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Abstract: An agent-based modeling approach is proposed to assess water users’ behavior for 

water demand management (WDM) in a river basin. In this procedure, each agent controls its 

own strategy regarding whether to conserve or consume more water in order to achieve a better 

economic return based on an initial allocation scheme. The effects of agents’ behaviors on their 

own economic returns and the aggregated impacts of individual behavior on the system are 

investigated. A positive incentive given to water conservers encourages agents to implement 

WDM strategies, which in turn improve water use efficiency. A case study using this new agent-

based approach reveals that agricultural users are the main contributors to water conservation. 

Compensation given to water conservers more than covers the benefit loss from less water 

consumption, while other users gain benefits from the use of the conserved water. The results 

also indicate that the implementation of WDM strategies is beneficial for the overall system from 

both economic and ecological perspectives. 
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Introduction 

Available water supply is limited and water demand in almost all sectors is projected to increase 

greatly in the near future (Leflaive et al. 2012); consequently, the use of limited water resources 

to satisfy the growing need has become a critical issue (Gleick 2003; Brooks and Brandes 2011, 

WWAP 2015). One of the traditional solutions is to implement inter-basin water transfers to 

increase water availability in a region in order to meet the growing demand. This is normally 

referred to as supply-oriented management. Another solution is to encourage more efficient and 

productive use of the available water. Water demand management (WDM) emerged from this 

latter idea, and has become an essential complement to supply-oriented management. In addition, 

three important factors have accelerated the development of WDM. The first is the increase in 

water conflicts caused by water scarcity, as measured by both frequency and severity (Wolf 2002; 

Gleick and Heberger 2014). The second is the great potential to use water more productively; for 

example, a more widespread adoption of advanced technologies and implementation of well-

designed policies and operations could significantly improve water productivity. The third factor 

is the impact of climate change on water availability, which further stresses the necessity of 

management on the demand side (Olmstead 2014).  

In general, WDM aims to improve the efficiency and productivity of water use by 

encouraging changes in user behavior regarding water use through a series of cost-effective 

structural and/or non-structural measures. Structural measures refer to any physical construction 

used to conserve water, such as the installment of high-efficiency appliances like low-flush 

toilets. Non-structural measures stand for any measures not directly involving physical structures, 

such as using economic instruments or educational programs to promote water use efficiency. 

This improvement of efficiency and productivity can be viewed from two aspects: (1) to 
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accomplish more tasks with the currently available water; and (2) to reduce water consumption 

from the current level as much as possible to accomplish the same task.  

WDM can be considered from different perspectives, such as engineering or law, and 

different scales, like local or national (Tate 1989; Renzetti 2002; Savenjie and van der Zaag 2002; 

Brooks 2006). Various topics in WDM, ranging from technical to economic and legal, have been 

broadly studied in the literature (Baumann et al. 1997; Savenije and Van Der Zaag 2002; Bulter 

and Memon 2006; Scheierling et al. 2006; Olmstead and Stavins 2009; Kindler 2010; 

Kampragou et al. 2011; Araral and Wang 2013; Smith et al. 2015). Many investigations have 

suggested that WDM is an issue more of perception than of technology (Mass 2003). The 

technological capacity for WDM is already well-developed and the conservation potential could 

be significant (Blanke et al. 2007; Christian-Smith et al. 2012). For instance, in an investigation 

of water-saving technologies and their adoption rates in agriculture in northern China, reported 

by Blanke et al. (2007), the authors found that although there are a number of existing 

technologies, their adoption rates are quite low. One of the main reasons for this is that farmers 

themselves make the majority of investments in technologies, thereby having poor motivation to 

adopt new technologies. 

People normally do not voluntarily adopt advanced water-saving technologies unless it is 

beneficial to do so. Sometimes external incentives are required to entice users to change their 

water use behavior, especially for users in sectors that possess great potential for water 

conservation. It is believed that every user has the potential to enhance its water use efficiency as 

long as proper incentives are offered. The problems of what incentives are needed and how water 

users respond to the incentives under the context of WDM need to be investigated. 
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 In the face of incentives, every water user possesses a different capability and willingness to 

implement WDM strategies. Moreover, a particular user’s actions on WDM may have impacts 

on other users as well as the overall system. Therefore, agent-based modeling (ABM) techniques 

are well-suited for addressing these characteristics of WDM problems because: (1) they are 

individual-driven modeling approaches, in which each user has its own behavioral rules, and can 

therefore handle the heterogeneity of capability and willingness; (2) they are adaptive, because 

each user can change its behavior according to information received from other users and the 

environment. Furthermore, ABM techniques do not require perfect information exchange. In 

other words, users do not need to share information completely with others. 

Water resources systems are normally considered as a complex system in which 

heterogeneous users act based on different value systems and objectives (Pahl-Wostl 2002; 2003). 

Water resources management, especially WDM, is a relatively new field for ABM. However, 

because of the capability of ABM to investigate dynamic complex systems, a number of studies 

on the application of ABM can be found. For example, Chu et al. (2009) utilized ABM 

techniques to evaluate the responses of different users in Beijing, China, in the face of a series of 

water supply and demand management policies such as offering financial rebates for replacing 

low-efficiency appliances with high-efficiency ones. Kanta and Zechman (2013) investigated the 

effectiveness of water conservation-based strategies using ABM methods in which the users’ 

water demand level is influenced by policy makers, who select water conservation strategies, and 

by other users’ choices. Giacomoni et al. (2013) examined dynamic interactions among water 

use, land use, and urbanization progress within a complex adaptive system framework in which 

ABM is utilized to simulate the water use behavior of each household. Other interesting research 

topics using ABM techniques include water demand estimation (Athanasiadis et al. 2005), water 
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sharing problems (Yang et al. 2009; 2012; Guiliani and Castelletti 2013; Giuliani et al. 2014), 

and common pool resources management (Schlüter and Pahl-Wostl 2007; Bristow et al. 2014). 

