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Abstract

Production planning problems and its variants are widely studied in operations management
and optimization literature. One variation that has not garnered much attention is the presence
of multiple production families in a coordinated and capacitated lot-sizing setting. While its
single-family counterpart has been the subject of many advances in formulations and solution
techniques, the latest published research on multiple family problems was over 25 years ago
(Erenguc and Mercan, 1990; Mercan and Erenguc, 1993).

Chapter 2 begins with a new formulation for this coordinated capacitated lot-sizing problem
for multiple product families where demand is deterministic and time-varying. The problem
considers setup and holding costs, where capacity constraints limit the number of individual
item and family setup times and the amount of production in each period. We use a facility
location reformulation to strengthen the lower bound of our demand-relaxed model. In addition,
we combine Benders decomposition with an evolutionary algorithm to improve upper bounds on
optimal solutions. To assess the performance of our approach, single-family problems are solved
and results are compared to those produced by state-of-the-art heuristics by de Araujo et al.
(2015) and Süral et al. (2009). For the multi-family setting, we first create a standard test bed of
problems, then measure the performance of our heuristic against the SDW heuristic of Süral et al.
(2009), as well as a Lagrangian approach. We show that our Benders approach combined with an
evolutionary algorithm consistently achieves better bounds, reducing the duality gap compared
to other single-family methods studied in the literature.

Lot-sizing problems also exist within a vendor-managed-inventory setting, with production-
planning, distribution and vehicle routing problems all solved simultaneously. By considering
these decisions together, companies achieve reduced inventory and transportation costs com-
pared to when these decisions are made sequentially. We present in Chapter 3 a branch-and-cut
algorithm to tackle a production-routing problem (PRP) consisting of multiple products and cus-
tomers served by a heterogeneous fleet of vehicles. To accelerate the performance of this algo-
rithm, we also construct an upper bounding heuristic that quickly solves production-distribution
and routing subproblems, providing a warm-start for the branch-and-cut procedure. In four sce-
narios, we vary the degree of flexibility in demand and transportation by considering split deliver-
ies and backorders, two settings that are not commonly studied in the literature. We confirm that
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our upper bounding procedure generates high quality solutions at the root node for reasonably-
sized problem instances; as time horizons grow longer, solution quality degrades slightly. Overall
costs are roughly the same in these scenarios, though cost proportions vary. When backorders
are not allowed (Scenarios 1 and 3), inventory holding costs account for over 90% of total costs
and transportation costs contribute less than 0.01%. When backorders are allowed (Scenarios 2
and 4), most of the cost burden is shouldered by production, with transportation inching closer
to 0.1% of total costs.

In our fifth scenario for the PRP with multiple product families, we employ a decomposition
heuristic for determining dedicated routes for distribution. Customers are clustered through k-
means++ and a location-alloction subproblem based on their contribution to overall demand, and
these clusters remain fixed over the entire planning horizon. A routing subproblem dictates the
order in which to visit customers in each period, and we allow backorders in the production-
distribution routine. While the branch-and-cut algorithm for Scenarios 1 through 4 quickly finds
high quality solutions at the root node, Scenario 5’s dedicated routes heuristic boasts high vehicle
utilization and comparable overall costs with minimal computational effort.
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Chapter 1

Introduction

In manufacturing or retail environments, it is typical for certain products to share resources, such
as a common machine that stamps sheets of metal or a supplier filling a trailer with items for
shipment. Rather than schedule production (or place orders) on an individual basis, items may
be grouped into a family and produced (or purchased) together to save on setup times or adminis-
trative costs. The coordinated, capacitated multi-item lot-sizing problem (CCLSP) captures this
concept by incurring a major setup time whenever any item of a family is produced, and a minor
setup time for each item that undergoes production in that period. The objective is to minimize
total costs of setting up families of items and holding inventory, while satisfying demand and
respecting capacity constraints in every period over a planning horizon.

CCLSP pertains mostly to a single family of items, but multiple product groups exist in
chemical processing or the manufacture of industrial (versus commercial) items (Mohamed et al.,
2004; Karalli and Flowers, 2006). In an automotive setting, the paint process also exhibits this
multiple family structure. The limiting resource is time available in the paint shop, while variety
of colours dictates the number of product families. Each family comprises a number of items
to be painted, such as passenger doors and the frame of the car. Time required to change paint
colours is analogous to incurring a major (or family) setup time, and adjusting the positioning of
items before painting is similar to a minor (or item) setup time. Consolidation of shipments can
be viewed from this perspective as well, as outgoing loads (or orders, consisting of one or many
products) are grouped according to customers (families) and shipped on one or more vehicles.
For this case, the objective would be to determine the grouping of loads that minimize shipment
time or cost, or maximize service levels to customers, or both.
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Item characteristics generally dictate family groups: products sharing a machine or a trailer
will naturally be “related,” and so should their production or shipment schedules. When defini-
tions of families are not as clear, how items are grouped could influence production and shipment
patterns. The production-routing problem (PRP) considers lot-sizing, distribution, and vehicle
routing decisions simultaneously, usually for a single production facility carrying out all three
operations in a vendor-managed inventory setting. It exhibits groupings at both the production
and routing stages, and these groupings are not necessarily the same. Depending on aggregate
and individual customer demands over the horizon, a vendor ensures that sufficient inventory is
maintained at the customer level, and can also coordinate its production and deliveries in such
a way that manufacturing and vehicle capacities are efficiently used. It is, therefore, important
that the vendor carefully determines how best to coordinate the production and distribution of
products to avoid manufacturing and shipping redundancies, and this includes defining the ap-
propriate item clusters.

1.1 An Overview of Lot-Sizing Problems

Lot-sizing problems determine when and how much of an item, or number of items, to replenish
so that demand is satisfied while minimizing total cost. Customer orders dictate demand, which
can be deterministic (stationary or time-varying) or probabilistic, and typical costs are attributed
to setups and holding inventory. Additional features, such as capacity constraints, time windows
or families of products, can greatly complicate the solution of these problems.

The uncapacitated single-item lot-sizing problem with time-varying demand has parameters
Ct ,Ht ,Qt , and dt denoting unit costs of production and holding per period, fixed setup cost and
demand per period, respectively, where t = 1,2, ...,n. Variables xt and st represent the number of
units produced in period t and the number of units carried over from period t to t + 1. As well,
binary variables yt denote whether a setup for an item occurs in period t.

[LSU ] min
n

∑
t=1

(
Ctxt +Qtyt +Htst

)
(1.1)

s.t. st−1 + xt = st +dt ∀t (1.2)

xt ≤Myt ∀t (1.3)
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xt ,st ≥ 0 ∀t (1.4)

yt ∈ {0,1} ∀t (1.5)

The objective function minimizes the sum of production, setup, and holding costs, while ensuring
that demand is met in every period (1.2) and that items are produced only if a setup is incurred
(1.3). It is typical to assume initial and ending inventories are zero (s0 = sn = 0).

When multiple items, i = 1,2, ...,m, are considered, the formulation changes only slightly to
account for different items being produced. All decision variables and parameters will now have
an added subscript, i:

[M−LSU ] min
m

∑
i=1

n

∑
t=1

(
Citxit+Qityit +Hitsit

)
(1.6)

s.t. si,t−1 + xit = sit +dit ∀i, t (1.7)

xit ≤Myit ∀i, t (1.8)

xit ,sit ≥ 0 ∀i, t (1.9)

yit ∈ {0,1} ∀i, t (1.10)

Here, we are still minimizing the total production, setup, and holding costs for all items i and over
all periods t. Decision variables xit ,sit , and yit now respectively denote the amount of product i
produced in t, number of units of i held from period t until t +1, and whether or not to produce
item i in period t. Demand, production cost, setup cost, and holding cost for each item i in period
t are respectively denoted by dit ,Cit ,Qit , and Hit .

Constraints on production capacity can be added to this formulation in terms of either time or
costs required to set up an item. While setup costs can be estimated using an employee’s hourly
wage and the time required to physically prepare the machine for production, it may not be an
accurate reflection of the actual cost to the company, since that same employee would have been
paid whether that machine needed attention or not. It maybe just as beneficial to examine setup
times, as these can be measured (and even improved upon), and are just as easily incorporated
into the model as costs. Letting ait denote the unit time required to produce item i in period t,
bit denote the setup time for production of i in period t, and CAPt be the total time available for
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production in period t, we can add the following capacity constraint to [M−LSU ]:

m

∑
i=1

(
aitxit +bityit

)
≤CAPt ∀t (1.11)

The deterministic coordinated lot-sizing problem has been widely studied. Zangwill’s research
on multiple product production and inventory models (1966) has since inspired various methods
for determining the number and timing of items to be ordered in a way that will minimize system
costs. Some of these methodologies include dynamic programming (Kao, 1979), shortest path
reformulations (Joneja, 1990), and primal-dual solution algorithms (Kirca, 1995).

Boctor et al. (2004) describe properties of an optimal solution for the uncapacitated coor-
dinated lot-sizing problem [LSU ]. Using results from the seminal work of Wagner and Whitin
(1958), as well as from Silver (1979), Boctor et al. (2004) indicate that:

1. production for an item takes place only when there is no inventory available for that item
(or x∗it× I∗it−1 = 0)

2. the optimal production quantity in a period will fulfill requirements exactly for the periods
of demand that it covers (i.e., x∗it = dit ,dit +di,t+1, ..., ,∑

T
q=t diq)

3. the optimal inventory level in a period will fulfill requirements exactly for the periods of
demand that it covers (i.e., I∗it−1 = dit ,dit +di,t+1, ..., ,∑

T
q=t diq); and

4. if the cost to hold dir over an interval [t,r−1] exceeds the setup costs for that item in period
r (i.e. dir ∑

r−1
t ′=t hit ′ > qr), then production for item i should not take place in period t.

For capacitated (but not coordinated) multi-item lot-sizing problems, the Dixon-Silver heuris-
tic (1981) follows the framework of Silver and Meal (1973) by determining the span of periods
for which average setup and production costs is at its minimum, while considering capacity ab-
sorption. Unfortunately, a similar heuristic for coordinated and capacited lot-sizing problems
does not yet exist: making assumptions about the periods in which family setups will take place
will greatly impact the remaining capacity available for production, thus creating challenges
when adapting this methodology to include additional problem features.
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In the literature review that follows, we describe how the coordinated capacitated lot-sizing
problem has evolved in terms of its formulations, as well as the solution approaches commonly
used to solve them. This survey indicates the potential for solving the multi-family CCSLP with
both exact and metaheuristic methods. We conclude with a discussion of research related to
production-routing problems, and identify formulation characteristics that deserve more atten-
tion, especially in a multiple product-family setting.

1.2 Literature Review

1.2.1 Coordinated Capacitated Lot-Sizing Problems

Trigeiro et al. (1989) provide a foundation for much of the research discussed here. Those
authors formulate a capacitated multi-item lot-sizing problem subject to setup costs and setup
times, using a Lagrangian heuristic to relax the capacity constraints and decompose the problem
by item, to ultimately obtain a lower bound to the optimal solution. To find an upper bound,
Trigeiro et al. (1989) develop a smoothing heuristic (TTM) that begins from the Lagrangian
subproblem solution and shifts production lots to different periods until a feasible solution is
found. That smoothing heuristic, however, does not always succeed at finding feasible solutions,
and in those cases, a different initial solution is required.

Li et al. (2012) develop a three-stage approach for a multi-item capacitated lot-sizing problem
(LSP). After some pre-processing steps, their heuristic improves upon an initial set of solutions
by solving a series of two-item subproblems. This configuration significantly reduces the number
of binary variables, though does not optimize production plans for all items simultaneously.
While those authors avoid the need for reformulating the LSP, taking this extra step may provide
enhanced results.

The TTM heuristic is used in Hindi et al. (2003), who reformulate the CCLSP as a transship-
ment model and employ variable neighbourhood search to improve the upper bound (see Section
1.2.1 for more on variable neighbourhood search). However, the same issue remains, that the
smoothing heuristic may or may not succeed at finding a feasible solution.
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Strong Reformulations

[LSU ] presented in the previous section is also known as the classical, or weak, lot-sizing formu-
lation. Inventory-balance constraints (1.2) establish a link between time periods characterized by
given demands, production quantities, and amounts held in inventory, as depicted in Figure 1.1.
These links become more interwined as problem sizes grow (either in number of items or time
periods), making this representation of the formulation more difficult to solve directly.

Figure 1.1: Inventory-Balance Constraint for a Weak Formulation

A strong reformulation exploits characteristics of the problem structure to develop models
whose LP relaxations produce solutions that are equal to the optimal solution to the weak for-
mulation. Pochet and Wolsey (2006) describe two common reformulations of the single-item
uncapacitated lot-sizing problem [LSU ]: the shortest-path-type (SP) and facility-location-type
(FL) (or transportation-type) formulations. Though these each require a redefinition, and thus an
increase in the number of production decision variables, their LP-relaxation solutions are identi-
cal to one another (Denizel et al., 2008; Solyalı and Süral, 2012). Figure 1.2 shows how the FL
reformulation creates a bipartite graph, with u representing periods in which production takes
place and t indicating periods in which demand is required. Variables wut then represent the frac-
tion of dt produced in u to satisfy demand in t, and xu = ∑

n
t=u dtwut . For the uncapacitated case,

the SP and FL formulations exhibit the unimodularity property, and hence their LP relaxations
provide integer solutions that are optimal for [LSU ].

Reformulations of the CCLSP are studied by Jans and Degraeve (2004) and Süral et al.
(2009), who use an SP and FL reformulation, respectively. Solving the linear relaxation of
these reformulations results in better linear lower bounds when compared to the typical lot-size-
inventory formulation in Trigeiro et al. (1989). Rather than relaxing capacity constraints, these
formulations allow demand constraints to be dualized. The structure of the Lagrangian subprob-
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Figure 1.2: Demand Constraint for a (strong) FL Reformulation

lem is such that unimodularity is removed and a better lower bound (than that of the LP-relaxation
of the reformulation) is attainable. See Denizel et al. (2008), Gao et al. (2008), and Solyalı and
Süral (2012) for further comparisons of the shortest path and transportation reformulations for
both the multi-item and coordinated lot-sizing problems.

Metaheuristics in Lot-Sizing Problems

Even with strong formulations, heuristic methods are often needed to find good solutions in a
reasonable amount of time. Simulated annealing, genetic algorithms, and variable neighbour-
hood search have been used to solve multi-item capacitated lot-sizing problems and its variants
(Hindi et al., 2003; Jans and Degraeve, 2007; Goren et al., 2010).

Tabu search and simulated annealing are local search metaheuristics that allow some wors-
ening of the objective function value in an attempt to escape a local optimum. In tabu search
(TS), a list of previously visited solutions is maintained; returning to those solutions in the list
is prohibited, at times forcing the local search to move to areas with less desirable objective
function values (Gendreau and Potvin, 2010). With simulated annealing (SA), moving to an im-
proved solution is always accepted, though inferior solutions are at times allowed with a certain
probability (Nikolaev and Jacobson, 2010).

Narayanan and Robinson (2010) use a six-phase heuristic to initialize their simulated anneal-
ing procedure. Each phase shifts lots either to previous or future periods, attempting to reduce
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setup and holding costs or else restore feasibility due to the previous phase’s adjustments. The
fact that the CCLSP has only one family of items means that family setup time can be omitted
from the problem by decreasing the capacity accordingly in each period. This, however, cannot
be extended directly to a multiple family setting.

Both tabu search and simulated annealing explore a neighbourhood of the solution space, one
solution at a time. Evolutionary algorithms (EAs), such as the genetic algorithm, use a population
of solutions to quickly search a neighbourhood (Reeves, 2010). Solutions, or a representation
of them, follow a sort of biological process: some solutions or chromosomes are selected to
crossover and produce offspring, who then go on to replace other chromosomes in the population.
Mutation may occur along the way, which could help move the local search heuristic away from
local optima and closer to the global optimal solution.

While TS, SA and EA all remain in the same neighbourhood of a solution space, variable
neighbourhood search (VNS) allows a change in neighbourhood if there ceases to be improve-
ment in the objective function value. In this lot-sizing context, a neighbourhood might be defined
as a time interval of length k and a change in neighbourhood could be achieved by varying k
(1≤ k≤ n, where n is the maximum number of time periods in the planning horizon). The basic
steps for VNS involve

1. shaking, or finding a solution in a neighbourhood;

2. improving that solution through local search; and

3. changing neighbourhoods (Hansen et al., 2010).

Randomness can be incorporated in the shaking portion of the algorithm, but a deterministic
approach can also be employed, as in Hindi et al. (2003).

In addition to metaheuristics, Buschkühl et al. (2010) describe mathematical programming
and decomposition approaches for the capacitated lot-sizing problem. Recently, de Araujo et al.
(2015) present a period decomposition approach that combines column generation (Barnhart
et al., 1998) and Lagrangian relaxation (Fisher, 2004) to improve lower bounds on the capacitated
lot-sizing problem with setup times. They are able to improve the lower bounds found by Süral
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et al. (2009), and use the smoothing heuristic from Trigeiro et al. (1989) as the initial starting
point for finding an upper bound.

Though these problem settings vary from the traditional CCLSP framework, Bollapragada
et al. (2011) and Camargo et al. (2014) incorporate mathematical programming and heuristics
together in their matheuristic approaches to lot-sizing and scheduling problems on multiple ma-
chines. Here, a heuristic (or metaheuristic) is embedded within an exact algorithm to help find
solutions more quickly. In both articles, the overarching theme is to make the MIP tractable
by fixing some of its integer or binary variables, solving this reduced version of the problem to
optimality, and then repairing solutions to achieve feasibility or improvement in the objective
function value. Toledo et al. (2016) use a similar partitioning approach, but rather than develop
a matheuristic, they compare a fix-and-optimize method to a multi-population genetic algorithm
and show that both perform at a similar level on medium to large problem instances.

Benders Decomposition

One technique that has not been very widely applied to lot-sizing is Benders decomposition
(Benders, 1962). A lot-sizing problem can be decomposed into a master problem containing
only binary setup variables, and a subproblem with the remaining production quantity decision
variables. Beginning with an initial setup schedule and fixing those binary variables, the sub-
problem generates a production plan according to the given schedule, along with optimality and
feasibility cuts to pass back to the master problem, where a new setup schedule is determined.
Iteration between the subproblem and master problem continues until their solutions converge.

After fixing binary setup variables of the weak formulation, Bahl and Zionts (1987) transform
the Benders subproblem into a transportation problem that is more easily solved. They are able
to show that their Benders approach does solve reasonably-sized problems to optimality. Aardal
and Larsson (1990) also use Benders decomposition for their hierarchical production planning
problem, but note that the addition of Benders cuts increases the difficulty of the master problem.
To overcome this, those authors apply Lagrangian relaxation to the Benders cuts. This relaxed
master problem will now provide only a bound, but will not necessarily converge to the optimal
solution.

The works by Bahl and Zionts (1987) and Aardal and Larsson (1990) highlight one particular
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challenge of using Benders decomposition: the master problem becomes increasingly difficult
to solve and requires longer computational times. A recent review by Rahmaniani et al. (2017)
discusses many improvements to the Benders algorithm that have been studied to tackle that
complication (among others). In particular, for a master problem that has no special structure,
there may be value in using metaheuristics to quickly explore neighbourhoods and find pools of
feasible solutions. Poojari and Beasley (2009) show that using a genetic algorithm to solve the
Benders master problem improves both the lower and upper bounds in the majority of their test
problems of varying difficulties.

Other emerging trends in practice consider the conservation of energy and reduction of emis-
sions in production planning. Masmoudi et al. (2017) incorporate the cost of energy in their
multi-stage flow line problem, emphasizing the impact of off- and on-peak electricity prices on
the cost-effectiveness of production. In our work, the coordination of setups can be viewed as
an energy-saving measure: fewer setups will be required over the planning horizon, resulting in
lower total setup time when machines may be running but idle. From the shipment consolidation
viewpoint, fewer setups mean fewer trucks dispatched, leading to reduced carbon emissions.

