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Abstract

Background

The transportation of camp firewood infested by non-native forest pests such as Asian long-

horned beetle (ALB) and emerald ash borer (EAB) has severe impacts on North American

forests. Once invasive forest pests are established, it can be difficult to eradicate them.

Hence, preventing the long-distance transport of firewood by individuals is crucial.

Methods

Here we develop a stochastic simulation model that captures the interaction between forest

pest infestations and human decisions regarding firewood transportation. The population of

trees is distributed across 10 patches (parks) comprising a “low volume” partition of 5

patches that experience a low volume of park visitors, and a “high volume” partition of 5

patches experiencing a high visitor volume. The infestation spreads within a patch—and

also between patches—according to the probability of between-patch firewood transporta-

tion. Individuals decide to transport firewood or buy it locally based on the costs of locally

purchased versus transported firewood, social norms, social learning, and level of concern

for observed infestations.

Results

We find that the average time until a patch becomes infested depends nonlinearly on many

model parameters. In particular, modest increases in the tree removal rate, modest

increases in public concern for infestation, and modest decreases in the cost of locally pur-

chased firewood, relative to baseline (current) values, cause very large increases in the

average time until a patch becomes infested due to firewood transport from other patches,

thereby better preventing long-distance spread. Patches that experience lower visitor vol-

umes benefit more from firewood movement restrictions than patches that experience

higher visitor volumes. Also, cross–patch infestations not only seed new infestations, they
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can also worsen existing infestations to a surprising extent: long-term infestations are more

intense in the high volume patches than the low volume patches, even when infestation is

already endemic everywhere.

Conclusions

The success of efforts to prevent long-distance spread of forest pests may depend sensi-

tively on the interaction between outbreak dynamics and human social processes, with simi-

lar levels of effort producing very different outcomes depending on where the coupled

human and natural system exists in parameter space. Further development of such model-

ing approaches through better empirical validation should yield more precise recommenda-

tions for ways to optimally prevent the long-distance spread of invasive forest pests.

Introduction
Infestation of North American forests by non–native insect species like Emerald ash borers
(EAB), Asian long–horn beetles (ALB) and Citrus long–horn beetles (CLB) has had severe
impacts on many ecologically and economically important tree species, such as Ash trees [1].
These non–native forest pests were often first introduced through international trade in the
1990s and 2000s or before [1,2]. Since their introduction, these forest pest species have subse-
quently spread widely in North American regions, causing the death of billions of trees, and
thereby extensive economic and environmental damage [1,3]. An estimated $17.6 million were
spent by the Canadian government between 2005 and 2010 in order to treat, remove and
replace the infested trees, and it is thought that this amount could reach $2 billion dollars in
coming decades [4]. This situation is much worse in several parts of the United States, particu-
larly in the Midwestern states, where the projected cost of eradicating infestations and planting
new ash trees is estimated at $26 billion [1,5]. Invasive forest pests arguably represent one of
the most significant threats to the region’s natural forests and domestic parks [3]. Forest pest
infestations represent a clear case of an ecological and economic catastrophe that needs to be
rapidly addressed.

In previous empirical studies it has been found that the spread of forest pests occurs either
due to natural dispersal, where insects disperse locally under their own power, or due to
human–assisted dispersal, where the wood of infested trees is transported from an infested
region to a non–infested region [6,7]. The natural dispersal rate depends upon the density of
insects in the region. In Michigan, the dispersal rate in low density infestations has been esti-
mated to be as low as 300 m/year [8] while in high density infestations it has been estimated to
be 16 km/year [9]. However, the rate of spread due to the transportation of Ash tree products
(e.g. firewood) can be much higher than the natural dispersal rate [10]. Much long–distance
dispersal is due to individuals transporting infested camp firewood to non–infested areas such
as national or provincial parks. Reasons for transporting firewood instead of buying it locally
include greater convenience and lower costs.

Several mathematical models have been developed to investigate forest pest invasions and
explore possible control strategies to mitigate the resulting ecological and economic losses.
These models have focused on the spread rate of non–native insects in North America [2,8,11],
their possible future impacts [3,12], and their social and financial impacts [13]. Some of these
models explore control strategies such as early detection of infestation and control of insects by
means of insecticide treatment, and pre-emptive removal of all Ash trees in a region with
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replacement by non–Ash trees [13–15]. Such measures can help control local infestations.
However, in order to prevent long–distance dispersal causing the start of new infestations in
previously untouched regions, it is necessary to prevent transport of infested firewood through
measures such as expanding public awareness and implementing firewood transport restric-
tions. Reducing the price of locally purchased firewood may also reduce the spread [10,16].
Preventing long–distance dispersal of these pests requires better understanding of how human
decision–making in the social context interacts with forest pest infestations.

Barlow et al. have previously developed a deterministic two–patch model of the impact of
human decisions on firewood transportation between two hypothetical patches, as well as the
impact of forest pest infestations on human decisions. Models that capture the two–way inter-
play between human decision–making dynamics and natural dynamics are referred to as cou-
pled human–environment system models [17,18]. The two–patch model of Barlow et al.
included natural processes such as within-patch spread of forest pests and patch–to–patch
spread (known as cross–patch infestation spread), and human processes such as social learn-
ing, social norms, and economic considerations such as cost of firewood.

