. Thus
Lemma 25 yields a list coloring of the remaining vertices. Choosing γ first is effective because
both vertices of the kernel of Dγ are out-neighbors of v0. This example illustrates a general
observation, which we now formalize.

Observation 2 Let L be a weakened listing for G = Λ(Kn,n) with weak vertex v0. Let D be
a latin orientation of G, and let α ∈ Lv0.

(a) If there is a kernel K of Gα containing v0, then there is an L-coloring of G.

(b) If there is a kernel K of Gα that does not contain v0, but K contains two neighbors
u,w of v0, so that (v0, u) and (v0, w) are arcs of D, then there is an L-coloring of G.

Proof. In either case, we consider D r K and remove α from the lists of any vertices
therein.

If we are in case (a), then since v0 was the only weak vertex and it is not in D r K then
Lemma 25 applies to produce an L-coloring c1 of D rK.

If we are in case (b), then by assumption u and w are in K, and both are out-neighbors
of v0. Thus δ+

DrK(v0) = n − 3. After removing α from Lv0 we have |Lv0| = n − 2. Thus
|Lv| ≥ |δ+

DrK(v)| + 1 for all v ∈ V (D) r K and Lemma 25 produces an L-coloring c1 of
D rK.
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In either case

c(v) =

{
α if v ∈ K
c1(v) if v ∈ V (D) rK

is an L-coloring of D. �

The details used to prove Theorem 35 will again be most easily addressed in the setting
of edge colorings of the complete bipartite graph. Thus we translate the definition of weak
listing and the content of Observation 2 into this setting.

We say that an edge listing L of Kn,n is weakened if there is a single edge e0 so that
|Le0| = n − 1 and |Le| = n for all other edges. We call e0 the weak edge in this edge
listing.

Lemma 36 (Observation 2 for edge coloring) Let L be a weakened edge listing for G =
Kn,n with weak edge e0 = {x0, y0}. Let P be a latin preference system for G, and let α ∈ Le0.

(a) If there is a stable matching M of Gα containing e0, then there is an L-coloring of G.

(b) If there is a stable matching M of Gα that does not contain e0, but M contains two
edges f, g incident to e0, so that f >x0 e0 and g >y0 e0 in P , then there is an L-coloring
of G.

The first step in applying Lemma 36 is to refine our analysis of M -partitions in the presence
of a special edge that occurs in no maximum matching.

Lemma 37 Let G be a connected bipartite graph and let e0 be an edge of G that is in no
maximum matching of G. Let M be some fixed maximum matching of G and let (A,B,C)
be the M-partition of G. Then e0 is type BA, CA, BC, or CC.

Proof. We have already argued in the proof of Lemma 32 (b) that there are no edges of
type AB, AC, or CB. Thus we must only show that e0 is not type AA or type BB.

Suppose e0 is type AA, then by definition there is an alternating path Pa in FA that contains
e0 and has one of its ends in A0. The matching M∆E(Pa) is a maximum matching of G
containing e0, a contradiction.

Similarly, suppose e0 is type BB, then there is an alternating path Pb in FB that contains
e0 and has one of its ends in B0. The matching M∆E(Pb) is a maximum matching of G
containing e0, a contradiction. �

We now show that if e0 = {x0, y0} is in no maximum matching then there is a preference
system satisfying case (b) of Lemma 36. Note that since e0 is in no maximum matching,
then any maximum matching M must saturate both ends of e0. In the following lemma we
fix a maximum matching M . We also let f = {x0, w0} denote the edge of M incident with
e0 in X and let g = {y0, z0} denote the edge of M incident with e0 in Y .
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y0 w0

x0 z0 x1

y1

f

g

e1
e0

H

Figure 4.11: The graph G with perfect matching M (bold) but no perfect matching contain-
ing e0. Tthe subgraph H is also pictured. Note that the within H, the Hungarian forest
rooted at X0 = {z0} (vertices in red) contains M r {f, g}. By Lemma 31 (page 43), w0 is
disjoint from H ∩X.

Lemma 38 Let G be a subgraph of Kn,n for n ≥ 3 and let, M , e0, f, and g be as above.
There is a completable partial preference map φ for which φ(f) = n and φ(g) = 1. Moreover
M is stable with respect to any completion of φ.

Proof. From Lemma 37 we see that e0 is of one of four types. For each type, we give a
construction of an appropriate partial preference map based on the maps ψ and ψ′ from the
proof of Lemma 33 (page 46).

Case 1. e0 is type BA. Then f ∈MB and g ∈MA, thus for the M -stabilizing map ψ defined
in Lemma 33, we have ψ(f) = n and ψ(g) = 1 as desired.

Case 2. e0 is type CA. Then f ∈MC and g ∈MA, thus for the M -stabilizing map ψ defined
in Lemma 33, we have ψ(f) = n and ψ(g) = 1 as desired.

Case 3. e0 is type BC. Then f ∈ MB and g ∈ MC . Here, ψ does not have the desired
property. However, for the alternate M -stabilizing map ψ′ defined after Lemma 33, we have
ψ′(f) = n and ψ′(g) = 1 as desired.

Case 4. e0 is type CC. Then f ∈MC and g ∈MC . The strategy of the previous cases is not
immediately applicable. This is because the maps ψ and ψ′ are constant on MC . Moreover,
each of the previous cases implicitly required the Hungarian forests FA0 and FB0 to be non-
empty. This is no longer a valid assumption. Fortunately, the extra structure imposed by
the fact that e0 is in no maximum matching is enough to address both issues.