Berglund (2015) provides a comprehensive review of the employment of ABM in water 

resources management.  

Most ABM studies adopt simple decision rules like logic conditions or random choices to 

update agents’ behavior. There has been some work done on the adoption of complex decision 

rules in the ABM framework. For example, Yang et al. (2009; 2012) utilized decentralized 

optimization methods to investigate how each agent acts and interacts with others in order to 

maximize its own benefits in a water sharing problem. Bristow et al. (2014) introduced a 

comprehensive decision-making tool called Graph Model for Conflict Resolution (GMCR) as the 

interaction mechanism among agents in a common pool resources conflict. In this paper, 

decentralized optimization methods are utilized as the decision rules within an agent-based 

model to investigate the changes of water users’ behavior in the context of WDM, and their 

corresponding impacts on individual users and the system as a whole.  

This work possesses the following novelties: (1) The proposed model is a more general 

framework for WDM in comparison to the existing research, which normally has a site-specific 

dependence. In most existing studies, one or several WDM strategies are first specified, and then 

evaluated for effectiveness. However, the approach developed in this paper focuses more on the 

amount of water conserved than on which strategy to adopt, and thereby is more independent of 

specific situations. (2) WDM is studied from a decentralized perspective, which considers the 

willingness and capability of different users in different ways. An individual optimization 

problem is constructed to help each agent make decisions. The involvement of individual 

decisions can greatly promote public participation and acceptance. (3) WDM is considered in the 
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context of basin-wide planning and management, thereby enabling the integration of demand-

side and supply-side management. Therefore, water efficiency and productivity are emphasized.  

Problem Statement 

Following the research of Mohamed and Savenije (2000), each type of WDM measure is 

categorized according to positive and negative incentives. Positive incentives normally imply 

money being given to water users, such as subsidies for adopting new technologies, while 

negative incentives generally mean money being taken from users, such as water prices or taxes. 

Both positive and negative incentives have their advantages and drawbacks, and should be 

selected according to specific circumstances, or sometimes combined. However, because 

positive incentives are usually more acceptable to users, participation rate and compliance level 

for the WDM measures are expected to be improved, thereby achieving better effectiveness. As a 

result, positive incentives receive special attention in this paper.  

A river basin is chosen as a study unit in this work because there are various sectors of water 

users in a basin, and some sectors are expected to require more water and are willing to pay a 

charge to obtain it. In a basin, several types of water users, such as agricultural production, urban 

development, industrial use and ecological maintenance, share limited water resources. The 

competition for water is becoming much more intense as a result of exponentially growing water 

demands and an increasing awareness of environmental conservation. Encouraging water flow 

towards higher-value uses from lower-value ones constitutes a possible solution for improving 

water productivity. However, improving water productivity is not the only objective, nor even 

the highest priority, of WDM. Social equity must be taken into account for any implementation 

of WDM strategies, and existing legal systems or multilateral agreements must be respected. For 

example, in a region with a prior water rights system (Wang et al. 2007), even lower-value uses 
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could have the right to withdraw most of the water, which may result in having a water deficit to 

some higher-value uses during water shortage periods. Due to this consideration, an initial 

allocation step, emphasizing fair sharing of water resources according to existing water rights 

systems, is followed prior to the implementation of WDM. Approaches that are applicable under 

different water rights systems proposed by Wang et al. (2007) are utilized here for obtaining 

initial allocation schemes. Therefore, the problems of how each water user in a river basin 

decides whether to conserve or consume more water in order to achieve a better economic return 

based on an initial allocation scheme, and how users’ decisions impact individual users and the 

system as a whole, are investigated in this paper. 

Methodology  

A typical agent-based model possesses four main components (Macal and North 2010; Bristow 

et al. 2014): (1) a set of agents in which each agent has unique attributes; (2) an environment that 

agents can interact with as well as other agents; (3) methods that agents use to update their 

attributes; and (4) an interaction mechanism that controls when and how to interact, and with 

whom.  

To formulate the agent-based model as well as the initial allocation step, some preliminary 

notation from Wang et al. (2007) is necessarily introduced. In general, a node-link network is 

abstracted to represent a basin, in which a node implies a physical component of interest such as 

inflow, junction, reservoir, or demand site, and a link stands for natural or man-made water 

conduits connecting different nodes.  

Let G(K, L) be the directed network of a basin, where K = {k1, k2, …, km} is the set of nodes, 

and L = {(k1, k2): k1, k2  K and k1  k2} is the set of links in which (k1, k2) stands for a water 



 8 

conduit connecting two nodes k1 and k2 (Wang et al. 2007). Water users that are assigned as 

agents are defined by the set N = {1, 2, …, i, …, n}. Since set K represents all possible nodes 

such as reservoirs or demand sites and set N refers to some nodes defined as agents like demand 

sites, set N is a subset of K. In addition, T = {1, 2, …, t, …, } stands for the time period for 

planning. 