Here, we build on the model of Barlow et al. to create a stochastic 10–patch model that cap-
tures the social, natural and economic aspects of infestation dispersal via firewood transporta-
tion. The long-distance dispersal of forest pests is inherently highly variable since the start of
an infestation in a given patch can be caused by the arrival of a single bundle of infested fire-
wood, and the probability that the infestation becomes established and spreads depends on a
large number of independent factors such as viability of the founder population, environmental
conditions, human decisions and other biotic and abiotic factors. In order to approximate this
variability, we use a stochastic model. This enables us to produce new outcome variables such
as time–to–first–cross–patch–infestation (the time that elapses before infestation spreads from
one patch to another patch). We determine how infestation control depends on human and
natural parameter values, using a multi–patch park network topology that qualitatively resem-
bles that of the Ontario Park system. Our objective was to develop a qualitative understanding
of the range of dynamics exhibited by such systems and to illustrate how these systems can
exhibit nonlinear feedbacks. Therefore, the model was formulated for simplicity and generality,
and to capture the qualitative features of forest pest infestations and firewood movement pat-
terns as observed in various recent forest pest outbreaks, rather than representing a particular
species in a particular geographic location.

Methods

2.1 Geography of Ontario Parks
The interactions between forest pest invasions and human decisions regarding firewood trans-
portation can be better understood in the context of the spatial distribution of Ontario Parks
(the provincial park system of Ontario, Canada). The spatial distribution of parks and the
strength of connections between parks can have a large impact on cross–park (“cross–patch”)
infestation spread.

Ontario Parks can be divided into two categories: operating parks that are regulated under
the provincial authority, and non–operating parks that have no fees/staff and only limited facil-
ities. According to Ontario Parks statistics from 2010, the southern and central regions of
Ontario are the most popular places for day–use visitors and overnight campers [19]. These
regions have 75% to 80% of the total visitors of all Ontario parks per year [19]. Large popula-
tions visit the central region of Ontario, and these may include visitors from northern and
southern regions. In research on the attitudes of visitors regarding use of left-over (residual)
firewood at Wisconsin State parks, it was found that visitors take up to 15% of unused firewood
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back to their homes [20]. If this firewood is infested it could become the seed of a new local
infestation.

Ontario Parks are numerous and highly connected to one another, presenting a complicated
geometrical structure [21]. With respect to the movement of camp firewood, the parks are con-
nected through visits from the public. The high connectivity between parks stems from the fact
that any given park may receive visitors who reside anywhere in Ontario, any of whommay
bring along firewood that was purchased at their point of origin.

Such high connectivity can be approximated by a mesh topology (Fig 1). The parks in the
central region of Ontario are most dense and experience the highest volume of visitors. The
southeastern region has a high density of parks as well but the visitor volume is less than the
visitor volume of central parks. The parks in these regions are located mostly inland. In con-
trast, the southwestern parks distributed linearly along lakesides have a slightly higher volume
of visitors than southeastern parks. Northern parks exhibit the same tendency for inland loca-
tions however the density of parks and the volume of visitors are significantly lower than the
parks in central and southern regions.

Here, we simplify this structure to capture the basic distinction between centrally located
parks with high visitor volumes, and proximal parks with low visitor volumes. We divide
Ontario parks into two partitions: one for the southern and central Ontario, which receives a
high volume of visitors, and the other for Northern Ontario, which receives a low volume of

Fig 1. Patch geometry used for the simulation model. Partition 1 patches experiences a high visitor volume while Partition 2 patches experiences a low
visitor volume. Transport strategists move firewood between patches in both partitions.

doi:10.1371/journal.pone.0139353.g001
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visitors. Each patch in either partition is connected with all patches in that partition as well as
with all patches in the other partition as shown in Fig 1. Hence, the total system is comprised
of completely connected patches while patches are placed in either of the partitions according
to their volume of visitors. Moreover, the strength of connection varies depending on whether
patches are in the high volume or low volume partition: patches in the low volume partition
receives a lower volume of visits from other patches in the same partition as well as a lower vol-
ume of visits from patches in the high volume partition.

2.2 Model
We developed a discrete–time, mechanistic, stochastic model to study pest invasions, human
decision–making, and firewood movement in the 10–patch system. The simulation time step is
one week. Each patch has a population of Si(t) susceptible trees and Ii(t) infested trees. The
total carrying capacity of susceptible and infested trees is K. Susceptible trees become infested
trees according to specific transition probabilities based on assumed transmission mechanisms
(details are below). Susceptible trees become infested with a given probability per time step due
to local infestation (infestation within a patch) according to “standard incidence” transmission
mechanism. Susceptible trees also become infested due to firewood transport from other
infested patches, depending on the prevalence of infestation in the other patch, visitor volumes
between the patches, and human decisions regarding whether or not to transport firewood
between the patches. Infested trees die with a certain probability per time step, and in the
model notation use ‘R’ to denote a ‘removed’ state, for trees that have died after being infested.

Each patch is considered to include both a local park as well as the local residents of that
area. Hence, the individuals who live in patch i can either be local strategists (where Li(t) repre-
sents the proportion of local strategists in patch i) who always buy and burn firewood at the
patches they visit, or they can be transport strategists (where Ti(t) represents the proportion of
transport strategists in patch i) who always bring firewood from their home patch i when they
visit one of the other 9 patches (and thus risk spreading the infestation, if patch i is infested).
Thus, we can write the relation between the proportion of local and transport strategists as
Li(t) = 1 –Ti(t).

In particular, the probability per time step that a susceptible tree becomes infested due to
local (within–patch) dispersal is

PS to I;i ðtÞ ¼ b
IiðtÞ
K

ð1Þ

where β is the transmission probability constant, Ii(t) is the number of infested trees in patch i,
and K is the carrying capacity in patch i (Table 1). This form of the transmission probability,
where the infestation rate depends on the density of infested trees, is referred to as standard
incidence [22]. We note that the time dependence of PS to I,i occurs due to its dependence on
the variable Ii(t), representing the number of infested trees at time t. The nonlinearity of the
simulation model stems from Eq 1, since the probability of infestation PStoI,i depends on the
infestation prevalence Ii(t)/K instead of being a constant value, therefore the mean of the bino-
mial distribution for the number of trees that get infected depends on the nonlinear term Si(t)
Ii(t)/K.