Robinson et al. (2009) propose that a logical extension to the body of CCLSP research should
include multiple families. To the best of our knowledge, the most recent work on MF-CCLSP was
by Erenguc and Mercan (1990) and Mercan and Erenguc (1993), who use a branch-and-bound
heuristic applied to the lot-size-inventory formulation. There is therefore an opportunity to de-
velop a stronger formulation and solve it with a hybrid decomposition-metaheuristic method. In
this work, we explore these improved solution methods in the MF-CCLSP context, and measure
the performance of our approach against those of Süral et al. (2009) and de Araujo et al. (2015).

1.2.2 Production-Routing Problem

While plenty of research examining solution approaches to the PRP has been conducted, few
studies consider the production (or replenishment) of multiple items. The extension to include
an additional item or two is not trivial, especially if the production of these items is coordinated.
Lot-sizing decisions would now be impacted by the fixed cost of setting up manufacturing for a
family of items, and not just by the per-unit production cost. This makes the lot-sizing portion of
the PRP even more challenging to solve. Given that PRP is already NP-hard due to the embedded
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traveling salesman problem within the vehicle routing constraints, this added complexity poses
challenges in developing appropriate solution methods that can both find near-optimal solutions
and do so in a reasonable amount of time.

Production-routing problems combine a number of decisions that have individually been
studied extensively, but whose integration is now being treated more thoroughly. There is a
vast body of literature on lot-sizing problems (as discussed above) and vehicle routing problems
(Braekers et al., 2016; Koç et al., 2016), so our focus in this subsection will be on the trends in
PRP research. We discuss the review by Adulyasak et al. (2015) in more detail below and extend
its summary in Table 1.1 by further classifying characteristics of the variants of PRP studied in
these articles, and adding some recently published research

Chandra and Fisher (1994), Fumero and Vercellis (1999), Armentano et al. (2011), Brahimi
and Aouam (2016), and Kang et al. (2017) address the PRP with multiple items, with only
Kang et al. (2017) considering the case of coordinated (or joint) replenishment. All of these
authors use heuristic solution approaches: Chandra and Fisher (1994) and Brahimi and Aouam

Table 1.1: Classification of PRP literature
Production Vehicle Routing Solution

Authors # plts # items Cap. Coord. BO Fleet # veh SEC/NF Split Type Approach

Chandra and Fisher (1994) 1 mult. X hom. unlim. NF X H Decomposition
Fumero and Vercellis (1999) 1 mult. X hom. lim. NF X H Lag. Relaxation

Lei et al. (2006) mult. 1 X het. lim. NF X H Decomposition
Boudia et al. (2007) 1 1 X hom. lim. SEC H GRASP
Boudia et al. (2008) 1 1 X hom. lim. SEC H Decomposition

Boudia and Prins (2009) 1 1 X hom. lim. SEC H Memetic
Bard and Nananukul (2009b) 1 1 X hom. lim. NF X H Tabu search
Bard and Nananukul (2009a) 1 1 X hom. lim. NF X E B&P
Bard and Nananukul (2010) 1 1 X hom. lim. NF X E B&P

Ruokokoski et al. (2010) 1 1 hom. 1a SEC E B&C
Armentano et al. (2011) 1 mult. X hom. unlim. NF H Tabu search

Archetti et al. (2011) 1 1 X hom. unlim. SEC E/H B&C
Adulyasak et al. (2014b) 1 1 X hom. lim. SEC H ALNS
Adulyasak et al. (2014a) 1 1 X hom. lim. SEC E/H B&C/ALNS

Absi et al. (2015) 1 1 X hom. lim. SEC H Iterative MIP
Brahimi and Aouam (2016) 1 mult. X X hom. unlim. SEC H Decomposition

Solyalı and Süral (2017) 1 1 X hom. lim. SEC H Decomposition
Kang et al. (2017) 1 mult. X X b het. lim. SEC c H PSO

BO: backorders; SEC: subtour elimination constraints; NF: network flow constraints; Split: split deliveries; mult.: multiple; het: heterogeneous;
hom: homogeneous; lim.: limited; unlim.: unlimited; E: exact, H: heuristic;
a uncapacitated vehicle
b overtime and outsourcing allowed
c considers pickups from suppliers, not deliveries to customers

11



(2016) decompose the PRP into production and routing subproblems, while Fumero and Vercellis
(1999) employ a Lagrangian relaxation approach. Armentano et al. (2011) and Kang et al. (2017)
use tabu search and particle swarm optimization, respectively, which are effective for solving
large instances of the PRP. Of these multi-item variants, network flow constraints are used by
Chandra and Fisher (1994), Fumero and Vercellis (1999), and Armentano et al. (2011), while
subtour elimination constraints (SECs) are modelled by Brahimi and Aouam (2016) and Kang
et al. (2017). Though network flow constraints seem to simplify the decomposition of the VRP
portion of PRP, Ruokokoski et al. (2010) state that the LP-relaxation of the network flow VRP
formulation will provide weaker bounds than when SECs are employed.

Much of the research focuses on solving single-item production problems with a homoge-
neous fleet of vehicles through heuristics, either decomposition, metaheuristic, or iterative pro-
cedure (Lei et al., 2006; Boudia et al., 2007, 2008; Boudia and Prins, 2009; Bard and Nananukul,
2009b; Adulyasak et al., 2014b; Absi et al., 2015; Solyalı and Süral, 2017). Bard and Nananukul
(2009a, 2010), Ruokokoski et al. (2010), Archetti et al. (2011), and Adulyasak et al. (2014b) pur-
sue exact approaches based on branch-and-cut algorithms. Lei et al. (2006) are the only authors
in this group that model multiple plants producing a single product, and use a heterogeneous fleet
of vehicles while considering deterministic travel times.

Ruokokoski et al. (2010) and Brahimi and Aouam (2016) consider strong reformulations for
the lot-sizing problem within the PRP. While reformulations have proven successful at tackling
the complexities of CCLSPs, they do not seem to provide much benefit in the context of the
production-routing problem, as reported by Adulyasak et al. (2014a). Those researchers suggest
that valid lot-sizing inequalities proposed by Archetti et al. (2007, 2011) are sufficient to produce
good solutions, but this is under the assumption that all demands must be met on time. It is not
clear whether the same result would occur when backorders are allowed.

Two of the more recent studies on PRP with multiple items are by Brahimi and Aouam (2016)
and Kang et al. (2017). While Brahimi and Aouam (2016) allow backorders, Kang et al. (2017)
account for limited production capacity through use of overtime and outsourcing of production.
It is interesting to note that the manufacturing facility in Kang et al. (2017) is responsible for
picking up materials from multiple suppliers (rather than delivering finished goods to customers),
and that they also consider an all-units discount policy.
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We also observe emerging research that builds upon the PRP, but is not reflected in Table 1.1.
Chitsaz et al. (2017) combine mathematical programming and heuristics in their matheuristic for
an assembly routing problem. Here, not only is production modeled, but also specific assembly
constraints that dictate the material required in a finished product. More tactical aspects of the
PRP are also studied by Nananukul (2013) and Konur and Geunes (2016), who both focus on
optimizing the clustering of customers that are serviced by the same fleet of vehicles.

Based on our survey of the literature, there are a few PRP variants that have received little
attention. These include the coordinated replenishment of multiple items, allowance for back-
orders, a heterogeneous fleet of vehicles, and split deliveries. Furthermore, Adulyasak et al.
(2015) indicate that there is little research on using exact approaches to solve the PRP with
multiple items.

1.3 Organization of Dissertation

There are opportunities to extend both the CCLSP and PRP by considering the presence of mul-
tiple product families, and by enhancing existing solution techniques. We begin with a formal
presentation of the facility-location reformulation of MF-CCLSP in Chapter 2 and discuss meth-
ods to improve both upper and lower bounds through a combination of Benders decomposition,
evolutionary algorithm and subgradient optimization. We measure the performance of our ap-
proach against the works by Süral et al. (2009) and de Araujo et al. (2015), as well as an exact
cutting plane approach. Chapter 3 describes the multi-item PRP subject to capacitated and co-
ordinated replenishments, and studies impacts on inventory, backorder, and routing costs under
different business settings. Chapter 4 summarizes the major contributions of this work, and de-
scribes avenues of future work to further enrich these research areas.
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Chapter 2

Coordinated Capacitated Lot-sizing for
Multiple Product Families

2.1 Problem Description

Production planning, or lot-sizing problems generally determine when and how much to produce
so that costs of setting up production plus holding inventory are minimized. The multiple-family
capacitated coordinated lot-sizing problem with setup times (MF−CCLSP) seeks the minimum
cost lot-sizing schedule subject to capacity constraints over a planning horizon. There are many
ways to express these decisions mathematically, and the structure chosen will impact solution
time and quality. In this chapter, we provide an overview of typical mathematical formulations
for the coordinated capacitated lot-sizing problem and its variants before detailing solution ap-
proaches for the case of multiple product families.

2.1.1 Production-Inventory Formulation

The formulation that most closely reflects the classical definition of lot-sizing problems uses
variables to represent production and inventory quantities, respectively. Let i ∈ {1,2, . . . ,m}
be the product number index in family j ∈ {1,2, . . . , l} over the planning horizon, with n time
periods indexed by t. Demand, di jt , is time-varying and deterministic (i.e., dynamic), and the
cost of holding one unit from period t to t +1 is Hi jt . In each period t, there is CAPt production
time available. It is consumed by unit production time ai jt , item setup time bi jt , and family setup
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time f jt . Setting up a family of items incurs cost R jt and an item setup cost triggers cost Qi jt . We
determine how many units, xi jt , to produce, and how many units, si jt , to hold that will minimize
setup plus holding costs over the horizon. Binary decision variables yi jt (and z jt) define whether
or not an item (or family) setup occurs in period t.

To avoid infeasibilities in the model, initial inventory si j0, may be used at a very high cost,
Ki j. A list of notation can be found in Table 2.1.

[P] vP = min
l

∑
j=1

n

∑
t=1

[
m

∑
i=1

(
Hi jtsi jt +Qi jtyi jt

)
+R jtz jt

]
+

m

∑
i=1

l

∑
j=1

Ki jsi j0 (2.1)

s.t. si j,t−1 + xi jt− si jt = di jt ∀i, j, t (2.2)

xi jt ≤Myi jt ∀i, j, t (2.3)

yi jt ≤ z jt ∀i, j, t (2.4)
l

∑
j=1

[ m

∑
i=1

(
ai jtxi jt +bi jtyi jt

)
+ f jtz jt

]
≤CAPt ∀t (2.5)

xi jt ,si jt ≥ 0 ∀i, j, t (2.6)

si j0 ≥ 0 ∀i, j (2.7)

yi jt ∈ {0,1} ∀i, j, t (2.8)

z jt ∈ {0,1} ∀ j, t (2.9)

The objective function (2.1) minimizes total setup, holding and initial inventory costs. Con-
straints (2.2) maintain inventory balance in each period, while inequalities (2.3) and (2.4) en-
sure that item and family production take place only when a setup is incurred, where M =

min(∑n
t ′ di jt ′,

CAPt−bi jt− f jt
ai jt

). Available setup plus production time is limited by constraints (2.5),
with (2.6) to (2.9) defining non-negativity and integrality restrictions.
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Table 2.1: Summary of notation used in Chapter 2
Notation Description Indices or Unit of measure

Indices
i Index for items i = 1,2, ...,m
j Index for families j = 1,2, ..., l
t Index for production time periods t = 1,2, ...,n
u Index for demand time periods u = 1,2, ...,n

Parameters
di jt Demand for item i from family j in period t units
Hi jt Cost for carrying item (i, j) from period t to t +1 $/unit/time
H p

i jt Initial inventory and holding cost for item (i, j) to satisfy
demand in period t

$/unit

H̄i jut Holding cost for item (i, j) produced in period u and con-
sumed in period t

$/unit

CAPt Available production time in period t production time
ai jt Unit production time for item (i, j) in period t production time/unit
bi jt Setup time for item (i, j) in period t production time
f jt Setup time for family j in period t production time
R jt Family j setup cost in period t $
Qi jt Item (i, j) setup cost in period t $
Ki j Cost for using initial inventory of item (i, j) $/unit

Decision Variables
xi jt Production amount of item (i, j) in period t Continuous
si jt Amount of item (i, j) held from period t to t +1 Continuous
wi jut Fraction of period t demand for item (i, j) satisfied by

production from period u
Continuous

pi jt Fraction of period t demand for item (i, j) satisfied by
initial inventory

Continuous

yi jt =1 if setup for item (i, j) is placed in period t; 0 otherwise Binary
z jt =1 if setup for family j is placed in period t; 0 otherwise Binary

2.1.2 Strong Formulations

A stronger formulation, one whose LP-relaxation will provide a better lower bound on the op-
timal solution, can be obtained by redefining decision variables of [P] and reformulating the
problem as either a shortest-path-type (SP) or facility-location-type (FL) problem. Each re-
formulation results in an increase in the number of production decision variables, though their
LP-relaxation solutions are identical to one another, even in the capacitated and joint replenish-
ment cases (Denizel et al., 2008; Solyalı and Süral, 2012). Furthermore, the projection of the
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solution space of these reformulations is equivalent to the projection of the convex hull of the
weak formulation (Pochet and Wolsey, 2006). In the single-item uncapacitated case, the SP and
FL formulations both exhibit the unimodularity property, and hence their LP relaxations provide
integer solutions that are optimal. For the capacitated case, these reformulations will provide an
improved LP relaxation value, but the LP solution will not necessarily be integer.

We reformulate MF-CCLSP according to a facility-location-type problem, letting wi jut rep-
resent the fraction of demand of period t for item i in family j that is satisfied by production
in period u and pi jt represents the fraction of demand of period t for item i in family j that is
satisfied from initial inventory. The initial inventory and holding cost for unit (i, j) to satisfy
demand in period t is denoted by H p

i jt = (Ki j +∑
t−1
u=1 Hi ju)di jt . The holding cost for unit (i, j) is

H̄i jut = ∑
t−1
u′=u Hi ju′di jt .

The facility location formulation is:

[FL] vFL = min
m

∑
i=1

l

∑
j=1

n

∑
t=1

H p
i jt pi jt +

l

∑
j=1

n

∑
u=1

[
m

∑
i=1

(
Qi juyi ju +

n

∑
t=u

H̄i jutwi jut

)
+R juz ju

]
(2.10)

s.t. pi jt +
t

∑
u=1

wi jut = 1 ∀i, j, t (2.11)

wi jut ≤ yi ju ∀i, j, and 1≤ u≤ t ≤ n (2.12)

yi ju ≤ z ju ∀i, j,u (2.13)
l

∑
j=1

[ m

∑
i=1

(
ai ju

n

∑
t=u

di jtwi jut +bi juyi ju

)
+ f juz ju

]
≤CAPu ∀u (2.14)

wi jut ≥ 0 ∀i, j,u, t (2.15)

pi jt ≥ 0 ∀i, j, t (2.16)

yi ju ∈ {0,1} ∀i, j,u (2.17)

z ju ∈ {0,1} ∀ j,u (2.18)

Here, the objective function (2.10) minimizes the total aggregated holding and initial costs,
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along with setup costs. Demand constraints (2.2) have been translated to equations (2.11), and
state that demand in period t must be satisfied by the sum of initial inventory and production
from periods u≤ t destined for period t. Setup constraints (2.12) and (2.13) ensure that item and
family production do not occur unless an item or family setup takes place, and constraints (2.14)
to (2.18) correspond directly to constraints (2.5) - (2.9).

In Section 2.3, we will also examine a special case where setup costs are not considered, so
only holding costs contribute to the objective function value. In practical settings, the setup cost
is not typically separated from “regular” costs, such as labour wages or material cost, and it can
be cumbersome to quantify. If a setup does not actually occur, the labour wage is still paid, as
the worker may be assigned to a different task. Mathematically, the absence of these setup costs
produces problems that are more difficult to solve, as no particular family nor item will sway
the cost objective (assuming that setup costs are significantly more than holding costs, and that
holding costs are somewhat homogenous). See Süral et al. (2009) for further information about
the omission of setup costs and impact of setup times.

2.2 Solution Approaches

Any feasible solution to [FL] will provide an upper bound, but finding that solution is no simple
feat (Maes et al., 1991). Trigeiro et al. (1989) employ a smoothing heuristic that shuffles lot-
sizes between time periods, using both forward- and backward-looking techniques, though they
do state that the method does not always succeed. The primal heuristic employed by Süral et al.
(2009) solves a period-by-period knapsack problem from the end of the time horizon to the
beginning to establish a production schedule, though it too may result in lot-sizes that require
excessive initial inventories to be used.

To overcome these difficulties, a better upper bounding procedure is needed. Similar to Süral
et al. (2009), we first determine the time periods in which setups will take place. Fixing those
binary variables in [FL], we are left with only continuous variables and the resulting problem is
a minimum cost network flow problem (MCNFP) that is easy to solve. To find values for the
binary variables, we apply Benders decomposition.

18



2.2.1 Benders Decomposition

When binary variables from [FL] are fixed to ŷi ju and ẑ ju, we obtain the Benders subproblem:

[BSP] vSP = min ω +
m

∑
i=1

l

∑
j=1

n

∑
t=1

H p
i jt pi jt +

m

∑
i=1

l

∑
j=1

n

∑
t=1

t

∑
u=1

H̄i jutwi jut (2.19)

s.t. pi jt +
t

∑
u=1

wi jut = 1 ∀i, j, t (2.20)

wi jut ≤ ŷi ju ∀i, j, and 1≤ u≤ t ≤ n (2.21)
l

∑
j=1

m

∑
i=1

ai ju

n

∑
t=u

di jtwi jut ≤CAPu−
l

∑
j=1

[ m

∑
i=1

bi juŷi ju + f juẑ ju

]
∀u (2.22)

wi jut ≥ 0 ∀i, j,u, t (2.23)

pi jt ≥ 0 ∀i, j, t (2.24)

where ω = ∑ j,u

[
∑i Qi juŷi ju +R juẑ ju

]
. The solution to [BSP] gives a production plan based on

the setup schedule determined by [BMP]. The presence of variables pi jt ensures that this plan
will be feasible and hence [BSP] gives an upper bound (UB) on [FL].