Let ν(G) denote the size of a maximum matching in G and let H be the subgraph of G
induced by V (G)r {x0, y0}. See Figure 4.11. H has no matching of size ν(G)− 1 since e0 is
in no maximum matching of G. So MH = M r {f, g} is a maximum matching of H.

Let A1 and B1 respectively denote the sets of vertices in Xr{x0} and Y r{y0} that are not
MH-saturated. We consider the MH-partition of H, and construct MH-stabilizing map ψH
for H as in in Lemma 33. Let MA1 and MB1 be the parts of the partition of MH containing
edges of FA1 and FB1 respectively.
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Figure 4.12: The graph G from Figure 4.11 with the partial preference system ψ. Blue,
Black, and Red edges take values 1,2, n respectively. The dashed blue edges are not in G;
These edges must be blue in any completion of φ.

Subcase A. The sets MA1 and MB1 are non-empty. In this case, ψH is surjective onto {1, n}.
We extend ψH to the partial preference map ψG : M → {1, n} by setting ψG(f) = n and
ψG(g) = 1.

We claim that ψG is completable and that M is stable for any such completion. Since ψG
restricts to ψH on H, each edge of E(H) is M -stable by the argument in the proof of Lemma
33. Each edge of E(G) r E(H) is either incident with f at x0 or incident with g at y0.
Such edges are stabilized by x0 and y0 respectively. We also have that |ψ−1

G (n)| ≥ 2, and
|ψ−1
G (1)| ≥ 2, thus ψG is completable, by Corollary 29.

Subcase B. At least one of MA1 or MB1 is empty. If MB1 is empty then we will consider the
alternate MH-stabilizing map on H, ψ′H . The case when MA1 is empty is similar except that
we consider ψH instead of ψ′H . Since MB1 is empty, ψ′H(e) = 1 for all e ∈ MH . If |M | < n
then we may extend to ψ′G as above. The domain of ψ′G has size at most n−1. Thus Lemma
28 implies ψ′G is completable

If |M | = n, then ψ′G assigns 1 to n − 1 edges of M and n to the remaining edge. Such
a map is not completable. Thus we must amend our partial preference map slightly. Let
e1 = {x1, y1} ∈ MH , and define a new partial preference map φ on G by “swapping” the
value on e1 from 1 to 2. That is

φ(e) =


1 if e ∈M r {e1, f}
2 if e ∈ {e1}
n if e ∈ {f}

See Figure 4.12. To see that φ is completable, note that there is a unique choice for a 1-
factor F1 of Kn,n containing φ−1(1): namely, the union of φ−1(1), with the edges {x0, y1} and
{w0, x1}. Since n ≥ 3, it is possible to construct a 1-factor F2 disjoint from F1 that contains
e1 and does not contain f . Hall’s theorem then implies that there is a 1-factorization F =
(F1, F2, . . . , Fn) such that φ−1(1) ⊆ F1, e1 ∈ F2, and f ∈ F3. Hence φ is completable.
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We conclude by showing that M is stable in any completion of φ. As in the previous subcase,
any edge of E(G) r E(H) is incident with x0 or y0 is stabilized by that vertex. Since ψ′G
and φ differ only in the value that they assign to e1, each edge of E(H) that is not incident
to e1 is M -stable with respect to φ. Let e2 be an an edge of H incident with e1.

Suppose e2 is incident to x1. By assumption, FB1 is empty. w0 is an element of B1, thus
w0 is not the other end of e2. Each vertex of Y r w0 is incident with an edge of M that is
labeled 1. Thus e2 is stabilized by that vertex.

Suppose e2 is incident to y1. Let Φ be a completion of φ. If Φ(e2) > 2 then e2 is stabilized
by e1. Thus the only issue arises if Φ(e2) = 1. But we have noted that in any completion of
φ, the edge of Kn,n incident to y1 and labeled 1 is the edge {x0, y1}. This edge is stabilized
by x0.

Thus each edge of G is M -stable with respect to any completion of φ. �

We now combine Lemmas 36 and 38 to prove our main result of this section.

Proof of Theorem 35.

Let L be some weak edge listing of Kn,n with n ≥ 3. Let e0 be the weak edge for L, and
choose a color α ∈ Le0 . Suppose there is some maximum matching M for Gα so that e0

is in M . Then by Lemma 33 there is a latin preference system [Φ] for which M is stable.
Applying Galvin’s theorem with initial choice ([Φ], α,M) yields an L-coloring, as noted in
case (a) of Lemma 36.

Suppose now that e0 lies in no maximum matching of Gα. Fix a maximum matching N
of Gα and let f and g be as in Lemma 38. By Lemma 38 there is a completable partial
preference map φ with φ(f) = n and φ(g) = 1. Moreover, N is stable with respect to
(Gα, [φ]). Applying Galvin’s theorem with initial choice ([Φ], α,N) yields an L-coloring as
noted in case (b) of Lemma 36. �

4.4 An application to minimal listings

We conclude this chapter with two applications of Theorem 35. The first is to give a short
alternative proof of Theorem 34.