The total number of susceptible trees that become infested per time step, numStoI(t), can be
found from the probability PStoI(t) by sampling from a binomial distribution according to

numS to IðtÞ ¼ BinomialðSiðtÞ; PS to IðtÞÞ; ð2Þ
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Once a susceptible tree becomes infested, it survives for an average time duration D. Thus,
an infested tree has a probability

PI to R ¼ ε ¼ 1

D
ð3Þ

per time step of dying. Thus, the number of trees numI to R that die in each time step can be
written as

numI to RðtÞ ¼ BinomialðIiðtÞ; PI to RÞ; ð4Þ

New trees can grow in the place of dead trees. However, their growth is subject to the avail-
ability of space and the growth rate (fecundity) r of susceptible trees. Therefore, if we assume
that (Ii(t) + Si(t)) / K is the proportion of trees already existing in the patch, then 1 –(Ii(t) +
Si(t)) / K would be the available space for new trees to grow. Therefore, the probability P0 to S

that a susceptible tree gives rise to a (susceptible) offspring is

P0 to S ðtÞ ¼ r 1� IiðtÞ þ SiðtÞ
K

� �
ð5Þ

Hence, the number of new trees per time step is

num0 to SðtÞ ¼ BinomialðSiðtÞ; P0 to SðtÞÞ; ð6Þ

Firewood cost, the influence of pest outbreaks upon decision–making, social norms and
imitation dynamics (e.g. social learning) inform decision–making. If the local firewood cost in
a patch is higher than the cost of bringing firewood then the individuals visiting from other
patches may bring their own firewood instead. However, individuals are also influenced by
awareness of the impact of pest outbreaks in their own patch, and emerging rules about social
conduct [10]. These social, financial and behavioral factors are together used to define the

Table 1. Model variables and transition probabilities.

Si(t) Number of susceptible trees at time t in ith patch.

Ii(t) Number of infested trees at time t in ith patch.

UL Utility for local strategists.

UT Utility for transport strategists.

Li(t) Proportion of local strategists at time t in ith patch.

Ti(t) Proportion of transport strategists at time t in ith patch.

PS to I Probability that a susceptible tree becomes infested due to within-patch infestation.

P0 to S Probability that a susceptible tree is recruited.

PI to R Probability that an infested tree dies in a given time step.

PL to T Probability that a local strategist becomes a transport strategist.

PT to L Probability that a transport strategist becomes a local strategist.

PS to IT Probability that a susceptible tree gets infested due to cross–patch firewood transport.

numI to R Number of infested trees that die in a given time step.

numS to I Number of susceptible trees that get infested due to within-patch infestation in a given time
step.

num0 to S Number of susceptible trees that are recruited in a given time step.

numL to T Number of local strategists that become transport strategists in a given time step.

numT to L Number of transport strategists that become local strategists in a given time step.

numS to

IT

Number of susceptible trees that get infested due to cross-patch infestation in a given time
step.

doi:10.1371/journal.pone.0139353.t001
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utility (a quantitative measure of preference) for these strategists, representing the utility for
being a local strategist who always “burns where they buy” versus the utility for being a trans-
port strategist who transports firewood before burning it.

In particular, we define the utility for a local strategist as UL(t) while the utility for a trans-
port strategist as UT(t). The equations for UL(t) and UT(t) are

ULðtÞ ¼ �CL þ nðLiðtÞ � 0:5Þ
UTðtÞ ¼ �CT þ nð0:5� LiðtÞÞ � fIiðtÞ

)
ð7Þ

where CL and CT are the local and transport firewood costs respectively and n controls the
strength of social norms. The parameter n can be interpreted as the strength of social pressure
in favor of the dominant behavior or attitude [23,24]. If n is large and there are many local
strategists (Li(t) is high), then UL(t) is high since there is social pressure for individuals to con-
form to the norm of not transporting firewood, and this tends to further increase Li(t). Con-
versely, if Li(t) is low, causing UT(t) to be high, then social pressure will further reduce Li(t).
The infestation concern parameter f is a proportionality constant that controls the extent to
which infestation prevalence influences individual decision-making.

The total number of individuals in a patch is a constant NS = NL(t) + NT(t), where NL(t) is
the number of local strategists and NT(t) is the number of transport strategists. Hence, the total
number of individuals remains the same throughout the simulation. Accordingly,

LiðtÞ ¼
NL;iðtÞ
NS;i

and TiðtÞ ¼
NT;iðtÞ
NS;i

ð8Þ

We assume that an individual “samples” (i.e. speaks to) other persons in their own patch
regarding firewood transport, firewood cost, and forest pest infestations with a specific proba-
bility per unit time [10,25]. Sampling may occur through person-to-person contact or through
other means such as social media or telephone. During this interaction, individuals compare
their utilities received for their respective strategies. If a sampled person is playing a different
strategy and is receiving a higher utility, then the individual doing the sampling switches to the
sampled person’s strategy with a probability proportional to the expected gain in utility. There-
fore, the total probability per time step that a local strategist becomes a transport strategist is
the product of the probability of sampling (the “social learning rate”) and the probability of
switching strategies:

PL to TðtÞ ¼
(

0 ULðtÞ � UTðtÞ
sðUTðtÞ � ULðtÞÞ ULðtÞ < UTðtÞ

ð9Þ

where σ represents the social learning rate multiplied by a proportionality constant that guar-
antees PL to T < 1. Since we only vary the social learning rate in this analysis, we will treat
changes in σ as equivalent to changes in the social learning rate, for all practical purposes. Simi-
larly, the rate at which a transport strategist becomes a local strategist through sampling is