Agents and Their Decision Rules 

In a basin-wide agent-based model for WDM, each water user can be defined as a computational 

agent, structured as in Table A1 in the Appendix. All of the water users in a basin are categorized 

into two main types of agent – general and ecosystem – which correspond to two main types of 

water uses: consumptive and non-consumptive. General agents refer to consumptive uses, which 

normally consist of agricultural, municipal, and industrial uses. Since consumptive uses are the 

focus of WDM, these agents receive particular attention in the agent-based model in this paper. 

In general, these agents are under the control of certain users or user groups; therefore, their 

levels of water consumption can be actively updated. Non-consumptive uses, like reservoirs and 

instream flow requirements, are commonly dependent on the water usage of consumptive uses 

(general agents). For a given water supply, consumptive uses diverting more water normally 

make less water available for non-consumptive uses, and vice versa. Among non-consumptive 

uses, instream flow requirements are assessed along with general agents, and are labeled as 

ecosystem agents, whereas reservoirs are not assessed. In fact, ecosystem agents could also have 

the same two attributes: water consumption and economic net benefit. However, the economic 

value of the ecosystem agents is normally intangible and may require special valuation methods. 

Furthermore, for an ecosystem agent, more water typically means better performance; instream 
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water availability is a more direct indicator than economic value. As a result, only the water 

consumption attribute is considered for ecosystem agents. 

Two main attributes are assigned to each general agent: water consumption and net benefit 

function. Water consumption means how much water an agent uses, for which an initial value is 

set to the initial allocation for each agent (initial allocations for the case study in this paper are 

listed in Table S5 in the Supplemental Data). The initial allocation schemes are obtained using a 

priority-based maximal multi-period network flow approach proposed by Wang et al. (2007). In 

the agent-based model, each agent updates its level of water consumption based on an initial 

level of water consumption. When the level of water consumption is less than the initial level, 

the agent is practicing water conservation. Conversely, an agent’s level of water consumption 

may be greater than the initial level. A third case is if an agent neither conserves nor consumes 

more water, but retains its initial level of water consumption.  

A net benefit function is used to denote the relationship between water utilization and its 

output as represented by economic net benefit. How much economic net benefit an agent 

generates can be estimated by using different forms, since different agents have different 

capabilities. In this paper, the net benefit functions for agricultural agents are represented by 

using the quadratic form, in which the coefficients are derived from a regression analysis model 

and are provided in Tables S8 to S10 in the Supplemental Data. The net benefit functions for 

municipal and industrial agents are derived from water price-demand functions as shown in 

Equations (4) and (5) in the next section, for which parameters are provided in Tables S11 to S14. 

In addition, an agent’s net benefit function will also be influenced by its level of water use 

efficiency improvement, as depicted in Fig. 1. A modified inverse price-demand function taking 

into account levels of water use efficiency improvement is shown in Equation (6).  
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Fig. 1. An illustrative example of net benefit functions under different levels of water use 

efficiency improvement 

Each general agent’s decision rules are to determine whether to conserve or consume more 

water, and how much water in each case, based on the initial allocation this agent possesses. If an 

agent decides to conserve water, compensation will be provided to the agent (a “water 

conserver”); an agent that chooses to consume more water (a “water consumer”) will have to pay 

a proper cost. An agent will conserve water only if the compensation value is greater than the net 

benefit losses from water conservation; otherwise, the agent’s initial rights will be maintained. 

Similarly, agents will retain their initial rights unless the net benefits gained from extra water 

utilization cover the paid cost. In other words, no agent will receive fewer net benefits than are 

found in the initial allocation.  

In some situations, one agent’s strategy could be affected by other agents’ decisions. For 

instance, water consumers cannot obtain extra water if there is no water conserver. Therefore, 

one coordinator agent should monitor behavioral changes regarding water consumption of 

general agents and estimate the corresponding performance of the overall system within an 

agent-based framework. The system performance is evaluated by employing two indicators: the 

aggregated system-wide net benefits and the total imbalance between compensation and cost 

values. For the aggregated net benefits, larger is better, whereas for the total imbalance less is 

better. Total imbalance is calculated by summing up all agents’ incentive values as expressed by 

Equation (2). A positive incentive value means having compensation for water conservers; 

whereas for water consumers this term is negative and means a cost. 

Individual Optimization Problem 
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An optimization problem is constructed for each agent, whereby the agent updates its water 

consumption based on the initial water allocation to maximize the economic returns from water 

usage over the planning periods. The decision variable for each agent’s individual optimization 

problem is its level of water consumption. A deterministic situation is considered in this paper. 

Each general agent’s main objective is to obtain economic returns over the planning periods from 

1 to  as much as possible, from either extra water utilization or compensation. For the ith agent, 

the individual optimization problem can be formulated as follows: 
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where Q reflects water consumption; NBi,t represents the net benefits produced from water 

utilization for agent i during period t, which is calculated by the net benefits function; INCi,t 

refers to the incentive values for agent i during period t; Ci,t means the cost of achieving water 

conservation for agent i during period t; and hi(Q) = 0 and gi(Q)  0 stand for the equality and 

non-equality local constraints for agent i, respectively. The symbol Ω is used to signify the 

feasible region of the optimization problem subject to applicable constraints. 