Introducing dual variables λ
(d)

i jt , λ
(s)

i jut and λ
(c)

u corresponding to constraints (2.20), (2.21), and
(2.22) respectively, and dropping the constant term ω , we take the dual of [BSP]:

[DSP] vDSP = max
m

∑
i=1

l

∑
j=1

n

∑
t=1

λ
(d)

i jt +
m

∑
i=1

l

∑
j=1

n

∑
t=1

t

∑
u=1

ŷi juλ
(s)

i jut

+∑
u

(
CAPu−

l

∑
j=1

[ m

∑
i=1

bi juŷi ju + f juẑ ju

])
λ

(c)

u

s.t. λ
(d)

i jt ≤ H p
i jt ∀i, j, t

λ
(d)

i jt +λ
(s)

i jut +ai judi jtλ
(c)

u ≤ H̄i jut ∀i, j, and 1≤ u≤ t ≤ n

λ
(d)

i jt urs ∀i, j, t
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λ
(s)

i jut ≤ 0 ∀i, j, and 1≤ u≤ t ≤ n

λ
(c)

u ≤ 0 ∀u

Introducing variable

θB =max
r∈RP

{ m

∑
i=1

l

∑
j=1

n

∑
t=1

λ
(d)r

i jt +
m

∑
i=1

l

∑
j=1

n

∑
t=1

t

∑
u=1

ŷi juλ
(s)r

i jut +∑
u

(
CAPu−

l

∑
j=1

[ m

∑
i=1

bi juŷi ju+ f juẑ ju

])
λ

(c)r

u

}
where RP is the set of all extreme points of the feasible solutions to [DSP], the dual subproblem
can be reformulated as

min θB

s.t.
m

∑
i=1

l

∑
j=1

n

∑
t=1

λ
(d)r

i jt +
m

∑
i=1

l

∑
j=1

n

∑
t=1

t

∑
u=1

ŷi juλ
(s)r

i jut

+∑
u

(
CAPu−

l

∑
j=1

[ m

∑
i=1

bi juŷi ju + f juẑ ju

])
λ

(c)r

u ≤ θB ∀r ∈ RP

Initial inventory pi jt ensures that the subproblem will always be feasible, so there is no need
to generate feasibility cuts. Thus, the Benders master problem is formulated as follows:

[BMP] min θB +
l

∑
j=1

n

∑
u=1

[
m

∑
i=1

Qi juyi ju +R juz ju

]
(2.25)

s.t.
m

∑
i=1

l

∑
j=1

n

∑
t=1

λ
(d)r

i jt +
m

∑
i=1

l

∑
j=1

n

∑
t=1

t

∑
u=1

yi juλ
(s)r

i jut

+∑
u

(
CAPu−

l

∑
j=1

[ m

∑
i=1

bi juyi ju + f juz ju

])
λ

(c)r

u ≤ θB ∀r ∈ RP

(2.26)

yi ju ≤ z ju ∀i, j,u (2.27)

yi ju ∈ {0,1} ∀i, j,u (2.28)

z ju ∈ {0,1} ∀ j,u (2.29)

θB urs (2.30)
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To initialize the procedure, (λ
(d)r

i jt ,λ
(s)r

i jut ,λ
(c)r

u ) are set to 0 for all i, j,u, and t, and the following
restricted master problem is solved:

[rBMP] min
l

∑
j=1

n

∑
u=1

[
m

∑
i=1

Qi juyi ju +R juz ju

]
s.t.yi ju ≤ z ju ∀i, j,u

yi ju ∈ {0,1} ∀i, j,u

z ju ∈ {0,1} ∀ j,u

As [rBMP] is a relaxation of [FL], the solution to [rBMP] provides a lower bound (LB) to [FL]
and is carried to the Benders subproblem, where a Benders optimality cut (2.26) is obtained from
the dual solution to [BSP]. We iterate between [BMP] and [BSP] until the UB and LB converge,
or no improvement in the bounds is found within 50 consecutive Benders cuts.

Strengthening the Benders Master Problem

We generate two types of cuts to strengthen [BMP]. The first, Type 1 cuts, ensure that if demand
in period t = 1 is positive, then a setup must be incurred:

If di j1 > 0, then yi j1 ≥ 1 ∀i, j (2.31)

Based on given demand and capacity parameters, we can also propose that a minimum num-
ber of setups occur over various intervals to ensure feasibility (Maes et al., 1991; Suerie and
Stadtler, 2003). These Type 2 cuts are generated by first defining the set Qt,U ′ of ordered demands
between periods t and t +U ′−1, where demand is expressed in capacity units and U ′ = 1,2,3.
For example, Qt,U ′ =

{
a[1]d[1] ≤ a[2]d[2] ≤ . . .≤ a[t+U ′−1]d[t+U ′−1]

}
, where [x] represents an in-

dex (i, j,s) with i = 1, . . . ,m, j = 1, . . . , l, s = t, t +1, . . . , t +U ′−1, and t = 2,3, . . . ,n−U ′+1.
Let Q̄t,U ′ be the maximal subset of Qt,U ′ such that the sum of the demands of the subset can be
entirely satisfied from the remaining cumulative slack capacity of periods s = 2 to t − 1, after
all previous demands are fulfilled. As in Maes et al. (1991), we also let Q̄t,U ′ denote the sum of
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demands in this subset, giving us:

Q̄t,U ′ ⊆

{
Qt,U ′

∣∣∣∣∣Q̄t,U ′+ai jsdi js >
t−1

∑
t ′=1

(
CAPt ′−

l

∑
j=1

f jt ′
)
−

m

∑
i=1

l

∑
j=1

t−1

∑
t ′=1

ai jt ′di jt ′− ∑
(i j):

∑
t−1
t′=1 di jt′>0

bi jt ′

}

∀i, j,s ∈ Qt,U ′\Q̄t,U ′

Once Q̄t,U ′ is found for every U ′ = 1,2,3, we add the cut

m

∑
i=1

l

∑
j=1

t+U ′−1

∑
s=t

yi js ≥ mlU ′−|Q̄t,U ′| (2.32)

Based on tests conducted on a subset of problem instances, adding cuts (2.31) and (2.32) pro-
duced better feasible solutions compared to when they were not present in [BMP], and including
them decreased the computational time needed to find feasible solutions.

2.2.2 Evolutionary Algorithm

To speed up convergence of the Benders routine, we use an evolutionary algorithm to quickly
search a neighbourhood of solutions with the goal of improving the upper bound. Below, we
discuss the settings of our evolutionary algorithm:

i) Chromosome representation: We use direct representation, encoding individuals through
item setup variables, yi jt . This provides simple manipulation of the individuals when muta-
tion and crossovers occur. Each individual is a vector of length m∗l∗n with binary values,
from which we can directly infer family setup values, z jt . These yi jt and z jt values are fixed
in [BSP] to solve for production quantities.

ii) Fitness: The fitness of each individual is equal to the objective function value of its associ-
ated MCNFP, where item and family setup variables are fixed. The fittest individual in the
population will produce the lowest objective function value in problem [BSP].
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iii) Population size: As per the findings in Süral et al. (2010), we restrict our population size to
100 individuals to keep computational times reasonable, but also to allow for better quality
solutions to emerge.

iv) Initialization: The initial population comprises a proportion of randomly- and heuristically-
generated individuals. By using some individuals derived from [BMP], we are adding intel-
ligence to the heuristic and stacking the EA with some good solutions. While Goren et al.
(2010) note that most literature uses a completely randomly-generated population, Süral
et al. (2010) indicate promising results in their tests carried out on the traveling salesman
problem that combine both heuristically- and randomly-generated individuals. The propor-
tion of randomly generated individuals is limited to 45%, based on experiments conducted
in Süral et al. (2010), but this does not imply that 45% is the optimal proportion to ap-
ply in every problem setting. A discrete uniform distribution is used to create each binary
chromosome of the randomly-generated individuals.

To initialize the entire process, we create 55 vectors to represent 55% of the population de-
termined heuristically through Benders decomposition. Each chromosome is set to zero to
indicate that no setups take place over the entire horizon, resulting in a very costly plan to
use initial inventory to satisfy all demand. In the first pass of our heuristic, all 55 individ-
uals are carried to Routine 2 (see Section 2.2.4) where 45 newly- and randomly-generated
individuals are added to the population. This will bring the total population size to 100.

In subsequent passes, only the 55 most-fit individuals from [BMP] are carried forward to the
evolutionary algorithm, where a new set of 45 randomly-generated individuals are added to
the population. Further details on how the population is updated throughout the heuristic
are provided in Section 2.2.4.

v) Crossover and mutation: The two most-fit individuals, Parent 1 and Parent 2, are chosen for
two-bit crossover at the 10th chromosome from the beginning and the 10th chromosome from
the end of the parent vectors. For each parent, chromosomes 1 through 10 and m∗l∗n− 10
through m∗l∗n will remain the same, but those chromosomes in between will be switched
from Parent 1 to Parent 2, and vice versa, creating two offspring. See Figure 2.1 for a
schematic example of two-bit crossover, where m = 2, l = 2, and n = 6 for a vector with 24
chromosomes.
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After the crossover takes place, there is a small probability, pm, that each chromosome of
the offspring vectors mutate. We use pm = 1% and employ single-bit flip mutation (i.e., if
mutation takes place on a chromosome currently set to 1, we will change its value to 0).

While we use a fixed crossover point, an adaptive crossover point could be implemented to
suit the particular needs of the model being solved. We are concerned with larger instances
of CCLSP with multiple families, so we expect our vector of setup variables to exceed 20
bits; anything fewer than this would represent a small problem whose solution would be
more efficiently found by solving the problem directly with a commercial solver.

vi) Replacement: The two offspring replace the two least-fit individuals of the population.

vii) Termination: The algorithm terminates after 100 generations, or when there is no improve-
ment in the fitness of the best individual in 25 consecutive generations.

2.2.3 Subgradient Optimization

As [BMP] can be difficult to solve, the value of the lower bound obtained at the end of the
Benders-EA heuristic may still be far from the optimal solution. In an attempt to obtain a better
lower bound, Lagrangian relaxation is applied, with Lagrange multipliers updated by subgradient

Figure 2.1: Example of two-bit crossover
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optimization. Relaxing constraint (2.11) of [FL] results in the following Lagrangian subproblem:

[FLλ ] vFL(LR(λ )) = min
m

∑
i=1

l

∑
j=1

n

∑
t=1

[(
H p

i jt−λi jt

)
pi jt +λi jt

]

+
l

∑
j=1

n

∑
u=1

[
m

∑
i=1

(
Qi juyi ju +

n

∑
t=u

(
H̄i jut−λi jt

)
wi jut

)
+R juz ju

]
s.t. (2.12)− (2.18)

The constant term, ∑i jt λi jt , is omitted from the objective function during computations, but is
used to compute the Lagrangian bound.

Initial inventory variables, pi jt , do not impact any of the constraints in [FLλ ]. Their values
can be determined, as in Jans and Degraeve (2004), by observing the coefficient value for a given
λi jt . Since our objective is minimization, if H p

i jt−λi jt < 0, then pi jt = 1; otherwise, pi jt = 0.

Note that Lagrange multipliers λi jt are defined by demand period t, and that we can separate
the Lagrangian subproblem by production period u:

[FLλ ]u vFL(LR(λ ))u =min
l

∑
j=1

[
m

∑
i=1

(
Qi juyi ju +

n

∑
t=u

(
H̄i jut−λi jt

)
wi jut

)
+R juz ju

]
(2.33)

s.t. wi jut ≤ yi ju ∀i, j, t ≥ u (2.34)

yi ju ≤ z ju ∀i, j (2.35)
l

∑
j=1

[ m

∑
i=1

(
ai ju

n

∑
t=u

di jtwi jut +bi juyi ju

)
+ f juz ju

]
≤CAPu (2.36)

wi jut ≥ 0 ∀i, j (2.37)

yi ju ∈ {0,1} ∀i, j (2.38)

z ju ∈ {0,1} ∀ j (2.39)

Initial multipliers, λ 0
i jt , are obtained from the dual of constraint (2.11) of the LP-relaxation

of [FL]. Using the best upper bound found from the Benders-EA heuristic, UB, the Lagrange
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multipliers are updated using the equation:

λ
k+1
i jt = λ

k
i jt +α

k

{[
UB− vFL(LR(λ k))

]/[
∑
i jt
(1− pi jt−

t

∑
u=1

wi jut)

] 1
2
}

×

[
∑
i jt
(1− pi jt−

t

∑
u=1

wi jut)

]

where αk is a scalar, equal to 0.02 when k = 0. If no improvement has been made in five
consecutive iterations, α is reduced by 10%, and the entire subgradient routine terminates after
200 iterations.

2.2.4 Overall Heuristic

We refer the reader to Routines 1, 2, and 3, where we present the pseudocode for the overall
heuristic and its subroutines, and to Figure 2.2 for a visual representation of the heuristic logic.
Benders decomposition, followed by the evolutionary algorithm is repeated five times, or until
the solution time exceeds one hour. The best upper bound found so far is carried through to the
subgradient routine, where the best lower bound found is updated.

Based on our preliminary computations, good solutions were obtained in a reasonable amount
of time when iterating between Benders and EA five times: with fewer iterations, the duality gap
remained large, but with more iterations, total CPU time increased greatly with little improve-
ment in the duality gap. The overall time limit of one hour was chosen to give adequate time for
our heuristic to find good solutions.

In Routine 1, the following steps occur in one iteration of the outer loop (the outer loop is
performed up to five times):

• [BSP] and [BMP] are solved (until convergence, or if there is no improvement in either
objective function in 50 consecutive iterations). Setup schedules produced by [BMP] are
passed to Routine 2 and used to initialize the population.

• Routine 2 seeks an improved upper bound to the overall problem by quickly searching a
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Figure 2.2: Benders-EA Heuristic Logic

large neighbourhood of potential solutions. This updated population of solutions is passed
back to [BSP] and [BMP], where the most fit individual is used to initialize [BSP].

We exit this outer loop if [BSP] and [BMP] converge, there is no improvement after 50 iterations,
or an overall CPU time of 1 hour has been exceeded. If five outer loops are completed, we
proceed to Routine 3, which searches for a better lower bound than the one obtained from [BMP].

2.3 Computational Results

We examine two problem settings: problem [P] as it is (with setup costs), and [P] without setup
costs. In each setting, we compare the performance of our approach against the SDW heuristic
proposed by Süral et al. (2009) as well as an exact approach, described further in Section 2.3.3.
For [P] without setup costs, in addition to the presence of multiple families, we also consider the
single-family case ( j = 1) and include results of the RHB heuristic developed by de Araujo et al.
(2015) in our evaluation.

The data sets of Trigeiro et al. (1989) have been modified to include multiple product families.
A description of other approaches, against which we will measure our performance, is provided
next. All experiments were run on a PC with a dual-core 2.61GHz processor and 39GB RAM.
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Routine 1: Benders EA
1 begin

/* create preliminary EA population, and initialize problem */

2 create 55 individuals with all chromosomes = 0, each with very high (bad) fitness value;
3 set all λ s = 0,λ d = 0,λ c = 0,SPy = 0,SPz = 0;
4 set B UB=10000000, B LB=-10000000;
5 set UB noimp = 0; LB noimp = 0; time flag = 0;

/* iterate between Benders and Evolutionary Algorithm */

6 for outer loop = 1 : 5 do
7 while |(B UB−B LB)/B LB|> 0.001 do
8 if time flag == 1 then
9 exit while loop

10 use SPy and SPz to solve [BSP], find SP obj and update λ s,λ d ,λ c;
/* keep 55 best individuals in population */

11 if [BSP] solution fitness is better than worst individual in current population then
12 replace worst individual with current [BSP] solution
13 if SP obj < B UB then
14 set B UB = SP obj and set UB noimp = 0;
15 else
16 set UB noimp = UB noimp + 1;
17 generate Benders optimality cut using λ s,λ d ,λ c and add to [BMP];
18 solve [BMP] to find MP obj;
19 if MP obj > B LB then
20 set B LB = MP obj and set LB noimp = 0;
21 else
22 set LB noimp = LB noimp + 1;
23 set SPy = y and SPz = z from [BMP] solution;
24 if UB noimp > 50 or LB noimp > 50 then
25 exit while loop;
26 if overall CPU time > 3600 seconds then
27 set time flag = 1;

/* do not run Routine 2 if duality gap is small or overall CPU time

exceeds 3600 seconds */

28 if |(B UB−B LB)/B LB| ≤ 0.001 then
29 set EA UB = B UB and exit for loop;
30 if time flag == 1 then
31 set EA UB = B UB and exit for loop;
32 extract 55 best individuals and call Routine 2;
33 if time flag == 1 then
34 exit for loop;
35 set Best UB = B UB; Lag LB = B LB;
36 if |(B UB−B LB)/B LB|> 0.001 then
37 call Routine 3;
38 else
39 set EA UB = B UB; Best UB = EA UB, Lag LB = B LB;
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Routine 2: EA
1 begin
2 for individ = 1 : 45 do
3 randomly generate an individual;
4 evaluate fitness of individual by solving [BSP];
5 add individual to population;
6 set EA noimp = 0; pm = 0.01; best = best UB;
7 for generation = 1:100 do
8 perform 2-point crossover on two most-fit individuals;
9 for offspring = 1 : 2 do

10 for chromosome = 1 : m∗l∗n do
11 if random number < pm then
12 flip chromosome value;
13 evaluate fitness of each offspring;
14 replace two least-fit individuals with two offspring;

/* determine whether there is improvement in population fitness */

15 set pop fitness = fitness of most-fit individual;
16 if pop fitness < best then
17 set best = pop fitness and set EA noimp = 0;
18 else
19 set EA noimp = EA noimp + 1;
20 if EA noimp > 25 then
21 exit Routine 2;
22 set EA UB = best;
23 return new population of 100 individuals to Routine 1;

Routine 3: Subgradient
1 begin
2 solve LP-relaxation of [FL] and find dual values λLP of demand constraint;
3 set λ 0 = λLP and set Lag noimp = 0;
4 for k = 1 : 80 do
5 update coefficients for [FLλ (λ

k−1)];
6 solve [FLλ (λ

k−1)] to get LagSPBound;
7 if LagSPBound > Lag LB then
8 set Lag LB = LagSPBound;
9 else if Lag noimp > 5 then

10 set α = 0.9α; Lag noimp=0;
11 else
12 set Lag noimp = Lag noimp + 1;
13 update multipliers to find [FLλ (λ

k)];
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The models were coded in MatlabR2015a and solved by Gurobi Optimizer 5.6.2. Since the
evolutionary algorithm may be invoked up to five times during one pass of Routine 1, we execute
our overall heuristic only once on each problem instance to measure its performance against
other heuristics in the literature.

2.3.1 Overview of SDW heuristic

The SDW heuristic proposed by Süral et al. (2009) iterates between a primal heuristic and a sub-
gradient procedure to find successively better upper and lower bounds. We explain the mechanics
of the heuristic using our notation for a multiple family setting, but remind the reader that the
original heuristic pertains to a single-family problem.

To begin, the lower bound of [FL] is initialized. This is accomplished by solving the LP-
relaxation of original problem, and setting Lagrange multipliers equal to the dual of constraint
(2.2). The upper bound is determined by solving n single-period bounded knapsack problems
starting from the last period of the horizon and working towards the beginning, whereby the
demand required in each period is adjusted to account for any production that takes place in
future periods. Each single-period optimization problem maximizes production in a given period
(or, conversely, minimizes the inventory to be held).

Once the problem of each period has been solved, a setup schedule has been obtained, indicat-
ing in which periods production is to take place. Setup variables yi jt and z jt are fixed accordingly,
and [FL] is reduced to a MCNFP. Note that the setup schedule obtained from the previous step
may not be feasible, in which case, di jt pi jt will be greater than zero for some i, j, t.

The lower bound is obtained from the Lagrangian relaxation of constraint (2.11). Lagrange
multipliers, λi jt , are updated through a subgradient procedure that uses the best upper bound
obtained from the primal heuristic. These multipliers, along with a parameter β , are used to
update cost coefficients of the primal heuristic, and the procedure is repeated 80 times or until
the duality gap is small.

2.3.2 Overview of RHB heuristic

de Araujo et al. (2015) also relax (2.11), but employ a column generation approach. The unique
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feature of their RHB heuristic is its use of Lagrangian relaxation to solve both the restricted
master problem of the column generation problem, as well as to generate new columns.

They find an initial upper bound through the smoothing heuristic of Trigeiro et al. (1989),
and use a modified subgradient routine that considers past search directions, converging more
quickly than traditional subgradient methods. The subproblem is solved with a customized algo-
rithm that tackles single-period knapsack problems. If these subproblem solutions price out, the
corresponding columns are added to the restricted master problem and the volume algorithm is
applied there to find an upper bound.

The specialized algorithm used to solve the Lagrangian subproblem in this heuristic does not
directly scale to the generalized case with multiple product families. For this reason, we will
discuss the RHB heuristic only in the context of single-family experiments, specifically with no
setup costs in the objective function (see Section 2.3.5).