PT to L ðtÞ ¼
(

0 ULðtÞ � UTðtÞ
sðULðtÞ � UTðtÞÞ ULðtÞ > UTðtÞ

ð10Þ
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The number of individual changing strategies in each time step is then

numL to T ðtÞ ¼ BinomialðNL;i ðtÞ; PL to T ðtÞÞ; ð11Þ

numT to L ðtÞ ¼ BinomialðNT;iðtÞ; PT to L ðtÞÞ; ð12Þ

Just as infestation influences human behavior, human behavior regarding firewood trans-
portation influences infestation spread between patches. The probability that a susceptible tree
in a given patch gets infested due to transported firewood depends upon the proportion of
transport strategists in neighboring infested patches and the amount of travel (and thus fire-
wood movement) between patches. Thus the probability of cross–patch infestation occurring
in patch i due to infested firewood from patch j can be written as,

PS to IT;j ðtÞ ¼ bTiðtÞ
IiðtÞ
K

(
dH i ¼ 1::5 ðwithin P1Þ
dL Otherwise ðwithin P2 and between P1 and P2Þ ; i 6¼ j ð13Þ

where dH> dL since the volume of visitors within Partition 1 (P1) is significantly higher than
either the volume of visitors within Partition 2 (P2) or the volume of visits between the two
partitions.

Based on these transmission probabilities, the number of new infestations in patch i per
time step due to cross–patch movement of firewood is the sum of all cross–patch infestations
introduced from patches j 6¼ i:

numS to IT;i ðtÞ ¼
X
j6¼i

BinomialðSiðtÞ; PS to IT;j ðtÞÞ; ð14Þ

Cross–patch infestation can occur several times during the simulation. However, the first
cross–patch infestation event is most important since it forms the nucleus of the first outbreak
in a previously un-infested patch. Thus, an important outcome variable is time–to–first–cross–
patch–infestation, defined as the time between the start of the simulation and the time that a
patch first becomes infested due to firewood transport from another patch.

Once the number of state transitions is computed from the binomial sampler at each time
step from Eqs 2, 4, 6, 11, 12 and 14, the state variables Si(t), Ii(t), Li(t), and Ti(t) are updated.
The number of susceptible trees increases with the growth of new susceptible trees and
decreases due to infestations originating either inside the patch or from other patches, thus:

Siðt þ 1Þ ¼ SiðtÞ � numS to I;i ðtÞ þ num0 to S;i ðtÞ � numS to IT;i ðtÞ ð15Þ

The infested trees increase correspondingly increase due to spread of infestation, but their
number decreases when infested trees die:

Iiðt þ 1Þ ¼ IiðtÞ þ numS to I ðtÞ � numI to R ðtÞ þ numS to IT ðtÞ ð16Þ

Finally, transitions between the numbers of local and transport strategists are given by

NL;iðt þ 1Þ ¼ NL;iðtÞ � numL to T ðtÞ þ numT to L ðtÞ ð17Þ

NT;iðt þ 1Þ ¼ NT;iðtÞ þ numL to T ðtÞ � numT to L ðtÞ ð18Þ
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2.3 Parameterization
Baseline parameter values were obtained from empirical data concerning tree species, forest
pest infestations, and firewood costs (Table 2). Many parameter values were borrowed from
the previous 2-patch deterministic model [10]. The ecological parameters, i.e. fecundity of
trees r, differs for various trees species infested by EAB and ALB, while the probability of trans-
mission β and mortality probability per time step of infested trees ε depends upon the density
of insects in the patch. These parameters are well studied in the literature [7,10,11,19,26–28].
We used the empirical results found in [26] to estimate the fecundity of trees r = 0.06 / year by
multiplying the mean survival of trees species, i.e. 2.4 �10−6 trees / seed, with the total number
of seeds � tree-1 � year-1, i.e. 25,000. The transmission probability parameter β was determined
by a simple spread model to approximate the insect’s arrival time in a patch. Various spread
rates have been estimated in the literature, ranging from low, i.e. 10 km/year, to high, i.e. 50
km/year, [28,29]. The parameter was determined by adjusting the distance covered by insects
according the area covered. We assumed 5 ha = 50000m2 of land with a spread rate of 25000
m2 / year, yielding the transmission probability parameter β = 0.5 / year. The fatality probabil-
ity ε = 1/3 per year was taken from literature [27] stating that it takes three years, on average,
for a tree infested by EAB to die in recent infestations in Michigan and Ontario. The economic
parameters for the cost of local and transported firewood, CL and CT respectively, vary by
region. However, in the case of Ontario, baseline values for the parameters CL = $ 6.75 and
CT = $ 5.00 were determined by surveying park administration offices and surveying the local
markets [10].

System–specific empirical data were not available for some sociological parameters (e.g. n, f,
σ) hence baseline values for these parameters were calibrated until ecologically and sociologi-
cally plausible dynamics were obtained (Table 2). In particular, we sought model dynamics
consistent with recent outbreaks with EAB and ALB in Ontario and other jurisdictions: infesta-
tion generates some level of concern in the population, but the concern is not sufficient to pre-
vent regional spread, which occurs on the timescale of several years. Moreover, infestation
spreads more quickly to patches that experience a high volume of visitors than patches that

Table 2. Parameter definitions and their baseline values.