The incentive value for each agent can be calculated by using an incentive function shown as: 

, , ,,*( )ini
i t i t i ti tINC p Q Q    (2) 

where pi,t reflects the benefit or cost per unit of water conserved or consumed, respectively, for 

agent i during period t; and 
,

ini

i tQ  refers to the initial water rights for agent i during period t. Yang 
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et al. (2012) demonstrated that using water price as a signal for a water sharing problem could 

lead to an equilibrium status in which all available water is allocated and all users are satisfied 

with the allocation. In this work, a similar parameter pi,t reflecting the benefit or cost per unit of 

water transferred is utilized as a signal to guide agents in making individual decisions. When an 

agent utilizes less water than its initial allocation, its net benefits obtained from water utilization 

are reduced from its initial level, and this reduction is called net benefit losses. However, the 

agent will receive a compensation as expressed in Equation (2). The compensation value is 

affected by two factors: the value of pi,t, which is determined by the coordinator, and the amount 

of water conserved (
,

ini

i tQ - Qi,t). For a given value of pi,t, if a compensation value is greater than 

its net benefit losses, an agent chooses to conserve water. Next, this agent decides how much 

water to conserve by solving its own optimization problem as expressed in Equation (1). In the 

individual optimization problem, an agent calculates its optimal level of water consumption in 

order to obtain the maximum economic returns. 

On the other hand, when an agent utilizes more water than its initial allocation, the net 

benefits obtained from water utilization are increased. However, the value in Equation (2) is 

negative in this case, and indicates that a charge has to be paid to get extra water. If the extra net 

benefits are greater than this charge, the agent selects to consume more water. Similarly, an agent 

solves its own optimization problem to decide how much more water to consume. Certainly, an 

agent may choose to neither conserve nor consume more water, which means the value in 

Equation (2) is equal to zero, and the cost of achieving water conservation is zero as well. 

Therefore, the agent will retain its initial net benefits. 

The estimation of net benefit functions should consider the different characteristics of agents, 

and can be represented using different forms, such as the quadratic function form depicted in Fig. 
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1, or derived from a water price-demand function (Wang et al. 2008; Xiao et al. 2016). The 

quadratic form is utilized to represent the net benefit function of agricultural agents, and is 

formulated as:  

0 1 2 2

, , , , , , , ,i t i t i t i t i t i t i t i tNB b b Q b Q Q wc     

 

(3) 

 

where 0

,i tb , 1

,i tb , and 2

,i tb  represent coefficients derived from a regression model and are provided 

in Tables S8 to S10; and ,i twc  is the water supply cost for water diverted to an agent, including 

water treatment, water distribution, and wastewater treatment costs, for which the costs for 

agricultural and municipal and industrial (MI) agents are provided in Table S15.  

An MI agent’s net benefit function is obtained by subtracting the water supply cost from the 

gross benefit of water use by the agent, which is derived from the water price-demand function 

shown as:  

,
, , * ,

i t
i t i t i tQ P   (4) 

where Pi,t reflects the price of willingness to pay to retrieve water for agent i during period t; αi,t 

is a scale parameter for the water price-demand function (αi,t>0); and βi,t is the price elasticity of 

demand for agent i during period t ( βi,t<0).  

Empirical studies suggest that MI demands are relatively price inelastic (Nauges and 

Whittington 2010; Ghimire et al. 2015). Therefore, the price elasticity remains constant during a 

specific time period, but can be slightly variable for different periods. Moreover, the price of 

willingness to pay for additional water is going to increase as the available water decreases. 

When the price increases to a certain point, agents may not be willing to pay a higher price and 

may seek alternative sources, and this price is called “choke price” (Mahan et al. 2002). By 
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introducing the concept of choke price, the inverse water price-demand function of MI agents 

with a constant price-elasticity is expressed as: 

,
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where 0

,i tP  and 0

,i tQ  refer to the choke price and the choke quantity, respectively, for agent i 

during period t. The net benefits functions with efficiency improvement utilized in this paper are 

provided by Xiao et al. (2016), and can be derived from the modified water price-demand 

function with a parameter ρ representing the level of efficiency improvement formulated as: 

,

1
0 03

,, ,
,

1
1 03

, , , ,

        0

    

*(1 ) ,

[ *(1 ) / ] ,i t

i ti t i t
i t

i t i t i t i t

P Q Q
P

Q Q Q



 

  
 
  





 (6) 

 

Each agent seeks to maximize the economic benefits under certain hard constraints and/or 

soft restrictions. These constraints can be categorized into three main types: physical, policy, and 

system control constraints. Physical constraints generally are mass balance and capacity limit 

relationships for storage nodes and links. For instance, the water balance equation for a general 

node k during period t can be written as:       
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  (7) 

where , k tS  is the storage volume for storage node (reservoir or aquifer) k  at the end of period t, 

and is equal to zero for non-storage nodes; 
2 , ,k k tQ  means the water flow from node k2 to k during 

period t; 
2 , ,

l

k k tQ stands for water loss during transportation, due to evaporation, leakage, or 

seepage, from node k2 to k during period t, and the evaporation coefficients at reservoir nodes are 
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provided in Table S7; 
,

a

k tQ  represents water adjustments at node k during period t as a result of 

local small tributaries; and 
,

c

k tQ  is used to denote water consumed at node k during period t 

needed for economic activities, for which the consumption ratios of consumptive uses are 

provided in Table S6. 