2.3.3 Overview of the Lagrangian Approach

In this approach, we apply Lagrangian relaxation to [FL] and generate multiple cuts at each iter-
ation to find lower bounds quickly. Feasible solutions are found through a Benders-like integer
problem that creates production schedules to be passed to a MCNFP. The combination of results
from the Lagrangian and Benders-like problems allow us to measure the gap between upper and
lower bounds.

Finding a Lower Bound

Decomposing [FLλ ] by production period u, the Lagrangian bound (a lower bound to [FL]) can
be expressed as:

max
λ

{
m

∑
i=1

l

∑
j=1

n

∑
t=1

λi jt +min
h

m

∑
i=1

l

∑
j=1

n

∑
t=1

(
H p

i jt−λi jt

)
ph

i jt

+
n

∑
u=1

[
min

h

l

∑
j=1

(
m

∑
i=1

(
Qi juyh

i ju +
n

∑
t=1

(
H̄i jut−λi jt

)
wh

i jut

)
+R juzh

ju

)]}
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where superscript h on variables pi jt ,yi ju,wi jut , and z ju denotes a feasible solution to the La-
grangian subproblem [FLλ ]. Introducing new variables

θ
w
u = min

h

l

∑
j=1

(
m

∑
i=1

(
Qi juyh

i ju +
n

∑
t=1

(
H̄i jut−λi jt

)
wh

i jut

)
+R juzh

ju

)
∀u

θ
p
i jt = min

h

(
H p

i jt−λi jt

)
ph

i jt ∀i, j, t

the Lagrangian Master Problem with disaggregated cuts becomes:

[LMP−d] max
m

∑
i=1

l

∑
j=1

n

∑
t=1

λi jt +
n

∑
u=1

θ
w
u +

m

∑
i=1

l

∑
j=1

n

∑
t=1

θ
p
i jt (2.40)

s.t.
m

∑
i=1

l

∑
j=1

n

∑
t=1

wh
i jutλi jt +θ

w
u ≤

l

∑
j=1

(
m

∑
i=1

(
Qi juyh

i ju +
n

∑
t=1

H̄i jutwh
i jut

)
+R juzh

ju

)
∀u,h (2.41)

ph
i jtλi jt +θ

p
i jt ≤ H p

i jt ph
i jt ∀i, j, t,h (2.42)

The Lagrangian subproblem, [FLλ ], is solved directly, with no decomposition by production
period u. Lagrange multipliers are initialized by using the dual of constraints (2.11) from the
LP-relaxation solution of [FL]. The solution from [FLλ ] is then used to generate cuts for the
Lagrangian Master Problem, [LMP− d]. Unlike Section 2.2.3, here the structure of [FLλ ] is
exploited, and disaggregated cuts are used to update the Lagrange multipliers. Compared to
[LMP], the solution time of [LMP−d] is much faster because the cuts are stronger.

Iterating between [FLλ ] and [LMP−d] continues until the gap between (2.33) and (2.40) is
less than 1%. Once the Lagrangian upper and lower bounds converge, the Lagrangian Bound (a
lower bound to [FL]) is found. The corresponding [FLλ ] solution is then used to find a better
upper bound.

Finding an Upper Bound

Similar to Süral et al. (2009), we first determine the time periods in which setups will take place.
Fixing those binary variables in [FL], we are left with only continuous variables and the resulting
problem is a MCNFP. To find the values of the binary variables, we apply an approach similar to
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combinatorial Benders decomposition, as in Naoum-Sawaya et al. (2015), where our “master”
problem consists of variables yi jt (z jt can be inferred from yi jt) and the subproblem is a MCNFP.

Since there are no constraints to guide the values of variables yi jt , we must specify a goal
for the master problem; otherwise, the setup schedule will not be meaningful. Once we begin
to find good setup schedules, we make incremental changes at each iteration to preserve upper
bound quality. The master problem objective minimizes the changes made to the previous setup
schedule, while satisfying constraints that force at least one setup to change. The premise of
these constraints is that only slight adjustments to a feasible setup schedule will be required to
achieve savings in holding cost. The master problem is formulated as follows:

min
m

∑
i=1

l

∑
j=1

n

∑
t=1
|ȳi jt− yi jt |

s.t. yi jt ∈ {0,1}

where ȳi jt denotes the current solution. To maintain linearity in this model, we introduce vari-
ables ỹi jt and modify the formulation:

[cBMP] min
m

∑
i=1

l

∑
j=1

n

∑
t=1

ỹi jt (2.43)

s.t. ỹi jt ≥ ȳi jt− yi jt ∀i, j, t (2.44)

ỹi jt ≥−(ȳi jt− yi jt) ∀i, j, t (2.45)

yi jt , ỹi jt ∈ {0,1} ∀i, j, t (2.46)

To strengthen [cBMP], we add Type 1 and Type 2 cuts (see Section 2.2.1).

Upon the first iteration of the upper bounding procedure, [cBMP] is solved along with con-
straint sets (2.31) and (2.32). After the setup schedule is found, yi jt and z jt are fixed and the
capacity available in t is adjusted for constraint (2.14) in problem [FL]. The resulting MCNFP
solves quickly, with infeasibilities in the schedule identified when di jt pi jt > 0 for any i, j, t.
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If ∑i jt di jt pi jt > 0, subsequent iterations of this procedure will add a Type 3 cut to [BMP]:

∑
(i jt):ȳi jt=0

yi jt + ∑
(i jt):ȳi jt=1

(1− yi jt)≥ 1 (2.47)

The best solution is maintained and the process of finding a feasible solution stops when ∑i jt di jt pi jt =

0. This feasible solution, however, can be further improved by continuing to add Type 3 cuts
(2.47) until problem [BMP] becomes infeasible. The upper bounding procedure will stop if no
improvement in the upper bound is seen within 100 consecutive cuts.

Other cuts were tested in an effort to generate production schedules that would avoid use of
initial inventories. An infeasibility is identified when initial inventory must be used to satisfy
demand in a particular period. This does not necessarily mean that there is not enough capacity
available in that period; rather, that period’s capacity could be used to satisfy future demand for a
particular t where insufficient capacity exists. Future capacity in t might not be available because
an item’s associated yi jt = 0, or other items’ setups whose values are 1, are consuming too much
capacity. Applying cuts:

∑
(i j,t>t ′):ȳi jt=0

yi jt + ∑
(i j,t>t ′):ȳi jt=1

(1− yi jt)≥ 1

proved too restrictive. They require that at least one change be made to the current setup schedule
over periods t > t ′, where t ′+1 indicates the first period in which initial inventory is used. Due to
many interactions across time periods, forcing schedule changes to occur over specific intervals
led to substandard results.

2.3.4 Results for Problem [P] with setup costs

We test our heuristic on the G51-60.dat problem instances of Trigeiro et al. (1989) that have been
modified to include multiple product families. The number of individual products in each family
can be either 3 or 6; the number of families varies between 2, 3, or 5; and the number of time
periods is 10 or 15. (See Appendix A for a full description of how these data sets were created.)
The heuristic will stop when the gap between the upper and lower bounds is within 1% or the
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Table 2.2: Average Duality Gap and CPU Time for [P] With Setup Costs and Multiple Families
SDW Lagrangian Benders-EA

m × l × n D% CPU (sec) D% CPU (sec) D% CPU (sec)

3 × 2 × 10 95.65 22.91 52.26 781.21 6.02 10.54
6 × 2 × 10 66.63 28.72 45.64 1471.89 24.93 103.02
3 × 2 × 15 116.54 33.40 48.74 878.43 26.71 93.25
6 × 2 × 15 84.18 54.75 118.48 2588.98 28.61 308.14
3 × 3 × 10 100.36 24.09 73.33 3602.03 10.28 28.20
6 × 3 × 10 78.94 37.63 36.83 3602.86 36.42 155.33
3 × 3 × 15 114.22 47.07 49.12 2398.41 35.15 257.72
6 × 3 × 15 80.25 94.43 83.69 3610.36 56.43 138.75
3 × 5 × 10 113.93 34.23 125.32 3604.30 20.65 172.45
6 × 5 × 10 77.56 82.45 86.76 3607.33 31.50 125.59
3 × 5 × 15 118.09 76.56 81.92 3605.33 41.00 619.42
6 × 5 × 15 93.57 252.7 147.05 3625.25 80.96 561.04

one-hour time limit is reached. The SDW heuristic was modified to include multiple families,
but all other heuristic parameters were maintained.

Table 2.2 shows how the Benders-EA approach compares to the SDW and cutting plane
heuristics in terms of duality gap (D%) and computational time (CPU). Note that D% is computed
as (UB – LB)/LB, and the value shown in this table is the average duality gap over the five test
instances at each problem size.

In the vast majority of test cases, Benders-EA obtains better lower and upper bounds than
SDW and the cutting plane method. Computational time, however, is generally longer for
Benders-EA and the cutting plane method than for SDW. This is caused by the difficulty of
the master problems: [BMP] for Benders-EA, and [LMP− d] and [cBMP] for the cutting plane
approach. The speed of the evolutionary algorithm and subgradient method in the Benders-EA
heuristic does give it an advantage over the cutting plane approach, resulting in shorter solution
times.
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2.3.5 Results for Problem [P] without setup costs

Single-Family Experiments

We use data sets from Süral et al. (2009) that are based on those from Trigeiro et al. (1989). The
heuristic stops when the gap between upper and lower bounds is within 1% or a one-hour time
limit is reached. There are two test beds, one that uses the original inventory holding costs as
defined by Trigeiro et al. (1989) (denoted as “het”, for heterogeneous), and another that modifies
those inventory costs to each take a value of 1 (denoted as “hom”, for homogeneous). Each of
these test beds contains 50 instances.

Table 2.3 compares our results to those of SDW and RHB, that are both reported in the online
supplement by de Araujo et al. (2015). We observe that the lower bound obtained by RHB is
always better than SDW, but the same is not true for the upper bound: the majority of the time,
SDW reports a better upper bound than RHB and Benders-EA. Note that “Gap” is found by
computing 100×(UB−LB)

LB .

The experiments show that, in most instances, our heuristic outperforms SDW when it comes
to the quality of the lower bound, and we are within 10% of the lower bound reported by RHB,
on average. However, the time required to reach such bounds and gaps are much higher than for
those heuristics. From these results, we glean that our approach, while time consuming, does
produce comparable lower bounds to SDW and RHB. Since better upper bounds are obtained
by SDW than by RHB, in the multiple family setting, we will measure the performance of our
heuristic against only SDW.
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Table 2.4: Average CPU Time and Improvement over SDW for [P] Without Setup Costs and
Multiple Families

SDW Benders-EA

m × l × n CPU (sec) CPU (sec) LB imp (%) UB imp (%) D% imp (%)

3 × 2 × 10 7.92 49.38 12.19 -26.08 -10.00
6 × 2 × 10 11.18 192.54 0.71 19.09 24.76
3 × 2 × 15 10.21 166.80 0.00 13.40 18.63
6 × 2 × 15 21.65 794.74 -0.33 -10.31 -13.72
3 × 3 × 10 9.62 111.78 -0.64 -21.85 -41.91
6 × 3 × 10 13.74 499.79 -0.01 12.75 20.15
3 × 3 × 15 17.28 400.22 0.14 33.14 42.07
6 × 3 × 15 30.65 2293.12 -0.20 -2.94 -10.03
3 × 5 × 10 14.51 431.06 4.60 15.26 24.33
6 × 5 × 10 29.91 1610.69 2.72 -38.57 -67.58
3 × 5 × 15 24.05 1161.52 17.22 1.81 20.89
6 × 5 × 15 70.43 >3600 2.56 -119.27 -262.05

Multiple-Family Experiments

The instances described in Section 2.3.4 are used here, but with R jt = Qi jt = 0 for all i, j, and t.
Table 2.4 shows the average duality gap and computational time for each problem size.

In most test instances, we outperform the SDW heuristic in both upper and lower bounds with
our hybrid Benders-EA approach, narrowing the duality gap in 37 out of 60 problem instances.
This near-tie in the bounds obtained by the heuristics could be due to the randomness of the setup
schedules generated by the evolutionary algorithm. Computation time for Benders-EA is higher.
It is evident that as the problem size grows, it is much more difficult to find good solutions
with either method: the Benders-EA heuristic terminates before [BMP] and [BSP] converge,
while SDW ends after 80 iterations with duality gaps exceeding 100%. Note that “LB imp”
and “UB imp” are found by dividing the difference between the Benders-EA and SDW lower
(upper) bounds by the SDW lower (upper) bound, and that a negative value indicates that the
Benders-EA bound is worse, on average, than the SDW bound. Due to the poor performance of
the Lagrangian approach with setup costs, it was not tested against SDW or Benders-EA in this
more difficult scenario without setup costs.
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2.4 Remarks

Benders decomposition, when applied on its own, will converge to the optimal solution, but the
difficulty of the master problem will impact the amount of time required for this to occur. In our
experiments, we observed that the lower bound obtained at the end of Routine 1 was still quite
far from the upper bound determined from either the evolutionary algorithm or [BSP]. In the
majority of problem instances, the subgradient procedure was able to quickly improve the values
of these lower bounds.

An obvious symptom of our hybrid Benders-EA approach is an increase in computational
time. Since cuts are added at each iteration, the master problem becomes increasingly difficult
to solve. However, given the fact that these big bucket lot-sizing models solve tactical planning
problems, in practical settings there will be sufficient time available to apply our heuristic and
have confidence that the solutions obtained are closer to optimality than other methods found in
the literature.

The structure of capacity constraints (2.14), in particular the presence of family setup times,
does not allow us to use the knapsack algorithm developed in de Araujo et al. (2015) to solve our
Lagrangian subproblem. These constraints also complicate the Trigeiro et al. (1989) smoothing
heuristic applied by Hindi et al. (2003) and de Araujo et al. (2015). Those authors, along with
Jans and Degraeve (2004) and Süral et al. (2009), use subgradient optimization to find a lower
bound. However, without a good feasible solution (upper bound), there is no guarantee that the
subgradient method will converge to the optimal solution. These observations led us towards
using a more exact method, namely Benders decomposition, for finding both upper and lower
bounds.

In larger instances, specifically as the number of time periods increases, the Lagrangian ap-
proach performs poorly, as much of the 1-hour solution time is spent finding the best Lagrangian
bound; the algorithm does not advance to improve the upper bound, resulting in poor duality
gaps. We varied the stopping criteria for the lower bound, using gaps of 0.01%, 0.1% and 1%
between the [LSP] and [LMP− d] solutions, and found that the time for this heuristic does im-
prove with only slight increases in the duality gap. However, much of the computational time is
still spent on finding the optimal Lagrangian bound.
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Chapter 3

Production Routing for
Multiple Product Families

3.1 Problem Description

Coordination within a supply chain involves decisions related not only to production planning,
but distribution and routing of materials as well. In a vendor-managed inventory setting, a single
supplier simultaneously determines quantities of a product to produce, ship, and transport to a
number of customers. By solving this problem, the supplier will effectively meet its customers’
demands at the lowest cost.

We tackle this production-routing problem (PRP) for a single supplier serving a number of
customers. As discussed in Section 1.2, we address the gap in literature and propose to solve
the PRP with multiple product families subject to coordinated, capacitated lot-sizing decisions
(PRP-CCLSP). We examine the case where a heterogeneous fleet is used to ship finished goods
to customers, and present a few scenarios that consider backordered demand and split deliveries.
We develop an exact algorithm with an efficient upper bounding heuristic, along with a decom-
position heuristic, to compare solution quality and computational times for both small and large
problem instances.

40



3.2 Problem Formulation

We consider a one-to-many network consisting of a single manufacturing facility producing sev-
eral items to deliver to multiple customers. The set of the manufacturing facility and customer
locations is represented by N and indexed by i∈ {0, ...,n}, with A = {(i, j) : i, j ∈N, i 6= j} as the
set of undirected arcs. The manufacturing facility, or plant, is denoted by i = 0, and customers
are within the set Nc = N \ {0}. The finite planning horizon is indexed by t = 1,2, ...,T . There
are multiple families, l = 1,2, ...,L, consisting of several items, k = 1,2, ...,K, whose lot-sizes
are coordinated due to the limited production time available in each period (CAPt). Production
of any item in family l will trigger a family setup cost, rl , and an item-specific setup cost, qkl ,
along with a per-unit production cost, ukl . Production time is also consumed: fl for setting up
family l, bkl for setting up item (k, l), and akl for each unit of (k, l) produced. Holding inventory
from period t to t + 1 costs hiklt per unit of item (k, l) per period, and any backordered demand
incurs a penalty of h̄iklt . Inventory can be held at both the manufacturer and customer locations,
but backorders are incurred only by customers.

The manufacturer must determine the appropriate lot sizes to satisfy customer demands, diklt ,
along with the routes on which deliveries will travel. The fleet consists of V heterogeneous
vehicles, indexed by v = 1,2, . . . ,V , whose delivery capacity is denoted by CAPv. We let ākl

denote the size of item (k, l), in terms of vehicle capacity units. Shipment routes must start
and end at the manufacturer, and deliveries can be split: a single vehicle will visit a particular
customer only once in a period, but a customer may be visited by different vehicles in the same
period. There is a cost, ci j, associated with travel between nodes i and j. See Table 3.1 for a
complete list of notation used throughout this chapter.

The following decisions are made simultaneously in each period t:

• lot-sizing: whether the manufacturer should produce item (k, l), and if so, how much.
Associated decision variables are production quantities, Pklt ; inventory held, Siklt ; backo-
rdered quantities, Biklt ; item setups, Yklt ; and family setups, Zlt .

• distribution: the quantity of (k, l) on vehicle v to ship from the manufacturer to customers,
Qv

iklt ;
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• routing: whether customer i is visited by vehicle v in period t (W v
it ) and the sequence in

which customers will be visited by vehicle v in period t (Xv
i jt).

[PRP] min
T

∑
t=1

[
L

∑
l=1

{
K

∑
k=1

(
uklPklt + ∑

i∈N
hikltSiklt + ∑

i∈Nc

h̄ikltBiklt +qklYklt

)
+ rlZlt

}
+

V

∑
v=1

∑
(i, j)∈A

ci jXv
i jt

] (3.1)

s.t. Pklt +S0kl,t−1−S0klt = ∑
i∈Nc

V

∑
v=1

Qv
iklt ∀k, l, t (3.2)

V

∑
v=1

Qv
iklt +Sikl,t−1−Bikl,t−1−Siklt = diklt−Biklt ∀i ∈ Nc,k, l, t (3.3)

L

∑
l=1

( K

∑
k=1

[
aklPklt +bklYklt

]
+ flZlt

)
≤CAPt ∀t (3.4)

Pklt ≤MkltYklt ∀k, l, t (3.5)

Yklt ≤ Zlt ∀k, l, t (3.6)

Qv
iklt ≤ M̃v

itW
v
it ∀v, i ∈ Nc,k, l, t (3.7)

K

∑
k=1

L

∑
l=1

∑
i∈Nc

āklQv
iklt ≤CAPvW v

0t ∀v, t (3.8)

∑
j∈Nc

Xv
0 jt ≤ 1 ∀v, t (3.9)

∑
j∈N

Xv
jit + ∑

j′∈N
Xv

i j′t = 2W v
it ∀v, i ∈ N, t (3.10)

∑
i∈S

∑
j∈S

Xv
i jt ≤ |S|−1 ∀v, t,S⊆ Nc : |S| ≥ 2 (3.11)

Pklt ,Siklt ,Biklt ,Qv
iklt ≥ 0 ∀v, i ∈ N,k, l, t (3.12)

Yklt ,Zlt ,W v
it ∈ {0,1} ∀v, i ∈ N,k, l, t (3.13)

Xv
i jt ∈ {0,1} ∀v,(i, j) ∈ A : i 6= 0, t (3.14)

Xv
0 jt ∈ {0,1,2} ∀v, j ∈ Nc, t (3.15)
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The objective function (3.1) minimizes the sum of production, inventory holding, backorders, se-
tups, and transportation costs in each period. Constraints (3.2) and (3.3) balance inventory both at
the plant and customers, respectively. Production capacity is observed in constraints (3.4), while
constraints (3.5) and (3.6) ensure that production takes place only when item and family setups
have occurred, where M is a very large number (say, Mklt = min(∑i∈Nc ∑

n
t ′ diklt ′,

CAPt−bklt− flt
aklt

)).
The next set of inequalities concerns the routing portion of the formulation. Constraints (3.7)
ensure that a delivery is made to customer i only if that customer is visited in period t where
M̃v

it = min(∑kl ∑
n
t ′ diklt ′,CAPv

), while constraints (3.8) ensure vehicle capacity is not violated. A
vehicle may leave the depot at most once in each period (3.9). Relations (3.10) and (3.11) are
the degree and subtour elimination constraints. Non-negativity, binary and integer restrictions
are enforced by (3.12), (3.13), (3.14), and (3.15).