Proof of Theorem 34. Let L be an n-listing for Λ(Kn,n). By Galvin’s theorem there is some
L-coloring c. Choose some vertex v0 and consider the listing L′ which is identical to L except
that the color c(v0) has been removed from Lv0 . This is a weakened listing, and so Theorem
35 implies that there exists some L′-coloring c′. This coloring is also an L-coloring and is
distinct from c. �

For the second application, let L be a listing for Λ(Kn,n) and define N (L) to be the set of
distinct L-colorings of Λ(Kn,n). We say that an n-listing L′ is minimal if |N (L′)| ≤ |N (L)|
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for all n-listings L.

It is of interest to determine the minimal n-listings of Λ(Kn,n). We defer further motivation
to subsection 6.1.1. In this section we show that the color subgraphs induced by minimal
listings do not contain isolated vertices. Our strategy is to show that a listing with such an
isolated vertex can be transformed into a listing that admits fewer colorings. To do this, we
employ a structural claim that follows easily from Theorem 35.

Lemma 39 If L is an n-listing and there exists a color α such that Gα contains an isolated
vertex, then L is not minimal.

Proof. Let v0 be some vertex with Lv0 = {α1, α2, ...αn} such that v0 is isolated in Gα.

Claim. There is some neighbor u0 of v0, some color β ∈ Lu0 r Lv0 and some L-coloring c so
that c(u0) = β.

Proof of Claim. Suppose not. Then in each L-coloring, each neighbor of v0 is colored with
an element of Lv0 . Let S be one of the cliques of size n containing v0. Since α1 /∈ Ls for
any s ∈ S r {v0}, each of the n − 1 vertices of S r {v0} receives one of the n − 1 colors
in {α2, ...αn}. Thus, in each L-coloring c, we have c(v0) = α1. Consider the listing L′
obtained by removing α from Lv0 . This is a weakened listing, and so Theorem 35 implies
that there is some L′-coloring c′. But such a coloring is an L-coloring for which c′(v0) 6= α,
a contradiction.

We now define a new listing M which is identical to L with the exception that Mv0 =
{β, α2, ...αn}. We will show that |N (M)| < |N (L)| by exhibiting an injection Ω from
N (M) into N (L). The Claim will show that Ω is not surjective.

The function Ω will map a coloring f ∈ N (M) to the identical coloring in N (L) unless
f(v0) = β. If f(v0) = β, then Ω(f) will map v0 to α1, and change no other color. More
formally, for each coloring f ∈ N (M) we define the function gf (v) as

gf (v) =

{
f(v) if v 6= v0

α1 if v = v0

and the function Ω : N (M)→ N (L) as

Ω(f) =

{
f if f(v0) 6= β

gf if f(v0) = β
.

We first note that Ω(f) is a proper coloring. f is a proper coloring, and Ω(f)(v) = f(v)
except possibly at v0. Thus the only possible “impropriety” in Ω(f) is Ω(f)(u) = Ω(f)(v0)
for some u ∈ N(v0). But again, Ω(f)(v0) = f(v0) unless f(v0) = β, so the only possible
impropriety occurs when f(v0) = β, Ω(f)(v0) = α1, and Ω(f)(u) = α1. But Ω(f)(u) = f(u)
and α /∈Mu by assumption. Thus Ω(f) is a proper coloring.
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Next we show that Ω is injective. Let Ω(f1) = Ω(f2) be an element of N (L).

If Ω(f1)(v0) = α1 = Ω(f2)(v0), then, by the definition of Ω and gf , we have f1(v0) = β =
f2(v). This is the only vertex on which f1 and f2 could possibly differ, thus f1 = f2.

If Ω(f1) = Ω(f2) = γ for some γ 6= α then f1(v0) = γ = f2(v0) and Ω is the identity on both
colorings. Again, f1 = f2.

On the other hand, Ω is not surjective. By the Claim, there is some L-coloring c so that
c(u0) = β, for some u0 ∈ N(v0). Since α1 does not occur in the list of any neighbor of v0, the
coloring c′ obtained from c by setting c′(v0) = α1 is an L-coloring. If Ω−1(c′) were defined,
it would color both u0 and v0 with color β, a contradiction. Thus |N (M)| < |N (L)|.

�
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Chapter 5

The List Chromatic Number of the
Hamming Graph

For integers n ≥ 2 and d ≥ 1 define the Hamming Graph H(n, d) as follows: The vertex
set of H(n, d) consists of all d-tuples with entries in [n]. The edge set of H(n, d) consists of
all pairs of tuples that differ in exactly one coordinate.

Note that H(n, 2) is the graph Λ(Kn,n) discussed in Chapter 4. Galvin’s theorem is thus the
statement that the list chromatic number of H(n, 2) is n. The purpose of this chapter is to
give non-trivial bounds on the list chromatic number of H(n, d) for d ≥ 3. In Section 5.2 we
prove that

Theorem 40 For all n ≥ 2, d ≥ 3,

ch(H(n, d)) ≥ n+ 1.

In Section 5.3 we note that 2n − 1 ≥ ch(H(n, 3)) by an iterated application of Galvin’s
theorem. We then apply Kahn’s theorem from [24] and prove

Theorem 41 For all n ≥ 2, d ≥ 3,

n+ o(n) ≥ ch(H(n, d)).