In addition, capacity limits for storage nodes and links also play an important role. For 

example, water flow in each link towards node k must not exceed the maximum capacity of the 

link, which can be written as: 

1 1
, , , , 1      , ( , )max

k k t k k tQ Q k k L     (8) 

or for a storage node k: 

, , ,       max
k t k tS S k RES    (9) 

Besides the physical constraints for each node, there are also policy and system control 

constraints in the consideration of social-economic or political restrictions. An obvious example 

is that there is normally a minimum flow requirement for links, which can be expressed as: 

1 1
, , , , 1       ( , ),min

k k t k k t kQ Q k L     (10) 

Another example from the policy point of view is that the demand for node k during period t 

(
,

D

k tQ ) should first be provided by local tributaries, as water in local tributaries are typically 

accessible by local users only; then the deficit would be satisfied by water flows towards node k 

if necessary: 
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Return flow is also an important part of river basin planning. In some cases, return flows 

from demand sites might flow towards the same node that provides water supply to the demand 

sites in the network, due to the simplification of real world cases. In reality, return flow is not 

available for use at that node; therefore, return flow must be excluded from the available supply: 

1 2 12 1

1 2 1

1 1

, , , , , ,, , , , ,

( , ) ( ,
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(12) 

Assuming that node k is a source node, k1 is a demand site that diverts water from and provides 

return flow to source node k, while k2 stands for any node that has water flow, including return 

flow, towards the source node k. The right side of the equation indicates that for a time period t, 

the total effective return flow from demand site k1 to source node k, represented by the 

summation 
1 1

1

1

, , ,           ,

( , )

( , )

( )l
k k t k k t

k k L
and
k k L

Q Q




 , should be subtracted from the total effective inflow towards 

source node k, given by the term 
2 2

2

           , , , ,

( , )

( )l
k k t k k t

k k L

Q Q


 . Effective flow means water flow 

excluding water losses during transportation. The remaining flow plus local adjustment flow are 

the total available water at source node k during that time period. 

Since all agents are a subset of general nodes, the constraints described in Equations (7) to 

(12) can be used to construct appropriate constraints needed for a specified agent. For instance, 

all equations except Equation (9) are applicable for an industrial agent.  

Coordination Procedure 
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After specifying how each agent updates its behavior to achieve better economic returns 

individually, the next step is to design how they interact with one another or the environment. In 

general, the interactions can occur in direct or indirect ways. Direct interaction means 

information exchange and associated bargaining among agents, whereas indirect interaction 

refers to information exchange through a third party, such as a water agency or water manager 

acting as a coordinator. The indirect interaction procedure is adopted in this paper.  

All agents communicate with the coordinator under each given value of parameter pi,t, 

including receiving the value of the parameter from the coordinator and sending their levels of 

water consumption and overall economic returns under this given parameter back to the 

coordinator. When the coordinator updates the value of pi,t, the overall economic returns agent i 

can expect would change accordingly. Then agent i would update its optimal level of water 

consumption in order to achieve the maximum individual overall returns. The sum of all 

individual agents’ overall economic returns constitutes an indicator of system performance. If the 

sum of overall returns with the current value of pi,t is greater than that with previous values of pi,t, 

the coordinator would increase the value of pi,t further until the sum cannot increase any more. 

Therefore, this parameter is considered as static within each iteration, but is dynamic in the 

overall model and serves to provide feedback among agents and the coordinator. In addition, this 

parameter is assumed to be the same value for all agents within each iteration, and is shortened 

as p in the following sections. 

The coordinator will monitor the behavior changes of each agent and the performance of the 

overall system arising from these individual alterations in behavior, and decide when to 

terminate the coordination. The coordination procedure controlled by the coordinator, shown as a 

flow chart in Fig. 2, starts by checking whether all the agents are fully satisfied during the initial 
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allocation. Agent satisfaction is evaluated by calculating the ratio of water consumption to water 

demand during each period. When water consumption during each period is equal to demand, 

then this agent is fully satisfied. This metric is used for all agents. If the agents are not all fully 

satisfied, each one makes individual decisions on whether to conserve or consume more water 

and how much to conserve or consume under a given parameter p.  

After individual decisions have been made, the coordinator will assess the overall system 

performance by calculating the total net benefits, total imbalance between compensation and cost 

values, and the net benefits increment in comparison to the results in the previous iteration. The 

total net benefits are compared to those of the initial allocation in the first iteration. The 

termination criteria of the coordinator are whether the system-wide net benefits can be further 

improved, and whether the total imbalance can be further decreased. If the net benefits increment 

is larger than a predefined tolerance value, like one thousandth of the aggregated net benefits, 

then it can still be improved, and another iteration with an updated value of the parameter is 

required. In contrast, when the system-wide net benefits cannot be further improved, there are 

two situations: it starts to decrease, or it remains constant. In the former situation, the 

coordination process is terminated immediately when the system-wide net benefits are worse off. 

In the latter case, under the same level of system-wide net benefits, the coordination process 

continues until the value of the total imbalance cannot be further decreased. When the 

coordination process is terminated, the results of water allocation, net benefits, compensation or 

cost values for all of the agents, and the aggregated results for the system can be generated and 

interpreted. 