3.2.1 Modifications to prohibit split deliveries and backorders

The formulation above permits customers to be served by more than one vehicle in a particular
period. At times, customers may prefer that demand arrive in a single shipment in a given period
to avoid indirect costs associated with receiving multiple deliveries. In this case, prohibiting split
deliveries requires an additional constraint to the formulation, indicating that at most one vehicle
visit a customer in a period:

∑
v

W v
it ≤ 1 ∀i ∈ Nc, t (3.16)

To ensure that all customer demand is on time, we can remove backorders by omitting vari-
ables Biklt and any of its associated cost parameters, h̄iklt .

3.3 Valid Inequalities

A number of valid inequalities have been developed to strengthen both the lot-sizing and vehicle
routing aspects of PRP. However, their addition to the problem depends on the particular settings
being studied.
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Table 3.1: Summary of notation
Notation Description Indices or Unit of measure

Indices
i Index for production facility (i = 0) and customers i = 0,1, ...,n
k Index for products k = 1,2, ...,K
l Index for families l = 1,2, ...,L
v Index for vehicles v = 1,2, ...,V
t Index for time periods t = 1,2, ...,T

Parameters
ukl Per unit production cost for item (k, l) $/unit
qkl Item setup for cost (k, l) $
rl Setup cost for family l $
ci j Cost per unit distance to ship item (k, l) along arc (i, j) $
hiklt Per unit holding cost for item (k, l) at customer i per time $/unit/time
h̄iklt Per unit backorder cost for item (k, l) at customer i per time period $/unit/time
diklt Demand of product (k, l) for location i in period t units
akl Unit production time for item (k, l) time
bkl Setup time for item (k, l) time
fl Setup time for family l time
ākl Vehicle capacity absorption for item (k, l) units
CAPt Available production time in period t time
CAPv Vehicle capacity units

Decision Variables
Pklt Amount of item (k, l) manufactured in period t Continuous
Siklt Amount of item (k, l) held at location i from period t to t +1 Continuous
Biklt Amount of item (k, l) backordered at location i from period t to t +1 Continuous
Yklt 1 if item (k, l) is produced in period t; 0 otherwise Binary
Zlt 1 if setup for family l takes place in period t; 0 otherwise Binary
Qv

iklt Amount of product (k, l) shipped to customer i on vehicle v in period t Continuous
Xv

i jt number of times vehicle v traverses arc (i, j) in period t Integer
W v

it 1 if vehicle v visits customer i in period t Binary

3.3.1 Lot-Sizing Inequalities

When demand must be met in each period, the following lot-sizing inequalities ensure that an
appropriate number of setups occur early enough in the horizon, based on initial inventory levels
and available capacity. Extending the framework established in Adulyasak et al. (2014a) to
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account for multiple products and multiple product families, we define

t ′kl = argmin
1≤t≤T

(
∑

i∈Nc

max
{

0,
t

∑
h=1

diklh−Sikl0

}
−S0kl0 > 0

)
∀k, l

t ′′ = min
i∈Nc

1≤k≤K
1≤l≤L

τ
′′
ikl

where τ ′′ikl = argmin
1≤t≤T

{
∑

t
h=1 diklh− Sikl0 > 0

}
,∀i ∈ Nc,k, l. These equations imply that t ′kl is the

earliest period in which the manufacturing facility must produce item (k, l), and t ′′ is the earliest
period in which at least one customer must receive a replenishment for any product (k, l). We let
κ be the minimum shipping quantity in period t ′′, where

κ = ∑
i∈Nc

1≤k≤K
1≤l≤L

max
{

0,
t ′′

∑
h=1

diklh−Sikl0

}

From these definitions, we add the following inequalities to formulation [PRP]:

t ′kl

∑
t=1

Yklt ≥ 1 ∀k, l (3.17)

∑
v∈V

t ′′

∑
t=1

W v
0t ≥

⌈
κ

λ

⌉
(3.18)

Inequality (3.17) ensures that a production setup takes place at least once over the interval (1, t ′kl),

while (3.18) ensures that delivery takes place at least
⌈

κ

λ

⌉
times over the interval (1, t ′′), where

λ =
∑vCAPv

V
(the average vehicle capacity).

When backorders are permitted, valid inequalities (3.17) and (3.18) do not apply, as there is
no need to force production setups nor minimum shipments to occur in particular periods.
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3.3.2 Routing Inequalities

With respect to vehicle routing, the following inequalities will strengthen [PRP]:

W v
it ≤W v

0t ∀v, i ∈ Nc, t (3.19)

Xv
i jt ≤W v

it ∀v,(i, j) ∈ A, t (3.20)

Xv
i0t ≤ 2W v

it ∀v, i ∈ Nc, t (3.21)

Inequality (3.19) requires vehicles to return to the depot, while (3.20) will allow a direct trip
from i to j by vehicle v only if that vehicle visits node i. Inequality (3.21) indicates that if the
manufacturing facility is a successor of node i on vehicle v, then customer i must be visited by
the same vehicle. (Recall from equation (3.15) that the manufacturing facility, i = 0, is visited
either 0, 1, or 2 times in any period t.)

3.4 Solution Approaches

3.4.1 Branch-and-Cut Algorithm

Valid inequalities (3.19), (3.20), and (3.21) are added to [PRP] before solving. Rather than add
all subtour elimination constraints (SECs) at once, these cuts are only added as needed, i.e. when
a subtour has been identified.

At each node of the branch-and-bound tree, the Floyd-Warshall (Floyd, 1962; Warshall, 1962)
algorithm is called to examine the relevant subgraphs for each vehicle v in period t, as given by
the current values of W and X (denoted by W̄ v

it and X̄v
i jt). Note that we modify the Floyd-Warshall

algorithm slightly to account for the undirected nature of our graph. For a particular vehicle v
and time period t, the graph will consist only of those customers whose corresponding W̄ v

it > 0.
For any pair of nodes i, j (where j 6= i) in the graph, if X̄v

i jt > 0, then an edge (i, j) will be created
with a weight of 1. The Floyd-Warshall algorithm finds the shortest path between every pair of
nodes in the graph (see Routine 4). If the length of the shortest path from a particular customer
to any other visited customer is infinite, then a subtour has been identified. The corresponding
SEC (3.11) can then be added to the formulation.
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Routine 4: Finding Subtours
1 begin

/* Construct subgraph for a given Z̄lt , X̄v
i jt */

2 set S = /0
3 for i = 1 : N do
4 if W̄ v

it > 0 then
5 S = S∪ i
6 for i in S do
7 for j in S: j 6= i do
8 if X̄v

i jt > 0 then // add edge (i, j) to S with weight = 1

9 set ci j = 1
/* Execute the Floyd-Warshall Algorithm for an undirected graph */

10 for u in S do
11 for k in S do // Initialize distances and predecessors

12 duk = 1000
13 preduk =−1
14 duu = 0
15 for each edge (u,k) do // Set distance to current edge weight

16 duk = cuk
17 preduk = u
18 for each edge (k,u) do // Add symmetric distances to create an undirected graph

19 dku = cuk
20 predku = k
21 for p in S do // Update distances if a shorter path is found

22 for u in S do
23 for k in S do
24 newdist = dup +dpk
25 if newdist < duk then
26 duk = newdist
27 preduk = predpk

/* Determine if subtour exists */

28 set S̄1 = S and S̄2 = S
29 while |S̄1|> 0 do
30 set next = /0
31 for j in S̄1 do
32 if ds1, j > 999 then
33 next = next ∪ j
34 S̄2 = S̄2 \ j
35 if |S̄2|> 1 then
36 add SEC for all edges and nodes in subtour S̄2
37 set S̄1 = next and S̄2 = next
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3.4.2 Finding an Upper Bound

While the branch-and-cut procedure is considerably faster than solving [PRP] directly, there
is still a certain amount of difficulty in generating good solutions within a reasonable amount
of time. Aside from challenges presented by the vehicle-routing portion of the problem, the
presence of coordinated lot-sizing with multiple families also adds a new layer of complexity.

We take an approach similar to Adulyasak et al. (2014b) in developing a good upper bound.
The original problem is split into a production-distribution subproblem, [PD], and a routing
subproblem, [R]. The goal is to solve each of these subproblems quickly and use them as a
“warm start” for the branch-and-cut algorithm.

Production-Distribution Subproblem

This subproblem identifies production quantities and customers visited in each period t. We
assume direct shipments, and estimate these costs through the function

σi = min
[
2c0i, min

j,k∈N, j 6=k
(ci j + cik)

]
We determine allocation of shipments to vehicles and keep index v on the quantities shipped
and customer visited. This simplifies the routing subproblem, since we will know which vehicle
from the heterogeneous fleet will be used. In contrast, Adulyasak et al. (2014b) omit the vehicle
index in their production-distribution subproblem, and instead use the Clarke-Wright algorithm
to assign shipment quantities to their fleet of identical vehicles. While our method does increase
the number of binary variables in [PD], solutions times are still fairly quick.

[PD] min
T

∑
t=1

[
L

∑
l=1

{
K

∑
k=1

(
uklPklt + ∑

i∈N
hikltSiklt + ∑

i∈Nc

h̄ikltBiklt +qklYklt

)
+ rlZlt

}

+ ∑
i∈Nc

V

∑
v=1

σiW v
it

]
s.t. (3.2)− (3.8), (3.12), (3.13)
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[PD] is solved using a fix-and-optimize approach. First, we set all W v
it = 1 to indicate that all

customer locations will be visited by every truck. Then, a production schedule, Yklt , is found.
Those Y values are fixed, and [PD] is re-solved to determine production quantities and new W
values. This final solution is fixed and passed along to subproblem [R]. Since optimality is not
necessary here, the solution tolerance is set to 1% and the branch-and-bound process terminates
after 5000 nodes.

Routing Subproblem

Now that production quantities and customers visited have been decided, routing decisions are
made. In keeping the vehicle index on variables Q and W , the allocation of shipments to vehicles
has already been made, so we are left to determine the order in which customers are visited.

For each vehicle v in period t, we solve a traveling salesman problem (TSP). Though the
entire customer network consists of n customer nodes, it is unlikely that a particular vehicle
will be assigned to visit all customers in one trip, so solving a few TSPs on these subgraphs is
manageable. We are not seeking an optimal solution at this stage, and only solve a TSP to its
first feasible solution using the formulation below:

[R]vt min 0

s.t. (3.9), (3.10), (3.11), (3.14), (3.15), (3.20), (3.21)

3.5 Computational Settings

A few tests were performed to determine overall formulation and computational settings to carry
forward to five problem scenarios. The format for subtour elimination constraints and lot-sizing
valid inequalities, as well as computational time limits were compared in Experiments A, B,
and C. A brief discussion of results is below, and a complete description of how data sets are
generated is provided in Section 3.8.1:

A. Lot-sizing Valid Inequalities: Inequalities from Adulyasak et al. (2014a) base minimum
production setup decisions on the demands and initial inventory only, while inequalities
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(2.32) from Section 2.2.1 consider remaining slack capacity after satisfying all demands in
previous periods.

Experiments using data sets g1.dat – g27.dat with no backorders and no split deliveries al-
lowed and using weak SECs, inequalities (3.17) and (3.18) outperformed cuts specified by
(2.32), as the latter failed to tighten the formulation in any way. It is believed that demand
patterns play a role in the impact those inequalities will have, and further testing should be
carried out to confirm these suspicions in future work.

B. Routing Inequalities and Constraints: Adulyasak et al. (2015) note that SECs (3.11) can
be re-stated as:

∑
i∈S

∑
j∈S

Xv
i jt ≤∑

i∈S
W v

it −W v
et ∀S⊆ Nc : |S| ≥ 2,∀e ∈ S,v, t (3.22)

In the presence of multiple vehicles, constraints (3.22) provide better root node solutions in
less time, while they reduce to (3.11) when only a single vehicle is considered. A comparison
of these two forms of SECs was conducted on instances g1.dat – g27.dat. Using SECs (3.22)
improved the root gap % in 19 out of 27 instances, and solved to optimality more quickly in
21 out of 27 instances (Figure 3.1).

C. Graph time-gap data. Gap % versus elapsed time is plotted in Figure 3.2 for instances g1.dat
– g27.dat using the best settings determined from Experiments A and B (no backorders, no
split deliveries, lot-sizing valid inequalities, and strong SECs). For the most part, solution
quality plateaus by 1200 seconds, but to ensure adequate solution time for larger instances, a
CPU time limit of 1800 seconds has been imposed moving forward.

3.6 Scenario Descriptions

The PRP with multiple families is tested under a number of inventory and routing scenarios to
study the impact of these constraints on overall cost, computational time, and vehicle utilization.
We refer the reader to subsection 3.2.1 for a description of constraint and variable modifications.
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Figure 3.1: Root Gap and CPU Performance using SECs (3.11) and (3.22)

1. Traditional (S1): No backorders and no split deliveries allowed. This represents a typical
PRP model, where demands must be met on time and each customer is visited by at most
one vehicle in each period. The benefits of this setting are that customers receive at most
one delivery in a period and demand is always fulfilled.

2. Flexible Transportation and Demand (S2): Backorders and split deliveries are allowed.
Here, the manufacturer tries to maximize vehicle utilization by allowing customers to be
visited by more than one vehicle in a given period. Demand may not necessarily be met on
time, also in an effort to maximize truck utilization – delaying delivery of some demand
may better fill a truck.

3. Flexible Transportation (S3): Split deliveries allowed, but backorders are not. Here,
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Figure 3.2: Time versus Gap % Data

demand must be met on time but customers can receive more than one shipment per period.

4. Flexible Demand (S4): Backorders are allowed, but split deliveries are not. This aims to
improve vehicle utilization (and even capacity utilization at the production-level), without
impacting the customer’s receiving process. Customers will receive at most one shipment
per period, but it may not necessarily satisfy all of their demands on time.

5. Dedicated Routes (S5): In scenarios S1 through S4, all production, distribution, and rout-
ing decisions are made simultaneously, with customers potentially being served by a differ-
ent vehicle in each period. With dedicated routes, customers will be clustered into districts
and assigned a specific vehicle that will serve that cluster for the entire horizon. Allocation
and routing decisions will be made only once, while production and distribution decisions
will continue to be made on a period-by-period basis.
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Scenarios 1 through 4 are implemented by making slight adjustments to constraints and vari-
ables in the original [PRP] formulation, and are solved using the branch-and-cut algorithm cou-
pled with the upper bounding heuristic. Scenario 5 calls for routing and production decisions to
be carried out sequentially, and is solved by the Dedicated Routes Heuristic, which is detailed
next.

3.7 Scenario 5: Dedicated Routes Heuristic

PRP-CCLSP with dedicated routes first solves a districting problem to determine customer clus-
ters (or districts). Each cluster remains unchanged over the time horizon, and so only production
and shipments are determined in the second phase.

3.7.1 Phase 1: Clustering Customers

Kalcsics (2015) describes a number of criteria that are useful in creating districts, such as balanc-
ing demand across districts, contiguity of districts, and compactness. Here, we choose to cluster
customers based on geographical proximity and total demands over the planning horizon. Once
grouped together, the order in which customers are visited is determined, and is fixed during
Phase 2 when production and shipment quantities are found.

Districting Formulation

Let λ v
i j indicate whether or not customer j is assigned to district center i served by vehicle v, and

let σi = 1 if customer i is designated as a district center and 0 otherwise. This designation of
“district center” is only needed for the purposes of the objective function, which minimizes the
number of customers in each district. Since we have a heterogeneous fleet of vehicles, variable γv

i

represents whether or not district i is serviced by vehicle v (for a homogeneous fleet, this variable
would not be necessary). Parameter D j denotes customer j’s total demand over the horizon and
is equal to ∑klt d jklt .
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min ∑
(i, j)∈Nc

∑
v∈V

D jc2
i jλ

v
i j (3.23)

s.t. ∑
i∈Nc

∑
v∈V

λ
v
i j = 1 ∀ j ∈ Nc (3.24)

∑
i∈Nc

σi ≤V (3.25)

∑
v∈V

γ
v
i ≤ σi ∀i ∈ Nc (3.26)

∑
i∈Nc

γ
v
i = 1 ∀v ∈V (3.27)

∑
j∈Nc

D jλ
v
i j ≤ T ·CAPv

γ
v
i ∀i ∈ Nc,v ∈V (3.28)

∑
j∈Nc

D jλ
v
i j ≥ α

vT ·CAPv
γ

v
i ∀i ∈ Nc,v ∈V (3.29)

λ
v
i j,γ

v
i ,σi ∈ {0,1} ∀i, j ∈ Nc,v ∈V (3.30)

The objective function minimizes the weighted “moment of inertia” of the district. Equation
(3.24) assigns customer j to a single district center i and constraint (3.25) limits the number of
district centers according the number of vehicles in the fleet. Vehicle v is assigned to district
center i only if that location has been chosen as a center (3.26), and a vehicle must be assigned
to exactly one district center (3.27). Inequalities (3.28) and (3.29) specify the maximum and
minimum quantities that can be shipped within the district. The maximum threshold is based on
the total vehicle capacity over the horizon, while the minimum threshold is linked to a measure
of vehicle utilization that is quantified by αv. These αv may vary depending on vehicle size; to
encourage smaller vehicles to be filled first, their α values may be larger in relation to those α

for larger vehicles in the fleet. If a more balanced approach is desired (i.e. the proportion that
each vehicle is filled should be roughly equal, regardless of its nominal capacity), the same value
of α may be assigned to each vehicle.

As discussed by Kalcsics (2015), there are other expressions aside from objective function
(3.23) that could be used to achieve a compact district. While each may result in a different
district, there is no single measure that dominates the others.
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Districting Solution Approach

This location-allocation formulation is typically solved by decomposition (Kalcsics, 2015). An
initial set of district centers i is fixed and the resulting subproblem allocates customers to these
centers. Using these allocations, new district centers are determined by solving, for each cluster,
a single facility location problem.

The clustering heuristic will:

1. Initialize district centers σi,

2. Fix σi and solve the resulting allocation subproblem to obtain λ v
i j and γv

i .

3. Compute a weighted center of gravity using the allocations from step (2) to find a new
district center σi for each district.