Symbols Definitions Parameter
values

References

R Fecundity of trees per unit time 0:06
.
year

[26]

β Transmission probability per unit time 5� 10�1
�

year

[28,29]

dH Proportionality constant controlling volume of visitors to a given patch in high volume partition P1 0.02 [19]

dL Proportionality constant controlling volume of visitors to a given patch in low volume partition P2, or volume
between P1 and P2

0.003 [19]

ε Probability of death of infested tree per unit time 1
3 year

� [27]

CL Cost of buying bundle of local firewood $ 6.75 [10]

CT Cost of buying bundle of transported firewood $ 5.00 [10]

N Strength of social norms 0.1 –

F Population sensitivity to infestations (impact of outbreaks upon decisions) 0.1 –

K Carrying capacity in a patch 5000 [10]

σ Social learning probability per unit time 0:1
.
year

–

Δt Time step 1
52 year

� [10]

NS Total number of strategists per patch 1000 –

doi:10.1371/journal.pone.0139353.t002
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experience a low volume of visitors. Univariate sensitivity analysis was used to study the impact
of varying social influence n, social learning σ, outbreaks f, fatality rate ε, firewood cost CL and
controlling rate d, by changing these parameters one at a time while the other parameters
remained at their baseline values.

Results
For each set of parameter values, 100 stochastic realizations were generated and the mean and
two standard deviations thereof were computed. The model was coded in Matlab R2014a using
the built–in binornd function to generate random variates sampled from a binomial distribu-
tion. The time-to-first-cross–patch-infestation, and time series of infected trees and propor-
tions of local and transport strategists, were generated.

3.1 Baseline analysis
At the initial time (t = 0), only Patch 1 was infested with 15 infested trees, I1(t = 0) = 15, and
the remaining trees were susceptible, S1(t = 0) = 4985, while all the other patches were initially
not infested (i.e. Ii(t = 0) = 0 and Si(t = 0) = 5000, where i = 1..10). Moreover, the population of
total strategists NS was fixed at 1,000 in each patch and the proportion of local strategists Li
and transport strategists Ti was initialized as 0.1 and 0.9 respectively, (i.e. NL,i (0) = 100 and NT,

i (0) = 900).
The stochastic nature of the model dynamics is observed by simulating the number of

infested trees against time in a single realization (Fig 2A, data available in the supplementary
material: S1 Matlab Data File). Patch 1, where the infestation starts, experiences an outbreak
that peaks rapidly. As the number of infested trees in patch 1 grows, the probability of infected
firewood being transported from patch 1 to other patches increases. Eventually, after a few
years, the other patches start to experience outbreaks as a few bundles of infested firewood
make their way to those patches and a viable local population of forest pests is formed. In gen-
eral, patches 2–5 (the high volume partition P1) experience outbreaks sooner than patches
6–10 (the low volume partition P2), except that patch 10 is the next patch to experience an out-
break, after patch 1, for this particular realization (Fig 2A). In contrast, patch 9 avoids infesta-
tion throughout the entire simulation. This illustrates the stochastic nature of long–distance
forest pest spread. For all other patches, the infestation settles down to a steady state where the
destruction of susceptible trees through infestation is balanced by the creation of susceptible
trees through recruitment, in the long-term. We note that we ignore the impact of local control
measures, since our focus is on long–distance establishment of new infestation sites. However,
local control could be represented by increasing the parameter ε representing the probability of
death of infested trees per unit time, and we investigate this change in the sensitivity analysis.

The expected features of multi–patch transmission are clear in time series of the average
number of infested trees in each patch over 100 realizations (Fig 2B). We observe that, on aver-
age, patch 1 experiences an outbreak with a higher peak, on account of the higher initial num-
ber of infested trees. On average, patches 2–5 in the high volume partition experience
outbreaks next, and patches 6–10 in the low volume partition experience outbreaks last. The
equilibrium infestation levels are also higher in the high volume partition, due to more frequent
instances of cross–patch infestation. Hence, the patches in the low volume partition benefit not
only from delayed introduction of new infestations, but also the fact that subsequent re–intro-
ductions of the infestation are less, which reduces the equilibrium number of infested trees in
those patches as well, to a surprising extent. The plot of the average number of susceptible trees
in each patch over time (Fig 2C) shows activity that mirrors the plots of the average number of
infected trees in each patch over time (Fig 2B).

Coupled Human-Environment Dynamical SystemModel

PLOS ONE | DOI:10.1371/journal.pone.0139353 October 2, 2015 10 / 21



While outbreaks are unfolding in the 10 patches, there are also changes to the relative pro-
portions of local and transport strategists in the patches. This strongly influences the cross–
patch infestation dynamics (Fig 2D). The outbreak in patch 1 is severe (Fig 2B), and this results
in a relatively quick response in the human population, with a rapid increase in the proportion
of local strategists to 100% over a 20–year period (Fig 2D). Initially, the proportion of local
strategists increases due to the f�I term, as a result of the human population’s response to the
infestation that causes transport strategists to become local strategists. Subsequently, over a

Fig 2. Dynamics of infested trees, susceptible trees, and local strategists. Panels show a single realization of the number of infested trees (a); the
average of 100 realizations of the number of infested trees (b), the number of susceptible trees (c), and the proportion of local strategists (d), over 300 years
of simulated time. Only patch 1 was infested at time t = 0. Patches from 1 to 5 are in the low visitor volume Partition 1 while patches from 6 to 10 are in the
high visitor volume Partition 2. The parametric values are given in Table 2.

doi:10.1371/journal.pone.0139353.g002
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decade, as the behavior of purchasing local firewood becomes widespread and awareness of
infestation spreads, the local strategy establishes itself as a new social norm and becomes self–
perpetuating, pushing the proportion of local strategists to even higher equilibrium levels.
However, in present-day real populations, awareness of forest pest infestations is more limited
and social norms remain relatively weak. This situation is analogous to the transitions regard-
ing norms that govern second–hand smoke over the past few decades. Many populations
shifted from a view that second–hand smoke is tolerable, to a view that exposing others to sec-
ond–hand smoke is a harmful behavior; this illustrates how new social norms can develop that
would have been difficult to conceive a few decades ago [30,31].