Fig. 2. Coordination procedure  

Case Study 
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Background Information  

In this section, the behavior of different water users in a simplified but representative basin 

network, reflecting an actual situation depicted in Fig. 3, is studied using the proposed agent-

based model to investigate the impact of WDM. The case study is adapted from the South 

Saskatchewan River Basin (SSRB) problem studied by Wang et al. (2008). The SSRB is located 

in southern Alberta, Canada, where a semi-arid climatic condition exists. Surface water, provided 

by snowmelt from the Rocky Mountains, is the main source of water supply. Main water users 

include agriculture, municipalities, industry, and hydropower generation, in which agriculture is 

the largest one. A priority-based water rights system is established in the SSRB, where water 

licenses are required and follow the principle of “first in time, first in right.” Earlier licenses are 

granted a higher priority over licenses issued at a later date, and license holders granted in recent 

years may not be permitted to withdraw water under the situation in which river flow is under a 

certain volume. Currently, about 75% of the licensed water is allocated to agricultural users, 

while new license applications are no longer approved in some water-stressed regions. Under this 

situation, water transfer among users is a useful tool for efficient water utilization. However, the 

existing legal water rights system must be respected, and consequently an initial allocation step 

is carried out first in this paper using a priority-based method. In addition, compensation should 

be given to licensed users to encourage them to conserve water. 

In this paper, a simplified but representative network is designed based on the SSRB case. 

The network consists of typical consumptive water uses such as agricultural (A1 and A2), 

domestic (D1 and D2), industrial (I1 and I2), general (G1 and G2) uses, and some non-

consumptive uses like reservoirs (R1 and R2), instream flow requirements (S1 and S2), inflow 

(IN1 and IN2), outlet (O1), and junction nodes (J1 and J2). Domestic use represents water 
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consumption for residential purposes. General use refers to municipal use excluding domestic 

use, such as water required by commercial, institutional, and other public service facilities. The 

number of agents for each kind is limited to two so that the responses of each agent can be 

clearly observed and plotted, and thereby valuable lessons can be learned. Monthly water supply 

data are adjusted using one eighth of the long-term average flow data in the SSRB case to reflect 

a particular drought year. Monthly demand data are projected in a drought year when the 

precipitation level is low and agriculture demand is higher than that in a normal year. The 

detailed water supply and demand data are provided in Tables S1 to S4, and initial storage 

volumes in two reservoirs are provided in Table S16 in the Supplemental Data. 

Fig. 3. The network for the case study 

Modeling Scenarios 

The modeling time period in this case study is one year having 12 monthly time periods. As 

aforementioned, an initial water allocation process is performed prior to the implementation of 

WDM strategies to reflect social equity. The results of the initial allocation constitute a baseline 

case for this study in which no WDM strategies are implemented. Therefore, the impact of 

different strategies can be observed, analyzed, and compared.  

As a general framework, the agent-based model proposed in this paper mainly focuses on the 

decisions of an agent regarding how much water to conserve and how much economic return can 

be expected. The specific strategies are not the focus of this paper. Each agent can have different 

measures to achieve a certain level of water conservation. For example, for agricultural agents, 

one can choose from drip irrigation technology, deficit irrigation, land leveling, or rescheduling 

irrigation to night time. Different measures may result in different levels of conservation and 



 21 

different costs. In some cases, certain technologies may have already been adopted by certain 

agents, and available options are dependent upon specific situations. 

It is assumed that agents will choose specific cost-effective measures on their own, or will 

simply abandon some economic activities if the compensation is enough to cover the losses of 

giving them up. The cost of achieving water conservation in this model is evaluated based on per 

unit of water. However, this behavior is not ideal from the perspective of a water authority. As a 

result, a set of conservation limits is specified to reflect the maximum conservation an agent can 

achieve due to either technical limitations or social restrictions imposed by water authorities. 

More specifically, several percentages, such as 10%, 20%, and 30%, are specified as the 

maximum conservation an agent can achieve. The decisions of agents under different scenarios 

of conservation limit are investigated. Comparing their decisions under different scenarios of 

conservation limits also provides valuable insights for policy design.  

Results  

The impacts of the implementation of WDM strategies can be analyzed from two perspectives: 

individual and aggregated viewpoints. The individual effects on each agent and the aggregated 

impacts on the system are discussed in the following two sections. 

Individual Agent’s Decisions and Economic Effects  

With the implementation of WDM strategies in a water system, the individual decisions made by 

different agents over different values of the parameter p can first be observed. Under the scenario 

of a 20% conservation limit in which all of the agents can conserve at most 20% of their initial 

allocations, Fig. 4 depicts the agents’ detailed water consumption changes under different values 

of the parameter p, and Fig. 5 shows the agents’ net benefits changes. It should be noted that the 
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value of net benefits shown in Fig. 5 is the sum of the net benefits gained from water utilization 

and compensation or cost. In fact, the patterns observed under other scenarios are similar to the 

results shown in Figs. 4 and 5.  

Consider the case of agricultural use given as A1 in Fig. 3. The water flow towards A1 from 

R1 minus the water loss in the conduit is the effective inflow or water available for utilization by 

A1, and should be no more than A1’s demand during a particular time period. By subtracting the 

amount of water consumed by A1, the remainder is the return flow from A1 and is available to 

other downstream agents. Certainly, the water flow from R1 to A1 should not exceed the 

maximum capacity of the conduit, but should be more than a minimum requirement scheduled 

by policy makers. Therefore, constraints as expressed in Equations (7), (8), (10), and (11) 

constitute the feasible region for A1 in which to search for a maximum economic return.   