4. Repeat steps (2) and (3) until the solution converges.

Initialization

To initialize district centers, the k-means++ algorithm (Arthur and Vassilvitskii, 2007) assigns
cluster centers based on a weighted probability. In this problem, total horizon demands (D j) are
used as the weights. Vector cib represents the minimum distance from customer i to any location
b that is already designated as a cluster center. Routine 5 shows the pseudocode:

Routine 5: Initializing Cluster Centers
1 begin

/* Initialize variables */

2 set C̄ = /0, cib = /0, num centers = 0
/* Execute k-means++ algorithm */

3 while num centers <V do
4 if C̄ = /0 then
5 set σi = 1 w.p. Di/∑ j D j

6 else
7 set σi = 1 w.p. Dic2

ib/∑ j D jc2
jb

Once assigned, the set of cluster centers can be denoted as C̄ = {σ1,σ2, ..σv} where |C̄|=V
and C̄ ⊂ Nc.
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Allocating Customers to Clusters

Fixing district center variable values as σ̄i, the allocation subproblem is:

min ∑
i∈C̄

∑
j∈Nc

∑
v∈V

D jc2
i jλ

v
i j (3.31)

s.t. ∑
i∈C̄

∑
v∈V

λ
v
i j = 1 ∀ j ∈ Nc (3.32)

γ
v
i ≤ σ̄i ∀i ∈ C̄,v ∈V (3.33)

∑
i∈C̄

γ
v
i = 1 ∀v ∈V (3.34)

∑
j∈Nc

D jλ
v
i j ≤ T ·CAPv

γ
v
i ∀i ∈ C̄,v ∈V (3.35)

∑
j∈Nc

D jλ
v
i j ≥ α

vT ·CAPv
γ

v
i ∀i ∈ C̄,v ∈V (3.36)

λ
v
i j,γ

v
i ∈ {0,1} ∀i ∈ C̄, j ∈ Nc,v ∈V (3.37)

Using a vector of minimum thresholds based on vehicle size is just one way to influence
the allocation of customers to cluster. Alternative methods may include constraints specifying a
particular number of customers that must be served by each vehicle, or assigning a penalty for
using certain vehicles, e.g. an extra unit charge if a customer is served by a small vehicle will
influence the model to allocate customers to a larger vehicle first.

Updating Cluster Centers

Using the clusters developed from the allocation subproblem, new cluster centers are computed.
Letting Cv be the set of customers in cluster v (served by vehicle v) and j, j′ ∈Cv be customers
in cluster v, we compute

argmin
j∈Cv

∑
j′∈Cv

D j′c
2
j′ j (3.38)

to find a new cluster center j, or σ j. This value is passed to the allocation subproblem to deter-
mine new customer allocations, and the process repeats until no changes in the allocations occur
(or for an arbitrary number of iterations).
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3.7.2 Phase 2: Determining Vehicle Routes

Once customers are assigned to clusters, vehicle routes are determined. These routes stay fixed
over the horizon, regardless of demand patterns. This could mean that in certain periods, a cus-
tomer may not be visited by a vehicle, but the sequence of customer visits will remain unchanged.

The vehicle routing portion of PRP reduces to V TSP problems, solved only once:

[T SP]v min ∑
i∈{0∪Cv}

∑
j∈{0∪Cv}

ci jXv
i j (3.39)

s.t. ∑
j∈Cv

Xv
i j + ∑

j′∈Cv

Xv
i j = 2 ∀i ∈ {0∪Cv} (3.40)

∑
i∈Cv

∑
j∈Cv

Xv
i j ≤ |S|−1 ∀S ∈Cv : |S| ≥ 2 (3.41)

Xv
i j ∈ {0,1} ∀(i, j) ∈ {0∪Cv} (3.42)

Objective function (3.39) minimizes the total distance traveled in one period when all cus-
tomers in cluster v are visited. (Recall, Cv denotes the set of customers served by vehicle v.)
Degree constraints (3.40) ensure there is exactly one arc into and one arc out of a particular
node, and subtours are eliminated through constraints (3.41). Note that subtour elimination con-
straints (SECs) from the original formulation include variables W v

it ; in each cluster’s TSP, every
W v

it = 1 and so those SECs reduce to constraints (3.41).

3.7.3 Phase 3: Determining Production and Distribution Quantities

Since routing and production/distribution decisions have been separated, Phases 2 and 3 can be
solved in parallel, as their outcomes do not impact one another.

From Phase 1, each vehicle has enough total capacity to meet aggregate demand for its cluster
over the planning horizon. In a particular period, however, this might not be the case. To account
for any periods of demand exceeding vehicle capacity, backlogging (or outsourcing) at a high
cost must be allowed to prevent infeasibility, and this is reflected in the production-distribution
formulation:
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[PD2]Cv min
T

∑
t=1

L

∑
l=1

{
K

∑
k=1

(
uklPklt + ∑

i∈N
hikltSiklt + ∑

i∈Nc

h̄ikltBiklt +qklYklt

)
+ rlZlt

}
(3.43)

s.t. Pklt +S0kl,t−1−S0klt = ∑
i∈Cv

V

∑
v=1

Qv
iklt ∀k, l, t (3.44)

Qv
iklt +Sikl,t−1−Bikl,t−1−Siklt = diklt−Biklt ∀v ∈V, i ∈Cv,k, l, t

(3.45)
L

∑
l=1

( K

∑
k=1

[
aklPklt +bklYklt

]
+ flZlt

)
≤CAPt ∀t (3.46)

Pklt ≤MYklt ∀k, l, t (3.47)

Yklt ≤ Zlt ∀k, l, t (3.48)
K

∑
k=1

L

∑
l=1

∑
i∈Cv

āklQv
iklt ≤CAPv ∀v, t (3.49)

Pklt ,Siklt ,Biklt ,Qv
iklt ≥ 0 ∀v, i ∈ N,k, l, t

(3.50)

Yklt ,Zlt ∈ {0,1} ∀k, l, t (3.51)

This model is similar to [PD], though routing variables W v
it and costs σi are omitted. Con-

straints (3.45) to (3.49) are analogous to constraints (3.3) to (3.6) and (3.8).

3.8 Computational Results

Scenarios 1 through 4 are solved via the branch-and-cut algorithm, which is tested on its own,
as well as with warm-starting from the upper bounding heuristic. Scenario 5 is solved with the
Dedicated Routes Heuristic. Both solution methods are coded in Python 2.7 and call CPLEX
12.7 to solve [PRP] with tolerance set to 0.1%. The branch-and-cut algorithm was run on a PC
with dual-core 2.61GHz processor and 39GB RAM. The upper bounding procedure was run on
a Lenovo laptop with Intel Core i7 2.9GHz processor and 8GB of RAM. We limit our study to

58



the case of two product families only (L = 2), though our formulation and solution approach can
be extended to any value of L.

3.8.1 Data Set Creation

We use the 50-customer data instances developed by Boudia et al. (2005) (Set B50), modifying
them to include multiple product families and a heterogeneous fleet of vehicles. For each problem
size considered, three instances (a,b, and c) are generated: customer coordinates are taken from
instances 1, 11, and 21 of Set B50; demand for instance a corresponds to the first 9 periods of
demand of instances 1 through 10; instance b uses the first 9 periods of demand from instances
11 through 20; and instance c uses the first 9 periods of demand of instances 21 through 30.

To illustrate how demands from Set B50 are assigned in the multi-family case: demand from
B50 instance 1 corresponds to demand for item (k, l) = (1,1) of instance a; demand from B50
instance 2 corresponds to item (k, l) = (1,2) of instance a; and demand from B50 instance 3
corresponds to item (k, l) = (2,1) of instance a.

All other problem parameters are generated randomly as follows: unit production costs ukl

are randomly generated over the discrete uniform distribution (20,30,40, ...,80); item setup costs

qkl = 10ukl; family setup costs rl =
10∑k qkl

K
; travel cost ci j is the Euclidean distance between

nodes i and j; holding cost at the plant h0kl = d0.05ukle; holding costs at customer locations
hikl are randomly generated over the discrete distribution U(6,9) for i ∈ Nc; backorder costs
h̄ikl = 15hikl for i ∈ Nc; unit production times are akl = 1 for all k, l; item setup times bkl are
randomly generated over the discrete uniform distribution (10,20, ...,100); family setup times

fl =
10∑k bkl

K
; production capacity CAP =

⌊
2∑iklt diklt

T

⌋
, and unit vehicle absorption ākl = 1 for

all k, l.

Similar to Adulyasak (2017), vehicle capacity, CAPv, is based on the number of customers in
each instance, as well as the maximum of the maximum allowable inventory over all customers
in Nc. Note that we do not restrict the amount of inventory allowed at each customer in our
formulation, but this value (equal to 1200) is provided in the data sets of Boudia et al. (2005).
Since we are considering a heterogeneous fleet of vehicles as well as multiple items, these char-
acteristics must be factored into the vehicle capacity calculation. We use the following equation
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to set vehicle capacity:

CAPv
=

αβ λ γ(1200)
V

where λ = S (small), M (medium), L (large), α =
⌊ n

10

⌋
+ 1,β S = 2,β M = 3,β L = 6,γ =

KL
2

and V corresponds to the total number of vehicles in the fleet. Problem sizes are listed in Table
3.2. With three instances (a,b,c) at each problem size, a total of 108 problems are tested.

Boudia et al. (2005) initialize their model by setting beginning inventory to zero at all cus-
tomer locations and allowing production to begin only in period t = 2. As such, initial inventory
at the manufacturing facility is established to satisfy period 1’s demand exactly for all customers.

Table 3.2: Problem Sizes
n K L T V Fleet composition

10 1 2 3/6/9 3 SSM
10 2 2 3/6/9 4 SSSM
10 5 2 3/6/9 5 SSSMM

20 1 2 3/6/9 3 SSM
20 2 2 3/6/9 4 SSSM
20 5 2 3/6/9 5 SSSMM

30 1 2 3/6/9 4 SSSM
30 2 2 3/6/9 5 SSSMM
30 5 2 3/6/9 6 SSSMMM

40 1 2 3/6 4 SSML
40 2 2 3/6 5 SSMML
40 5 2 3/6 6 SSSMML

50 1 2 3 4 SSML
50 2 2 3 5 SSMML
50 5 2 3 6 SSMMML

S: small truck, M: medium truck, L: large truck
e.g. “SSM” indicates that the fleet consists of
two small trucks and one medium truck
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3.8.2 Impact of the Upper Bounding Heuristic

For each of Scenarios 1 through 4, [PRP] is solved with only the branch-and-cut algorithm,
and then solved again but with the algorithm warm-started using results of the upper bounding
heuristic. As instances become larger and more difficult to solve, we encountered many com-
puting crashes within the Python environment, and so only problems g1.dat–g72.dat have been
solved without the UB heuristic. (These difficulties did not occur when the branch-and-cut al-
gorithm was warm-started.) Average results over problem sets for each scenario are shown in
Tables 3.3 – 3.6, where %LB indicates the final lower bound as a percentage of the final upper
bound and CPU denotes the computational time in seconds. Similarly, %RLB shows the lower
bound obtained at the root node as a percentage of the upper bound at the root node, and RCPU
is computational time at the root node.

For all scenarios, performances without and with the UB heuristic are nearly identical when
comparing %LB values. The benefit of the UB heuristic is seen more evidently in the smaller root
gap (%RLB), particularly for Scenarios 2, 3, and 4 when transportation and demand flexibility
are introduced. The improvement there speeds overall solution time for these three scenarios,
compared to when no warm-start is used.

Since solution time is limited to 30 minutes, it is likely that further improvement in the overall
gap would occur without and with the UB heuristic. Moreover, as solution tolerance is currently
set to 0.1%, it is also highly probable that warm-starting the branch-and-cut algorithm provides
even more benefit than what is reported in Tables 3.3 – 3.6, as CPLEX terminated early in many
instances.

Table 3.7 shows the average breakdown of computational time required to solve each sub-
problem within the upper bounding heuristic. Overall time to compute a good upper bound is
fairly low for problem instances across all scenarios. Differences lie in the ratio of time spent on
solving [PD] versus [R]. For Scenarios 1 and 4, most effort is focused on determining production-
distribution decisions, while for Scenarios 2 and 3 (when split deliveries are allowed), the rout-
ing decisions become more time-consuming. In general, subproblem [R] solves quickly since we
search only for the first feasible solution and are not concerned with its distance from the optimal
solution. Even with solution tolerance set to 1%, the longer solution time can be attributed to
allocating products to vehicles (i.e. having more binary variables W v

it due to the vehicle index).
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Table 3.3: Scenario 1 Summary Without and With UB Heuristic
Without UB Heuristic With UB Heuristic

n K L T V %LB Nodes CPU %RLB RCPU %LB Nodes CPU %RLB RCPU

10 1 2 3 3 99.96 65.33 3.09 98.88 1.56 99.97 42.33 5.40 99.33 4.23
10 1 2 6 3 99.95 654 15.80 92.48 4.51 99.93 72.33 46.19 98.76 43.22
10 1 2 9 3 99.92 1781 58.27 87.12 6.47 99.93 714.67 175.50 98.15 146.43
10 2 2 3 4 99.93 1328.67 21.84 93.41 3.76 99.92 106.67 17.16 99.36 1.99
10 2 2 6 4 99.94 2346.67 82.98 94.12 15.68 99.93 220 190.36 99.02 171.67
10 2 2 9 4 99.92 4915 372.81 93.15 95.51 99.94 6511.33 606.89 93.15 270.56
10 5 2 3 5 99.92 1984.67 110.94 96.38 24.80 99.93 1036.67 147.67 98.08 82.19
10 5 2 6 5 99.74 3610.67 1782.85 inf 88.80(2) 99.53 2981 1661.94 94.29 164.94(2)

10 5 2 9 5 98.22 2346 1800.17 inf 210.99(3) 98.15 2376 1800.18 inf 330.08(3)

20 1 2 3 3 99.97 340 28.64 99.16 10.81 99.97 74 55.31 98.79 48.14
20 1 2 6 3 99.96 894 125.91 98.90 53.06 99.95 316 221.32 99.08 168.54
20 1 2 9 3 99.93 3626.67 470.27 97.02 137.69 99.97 2930.33 658.22 97.15 296.00
20 2 2 3 4 99.94 500.5 136.42 99.84 66.75 99.94 635.67 147.77 98.02 80.13
20 2 2 6 4 99.91 4002.33 645.77 inf 103.01 inf 1205.33 514.08 inf 213.62
20 2 2 9 4 99.08 2543 1822.69 inf 166.57(3) inf 2689.67 1800.32 inf 298.64(3)

20 5 2 3 5 99.94 879.33 432.41 97.92 120.22 97.97 941 637.82 97.97 221.85
20 5 2 6 5 98.98 1318.67 1800.17 96.24 397.11(3) 96.24 1172 1800.23 96.24 491.30(3)

20 5 2 9 5 97.55 648.5 1800.21 inf 652.45(2) inf 562 1800.20 inf 704.16(2)

30 1 2 3 4 99.95 1913 458.83 97.25 57.15 98.13 1572.67 592.90 98.13 220.44
30 1 2 6 4 99.96 1247 657.30 inf 177.02 inf 1762.33 1098.92 inf 354.52
30 1 2 9 4 97.82 1574.33 1800.39 inf 437.29(3) inf 1325.33 1800.38 inf 706.97(3)

30 2 2 3 5 99.95 1248.67 772.04 96.31 267.38 96.31 1317 990.79 96.31 370.77
30 2 2 6 5 99.20 1090 1632.05 inf 525.47(1) inf 1297 1733.97 inf 616.33(2)

30 2 2 9 5 92.05 74 1800.23 91.93 1385.73(1) – – – – –
30 5 2 3 6 – – – – – 97.98 824 1800.17 97.98 378.27(2)

30 5 2 6 6 – – – – – 96.47 50 1801.21 96.47 612.77(2)

30 5 2 9 6 – – – – – – – – – –

40 1 2 3 4 – – – – – 95.69 2466.33 1210.42 95.69 232.03
40 1 2 6 4 – – – – – inf 1444 1577.36 inf 498.16(1)

40 2 2 3 5 – – – – – inf 696.67 1295.74 inf 304.26
40 2 2 6 5 – – – – – 95.38 300 1806.61 95.38 913.89(1)

40 5 2 3 6 – – – – – – – – – –
40 5 2 6 6 – – – – – – – – – –

50 1 2 3 4 – – – – – inf 1242.67 1517.47 inf 434.68(2)

50 2 2 3 5 – – – – – inf 430.33 1574.73 inf 483.90(1)

50 5 2 3 6 – – – – – – – – – –

(#) Indicates number of instances (out of 3) that did not solve to optimality
– Indicates that no incumbent solution was found at the root node within the 1-hour time limit for any instance
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Table 3.4: Scenario 2 Summary Without and With UB Heuristic
Without UB Heuristic With UB Heuristic

n K L T V %LB Nodes CPU %RLB RCPU %LB Nodes CPU %RLB RCPU

10 1 2 3 3 99.98 15.33 3.29 99.14 2.69 99.98 22 4.41 99.16 3.82
10 1 2 6 3 99.95 229.33 13.74 98.34 6.07 99.97 139.33 19.79 98.64 14.27
10 1 2 9 3 99.94 2007.33 63.78 91.52 11.31 99.94 311 98.68 98.28 82.22
10 2 2 3 4 99.96 80 7.76 95.44 1.41 99.96 1 7.30 99.64 3.81
10 2 2 6 4 99.96 916.67 69.28 94.14 21.00 99.94 187 71.02 98.84 53.81
10 2 2 9 4 99.93 1839.33 193.40 85.17 34.27 99.95 691 220.74 97.77 122.34
10 5 2 3 5 99.95 439.33 73.53 95.85 24.85 99.94 251 68.52 97.55 43.57
10 5 2 6 5 99.58 1739 1515.58 80.94 105.55(1) 99.67 1218.67 1728.93 96.75 205.23(1)

10 5 2 9 5 98.03 2062.67 1800.17 62.77 140.04(3) 97.69 2123 1800.18 91.57 179.21(3)

20 1 2 3 3 99.96 133.5 26.55 99.08 15.79 99.98 156.5 54.18 99.10 43.12
20 1 2 6 3 99.96 336.67 92.95 98.68 48.16 99.93 317 170.04 98.75 120.04
20 1 2 9 3 99.92 873.33 263.46 82.60 64.76 99.91 1255.33 439.92 93.29 161.33
20 2 2 3 4 99.95 321 72.24 97.02 29.23 99.96 44 83.76 99.48 72.84
20 2 2 6 4 99.94 456.67 282.49 87.98 100.55 99.93 442.67 310.41 98.01 150.05
20 2 2 9 4 98.46 1747.33 1800.30 43.46 207.59(3) 98.18 1492 1842.33 74.28 249.61(3)

20 5 2 3 5 99.92 1843.67 1338.74 86.36 117.93(1) 99.66 1372 1131.15 93.34 158.64(1)

20 5 2 6 5 99.16 879.67 1800.19 60.40 347.71(3) 98.82 925.33 1800.27 74.31 420.85(3)

20 5 2 9 5 97.63 637 1800.26 inf 759.76(3) 77.17 570 1800.42 inf 794.32(3)

30 1 2 3 4 99.98 926 289.53 97.73 90.42 99.96 643.67 241.87 99.07 133.33
30 1 2 6 4 99.96 1142.67 796.42 90.56 171.42 99.96 1260.67 897.94 90.56 216.93
30 1 2 9 4 98.21 944.33 1800.87 61.17 448.69(3) 98.25 1005.33 1801.10 61.17 510.71(3)

30 2 2 3 5 99.96 1237.33 820.95 95.35 128.10 99.97 1260 832.09 95.48 150.74
30 2 2 6 5 99.73 825 1507.06 36.14 374.53(1) 99.69 808.67 1435.20 36.14 366.00(1)

30 2 2 9 5 77.26 370 1800.27 inf 1067.47(2) 77.26 390 1800.22 inf 989.44(2)

30 5 2 3 6 – – – – – 99.15 534.67 1800.24 39.06 334.96(3)

30 5 2 6 6 – – – – – – – – – –
30 5 2 9 6 – – – – – – – – – –

40 1 2 3 4 – – – – – 99.92 1328 738.06 97.88 155.69
40 1 2 6 4 – – – – – 99.98 934.5 1288.35 54.75 244.90
40 2 2 3 5 – – – – – 99.18 669.5 1352.52 74.19 285.98(1)