5.1 A Geometric Viewpoint

Our strategy throughout this chapter is to consider the graph H(n, d) geometrically. H(n, 2)
can be visualized as an n × n grid of vertices in which two vertices are adjacent exactly if
they appear in the same row or the same column. See Figure 4.9 (page 49). This viewpoint
extends easily to H(n, 3).
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For fixed c1, c2, c3 ∈ [n] we define the line, [c1, c2, ∗] to be the subset of triples in V (H(n, 3))
whose first two coordinates are c1 and c2. Thus [c1, c2, ∗] = {(c1, c2, x) : x ∈ [n]}. We define
[c1, ∗, c3] and [∗, c2, c3] analogously. Note that the subgraphs induced by lines of H(n, 3) are
precisely the maximal cliques.

Similarly, we define the plane [c1, ∗, ∗] to be the subset of V (H(n, 3)) consisting of all triples
whose first coordinate is c1. We define [∗, c2, ∗] and [∗, ∗, c3] analogously. As above, the
subgraphs induced by planes are isomorphic to H(n, 2).

In the more general setting of H(n, d) we define a k-flat, for k ≤ d to be the subset S ⊆
V (H(n, d)) with d−k fixed coordinates and k free coordinates. Again, the subgraphs induced
by a k-flats are isomorphic to H(n, k).

5.2 Lower bounds

Both [42] and [15] note that ch(G) ≥ χ(G), and thus a lower bound on ch(H(n, d)) is
immediate from the following fact.

Fact 2 For all n, d, χ(H(n, d)) = n.

Proof. We have χ(H(n, d)) ≥ n since H(n, d) contains a clique of size n. Let c : V → [n]
be defined by c((i1, ...id)) = i1 + ... + id (mod n). Each line is an n-clique, and therefore is
assigned n distinct colors. Since every edge of H(n, d) is in some line, no pair of adjacent
vertices may be assigned conflicting colors. �

In particular, χ(H(n, 2)) = n, so Galvin’s theorem shows that the trivial lower bound on
the list chromatic number is tight. Thus the most optimistic conjecture would be that
ch(H(n, d)) = n as well. This is not the case. In this section we establish ch(H(n, 3)) > n
by exhibiting an unsatisfiable n-listing for H(n, 3).

Our strategy will be to define an n-listing L′ on H = H(n, 2) in which there is a particular
vertex v0, and color a0 ∈ Lv0 such that no L′-coloring of H assigns a0 to v. We have already
encountered such a listing in disguise: There is no L-coloring for the listing L1 given in
Figure 4.9 (page 49). If we arbitrarily add any two colors to the list of size 1 we obtain an
n-listing for which α is in no L-colorings.

Once we have constructed our special listing L′ we imagine H(n, 3) as n copies of H, each
assigned L′, stacked on top of one another. The vertex (i, j) in H(n, 2) will be replaced by
an n-clique [i, j, ∗] in H(n, 3), and each vertex in [i, j, ∗] has list L(i,j).

In this listing we do not know that any particular copy of v0 is colored a0. But since the n
copies of v0 form a clique in H(n, 3), and since their lists are identical, we are assured that
some copy of v0 is colored a0. This implies that the n-listing of H(n, 3) is unsatisfiable.
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Figure 5.1: The vertices of H(n, 2) equipped with the listing L′ given in Lemma 42. Vertices
with Lv = D induce a subgraph isomorphic to H(n− 1, 2).

Our main lemma establishes the existence of an n-listing L′ for H(n, 2) in which, upon pre-
coloring vertex (1, 1) with α0, there is no L′-coloring. We let A = {α0, α1, α2, β1, β2, ...βn−1}
be our set of colors. The reader should focus on the colors α0, α1, α2 and think of the βi as
“filling in” the rest of the lists as needed.

Lemma 42 Given a graph H = H(n, 2), there exists an n-listing L′ on H so that for some
vertex v and color α0 ∈ Lv, no L′-coloring of H(n, 2) assigns α0 to v.

Proof. Let A = {α0, β1, ...βn−1}, B = {α0, α1, β1, ...βn−2}, C = {α0, α2, β1, ...βn−2}, D =
{α1, α2, β1, ...βn−2} and define L′ as follows. See Figure 5.1.

L′(v) =


A if v = (1, 1)

B if v ∈ [∗, 1] r (1, 1)

C if v ∈ [1, ∗] r (1, 1)

D for all other v.

Suppose for sake of contradiction that c is an L′-coloring for which c((1, 1)) = α0.

Since the line [∗, 1] is a clique in H, c must assign each element of B r {α0} to exactly one
vertex of [∗, 1] r (1, 1). Similarly c must assign each element of C r {α0} to exactly one
vertex of [1, ∗] r (1, 1).
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Note that D=(B ∪ C) r {α0}. Let HD be the subgraph of H induced by the set of vertices

{v : Lv = D}. There are (n−1)2 vertices in HD and n colors in D. Since (n−1)2

n
= n−2+ 1

n
>

n− 2 there must be some color γ ∈ D that c assigns to at least n− 1 of these vertices.

Since HD is isomorphic to H(n−1, 2), no two vertices colored γ may appear in the same row
or column. Thus each row and each column of HD contains a vertex colored γ. But each
color from D already occurs on some row or column of H(n, 2), and this occurrence is not
at the vertex (1, 1) since that vertex was colored α0. Therefore c is not a proper coloring.
�

Now that we have defined our problematic listing for H(n, 2) we complete our argument by
“stacking” n copies of H(n, 2), each one given this same listing.