The outbreaks in patches 2–5 are somewhat less severe, and thus the proportion of local
strategists increases more slowly and to a lower equilibrium level (Fig 2D). Finally, the out-
breaks in patches 6–10 are delayed the most, and are least severe, and thus the number of local
strategists grows slowest, and reaches the lowest equilibrium level. In the long–term, local strat-
egists are widespread in all 10 patches and help reduce additional cross–patch infestation
events, especially in the high volume patches. On average, human populations do not react
quickly enough to prevent spread to all 10 patches. This baseline scenario reflects recent experi-
ence with many forest pest infestations in North America, which have become widespread
[1,3]. However, in 4% of model realizations over a simulated time horizon of 50 years in the
low density partition, one patch manages to infestation on account of local strategists increas-
ing quickly enough in the other patches to prevent it being infested.

The temporal patterns of cross–patch infestation are clarified by plotting the number of
cross–patch infestation events experienced by each patch versus time, for all 10 patches in the
first 10 years, and including all 100 realizations (Fig 3A, data available in the supplementary
material: S1 Matlab Data File), as well as the total number of cross–patch infestations experi-
enced by each patch over 300 years, averaged over all 100 realizations (Fig 3B).

The time delays introduced by the stochastic nature of cross–patch infestation are made
clear. Patches 6–10 tend to experience later initial infestations, with few of the 100 realizations
yielding an infestation before a few years have passed (Fig 3A). (Patch 1 also experiences later
first infestations from other patches, simply because it must infect other patches first, before
experiencing a return infestation.) Patches 2–5 experience their first infestations earlier due to
their higher volume of visitors from patch 1 residents. The frequency of cross–patch infesta-
tions increases with time, as the outbreaks outpace the populations’ social response to the out-
breaks (Fig 3A). A similar pattern is observed with respect to the average total number of
cross–patch infestations experienced over 300 years (Fig 3B). High volume patches experience
between 600 and 800 total cross–patch infestation events on average, whereas low volume
patches experience only 250 to 300 cross–patch infestation events (Fig 3B).

Table 3 summarizes the total number of cross–patch infestations over 300 years, stratified
by patch of origin of the infestation. The table shows that the number of infestation events is
highest for patches in the high volume partition, as expected.

Finally, the average time-to-first-cross–patch-infestation (tcross) across the 100 realizations
was plotted for each patch (Fig 3C), showing that on average, the high volume patches experi-
ence their first infestation event within 4–7 years (except for patch 1, which experiences its first
event after 18 years since it must wait for return infestations from other patches). However, on
average, the low volume partition patches do not experience their first infestation until 32–38
years.
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3.2 Sensitivity analysis
In our sensitivity analysis we focus on the time-to-first-cross-patch infestation outcome mea-
sure tcross, since our emphasis is on understanding how to prevent long–distance spread of
infestations through firewood movement, rather than on control of local, existing infestations.
We explore the impact of changes to the local firewood cost CL, fatality probability per unit
time ε, infestation concern parameter f, visitor volume constants dH and dL, strength of social
norms n and probability of social learning per unit time, σ. Other parameters are the same as in
the remainder of this paper, except that the simulation time horizon is only 100 years instead
of 300 years in order to obtain feasible simulation times given our computational constraints.

In most cases, a change to any of these parameters causes a nonlinear response in the time-
to-first-cross–patch-infestation (Figs 4 and 5, data available in the supplementary materials:
S2, S3, S4, S5, S6 and S7 Matlab Data Files). In other words, there are many cases where tcross
does not respond to changes in a parameter’s value, until the parameter value exceeds a thresh-
old, beyond which tcross changes dramatically. This has implications for how much effort must
be expended to prevent long–range infestation spread, since some changes to control parame-
ters will cause enormous changes in control success, while other changes to control parameters
will have little effect on control success. Also, the variability in outcomes (standard deviations)
across the 100 model realizations is often significant, meaning that stochasticity could influence
whether or not firewood movement restrictions are successful.

For example, decreasing the cost of local firewood (CL) from the baseline $6.75 per bundle
to $4.00 per bundle has a dramatic impact on tcross, especially for the low volume patches (Fig
4A). As CL decreases further, the value of tcross reaches a plateau of 100 years. However, this
plateau is an artifact caused by imposing 100 years as the simulation duration. Nonetheless, for
policy-relevant values of tcross (<50 years), these results show that modest decreases in the cost

Fig 3. Statistics on number and timing of cross-patch infestation events. The results are averaged across 100 realizations. Patches 1 to 5 are in
Partition 1 while patches 6 to 10 are in Partition 2. The parameter values are taken from Table 2. (a) Number of cross–patch infestations experienced by each
patch due to the transportation of firewood during the first 10 years of the simulation, in 100s; (b) total number of cross–patch infestations occurring during the
300 years’ simulation time in each patch; (c) mean and two standard deviation (error bars) of the time-to-first-cross–patch-infestation occurring in each patch
during the 300 years’ simulation time. Horizontal axis represents the patch number while vertical axis represents the time-to-first-cross–patch-infestation.

doi:10.1371/journal.pone.0139353.g003

Table 3. Number of cross-patch infestation events due to firewood transportation between patches. Patches 1–5 are in Partition 1 while Patches
6–10 are in Partition 2. Columns represent the patches being infested by other patches (e.g. patch (column) 1 is infested by patch (row) 4 on average 1.65
times during the simulation time horizon) and each row represents a patch causing infestations in other patches. Diagonal values are zero by definition. The
last column represents the total number of infestation events spread by row-patches while last row represents the total number of infestation events received
from column-patches. Data available in the supplementary material: S1 Matlab Data File.