40 2 2 6 5 – – – – – 99.59 500 1800.42 inf 640.23(1)

40 5 2 3 6 – – – – – 27.92 30 1800.19 27.89 1219.45(1)

40 5 2 6 6 – – – – – – – – – –

50 1 2 3 4 – – – – – 98.86 1300 1800.27 83.52 318.08(1)

50 2 2 3 5 – – – – – 99.93 221 1718.12 inf 519.93
50 5 2 3 6 – – – – – 36.96 20 1800.32 36.85 1479.09(2)

(#) Indicates number of instances (out of 3) that did not solve to optimality
– Indicates that no incumbent solution was found at the root node within the 1-hour time limit for any instance
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Table 3.5: Scenario 3 Summary Without and With UB Heuristic
Without UB Heuristic With UB Heuristic

n K L T V %LB Nodes CPU %RLB RCPU %LB Nodes CPU %RLB RCPU

10 1 2 3 3 99.97 13.33 2.04 99.79 1.35 99.98 6.33 9.04 99.81 8.44
10 1 2 6 3 99.95 430 15.79 97.14 4.96 99.95 202.67 64.21 99.30 58.73
10 1 2 9 3 99.91 891.67 40.44 84.82 8.23 99.95 621 100.21 98.34 77.19
10 2 2 3 4 99.96 0.33 2.62 99.98 1.01 99.96 0.33 7.42 99.98 5.79
10 2 2 6 4 99.94 610.33 47.14 85.65 12.23 99.96 256.67 81.53 99.14 61.98
10 2 2 9 4 99.91 3036 229.17 86.94 24.11 99.91 1427.33 216.79 97.34 101.08
10 5 2 3 5 99.97 605.33 58.25 94.27 19.06 99.98 200.67 51.82 97.86 27.00
10 5 2 6 5 99.67 1516 1534.32 92.89 118.11(1) 99.79 806.33 981.60 97.35 286.08(1)

10 5 2 9 5 98.08 1462.33 1800.17 92.71 168.08(3) 98.24 971.33 1800.19 96.35 226.22(3)

20 1 2 3 3 99.98 51 19.65 99.66 15.12 99.98 51 41.17 99.66 36.41
20 1 2 6 3 99.97 242 69.89 94.22 36.11 99.96 309.67 157.11 99.20 115.84
20 1 2 9 3 99.91 585 243.99 85.90 64.18 99.92 1501.67 326.98 93.23 112.36
20 2 2 3 4 99.97 394 78.47 99.79 27.30 99.93 349.5 135.32 99.89 82.87
20 2 2 6 4 99.95 898.67 287.58 96.13 114.65 99.94 333.33 298.14 97.15 159.91
20 2 2 9 4 98.95 1785.33 1800.20 inf 185.18(3) 98.84 1637.67 1812.62 inf 213.99(3)

20 5 2 3 5 99.95 943.67 725.80 95.30 142.84 99.95 980.67 706.01 97.26 223.66
20 5 2 6 5 99.06 995.33 1800.20 96.25 359.68(3) 99.02 906.67 1800.29 96.25 409.23(3)

20 5 2 9 5 97.35 501.67 1800.22 inf 812.04(3) 97.43 424.33 1800.34 inf 868.06(3)

30 1 2 3 4 – – – – – – – – – –
30 1 2 6 4 – – – – – – – – – –
30 1 2 9 4 – – – – – 97.35 1171.33 1812.55 inf 446.95(3)

30 2 2 3 5 – – – – – – – – – –
30 2 2 6 5 – – – – – 99.81 968 1688.18 inf 379.84(1)

30 2 2 9 5 – – – – – – – – – –
30 5 2 3 6 – – – – – 99.65 386 1800.17 inf 403.69(1)

30 5 2 6 6 – – – – – – – – – –
30 5 2 9 6 – – – – – – – – – –

40 1 2 3 4 – – – – – – – – – –
40 1 2 6 4 – – – – – – – – – –
40 2 2 3 5 – – – – – 99.98 301 732.41 99.06 357.08
40 2 2 6 5 – – – – – – – – – –
40 5 2 3 6 – – – – – – – – – –
40 5 2 6 6 – – – – – – – – – –

50 1 2 3 4 – – – – – – – – – –
50 2 2 3 5 – – – – – – – – – –
50 5 2 3 6 – – – – – – – – – –

(#) Indicates number of instances (out of 3) that did not solve to optimality
– Indicates that no incumbent solution was found at the root node within the 1-hour time limit for any instance
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Table 3.6: Scenario 4 Summary Without and With UB Heuristic
Without UB Heuristic With UB Heuristic

n K L T V %LB Nodes CPU %RLB RCPU %LB Nodes CPU %RLB RCPU

10 1 2 3 3 99.96 308 7.87 92.32 2.79 99.96 88 7.90 99.08 5.71
10 1 2 6 3 99.92 747 27.35 93.42 8.70 99.94 680.33 44.54 97.68 30.16
10 1 2 9 3 99.94 946.67 42.76 94.77 10.24 99.93 867 82.38 96.48 50.03
10 2 2 3 4 99.92 1400 33.81 88.08 5.19 99.95 3446.67 57.80 92.07 10.00
10 2 2 6 4 99.91 5379 175.99 92.09 21.28 99.92 6265.33 328.56 93.76 137.04
10 2 2 9 4 99.94 3315.33 301.63 87.47 40.81 99.91 5717.33 566.06 91.82 180.73
10 5 2 3 5 99.94 2873.67 202.94 81.45 14.24 99.94 1303 102.71 82.96 16.62
10 5 2 6 5 98.85 1919 1800.19 76.02 99.33(3) 98.87 1899 1800.19 86.81 265.76(3)

10 5 2 9 5 98.01 1628.33 1800.20 72.16 178.02(3) 97.61 1703.67 1800.19 76.43 252.81(3)

20 1 2 3 3 99.94 355 32.92 98.90 16.50 99.94 173 44.89 99.30 30.92
20 1 2 6 3 99.96 587.33 116.74 96.34 61.70 99.97 1040 244.49 98.83 163.97
20 1 2 9 3 99.91 3621.33 451.25 85.75 78.80 99.92 2899 555.4 96.75 202.25
20 2 2 3 4 99.94 406.5 80.73 98.32 27.40 99.95 2991.67 345.83 97.63 164.93
20 2 2 6 4 99.91 697 331.44 88.60 107.48 99.92 1781.67 697.01 89.98 200.84
20 2 2 9 4 98.71 2313.33 1800.41 46.54 206.93(3) 98.56 2413.33 1800.16 54.75 253.66(3)

20 5 2 3 5 99.83 2417 1258.45 87.95 85.01(1) 99.67 2976.33 1190.83 89.13 135.67(1)

20 5 2 6 5 99.33 1297 1800.21 inf 245.51(3) 99.30 1182 1800.20 inf 284.96(3)

20 5 2 9 5 75.69 696.67 1800.20 inf 682.67(3) 71.53 573.33 1800.48 inf 296.09(3)

30 1 2 3 4 99.92 2934.75 489.72 94.23 70.46 99.96 2768 666.17 95.41 235.90
30 1 2 6 4 99.93 2220.67 1090.98 86.95 211.75 99.94 1681.33 1019.22 87.00 289.68
30 1 2 9 4 98.47 1442.33 1800.31 43.12 396.31(3) 98.47 1482.33 1800.34 43.12 427.38(3)

30 2 2 3 5 99.95 2075.67 1208.89 85.39 211.43 99.64 1749.33 1183.04 85.78 272.41(1)

30 2 2 6 5 99.64 877.33 1501.64 47.52 513.60(2) 99.64 978 1555.24 47.52 484.84(2)

30 2 2 9 5 95.97 200 1801.13 41.71 1031.32(2) 37.70 166.67 1800.39 37.55 1142.69(3)

30 5 2 3 6 – – – – – 96.90 486.33 1560.38 inf 632.74(2)

30 5 2 6 6 – – – – – 94.78 187 1800.20 inf 777.97(1)

30 5 2 9 6 – – – – – – – – – –

40 1 2 3 4 – – – – – 99.81 2046.5 1483.39 91.08 241.80(1)

40 1 2 6 4 – – – – – 99.94 1421 1413.19 inf 375.39
40 2 2 3 5 – – – – – 99.10 970.67 1739.90 72.02 352.33(2)

40 2 2 6 5 – – – – – 83.41 353 1800.27 inf 899.76(2)

40 5 2 3 6 – – – – – 78.41 97 1800.18 inf 765.47(2)

40 5 2 6 6 – – – – – – – – – –

50 1 2 3 4 – – – – – 99.67 1600 1814.05 88.53 280.65(2)

50 2 2 3 5 – – – – – 99.93 401.33 1531.50 61.95 498.83
50 5 2 3 6 – – – – – – – – – –

(#) Indicates number of instances (out of 3) that did not solve to optimality
– Indicates that no incumbent solution was found at the root node within the 1-hour time limit for any instance
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Table 3.8: Cost and CPU Breakdown for Different Values of αv

Cost Proportions (%) CPU Breakdown (seconds)

αv Prod. Inv. Back. Item Family Trans.
Avg Vehicle
Util (%) Cluster TSP PD Total

all 0.0 86.64 4.60 1.20 1.25 6.15 0.16 80.44 1.49 1.13 6.39 8.92
all 0.1 86.6 4.51 1.25 1.26 6.22 0.16 80.05 1.54 1.13 5.83 8.42
all 0.2 86.66 4.61 1.19 1.24 6.14 0.16 80.35 1.65 1.13 6.62 9.28
all 0.3 86.76 4.59 1.08 1.25 6.16 0.16 80.47 1.44 1.19 5.86 8.39
all 0.4 86.76 4.60 1.12 1.24 6.12 0.16 80.41 1.60 1.15 7.32 9.95
all 0.5 86.72 4.59 1.17 1.24 6.11 0.16 80.74 1.67 1.16 5.65 8.33
all 0.6 86.77 4.56 1.15 1.24 6.12 0.17 81.1 1.71 1.11 5.60 8.11
all 0.7 86.95 4.51 0.93 1.25 6.19 0.17 81.43 2.58 1.12 5.45 8.82

[0.7, 0.3, 0.0] 86.76 4.48 1.13 1.26 6.20 0.17 82.35 2.03 1.12 5.71 8.54
[0.0, 0.3, 0.7] 86.79 4.59 1.05 1.25 6.16 0.16 79.87 1.52 1.13 6.36 8.92

3.8.3 Impact of Problem Settings on Costs and Vehicle Utilization

Aside from computational performance, cost breakdown for each scenario is impacted by the
rigidity expressed through inventory and routing constraints. We can now examine results from
the heuristic approach of Scenario 5 alongside those exact solutions obtained from Scenarios 2
and 4 (backorders are allowed), as well as observe their differences compared to Scenarios 1 and
3 (backorders not allowed).

Setting Minimum Vehicle Thresholds for Scenario 5

For Scenario 5, we ran a number of experiments varying αv, the minimum threshold capacity
for each vehicle, between 0.0 and 0.7 in increments of 0.1, with results summarized in Table
3.8. Overall average cost ratios are shown, detailing the proportion of total costs attributed to
production, inventory holding, backorder, item setup, family setup, and transportation across all
instances. Average vehicle utilization and a breakdown of computation time is also presented.

When αv is set to 0.7 for all values of v, this provides high average vehicle utilization across
all instances. When αv is varied across different vehicle sizes, we see that vehicle utilization
improves when smaller vehicles are filled first (αS = 0.7), though backorder costs now increase
in proportion to other costs. When larger vehicles are encouraged to be filled first, average
vehicle utilization and the backorder cost ratio both deteriorate. Moving forward, we use only
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the results with all values of αv = 0.7 when discussing Scenario 5’s performance in relation to
Scenarios 2 and 4.

Comparing Proportion of Costs

Figure 3.3 shows the average proportion of costs for all scenarios. For Scenarios 1 and 3, the
emphasis is on ensuring customer demand is met on time. The majority of costs in each of
these scenarios is focused on production (roughly 7% of total costs) and inventory holding (over
90%). Family and item setups account for just under 1% of total cost, while transportation costs
contribute under 0.01% in both scenarios. Scenario 3 experiences slightly lower transportation
costs, with split deliveries allowing for more streamlined routes.

Figure 3.3: Cost Proportions for all Scenarios
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It is difficult to compare total costs across scenarios, as certain instances for each scenario
may not have been solved due to computational issues, and this impacts the calculated total
average costs. What can be confirmed is that, for the same instances that have been solved,
Scenario 3 always results in lower total costs, but only by roughly 0.01% (Table 3.9).

When backorders are allowed in Scenarios 2, 4, and 5, the proportion of total cost differs
from that of Scenarios 1 and 3. While production still dominates, with an average of 80% for
Scenarios 2 and 4 and 86% for Scenario 5, now inventory holding cost proportions reduce dra-
matically to between 4.5% and 5%. Demand at times is backordered, contributing between 7.5 –
7.7% towards total costs in Scenarios 2 and 4, but just under 1% for Scenario 5 (due to increased
production). Family setup costs now account for over 6% of total costs in all cases, and trans-
portation costs rise to make up just under 0.1% of all costs for Scenarios 2 and 4, but 0.17% for
Scenario 5.

While Scenario 5 seems better at meeting customer demands, recall that both production and
transportation costs are higher compared to Scenarios 2 and 4. When examining total cost for
individual instances, it is clear that Scenario 5 does indeed cost more overall in the majority of
instances, but not by much (Table 3.10).

Comparing Vehicle Utilization

From Figure 3.3, it is apparent that allowing backorders has a bigger impact on transportation
costs than do split deliveries. Changes in overall average vehicle utilization are not as significant.
Vehicle utilization for Scenario 1 (78.5%) is better than in Scenario 3 (75.5%), but transportation
cost ratio is just slightly higher (Table 3.9). When omitting any problem sizes that did not solve
for both Scenarios 1 and 3, Scenario 1’s overall average vehicle utilization drops to 75.9%. The
heuristic approach of Scenario 5 boasts average utilization of 81.4%, compared to 74.9% and
76.5% for Scenarios 2 and 4 (Table 3.10). The poor performance of Scenarios 2 and 4 is due to
many instances not solving to optimality (or at all) as problem size increased; Scenario 5 was
able to provide a heuristic solution for all instances.
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Table 3.9: Scenarios 1 and 3 Vehicle Utilization, CPU and % Change in Total Costs
Avg Veh Util. (%) Total CPU (seconds) S3 % Change from

S1 Total Cost
n K L T V S1 S3 S1 S3

10 1 2 3 3 71.30 72.10 5.40 9.04 -0.001
10 1 2 6 3 72.04 72.04 46.19 64.21 -0.001
10 1 2 9 3 72.48 71.33 175.50 100.21 -0.006
10 2 2 3 4 75.86 75.12 17.16 7.42 -0.002
10 2 2 6 4 76.66 76.21 190.36 81.53 -0.004
10 2 2 9 4 76.93 76.80 606.89 216.79 -0.004
10 5 2 3 5 70.03 69.00 147.67 51.82 -0.002
10 5 2 6 5 70.79 69.82 1661.94 981.60 -0.014
10 5 2 9 5 72.19 70.40 1800.18 1800.19 -0.010

20 1 2 3 3 71.57 72.51 55.31 41.17 -0.553
20 1 2 6 3 73.03 72.07 221.32 157.11 -0.003
20 1 2 9 3 75.88 75.23 658.22 326.98 0.001
20 2 2 3 4 76.57 76.65 147.77 135.32 3.629(a)

20 2 2 6 4 76.45 76.63 514.08 298.14 -0.005
20 2 2 9 4 80.39 79.86 1800.32 1812.62 -0.006
20 5 2 3 5 71.54 73.91 637.82 706.01 -0.001
20 5 2 6 5 72.93 71.03 1800.23 1800.29 -0.072
20 5 2 9 5 75.28 74.96 1800.20 1800.34 -1.770(b)

30 1 2 3 4 87.44 – 592.90 – –
30 1 2 6 4 88.13 – 1098.92 – –
30 1 2 9 4 92.22 92.28 1800.38 1812.55 -0.039
30 2 2 3 5 82.12 – 990.79 – –
30 2 2 6 5 83.86 83.66 1733.97 1688.18 0
30 2 2 9 5 88.39 – 1800.95 – –
30 5 2 3 6 78.85 76.95 1800.17 1800.17 6.076(a)

30 5 2 6 6 82.82 – 1801.21 – –
30 5 2 9 6 – – – – –

40 1 2 3 4 79.31 – 1210.42 – –
40 1 2 6 4 81.11 – 1577.36 – –
40 2 2 3 5 82.32 82.24 1295.74 732.41 -2.552(b)

40 2 2 6 5 82.11 – 1806.61 – –
40 5 2 3 6 – – – – –
40 5 2 6 6 – – – – –

50 1 2 3 4 85.31 – 1517.47 – –
50 2 2 3 5 86.67 – 1574.73 – –
50 5 2 3 6 – – – – –

Overall Average 78.52 75.49 1027.76 746.55

(a) Indicates fewer instances for Scenario 3 solved than for Scenario 1
(b) Indicates fewer instances for Scenario 1 solved than for Scenario 3
– Indicates no data available
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Table 3.10: Scenarios 2, 4, and 5 Vehicle Utilization, CPU and % Change in Total Costs
Avg. Veh. Util. (%) Total CPU (seconds) % Change from S5 Total Cost

n K L T V S2 S4 S5 S2 S4 S5 S2 S4

10 1 2 3 3 70.64 71.38 74.07 4.41 7.90 3.29 -0.18 -0.15
10 1 2 6 3 72.35 71.36 73.51 19.79 44.54 3.24 0.00 0.02
10 1 2 9 3 70.35 70.64 73.43 98.68 82.38 3.51 0.03 0.07
10 2 2 3 4 75.83 75.96 77.97 7.30 57.80 4.04 -0.21 -0.20
10 2 2 6 4 76.70 76.61 78.50 71.02 328.56 4.79 -0.03 0.02
10 2 2 9 4 76.54 77.29 78.73 220.74 566.06 7.46 -0.07 -0.02
10 5 2 3 5 68.84 69.76 72.58 68.52 102.71 2.82 -0.16 -0.12
10 5 2 6 5 69.76 70.58 72.97 1728.93 1800.19 7.66 -0.21 -0.04
10 5 2 9 5 71.19 71.23 74.12 1800.18 1800.19 21.25 0.27 0.43

20 1 2 3 3 70.12 78.94 72.32 54.18 44.89 4.24 -0.17 -0.16
20 1 2 6 3 73.33 71.91 74.27 170.04 244.49 3.98 -0.01 0.01
20 1 2 9 3 76.03 75.22 76.24 439.92 555.40 6.16 0.00 0.05
20 2 2 3 4 75.93 76.61 78.06 83.76 345.83 4.15 -0.21 -0.18
20 2 2 6 4 76.54 76.61 77.12 310.41 697.01 7.07 -0.15 -0.10
20 2 2 9 4 79.62 80.11 80.34 1842.33 1800.16 11.72 0.10 -0.06
20 5 2 3 5 71.39 71.61 73.66 1131.15 1190.83 8.82 -0.50 -0.40
20 5 2 6 5 72.00 71.75 73.96 1800.27 1800.20 18.97 0.16 -0.02
20 5 2 9 5 71.48 57.50 77.42 1800.42 1800.48 9.24 58.00 26.97

30 1 2 3 4 86.71 85.92 85.64 241.87 666.17 3.88 -0.58 -0.60
30 1 2 6 4 87.49 87.63 87.7 897.94 1019.22 5.02 -0.38 -0.35
30 1 2 9 4 91.59 91.82 91.67 1801.10 1800.34 15.39 -0.43 -0.36
30 2 2 3 5 82.59 83.41 83.05 832.09 1183.04 5.30 -0.35 -0.32
30 2 2 6 5 82.08 82.55 83.69 1435.20 1555.24 11.73 -0.17 -0.04
30 2 2 9 5 75.76 52.67 87.58 1800.22 1800.39 25.83 -9.58 61.26
30 5 2 3 6 80.08 79.48 80.89 1800.24 1560.38 26.48 -0.19 2.41
30 5 2 6 6 – 78.72 82.22 – 1800.20 7.34 – 3.86
30 5 2 9 6 – – 84.85 – – 10.53 – –

40 1 2 3 4 75.88 76.48 85.77 738.06 1483.39 2.87 -0.48 -0.93
40 1 2 6 4 75.05 80.62 85.72 1288.35 1413.19 6.44 -0.06 -0.55
40 2 2 3 5 81.53 82.02 87.62 1352.52 1739.90 6.33 -0.92 -0.39
40 2 2 6 5 79.12 75.35 88.59 1800.42 1800.27 15.96 -1.16 15.59
40 5 2 3 6 42.49 89.04 92.21 1800.19 1800.18 6.28 257.27 29.64
40 5 2 6 6 – – 93.17 – – 8.91 – –

50 1 2 3 4 80.31 77.99 89.39 1800.27 1814.05 5.24 -1.09 -0.9
50 2 2 3 5 85.04 86.19 90.42 1718.12 1531.50 6.99 -0.43 -0.38
50 5 2 3 6 47.26 – 91.96 1800.32 – 14.55 182.95 –

Overall Average 74.90 76.51 81.43 992.70 1098.09 8.82

– Indicates no data available

Comparing Computational Performance

As expected, Scenario 5 provides good solutions very quickly when compared to the exact ap-
proaches of Scenarios 1 through 4, with overall average CPU time at 8.82 seconds. The re-
strictions imposed in Scenario 1 make larger problems very difficult to solve, as evidenced by
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its average of 1072.76 seconds. What is surprising is that Scenario 4, with backorders allowed,
appears to require more computational effort than Scenario 1. This discrepancy may be due to
differences in solvable instances by each scenario. Scenarios 2 and 3 solve more quickly than
Scenarios 1 and 4, suggesting that allowing for split deliveries reduces the time needed to allocate
demand and route vehicles in each period.

