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Abstract

This thesis examines two aspects of the path following control design problem for L.T.I.

systems assigned closed curves in their output space. In the first part of the thesis we define

a path following normal form for L.T.I. systems and study structural properties related

to this normal form. We isolate how unstable zero dynamics alter the feasibility of using

the path following normal form for control design. In the second half of the thesis we

consider a synchronized path following problem for a homogenous multi-agent system and

cast the problem as an instance of an output synchronization problem to leverage recent

results from the literature. It is desired that each individual agent follow a specified path.

The agents communicate with one another over an idealized communication network to

synchronize their positions along the path. The main result is the construction of a dynamic

feedback coupling that drives all the agents in the network to their respective reference

paths while simultaneously synchronizing their positions along the path. Laboratory results

are presented to illustrate the effectiveness of the proposed approach.
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Chapter 1

Introduction

The path following control design problem entails designing feedback controllers that drive

output trajectories of the closed-loop system towards an assigned path while moving along

the path in a desirable and application specific manner. An important property of path

following controllers, sharply distinguishing them from trajectory tracking controllers, is

that the path can be made invariant for the closed-loop system. That is, unlike a tracking

controller, a path following controller stabilizes a family of trajectories, all of whose asso-

ciated output signals can be made to lie on the assigned path for all time. This familty of

trajectories is partially determined by the zero dynamics of the control system.

In this thesis, two aspects of the path following control design problem are investigated.

In the first part of the thesis, we define a path following normal form for L.T.I. systems

and study structural properties related to this normal form. We isolate how unstable zero

dynamics alter the feasibility of using the path following normal form for controller design.

We present a solution for the path following problem that leverages the fact that closed

curves are diffeomorphic to unit circles. With respect to unstable zero dynamics, while
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there are known results for reducing performance limitations for N.M.P. systems [1],[26],

we ultimately find that they are not amenable to be leveraged with the path following

normal form.

The second probelm considered is a synchronized path following problem [9, 25]. Each

agent is assigned a (possibly distinct) closed curve in its output space. The agent must use

its own state and path information to drive its output to the path while ensuring output

invariance of the path. At the same time, the agents must, by exchanging information

between themselves, synchronize their position along the path with other agents. Unlike

previous works [9, 25], synchronization is not modelled as a constraint on the allowable

motions along the path and instead an output synchronization problem [37], [41] is solved

for the dynamics governing the tangential motion along the paths.

1.1 Motivating Applications

With the Google self-driving car having crossed the million mile mark [35] and Tesla safety

features, including some limited auto-pilot features, it is clear that self-driving cars will

soon become commercially available in the near future. Fundamental to the problem of

self-driving cars is their ability to communicate and coordinate with one another for safety

and speed. In this application having the vehicle stay in its lane on a road could represent

the primary objective of driving the system output to a pre-assigned path. Invariance of

the path is important because if the road were too curvy, then there is a potential to leave

the lane traveling at high speed. Once in a lane, it is desirable to maintain a minimum

speed and inter-vehicle distance. From a path following prospective, this is the secondary

objective. Path following controllers can decouple the design of controllers to achieve these

objectives.
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A second motivating application of path following controllers is the control of a fleet

of aerial robots designed for enhanced image resolution; popular in fields such as surveil-

lance, reconnaissance and astrology. Typically, multiple photographs will be taken of an

interested area but at different attitudes and positions. An image can then be produced

by aggregating all of the pictures taken concurrently. In this arrangement, different refer-

ence trajectories could be given in order to have the variation needed with regards to the

field of views. The closer the robots are to one another, the more overlap each frame will

have, producing better estimates for the final image. If the robots are close to one another

invariance of their paths will avoid collisions. The secondary objective could then be used

to maintain an equal distance from the target area from the cameras point of view.

1.2 Literature Review

1.2.1 Performance Limitations

A common task for controllers is reference tracking wherein the output of a system, y(t), is

made to follow a specified trajectory, r(t). A measure of how well the controller performs

can be taken to be the L2−norm of the tracking error

J =

∫ ∞
0

‖y(t)− r(t)‖2dt

=

∫ ∞
0

‖e(t)‖2dt.

The tracking error, e(t), is the difference between the system output and a reference signal.

The above cost function does not take into account the control effort used. It can be shown

that for stabilizable L.T.I. minimum phase systems, it is possible to make the cost function
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arbitrarily small [22]. If a system is N.M.P. it is well known that there will be difficulties

in making the error approach zero and with unstable zero dynamics there is a fundamental

limitation on the attainable performance [36]. The minimal value of

Jρ =

∫ ∞
0

[
e>(t)Me(t) + ρu>(t)Nu(t)

]
dt (1.1)

where M and N are symmetric positive-definite matrices, is lower bounded by a strictly

positive number as ρ→ 0 [22]. To overcome this limitation, a reformulation of the tracking

problem is considered, known as path following. In path following, one introduces a timing

law, θ(t), which creates an extra degree of freedom. The timing law is composed with the

reference, r(θ(t)), which allows the time derivative of the reference signal to be manipulated

in order to achieve better performance. Performance is improved by including the timing

law in the tracking error to obtain the path following error

ePF(t) = y(t)− r(θ(t)).

The path following error is the difference between the system output and the modified

reference signal.

A. Aguir [1] presented a path following formulation of the tracking task by dividing the

objective into two tasks: geometric path following and speed assignment along the path.