Patch # 1 2 3 4 5 6 7 8 9 10 Total infestations spread

1 0 1.94 2.25 1.85 2.04 0.31 0.31 0.31 0.27 0.27 9.55

2 1.97 0 1.97 2.35 2.2 0.25 0.24 0.45 0.29 0.42 10.14

3 1.76 2.16 0 2.46 2.51 0.43 0.46 0.31 0.37 0.33 10.79

4 1.65 2.26 2.29 0 2.17 0.43 0.34 0.37 0.42 0.37 10.3

5 1.85 2.21 2.23 2.52 0 0.41 0.43 0.32 0.38 0.47 10.82

6 0.23 0.21 0.19 0.26 0.22 0 0.22 0.31 0.24 0.32 2.2

7 0.16 0.23 0.14 0.19 0.23 0.34 0 0.33 0.26 0.35 2.23

8 0.15 0.21 0.23 0.21 0.25 0.21 0.27 0 0.26 0.24 2.03

9 0.18 0.2 0.19 0.2 0.22 0.23 0.37 0.23 0 0.25 2.07

10 0.17 0.21 0.2 0.25 0.22 0.32 0.27 0.26 0.23 0 2.13

Total infestations received 8.12 9.63 9.69 10.29 10.06 2.93 2.91 2.89 2.72 3.02

doi:10.1371/journal.pone.0139353.t003
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of locally purchased firewood (as provided by park offices, for example) could have significant
control benefits.

Outcomes also respond nonlinearly to the fatality probability per unit time, ε (Fig 4B). The
largest change in tcross occurs when the fatality probability increases from 0.4/year to 0.6/year.
The baseline value for ε is 0.33/year, corresponding to the natural death rate due to infestation.

Fig 4. Average of 100 realizations over 100 years of simulated time. Error bars represent two standard deviations from the mean and have been drawn
for only Patch 3 to prevent visual clutter (values are similar for other patches). Patches 1–5 are in Partition 1 while patches 6–10 are in Partition 2. See
Table 2 for parameter values. Panels show (a) the impact of local firewood cost CL; (b) the impact of fatality probability of trees ε upon average tcross; and (c)
the impact of the infestation concern parameter f upon the average time-to-first-cross–patch-infestation tcross.

doi:10.1371/journal.pone.0139353.g004
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Infection control through tree removal has a similar impact on disease dynamics as tree death.
Hence, these results suggest that relatively modest increases in early detection of infested trees,
and tree removal efforts, could have a significant impact in preventing cross–patch spread,
regardless of their success in preventing localized spread.

Similarly, when the infestation concern parameter f is close to zero, small increases f result
in a rapid increase in tcross. However, beyond f = 0.5, further increases in f do not generate the
same response (Fig 4C). Increasing f helps prevent cross–patch infestation because individuals
become local strategists more quickly than when f is small. As before, the increase in tcross is
particularly notable for the low volume partition. Hence, this partition benefit the most from
interventions increasing f.

Strengthening social norms, n, can have a divergent effect on tcross. When n dominates the
expressions for the utility UL and UT, social pressure per se plays a more important role than
concern for infestation or firewood prices. Hence, if the number of local strategists is not suffi-
ciently numerous to begin with, and if social pressures to conform are sufficiently large, then
local strategists will not increase in number, despite infestation or lower firewood costs. This is
observed in plots at baseline parameters values where n is increased (Fig 5A). However, if initial
conditions were such that the number of local strategists was larger than the number of trans-
port strategists, then social norms would pull the population toward having larger numbers of
local strategists, and so the outcome would be opposite. Since individuals have less perception
of immediate impacts of their actions on others than is the case for second–hand smoking, for
instance, we speculate that lower values of n are more realistic for firewood movement restric-
tions; in this case, social norms can influence dynamics, but they do not dominate them.

The social learning probability σ has a significant impact on tcross (Fig 5B). Increasing σ facil-
itates switching between local and transport strategies. If the utilities favor a switch from trans-
port strategists to local strategists (as might occur under conditions of an outbreak where f�I is
large), then increasing σ will increase the number of local strategists more quickly, and thus
improves the adoption of firewood movement restrictions. As observed with many other
parameters, when σ is small, a modest increase in σ causes a large increase in tcross. However, if
σ is already large, then increasing σ still further has little effect on tcross. Thus, small increases in
the social learning rate, as might be brought about by increasing the coverage of forest pest
infestations in the media, can have a significant impact on preventing long–distance infestation
events. As before, the increases in tcross are most significant for the low volume partition, hence
remote patches tend to benefit more from increases in σ.

Finally, we explore the impact of changing the baseline rate of visits in the high volume par-
tition (dH) (Fig 5C). A small increase in dH causes a significant decrease in tcross, indicating that
efforts to prevent long-distance infestation events can fail if the volume of visitors to parks
increases even modestly. The high volume partition suffers the most under the change in dH,
although tcross also decreases to a lesser extent for the low volume partition.

Discussion
In this paper we developed and analyzed a stochastic simulation model of infestation spread
due to transportation of infested firewood between 10 patches. The patch geometry was based
loosely on the geography of Ontario Parks, with distinct high visitor volume and low visitor
volume partitions. Firewood transport was influenced by human decisions based on economic
costs, social norms, social learning, and concern about infestations. Our objective was to gain
qualitative insights into the nature and implications of nonlinear feedbacks in such systems.

We found that nonlinear responses to changes in control measures and other model param-
eters were pervasive. For instance, the time-to-first-cross–patch-infestation responded
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nonlinearity to parameters controlling the cost of locally purchased firewood, the probability
per unit time at which infested trees died, the sensitivity of the population to infestation, the
probability per unit time of social learning, and the volume of visitors.