Theorem 43 There is an n-listing L on H(n, 3) for which no coloring is an L-coloring.

Proof. Define A,B,C,D as in the lemma. For each plane [∗, ∗, k] in H(n, 3) define L
by:

L(v) =


A if v = (1, 1, k)

B if v ∈ [∗, 1, k] r (1, 1, k)

C if v ∈ [1, ∗, k] r (1, 1, k)

D for all other v ∈ [∗, ∗, k].

The line [1, 1, ∗] contains n vertices, each of which has the list A. This line is a clique of
H(n, 3), so in any proper coloring of H(n, 3) the color α0 must appear on exactly one vertex
in [1, 1, ∗], say on the vertex (1, 1, k∗). But since the plane [∗, ∗, k∗] has the problematic
listing L′ given in the proof of Lemma 42, there is no proper coloring which assigns α0 to
(1, 1, k∗). Thus there is no L-coloring. �

Theorem 40 is an immediate corollary since H(n, d) contains a subgraph isomorphic to
H(n, 3) for d > 3.

5.3 Upper bounds

We now consider upper bounds on ch(H(n, d)). We begin with a non-trivial bound on
ch(H(n, 3)).

Lemma 44 We have 2n− 1 ≥ ch(H(n, 3)).

Proof. Let L be a (2n − 1)-listing for H(n, 3). Since the plane [∗, ∗, 1] induces a subgraph
isomorphic to H(n, 2), we may apply Galvin’s theorem to color this induced subgraph. For
each pair (i, j), let αi,j be the color assigned to (i, j, 1) and remove αi,j from the list of each
vertex in [1, 1, ∗] if it appears.
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We then apply Galvin’s theorem again to color [∗, ∗, 2] and remove colors from lists as above.
We continue in this way until we have colored the plane [∗, ∗, n]. Since our initial lists were
of size 2n− 1, at each step of the procedure we will have at least n available colors for each
vertex, thus Galvin’s theorem is applicable at each step and produces an L-coloring. �

It seems quite difficult to improve this upper bound for all n. However, a much stronger
asymptotic result follows from a powerful theorem of Kahn, see [24].

A hypergraph has max degree k if each vertex is in at most k edges. It is d-uniform if
each edge has size d. It is linear if every pair of edges intersect in at most one vertex.

Theorem 45 (Kahn) If ξ is a d-uniform linear hypergraph with max degree n then n +
o(n) ≥ ch′(ξ).

We now use this result to show that when d is fixed, n+ o(n) ≥ ch(H(n, d)).

Let ξ be a hypergraph and define the line graph Λ(ξ) follows. The vertex set of Λ(ξ) is the
edge set of ξ. A pair (e1, e2) is an edge of Λ(ξ) if and only if e1 and e2 are edges of ξ with
non-empty intersection. Note that that ch′(ξ) = ch(Λ(ξ)).

In order to apply Kahn’s theorem, we must define some hypergraph ξ(n, d), with Λ(ξ(n, d)) =
H(n, d).

The most natural choice for ξ(n, 2) is Kn,n. Each vertex of Kn,n corresponds to an n-clique
in H(n, 2). The vertices in Kn,n in one color class correspond to the horizontal lines of
H(n, 2), while the vertices of the other color class correspond to the vertical lines. Each pair
of vertices from different color classes uniquely determines an edge of Kn,n. Analogously,
each pair of lines in H(n, 2), one horizontal and one vertical, uniquely determine a vertex in
H(n, 2). This highlights that vertices in Kn,n and lines in H(n, 2) play an analogous role. It
is this phenomenon we preserve in our extension to ξ(n, d).

For ease of explanation we restrict our attention to the graph H(n, 3) and think of its vertex
set V = V (H(n, 3)) as the set of points [n]× [n]× [n] in three dimensions. We shall refer to
the vertices of H(n, 3) as points. For each point v ∈ V , define φ(v) to be the set of all lines
of V that contain that point. For each point (c1, c2, c3) in V , there are exactly three lines
that contain it, namely [c1, c2, ∗], [c1, ∗, c3] and [∗, c2, c3]. So, |φ(v)| = 3 for all v ∈ V .

We now define ξ(n, d) = (V , E) where V is the set of all lines in V and E = {φ(v) : v ∈ V }.
See Figure 5.2.

Lemma 46 The hypergraph ξ(n, 3) is an n-regular, 3-uniform, linear hypergraph and Λ(ξ(n, 3))
is isomorphic to H(n, 3)

Proof. It is immediate from the definition that ξ(n, 3) is 3-uniform. It is easy to verify that
ξ(n, 3) is n-regular.

To see that ξ(n, 3) is linear, let e = φ(u) and f = φ(v) be edges of E . Suppose |e ∩ f | ≥ 2.
Then there is some pair of lines `,m ∈ V contained in both e and f . It is clear that ` and m
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v u

φ(u)

φ(v)

Figure 5.2: Three lines (Red, Blue, Green) intersecting at vertex v in H(4, 3), and the
corresponding hyperedge of ξ(4, 3).

intersect in exactly one point p = (c1, c2, c3). So, since `,m ∈ e we have e = φ(p) and since
`,m ∈ f we have f = φ(p) and thus e = f . Hence ξ(n, 3) is linear.