3.9 Remarks

For Scenarios 1 through 4, the upper bounding heuristic improves the root node solution at
a slight increase in computational time when compared to solving problems directly with the
branch-and-cut algorithm. Computing issues became troublesome as instances grew in size,
resulting in many unsolvable problems when the upper bounding heuristic was not present. Using
the upper bounding heuristic is indeed beneficial, even if just solving to the root node, as solution
quality is quite good and computational time is within reason.

The structure of subtour elimination constraints has an impact on solution quality and time, as
seen in Figure 3.1. Further experimentation was carried out using SECs in the form of (3.11) for
Scenario 2, when backorders and split deliveries are allowed. The gap (overall and root node),
number of nodes explored, and solution time (overall and root node) are compared when the
branch-and-cut algorithm is applied on its own and with warm-starting (Table B.1 in Appendix
B). The advantages of the upper bounding heuristic in reducing the overall duality gap are more
pronounced there than in Table 3.4, due to the poor solution quality provided by the weak form
of SECs (3.11).

Our heuristic approach in Scenario 5 divides the production-routing-problem into clustering,
routing, and production-distribution phases, and produces total costs that are close to those of
Scenarios 2 and 4. At the current problem settings, a reduction in backorder cost is offset by
increased production to meet customer demands on time along with an increase in transportation
cost. Vehicle utilization is much higher than in the exact approaches, and computational time is
significantly reduced.

The problem settings expressed by these five scenarios can be useful to managers when de-
ciding upon both customer service and routing policies. It is difficult to compare computational
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effort across all scenarios; when considering only the common instances that did solve, there are
few differences, but allowing more flexibility in inventory and routing does improve overall CPU
time. Total costs, on the other hand, are not impacted as much. Scenario 5 seems to provide the
best holistic solution when management’s focus is on customer service and maintaining regular-
ity in driver schedules, with the highest vehicle utilization amongst all scenarios at just slightly
greater costs.
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Chapter 4

Conclusion

We examine formulations for a multi-family capacitated coordinated lot-sizing problem, along
with its incorporation in a production-routing problem. This is a model that has not seen much
attention in the literature since the work by Erenguc and Mercan (1990) and Mercan and Eren-
guc (1993). To the best of our knowledge, we are the first to solve this problem using strong
reformulations.

In Chapter 2, we propose a hybrid Benders-Evolutionary Algorithm approach, combined
with subgradient optimization, to find improved upper and lower bounds for the multi-family
CCLSP with setup times. The combination of these methods improves upon the quality of the
lower bounds found solely by subgradient-optimization-based methods. Our heuristic produces
better bounds than those found by Süral et al. (2009), reducing the average duality gap in all 60
instances.

The nature of this method is such that the Benders master problem becomes increasingly
difficult as more cuts are added. However, the evolutionary algorithm is able to inject some
speed into the heuristic by quickly generating a number of feasible solutions at certain intervals
of the process. The subgradient technique helps to close the gap once a good upper bound has
been obtained, and adds little to the overall solution time of this method.

As noted by Süral et al. (2009), the CCLSP with setup times and without setup costs is
more difficult to solve than its counterpart where setup costs are present. So, while our proposed
heuristic performs well when setup costs are present, there is room for improvement in the special
case when setup costs are set to zero. In terms of solution time, we do not outperform Süral et al.
(2009) or de Araujo et al. (2015), but this should not deter the user from applying our technique:
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as the multi-family CCLSP is a tactical planning problem, there is sufficient time available to
find good quality solutions. Given that the typical single-family CCLSP duality gaps reported in
literature range between 7% and over 100% (Süral et al., 2009; de Araujo et al., 2015), we can
relax certain tolerances of our heuristic to speed up solution time, with the understanding that
this will reduce solution quality.

In addition to strengthening both the lower and upper bounds, we contribute a standard test
bed for the MF-CCLSP that consists of both small and large problems of varying difficulty.
While in this work we study a problem without setup costs, that cost information (from the
Trigeiro et al. (1989) problem sets) is included in our data files so that problem extensions can
be examined in the future.

Chapter 3 incorporates coordinated, capacitated lot-sizing for multiple product groups within
the production-routing problem served by a heterogeneous fleet of vehicles. We consider five
scenarios with varying degrees of flexibility in demand and transportation to study the impact of
backorders and split deliveries on vehicle utilization and total cost. Most research considering
multiple items and large customer networks rely on metaheuristics, but we employ an exact
branch-and-cut algorithm to solve four of our five scenarios. Coupled with our upper bounding
heuristic, the branch-and-cut heuristic develops good quality solutions at the root node in very
little time for smaller problem instances (average %RLB over Scenarios 1 through 4 is 96.1%
with UB heuristic, versus 90.5% without).

It is interesting to note that most solution approaches, whether heuristic or exact, tend to
tackle the production portion of the problem first. We do this when solving [PD] before [R]
in our upper bounding heuristic, as do all authors listed in Table 1.1 except Solyalı and Süral
(2017). Instead, their multi-phase heuristic begins by solving a traveling salesman problem over
the entire network to generate a suitable order in which to visit customers. In many practical
applications, routes are more commonly considered to be a tactical decision, revised only when
needed (Kalcsics, 2015; Bender et al., 2016). It is thus logical to fix these customer routes first,
and then determine the optimal production and distribution schedule subject to those routing
constraints.

Our fifth scenario, solved by the decomposition heuristic, does just that. We cluster cus-
tomers first thereby creating dedicated routes that remain unchanged over the planning horizon.
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Solution quality is comparable to results from Scenarios 2 and 4, with average computational
time running under 9 seconds. Scenario 5 is an attractive approach, when priority is given to
replenishing customer demand on time, and to offering stable delivery schedules. Though costs
are just slightly higher due to increased production and transportation costs, Scenario 5 achieves
an average of 81% vehicle utilization with fewer backorders than Scenarios 2 and 4.

4.1 Future Work

4.1.1 Coordinated Capacitated Lot-Sizing

Possible avenues for further research include improving the hybridization of the evolutionary
algorithm with Benders decomposition, specifically, the method for solving the master problem.
We sequentially apply an exact approach (Benders decomposition) and a metaheuristic (evo-
lutionary algorithm), though a more intertwined method, such as a matheuristic (Bollapragada
et al., 2011; Camargo et al., 2014) may be more appropriate. As presented in Poojari and Beasley
(2009) and discussed in Rahmaniani et al. (2017), the master problem can be solved using an EA
rather than by optimization. The solutions developed may or may not be feasible, so the EA pa-
rameters would need to be adjusted to ensure that at least some feasible solutions can be passed
to the subproblem. Modifying evolutionary operators, such as mutation and crossover, can also
impact how solutions are developed. Furthermore, the master problem could be solved to some
tolerance, ε , where ε decreases as more Benders cuts are added. This ensures that not much time
is spent solving the master problem to optimality at early stages, when one is further from the
best overall solution.

Regarding more exact methods, incorporating branch-and-bound methods, as Gendron et al.
(2016) do for their two-level uncapacitated facility location problem, could improve lower bounds.
However, to exploit their technique, instead of relaxing the demand constraints, the capacity con-
straints (2.14) would be relaxed to separate the formulation into n uncapacitated facility location
problems. While this has been discussed by Jans and Degraeve (2004) and Süral et al. (2009) as
yielding inferior LP bounds in the single-family CCLSP, no testing has been done in the multiple
family case.
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Aside from improving these solution approaches, there are pure lot-sizing and combined
applications where natural problem extensions to the multi-family setting may prove interesting.
From a lot-sizing perspective, those features could include multi-level lot-sizing, rolling horizons
(Goren et al., 2010), setup crossover (Goren et al., 2012), time windows (Darvish et al., 2016),
or setup carryover (Fiorotto et al., 2014). The production-routing problem is also a promising
avenue where heuristic approaches for a multi-item setting have gained traction (Kang et al.,
2017) but exact methods are rare (Adulyasak et al., 2015).

4.1.2 Production Routing

As discussed in Section 1.2, we do not use a strong reformulation of the CCLSP in this work, due
to the findings of Adulyasak et al. (2014a). However, their computational experiments (and much
of the previous research) examined the single-item PRP. Brahimi and Aouam (2016) do employ
a facility location reformulation in their multi-item PRP, but under a non-coordinated replenish-
ment scheme. Future work could compare the impact of applying this strong reformulation for
the CCLSP when utilizing an exact solution approach.

How customers are clustered within a production-routing setting is also an area that deserves
more attention. While Konur and Geunes (2016) examine a strategic setting where annual de-
mand dictates the economic order quantity to be delivered each period, their formulation may
not be amenable to situations when demand is not constant over the planning horizon. The work
by Nananukul (2013) addresses this specifically. They develop route clusters based on various
customer characteristics, such as demand or geographic proximity, although they solve a single-
item problem with tabu search. Our Scenario 5 addresses clustering under a multi-item setting,
using k-means++ to seed clusters based on demand over the horizon. There is an opportunity
here to explore exact approaches for the tactical PRP with multiple items, where customer clus-
ters are determined first, as these decisions will strongly influence the remaining production and
distribution decisions.

Buzacott (2013) stresses that production research should aim to “(i) [understand] the issues
that managers must address, (ii) [develop] models or theories that provide insight into these
issues, and (iii) [apply] the result of the research to improve real-world production.” In our
work, we address points (i) and (ii) by extending the CCLSP and PRP to consider multiple

77



families, focusing on exact methods and decomposition heuristics to improve both upper and
lower bounds. We are able to show that under a number of different parameter settings, we
achieve good production and production-routing plans in a reasonable amount of time. Though
we have not yet addressed the optimal operational settings for such problems in practice, we are
primed to test our approach on real production data, in the hopes of integrating our lot-sizing and
production-routing techniques into models larger in scope.
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Appendix A

Creation of Data Sets for MF-CCLSP

Since no standard test sets exist for the multiple family CCLSP, we developed 60 problems
based on the single-family instances of Trigeiro, Thomas, and McClain (1989), labelled TTM.
We describe here how these problems were formed, beginning first with an overview of the TTM
instances used (Table A.1).

Table A.1: Description of TTM Data Sets
TTM Data Sets m × n

G51 - G55.dat 12 × 15
G56 - G60.dat 24 × 15

Table A.2 describes how the TTM instances were modified. All demand, setup cost, holding
cost, setup time and capacity parameters were carried through, though in our work we do not use
setup costs.

Since TTM instances do not include family setup times, we create them as follows: 100 setup
times were randomly generated over U (1,5) and then multiplied by 100. We assigned five of
the generated family setup times to each of the original 10 problem instances (G51-G60.dat).
However, for those new instances that have fewer than five families of items, only the first two
or three of the generated setup times were needed.

With these added family setup times, the original capacity values had to be updated to ensure
feasibility. In each period, capacity was initially increased by 300 units, the mean of the uniform
distribution used above for the family setup times. Individual problem testing led to slight mod-
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Table A.2: Description of Multi-Family Problem Set Creation
Problem Set m × l × n Description

k1-k5.dat 3 × 2 × 10 First 10 time periods of k16-k20.dat
k6-k10.dat 6 × 2 × 10 First 10 time periods of k21-k25.dat
k16-k20.dat 3 × 2 × 15 First 6 items of G51-G55.dat, split into two families
k21-k25.dat 6 × 2 × 15 Same as G51-G55.dat
k46-k50.dat 3 × 3 × 10 First 10 time periods of k61-k65.dat
k51-k55.dat 6 × 3 × 10 First 10 time periods of k66-k70.dat
k61-k65.dat 3 × 3 × 15 First 9 items of G51-G55.dat
k66-k70.dat 6 × 3 × 15 First 18 items of G56-G60.dat
k91-k95.dat 3 × 5 × 10 First 10 time periods of k106-k110.dat
k96-k100.dat 6 × 5 × 10 First 10 time periods of k111-k115.dat
k106-k110.dat 3 × 5 × 15 First 15 items of G56-G60.dat
k111-k115.dat 6 × 5 × 15 Combined G51-G55.dat with last 18 items of G56-G60.dat

ifications, making the capacity constraint tighter or looser based on the perceived difficulty of
solving the reformulated problem directly, with no heuristics.
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Appendix B

PRP Scenario 2 Results using SECs (3.11)

Scenario 2 is solved using SECs in the form of constraints (3.11). When the branch-and-cut
algorithm is warm-started with the results of the upper bounding heuristic, overall solution time
improves drastically. While larger instances (T = 9, n ≥ 30) still do not solve to optimality,
duality gaps reported in Table B.1 are much lower. The solution at the root node is much better,
but not as good as when SECs (3.22) are used.
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Table B.1: Scenario 2 Summary Without and With UB Heuristic using SECs (3.11)
Without UB Heuristic With UB Heuristic

n K L T V %LB Nodes CPU %RLB RCPU %LB Nodes CPU %RLB RCPU

10 1 2 3 3 100.0 383.7 83.3 78.9 3.3 99.9 796.3 7.8 98.6 1.7
10 1 2 6 3 99.9 1439.3 26.1 64.1 4.5 99.9 2014 31.6 97.7 3.8
10 1 2 9 3 100.0 5008.0 95.8 53.6 10.3 99.9 1800.7 50.7 97.2 7.0
10 2 2 3 4 100.0 2769.3 41.8 50.8 6.3 99.9 3883.7 36.4 99.0 3.4
10 2 2 6 4 100.0 7457.7 208.3 34.2 18.7 100.0 8799.0 176.5 97.6 13.2
10 2 2 9 4 90.2 23318.0 2040.6 43.1 36.9(1) 100.0 4828.3 626.7 96.3 27.6
10 5 2 3 5 99.9 1299.3 144.4 53.3 29.9 100.0 357.7 62.8 98.5 22.1
10 5 2 6 5 99.9 4594.7 2097.5 25.6 117.1 99.9 2053.7 714.1 97.3 83.2
10 5 2 9 5 74.7 4280.0 3600.2 33.0 211.4(3) 98.6 2777.3 3600.3 96.7 441.7(3)

20 1 2 3 3 100.0 358.0 36.8 74.8 17.0 100.0 524.3 35.1 98.4 12.1
20 1 2 6 3 100.0 7758.0 563.8 30.9 37.9 99.7 23346.7 1349.8 97.9 37.6(1)

20 1 2 9 3 99.9 8863.0 1280.0 17.1 113.5 99.9 6808.0 1296.8 96.6 95.9
20 2 2 3 4 100.0 831.0 119.7 32.5 41.9 99.9 581.3 183.4 98.7 114.1
20 2 2 6 4 73.6 8980.0 2343.3 14.6 141.1(1) 99.7 6281.7 1603.4 97.8 157.6(1)

20 2 2 9 4 66.7 3325.0 3600.5 9.0 348.0(3) 97.3 2001.7 3605.4 95.3 365.7(3)

20 5 2 3 5 100.0 1247.0 761.0 24.3 167.1 100.0 438.0 414.7 98.0 156.7
20 5 2 6 5 71.7 2758.0 3198.6 13.8 292.3(2) 99.6 2902.3 3601.1 98.1 312.6(3)

20 5 2 9 5 8.3 376.5 3600.4 8.3 1761.5(2) 97.4 218.0 3609.1 97.1 1629.9(3)

30 1 2 3 4 76.4 4817.0 1468.0 30.5 142.3(1) 99.9 675.3 350.9 96.4 162.0
30 1 2 6 4 84.6 2866.7 3614.1 21.2 493.4(3) 98.9 2554.3 3367.8 95.8 400.8(2)

30 1 2 9 4 24.1 1066.7 3653.0 16.5 746.6(3) 97.8 1370.7 3600.6 96.9 636.4(3)

30 2 2 3 5 75.9 1366.0 3063.9 22.7 1051.9(2) 99.7 3872.0 1997.1 98.1 150.7(1)

30 2 2 6 5 43.5 935.0 2977.4 25.4 564.5(2) 98.3 1456.3 3419.8 96.7 634.5(2)

30 2 2 9 5 8.8 49.0 3600.3 8.8 2361.7(1) 95.1 33.3 3601.3 31.9 752.4(3)

30 5 2 3 6 99.8 342.0 2376.5 29.7 662.5(1) 99.4 539.0 3071.1 66.0 262.1(2)

30 5 2 6 6 – – – – – 99.3 458.3 3747.0 99.2 971.2(3)

30 5 2 9 6 – – – – – 96.9 0.0 3600.5 0.0 0.0(3)

40 1 2 3 4 100.0 1416.3 1733.2 44.7 662.1 99.5 4634.7 2442.8 98.1 222.9(1)

40 1 2 6 4 72.4 980.7 3550.8 19.1 742.7(2) 99.0 3071.3 3617.7 98.6 468.3(3)

40 2 2 3 5 71.3 1000.7 2407.8 19.2 443.2(1) 100.0 617.0 1453.5 98.6 439.4
40 2 2 6 5 99.8 1043.0 3600.2 50.0 634.6(1) 99.1 581.7 3602.5 98.4 1132.6(3)

40 5 2 3 6 19.1 150.3 3600.2 18.5 2092.2(3) 99.0 195.3 3442.2 66.3 685.6(2)

40 5 2 6 6 – – – – – 98.5 12.3 3600.6 32.8 918.2(3)

50 1 2 3 4 66.5 2647.7 3600.3 39.0 258.7(3) 99.5 2470.3 3187.8 98.1 304.0(2)

50 2 2 3 5 100.0 474.3 2161.8 41.9 546.6 99.3 548.0 3080.5 99.0 920.6(2)

50 5 2 3 6 – – – – – 99.6 44.7 3600.6 99.6 2078.5(3)

(#) Indicates number of instances (out of 3) that did not solve to optimality
– Indicates that no incumbent solution was found at the root note within the 1-hour time limit
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