As can be seen in Fig. 4, two agents (A1 and A2) choose to conserve water until they reach 

their limit at p = 0.1. However, their net benefits are expected to grow along with the increase in 

the value of the parameter p, mainly because of the increase of compensation value, as indicated 

in Fig. 5. This increase results in the growth of a total imbalance between compensation and cost 

values as shown by the dotted line in Fig. 6. 

On the other hand, agents G2 and I1 are willing to consume extra water, as shown in Fig. 4, 

and can expect more economic returns from the additional water utilization even though they 

have to pay a cost. As indicated in Fig. 5, the maximum economic return for both agents occurs 

at p = 0.1, and thereafter starts to decrease due to the increase of cost. However, from Fig. 4, one 

can see that I1 reduces its water consumption starting at p = 0.7. This implies the benefits gained 

from additional water utilization are not enough to cover the cost. From the bottom plot in Fig. 4, 

one can observe that agent G1 also prefers to consume more water but only by a slight amount. 
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Other agents select to retain their initial water rights, and procure no extra net benefits. Among 

these agents, D1 and D2 choose not to consume more water because they are already fully 

satisfied during the initial allocation; therefore, their net benefits changes are omitted in Fig. 5. It 

should be noted that since D1, I1, and G1 share the same supply node in the network, the return 

flow from one agent to the supply node is not available for other agents during the same time 

period, as expressed by Equation (12).     

There are several reasons for having the same level of water consumption for different values 

of parameter p in Fig. 4. Firstly, for the two agricultural agents A1 and A2, they already reach 

their conservation limit after p = 0.1, and their levels of water consumption remain the same for 

different values of parameter p greater than 0.1. Secondly, for the two domestic agents D1 and 

D2, they already are fully satisfied during the initial allocation and they choose not to conserve 

water. Consequently, their levels of water consumption remain the same for all values of 

parameter p. Thirdly, for I2 and G2, they are not able to consume more water because there is no 

one conserving water after p = 0.1. Finally, for I1 and G1, their levels of water consumption 

increase at p = 0.1, and then keep constant until p = 0.4, and start to reduce their water 

consumption after p = 0.5. This is because the charges they have to pay are greater than their 

extra net benefits obtained from the extra water utilization. G1’s change is very small and is 

difficult to see because of the scale issue.  

Fig. 4. Water rights changes by agents over different values of the parameter p under the 

scenario of a 20% conservation limit 

Fig. 5. Net benefits changes by agents over different values of the parameter p under the scenario 

of a 20% conservation limit 

System Performance 
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The individual decisions made by agents may have different impacts on the system performance. 

One example is the increasing total imbalance resulting from the growing compensation to A1 

and A2 even though they stop conserving water due to the conservation limit. The total 

imbalance of net benefits transferred is calculated by summing up all compensation values given 

to water conservers and all cost values paid by water consumers. A positive imbalance indicates 

that the compensation is larger than the cost, and can be interpreted as an infusion from outside 

of the system to make the strategies feasible. The infusion is expected to be as small as possible.   

As affected by the increasing total imbalance, the total net benefits determined by adding up 

the individual net benefits of all agents are continuously growing as well, as shown by the top 

curve in Fig. 6. If the infusion is deducted from the total net benefits, the remainder represents 

the economic benefits produced by all agents in the system. From Fig. 6, one can see that the 

total net benefits produced by all of the agents in the system itself, excluding the infusion from 

outside of the system, will reach its maximum at p = 0.1. This is the point at which the 

coordination process stops, and the compensation to water conservers, cost paid by water 

consumers, net benefits for each agent, total infusion required, and total net benefit of the system 

itself are determined. 

Fig. 6. Total net benefits changes over different values of the parameter p under the scenario of a 

20% conservation limit 

Discussion and Insights  

An agent-based model can normally be implemented in two ways: using a packaged simulation 

software like AnyLogic, MASON, and NetLogo, or by custom development using high-level 

programming languages. The agent-based model proposed in this paper mainly consists of a set 
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of individual optimization problems; it is implemented in the platform of the general algebraic 

modeling system (GAMS) to take advantage of the key and unique features of this platform such 

as having extensive and efficient solvers (GAMS 2017). GAMS is a high-level modeling system 

for mathematical programming and optimization, and constitutes a powerful tool to solve large-

scale optimization problems. The individual optimization problems are coded in GAMS and 

solved using MINOS. In this research, the authors used a MacBook Pro laptop computer with an 

Intel Core i5 2.4 GHz CPU. It took less than 0.1 seconds to solve each of the individual 

optimization problems. Hence, the problem can be conveniently solved using modest computer 

resources. 

The impact of WDM on individual agents and the overall system under one scenario is 

explained in the previous sections. The optimal solutions under different scenarios are compared 

and discussed in this section.  