Finally, we must verify that Λ(ξ(n, 3)) = H(n, 3). It is clear that φ is a bijection from V
to E . We claim that φ is a graph isomorphism from H(n, 3) to Λ(ξ(n, 3)). The simplest
way to prove this is to show that the bijection φ−1 : V (Λ(ξ(n, 3))) → V (H(n, 3)) preserves
adjacency.

Let e, f be adjacent vertices in Λ(ξ(n, 3)). Then e and f are incident edges in ξ(n, 3). Since
ξ(n, 3) is linear, e∩ f = {`} for some line ` in V (H(n, 3)). Thus φ−1(e) = v and φ−1(f) = u
are points on the line ` in V (H(n, 3)), and so u and v are adjacent vertices in V (H(n, 3)).
Thus φ−1 is a graph isomorphism. �

Thus Theorem 45 immediately implies the following.

Fact 3 For all n, n+ o(n) ≥ ch(H(n, 3)).

We remark that no aspect of the proof of Lemma 46 requires that d = 3. Thus our argument
shows that ξ(n, d) is a d-uniform, n-regular, linear hypergraph whose line graph is H(n, d)
for all d ≥ 2. This establishes Theorem 41 (page 57).
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Chapter 6

Conjectures and Open Problems

The contributions of Chapters 4 and 5 probably raise more questions than they answer. In
this chapter we address some of those questions explicitly.

We begin by addressing the extensions given in Chapter 4. In particular, we address the
limitations that seem to prevent our methods from extending further. Along the way we
discuss several conjectures and open questions. We then turn to the content of Chapter 5
and consider open questions in improving the bounds on ch(H(n, d)), and in particular the
hypercube H(2, d).

6.1 Further extension of Galvin’s theorem

6.1.1 Enumeration of list colorings

In Section 4.4 (page 55) we discussed the structure of minimal k-listings of H(n, 2). Recall
that N (L) is the set of all L-colorings of some fixed graph G.

In [38], Thomassen defines Pl(G, k) = min{|N (L)|} taken over all k-listings L of G. He
compares this function with the classical chromatic polynomial P (G, k) which evaluates the
number of colorings of G from an alphabet of size k.

By considering the k-list assignment in which all lists are identical we see that Pl(G, k) ≤
P (G, k). Thomassen asks if there exists a universal constant α so that when k ≥ ch(G) +α,
we have Pl(G, k) = P (G, k). He notes that it is possible that α = 0 when G is H(n, 2).

In [21], Haviar and Ivaska make the explicit conjecture that α = 0 when G is H(n, 2), and
show that Pl(H(3, 2), 3) ≥ 2. Their result is subsumed by Theorem 34, where we have shown
that Pl(H(3, 2), n) ≥ 2 for all n ≥ 3. Our theorem is the furthest progress (to our knowledge)
towards resolving their conjecture.
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α β γ′ δ′

δ′ α β γ′

γ′ δ′ α β

β γ′ δ′ α

(b)

Figure 6.1: A listing (a) for which Galvin’s theorem is not capable of producing many L-
colorings. In particular, any coloring produced by Galvin’s Theorem will be congruent to
the coloring in (b).

Note that P (H(n, 2), n) is equal to the number of latin squares of order n. This quan-
tity is well understood for small values of n, as well as asymptotically. See [28] and [41]
respectively.

Since P (H(3, 2), 3) = 12 there is plenty of room for improvement of Theorem 34 even for
small values of n. Unfortunately, our methods do not seem particularly well suited to
improving this lower bound further. The primary reason for this is the existence of list
assignments for which the application of Lemma 25 yields very restrictive colorings.

Lemma 33 gave us some control over the execution of Galvin’s algorithm, but almost all of
our control was over the initial choice. Moreover, we were only able to ensure the existence
of two kernels for any given color. We begin with an example where this is the best we can
do with any initial choice.

Let A = {α, β, γ, δ} and B = {α′, β′, γ′, δ′}. Consider the 4-listing for H(4, 2) in Figure
6.1 (a). Each vertex is assigned either A or B as its list. Note that the set of vertices
{v : Lv = A} induces an 8-cycle. The set {v : Lv = B} does the same. For any latin
orientation of H(n, 2), the orientation of one of these induced 8-cycles contains a kernel of
size four and no smaller kernel. (This is not a difficult fact to check. The details are omitted.)
We see that the two kernels exhibited in Lemma 33 are the only kernels that can be found
in any application of Galvin’s algorithm.

This example is actually far more insidious. By the remark of the previous paragraph, it
can be seen that each iteration of the algorithm colors an independent set of size 4. The
resulting L-coloring is thus a 4-coloring such as that in Figure 6.1 (b). One can find many
other L-colorings that use five or more colors, yet none of these colorings are attainable
from Galvin’s algorithm. This shows that there are list colorings which Galvin’s theorem is
incapable of constructing. Moreover, in this example the non-constructible list colorings are
much more plentiful.

64



α, β, δ β, δ, γ β, δ, γ

α, β, δ β, δ, γ β, δ, γ

α, β, γ α, β, γ α, β, γ

L

α, β, δ β, δ, γ β, δ, γ

α, β, δ β, δ, γ β, δ, γ

β, γ α, β, γ α, β, γ

L̄

Figure 6.2: A 3-listing and its compression.