In many cases these effects could have implications for policy, especially when the nonline-
arities occur near empirically valid parameter values. In particular, modest decreases in the

Fig 5. Average of 100 realizations over 100 years’ simulated time. Error bars represent two standard deviations from the mean and have been drawn for
only Patch 3 (results are similar for other patches). Patches 1–5 are in Partition 1 while patches 6–10 are in Partition 2.The parameters used to generate the
results are given in Table 2. Panels show (a) the impact of social norms n; (b) the impact of social learning σ; and (c) the impact of changing the volume of
visitors in high volume patches dH on the average time-to-first-cross–patch-infestation tcross.

doi:10.1371/journal.pone.0139353.g005
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cost of locally purchased firewood CL below the current value of approximately $6.75 (the
value of which is controlled by parks) caused disproportionate increases in the time-to-first-
cross–patch-infestation, meaning that the chances of long–distance spread of infestation were
significantly reduced. Similarly, modest increases in the tree mortality probability ε over the
baseline rate associated with natural death due to infestation also significantly reduced the
chances of cross–patch infestation. Hence, timely tree removal efforts may be highly effective
in preventing long–distance spread of forest pests, even if they are imperfect in preventing
local spread. Increasing the sensitivity to infestation (f) and the social learning rate (σ) were
also effective ways to reduce cross–patch infestation, although the empirical values for these
parameters are not as precisely known as is the case for ε and CL. We also found that patches
in the low volume partition (distant parks that are visited less often) benefitted more from
reduce firewood transportation than patches in the high volume partition. Finally, we observed
that the equilibrium levels of infestation were higher in the high volume partition than the low
volume partition, despite infestation being endemic in all patches, which implies that subse-
quent cross–patch infestations have a significant role to play in increasing infestations even
when a patch is already infested. In other words, cross–patch infestation is concerning not only
because of its seeding effect in starting new infestations, but also because it can worsen existing
infestations.

Some of these results echo findings from an earlier 2–patch deterministic model published
by Barlow et al. [10], such as the benefits of reducing the cost of local firewood purchased
through parks. However, because the current model is a 10–patch stochastic model, we were
able to explore effects of stochasticity and park geometry. Barlow et al used a deterministic
model, making it difficult to study elimination regimes, and meaning that there was some
ambiguity to defining time-to-first-cross-patch infestation (since the infestation is instan-
taneously transmitted in a deterministic model, unless stochastic effects are artificially captured
through imposed thresholds [10]). In contrast, our use of a stochastic model yields an unam-
biguous definition of how long it takes for the infestation to spread between patches. Moreover,
because our model is a 10-patch model instead of a 2-patch model, it was possible to explore
issues around park geometry. In particular, we contrasted how time-to-first-cross-patch-infes-
tation responds differently to interventions depending on whether a patch is located in the
high volume partition versus the low volume partition. This is not possible in a 2-patch model.
Future work could exploit multi-patch geometry more fully by exploring other possible geome-
tries (such as linear or hub-and-spoke).

Policy planning cycles in real populations are much shorter (5–25 years) than the simula-
tion times we used (100s of years). However, long simulation times were part of our experi-
mental design. Our goal in this paper was to obtain a qualitative understanding of the model
dynamics, including the inherent tendency of these systems to oscillate on multi-decadal time
scales. This provides useful information regarding the fundamental biology of the system, and
we would not be able to observe such phenomena in the model if we restricted our simulation
time horizon to 25 years. Evaluating long-term dynamics can be useful for informing short-
term policy. For instance, policy makers need to be able to properly interpret changes in infes-
tation levels following changes in policy. If the system tends to be naturally stable, then policy
makers can be more confident that changes in infestation levels are due changes in their policy.
But, if the systems tend to oscillate naturally, then policy makers must be more careful when
interpreting changes in infestation levels, since infestation may be declining (or increasing)
naturally and not due to changes in policy. Using long simulation time horizons is helpful to
establish whether systems tend to naturally oscillate.

As with any model, the current model has limitations. Some of the sociological parameters
such as the rate of social learning (σ) and the sensitivity to infestation levels (f) are not well
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known; hence we had to use univariate sensitivity analysis. Other features of forest pest out-
breaks such as Allee effects and seasonality were not studied. Similarly, we used a relatively
simple model of human social behavior, such as classifying all individuals as either local strate-
gists or transport strategists. Also, we did not include a time delay between initial infestation of
a tree, and spread of infestation from that tree to un-infested trees upon tree death. Including
this delay would probably delay cross-patch infestation by a few years, or perhaps longer
depending on how quickly social feedbacks are activated, although we speculate that our con-
clusions would remain qualitatively unchanged. Many of these simplifying assumptions could
be relaxed in future work and could increase the realism of the model, as long as corresponding
efforts to obtain empirical estimates of parameter values are also made.

Our goal was to gain a qualitative understanding of coupled human-environment dynamics
for forest pests in general, rather than to capture a specific population. However, the model
could be modified to capture spread of a particular pest species in Ontario or other jurisdic-
tions. This would require adding more patches to better capture the geometry and connected-
ness of dozens of regional parks; re-parameterizing the model; and fitting the model to
outbreak data from Ontario, in order to test quantitative agreement with data. However,
despite the lack of specificity to a particular population, the current model captures qualitative
features of forest pest outbreaks, such as more rapid spread to patches that experience a higher
volume of visitors, and (unfortunately for the baseline scenario) the insufficient response of the
public to prevent cross-patch spread through firewood movement restrictions, in many cases.
Future models with greater realism that are designed to capture particular species in particular
geographical regions, may assist in the design of control strategies and public messaging cam-
paigns to reduce the destruction caused by invasive forest pests.
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