Fig. 7 shows the changes in water consumption whereby the bar on the left above each agent 

gives the agent’s initial allocation. The remaining bars indicate the amount of water a given 

agent is going to withdraw under different scenarios. As can be seen in Fig. 7, both A1 and A2 

prefer to conserve water until they reach their limits under all scenarios, since each of the bars to 

the right of the baseline scenario is lower than the baseline. Notice that when there is no 

conservation limit, both A1 and A2 relinquish all of their initial allocation, which is reflected by 

the absence of a bar in Fig. 7. This also demonstrates the necessity of having conservation limits 

because food production is still essential for agricultural agents. All other agents, except D1 and 

D2, tend to consume more water compared to their baselines as long as there is extra water 

available. G2 and I1 are the two main water consumers who utilize most of the conserved water 

under all scenarios, and I2 is not able to obtain extra water under scenarios having limits because 
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of this, but is another main water consumer under the scenario of no limit, as plotted on the far 

right in Fig. 7. D1 and D2 are already fully satisfied during initial allocation and they would not 

like to conserve water as indicated by all of the bars having the same level as the baseline. The 

more water agricultural users conserve, the more water is available to water consumers.  

In terms of an economic perspective, the net benefits for all agents, except D1 and D2, are 

projected to increase above the baseline, as depicted in Fig. 8. Among these agents, A1 and A2 

obtain more compensation to cover their benefit loss because of utilizing less water; conserving 

more water implies higher compensation. Although G2 and I1 are two main water consumers 

under all scenarios with limits, G2 produces greater benefits with additional water than I1 does. 

Furthermore, I2 is also able to generate massive benefits if there is extra available water as 

indicated by the bar on the far right in Fig. 8. The fact that most agents are expected to gain more 

benefits and no one has less can encourage them to implement WDM strategies.  

The implementation of WDM is also beneficial for the overall system. As can be seen in Fig. 

9, the total net benefits produced by the system under all scenarios are better in comparison to 

the baseline case, and the higher the conservation limit, the greater the net benefits that can be 

produced. Even though the total imbalance is also higher under the scenario of a higher 

conservation limit, it is still a very small portion (less than 0.5% under all scenarios having limits) 

of the total net benefits produced. 

In addition to the economic impact of WDM on consumptive uses, it is also important to 

investigate its effect on non-consumptive uses, since these uses are modeled as ecosystem agents 

and will only respond to the decisions of general agents. As shown by the top plot in Fig. 10, 

total water rights to consumptive uses are decreasing in comparison to the baseline scenario. In 

contrast to consumptive uses, the water flow through the two instream flow requirement nodes, 
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which are labelled as S1 and S2 in the network, are increasing; higher conservation limits mean 

more water is available to non-consumptive uses. The increasing instream water flow could be 

extremely useful for maintaining environmental standards. The findings indicate that besides 

economic gains, benefits can also be garnered from an ecological perspective as depicted in Fig. 

10. 

Fig. 7. Comparison of water rights changes by agents under different scenarios 

Fig. 8. Comparison of total net benefits changes by agents under different scenarios 

Fig. 9. Overall net benefits in the basin from initial allocation and with WDM  

Fig. 10. Comparison of water rights to consumptive and non-consumptive uses 

Conclusions 

In this paper, water users’ responses under different conservation limits are assessed within a 

basin-wide agent-based framework in order to investigate the effect of WDM on individual users 

and the overall system. An individual optimization problem is constructed for each water user to 

update the level of water consumption in order to maximize its overall economic returns. Even 

though users’ responses regarding water consumption are diversified, the overall economic 

returns of each user are expected to increase, which provides a positive incentive to encourage 

users to implement WDM strategies. Interactions among agents occur in an indirect way through 

a coordinator so that system performance can be improved as well. The proposed approach is 

applied to an illustrative case study reflecting an actual situation in southern Alberta, Canada.  

The results of the case study indicate that agricultural users are more likely to conserve water, 

while the benefits loss from water conservation can be compensated so as to achieve a better 

economic return. The conserved water can be distributed to other users to produce more 
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economic benefits, but a portion of the extra benefits must be transferred in order to obtain the 

additional water. By implementing WDM, positive incentives are provided to water conservers, 

and other users could also benefit. The system performance is projected to be improved as well 

from both economic and ecological perspectives.  

The results and analyses are based on the assumption of a series of conservation limits. In 

fact, the results from the case study show that agricultural agents are always willing to conserve 

water until they reach their limits. Municipal and industrial agents also like to see higher 

conservation limits so that they have more water to consume and greater potential for economic 

returns. Therefore, it is important for policy makers to take this factor into consideration during 

policy design. Certainly, sub-models can be developed to estimate the technical conservation 

limits for different agents, and integrated into current models. This is one of the limitations of 

this model, and an opportunity for future work. 
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Appendix 

Table A1. Structure of the agent-based model 

Agent Type Attributes Decision Rules 

General agent 

1. Level of water 

consumption 

2. Level of net 

benefits represented 

by net benefits 

functions 

1. After receiving a value of parameter given by 

the coordinator, each agent calculates the net 

benefits generated from water utilization and 

compensation or cost value. 

2. An agent chooses to conserve water only if the 

compensation value is greater than the net 

benefit losses, or to consume more water if the 

net benefits produced from extra water 

utilization are more than enough to cover the 

cost charged. 

3. An agent adjusts the level of water consumption 

to maximize its individual total economic 

returns by solving an individual optimization 

problem. 

Ecosystem 

agent 

1. Level of water 

consumption 
1. Respond to the actions of general agents. 

Coordinator 

agent 

1. Overall net benefits 

2. Total imbalance 

value 

1. For each given value of a parameter, monitor 

the decisions of individual agents and calculate 

the system-wide overall net benefits and total 

imbalance between the compensation and cost 

values. 

2. Update the value of the parameter until the 

system-wide net benefits cannot be improved 

and the total imbalance value cannot be 

decreased. 
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