6.1.2 A coarser equivalence

The example above illustrates another limitation of our methods. One natural strengthening
of Theorem 34 would be to find two different L-colorings that are somehow “more distinct”
from one another than those we have exhibited. There are plenty of notions of “more
distinct” available for vertex colored graphs, most of them will be at least as coarse as the
following.

We say that two L-colorings of H(n, 2) are congruent if one can be obtained from the other
by a permutation of the names of the colors. One might hope that our technique can be
extended to show that each n-listing can produce multiple non-congruent colorings. This is
not generally possible. All L-colorings for the listing Figure 6.1 (a) that are obtained from
Galvin’s theorem are congruent to the coloring given in Figure 6.1 (b).

6.1.3 Compression of lists

Another interesting question is most easily stated from a reformulation of Theorem 35.

If L is a listing for H(n, d), let L̄v ⊆ Lv denote the subset of Lv consisting of colors that
are used to color v in some L-coloring. We define the compression of L, to be the list
assignment L̄ = {L̄v : v ∈ V }. Intuitively, the compression of a listing, is the result of
“throwing out” any colors that couldn’t have been used.

It is immediate that c is an L-coloring if and only if c is an L̄-coloring. Note that the
compression of a k-listing is not, in general, a k-listing. Consider the listing from Figure 4.9
(a), redrawn below in Figure 6.2 with symbols β and γ added to the list in the top left. This
is a 3-listing, but as discussed in Chapter 5, there is no L-coloring for which the top left
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C D . . .

C D D

A B B . . .

. . .

. . .

B

D

D

D

C D D D D

...
...

. . . . . .

Figure 6.3: Illustration for Fact 4.

vertex is colored α. Thus α is not in L̄v.

Theorem 35 (page 49) implies the following corollary on compressions of listings.

Corollary 47 For n ≥ 3, if L is an n-listing for H(n, 2) then each element of L̄ has size at
least two.

Proof. Suppose we have some v0 with L̄v0 ∈ L̄ with |L̄v0| ≤ 1. If |L̄v0| = 0 then there is no
L-coloring, contradicting Galvin’s theorem. Suppose L̄v0 = {α}. Then for any L-coloring, c,
so that c(v0) = α onsider the listing L′ obtained by removing α from Lv0 . This is a weakened
listing, and so Theorem 35 implies that there is some L′-coloring c′. But such a coloring is
an L-coloring for which c′(v0) 6= α, a contradiction. �

One may ask more generally for bounds on the size of elements of the compression. We can
augment Lemma 5.3 (page 60) to show the following.

Fact 4 There is an n-listing L for H(n, 2) whose compression contains a list of size at most
dn

2
e.

Proof. Set A = {α1, α2, ...αbn
2
c, δ1, δ2,...δdn

2
e}

B = {α1, α2, ...αbn
2
c, β1, β2, ...βdn

2
e}

C = {α1, α2, ...αbn
2
c, γ1, γ2, ...γdn

2
e}

D = {β1, β2, ...βdn
2
e, γ1, γ2, ...γbn

2
c}
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Proof. Assign these 4 types of list in the same configuration as Lemma 5.3. If v0 is the
vertex with Lv0 = A we claim that L̄v0 does not contain any of the αi. The argument is
similar to that in Lemma 42. If c is a list coloring with c(v0) = αi then each color from D
occurs on some vertex in the first row and some vertex in the first column. By a pigeonhole
argument, some color from D must appear on n− 1 of the vertices in the subgraph induced
by vertices with list D. But this color already occurs in either the first row or first column,
and does not occur on v0. This precludes the existence of an L-coloring. See Figure 6.3.
�

We conjecture that this upper bound on the size of the smallest compressed list is tight.

Conjecture 2 If L is an n-listing for H(n, 2), then each element of L̄ has size at least dn
2
e.

A related conjecture comes from the fact that these pathological listings require a great
deal of “concentrated effort” at a particular vertex. We conjecture that there is no way to
compress two different lists simultaneously.

Conjecture 3 If L is an n-listing for H(n, 2), then there is at most one list in L̄ of size
less than n.

6.2 k-sheets

We now consider extensions of the work in Chapter 5. The first open problem of note is to
improve the inequality 2n − 1 ≥ ch(H(n, 3)) ≥ n + 1. This seems at least as difficult as
addressing the problem for an an intermediary class of graphs between H(n, 2) and H(n, 3)
which we call k-sheets.

Define the k-sheet S(n, k) to be the subgraph of H(n, 3) induced by the vertices of planes
[∗, ∗, 1], [∗, ∗, 2], ...[∗, ∗, k].

As in the proof of Lemma 5.3, we may employ Galvin’s theorem iteratively to see that
ch(S(n, k)) ≤ n + k − 1. Moreover, if ch(S(n, k + 1)) > ch(S(n, k)) then ch(S(n, k + 1)) =
ch(S(n, k)) + 1. In particular, ch(S(n, 2)) is either n or n+ 1. We conjecture that for n ≥ 3,
the former is correct.

Conjecture 4 For n ≥ 3, ch(S(n, 2)) = n.

This would imply the following weaker conjecture. We say that two colorings c1, c2 are
disjoint if c1(v) 6= c2(v) for all v ∈ V (G).

Conjecture 5 For each n-listing of H(n, 2), there exist two disjoint list colorings.

Another question in the same vein comes from the result of Theorem 5.2. Since H(n, 3) ≥
n + 1 and H(n, 2) = n there is some “threshold value” k0, where ch(H(n, k0)) = n, and
ch(H(n, k0+1)) = n+1. It would be very interesting to determine this threshold value.
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6.3 The list chromatic number of the hypercube

Another direction is to give bounds on H(n, d) in terms of d rather than n. The simplest
instance of this problem is to determine the list chromatic number of H(2, d), which is the
d-dimensional hypercube. This problem is open. We write Qd for H(2, d) throughout this
section.

6.3.1 A simple upper bound

We first note an easy upper bound on ch(Qd). This follows from an elementary fact about
orienting hypercubes, combined with one of the first results on kernel perfect graphs.

Fact 5 There is an orientation of Qd so that δ+(v) ≤ dd
2
e for all v ∈ V .

This follows easily by induction and by considering the hypercube Qd as four copies of Qd−2

joined by a pair of matchings whose union is a set of 2d−2 disjoint 4-cycles. The second
relevant result is due to Richardson.

Theorem 48 (Richardson) If D is an oriented digraph containing no odd directed cycles,
then D is kernel perfect.

Putting these results together gives the following.

Lemma 49 ch(Qd) ≤ dd2e+ 1.

Proof. Let D be an orientation of Qd as in Fact 4. Since Qd is bipartite, D contains no
odd directed cycles and is thus kernel perfect by Theorem 48. Thus Lemma 25 implies
ch(Qd) ≤ dd2e+ 1. �

Since Q3 is not 2-choosable, we have as an immediate corollary that ch(Q3) = 3 = ch(Qd).
Past this point, the degree of Qd outstrips the lower bound, and we are again left with
ambiguity.

6.3.2 An asymptotic lower bound in d

We have shown in Chapter 5 that ch(H(n, d)) ≥ n+1 when d ≥ 3. Thus the most optimistic
conjecture would be that ch(H(n, d)) = n+ 1 for all d ≥ 3. This is false. A theorem of Alon
shows that ch(H(n, d)) is not independent of d. In particular, it is shown that

ch(G) ≥ (
1

2
− o(1)) log2 δ

for a graph of minimum degree δ, see [2]. Since H(n, d) is d(n− 1) regular, Alon’s theorem
implies that ch(H(n, d)) increases as a function of d.
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α, γ α, β β, γ

β, γ α, β α, γ

Figure 6.4: A graph exhibiting an unsatisfiable 2-listing.

On the other hand, the rate at which the list chromatic number increases as a function of δ
is not necessarily very fast. For instance, in order to certify that a graph of minimum degree
δ has list chromatic number at least 4, it can be seen that Alon’s result requires

δ >
400

(log2 e)
2
26 ≈ 12800

(details omitted).

We conclude this section by showing that for the particular instance of the hypercube, the
jump to list chromatic number 4 occurs at a much smaller degree.

Fact 6 If d ≥ 63 then ch(Qd) > 3.

Proof. We exhibit an unsatisfiable 3-listing L for a subgraph S of Q63. The result fol-
lows.

First consider the graph S in Figure 6.4. The 2-listing shown in the figure is not satisfiable.
Note also that S is a subgraph of the cube Q3.

We now choose some subgraph of Q63 that is isomorphic to S and call it S0. Assign to each
vertex of S0 the list {α′, β′, γ′}. By a simple exhaustive search it can be seen that there are
exactly sixty list colorings of S0, which we label c1, . . . , c60.

We may think of Q63 as the cartesian product Q60�Q3. That is, we consider Q63 to be Q60

with each vertex replaced with a copy of Q3. See Figure 6.5. Thus each vertex of our chosen
subgraph S0 is adjacent to sixty other copies of that vertex each contained within one of
sixty copies of S. We label these copies S1, . . . , S60.

We define a list assignment L on the graph S induced by these sixty-one subgraphs as follows.
For each coloring ci, if ci is the coloring used on S0, then the vertices of S0 each “eliminate”
one color from the list of the corresponding vertex in Si. We assign the lists of Si so that
the remaining colors will be as in Figure 6.4 if ci is the coloring of S0. See Figure 6.6.

Suppose c is an L-coloring of S, then the restriction of c to S0 is ci for some i. But then the
restriction of c to Si is a list coloring of the unsatisfiable 2-listing of S given in Figure 6.4, a
contradiction. �
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. . .

Figure 6.5: A subgraph of Q63 consisting of a cube and all of its neighbors. The subgraph S
is induced by the bold vertices.

Note that we have not come close to needing the whole of Q63 in our argument. This
suggests that perhaps the first value d0 so that ch(Qd0) > 3 is much smaller than 63. Lemma
49 implies d0 ≥ 5. Tightening this “threshold value” for d0 is our final open problem.
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v1

v3

v2

v4

v6

v5

{c1(v1), α, γ}

{c1(v3), β, γ}

{c1(v4), β, γ}

{c1(v6), α, γ}

{c1(v5), α, β}

{c1(v2), α, β}

{c2(v1), α, γ}

{c2(v3), β, γ}

{c2(v4), β, γ}

{c2(v6), α, γ}

{c2(v5), α, β}

{c2(v2), α, β}

. . .

S0

S1 S2

Figure 6.6: Part of the subgraph S exhibiting the unsatisfiable listing described in Fact 6.
Vertices v1 through v6 each have list {α′, β′, γ′}.
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