The paths considered are linear combinations of sinusoids for a class of L.T.I. N.M.P.

systems. In his formulation, the controller objectives are:

(i) Boundedness: the plant states stay uniformly bounded for every initial condition as

t→∞

(ii) Error convergence: ePF(t)→ 0 as t→∞
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(iii) Forward motion: θ̇(t) > vd for all t > 0 where vd is a positive constant

(iv) If given a desired speed vd > 0, then θ̇(t)→ vd as t→∞

A. Aguir is interested in determining whether or not the extra degree of freedom intro-

duced by the timing law can be used to attain an arbitrarily small L2−norm of the path

following error. Using the results of Qiu and Davison [36], Aguir shows that although the

ideal performance cannot be reached, the cost function (1.1) can still be made less than

an arbitrarily small positive constant δ. The best attainable performance shown is shown

to be

J =

p∑
i=1

q∑
j=1

(
1

zi − jvdwj
+

1

zi + jvdwj

)
where zi are the zeros of the system in the right-half plane and wj > 0 are real numbers

dependent on the path. When given a desired speed instead of requiring forward motion

only, a piecewise constant timing law is introduced:

ℵ : [0,∞)→ {0, 1, 2, . . . , N}

ℵ(t) :=



0, t0 ≤ t < t1

1 t1 ≤ t < t2

...

N, t ≥ tN .

Each case of the timing law has its own specified velocity with each value being less

than the previous until the desired speed is reached. A. Aguir includes constraints on

the time between steps, step size and initial velocity in order to provide arbitrarily good

performance. Later on, his work is extended to include nonlinear systems [2]. The same
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concepts are used and applied to the nonlinear version under some mild assumptions and

the results are the same. By reformulating the tracking task as a path following problem,

the system is no longer subject to the limitations of tracking and an arbitrarily small

L2−norm of the path following error can be achieved.

D. Miller and R. Middleton also look at L.T.I. N.M.P. systems and are interested

in determining the class of trajectories for which the path following cost can be made

arbitrarily small [26]. In cases where it is non-zero, it is shown how the optimal cost, in

the sense of the L2−norm of the path following error, can be computed as the solution

to a finite dimensional convex optimization problem. A method for calculating upper and

lower bounds on the attainable performance is also provided.

1.2.2 Output Synchronization

In recent years, coordination and path following problems have received increasing atten-

tion amongst systems and control researchers. This is largely due to the abundance of

applications in physics and engineering. Coordination problems are interested in having

all the agents of a network collectively agree on parameters of interest. Coordination can

be decomposed further into consensus or synchronization problems.

Synchronization problems focus primarily on the individual agent’s dynamics rather

than the communication constraints imposed on agents. The communication graph is

assumed to be time-invariant and the agent’s dynamics may be influenced via the exchange

of information. The key goal is for all individual agents to converge asymptotically to some

common trajectory [37].

One method for achieving synchronization is to use the I.M.P.. The I.M.P. tells us

necessary and sufficient conditions for a tracking problem to be solvable. Essentially, it
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says that the controller must incorporate the dynamic structure of the disturbance and

reference signals into its design in order for perfect tracking to be made possible. It was

first introduced by B. Francis and W. Wonham in 1976 [12]. They consider a class of L.T.I.

systems with deterministic disturbance and reference signals. The unstable poles of the

disturbance and reference signals are canceled to provide closed-loop stability.

P. Wieland uses these results in order to solve a synchronization path following problem

for an L.T.I. M.A.S. [41]. The main contribution made is the extension of necessary

and sufficient conditions for uniformly exponential sychronizability to a heterogeneous

M.A.S. equipped with a communication graph that may be time-varying, intermittent and

directional. It is shown that a common exosystem is required amongst all systems in the

network, designated the virtual exosystem, in order for synchronization to be achieved.

This distinguishes his work from A. Doosthoseini [10] where synchronization is achieved

by constraining the allowable motions of the system once it has reached the required path.

1.3 Notation

The symbol := means equal by definition. Transpose is denoted by >. The complex

plane C is partitioned as C = C− ∪ C+, where C− := {s ∈ C : Re(s) < 0} and C+ :=

{s ∈ C : Re(s) ≥ 0}. The n× n identity matrix is denoted by In. For a vector x ∈ Rn the

symbol ‖x‖ denotes the Euclidean norm, i.e., ‖x‖ =
√
x>x. LetBδ(p) = {x ∈ Rn : ‖x− p‖ < δ}

denote the open ball of radius δ > 0 centred at a point p ∈ Rn. Given N ∈ N, let

NN := {1, 2, 3, . . . , N}. If L > 0 and real, then the notation R mod L represents the

real numbers modulo L. Let arg : C → (−π, π] map a complex number to its principal

argument. The symbol ⊗ denotes the Kronecker product.

Given a matrix S, the spectrum of S is denoted σ(S). Given a function σ : A → B,
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we will either write σ(A) or Im(σ) to denote its image. If φ : Rn → Rm is a smooth map,

then we will use either dφx̄ or ∂φ
∂x

∣∣
x=x̄

to denote its Jacobian evaluated at x̄ ∈ Rn. If f ,

g : Rn → Rn are smooth vector fields, we use the following standard notation for iterated

Lie derivatives L0
fφ(x) := φ(x), Lkfφ(x) := Lf (L

k−1
f φ)(x) =

∂Lk−1
f φ

∂x
f(x), LgLfφ(x) :=

Lg(Lfφ)(x) =
∂Lfφ

∂x
g(x).

1.4 Contributions

The main contributions of this thesis are:

1. A detailed study of the path following normal form and its relationship to zero

dynamics.

2. The use of recent results in the synchronization literature to solve a synchronized

path following problem for L.T.I. systems.

3. Laboratory results using physical systems in order to illustrate the effectiveness of

the proposed control algorithm.

4. Formal proof that the relative degree of a system at a point does not change when

we apply a diffeomorphism to the output space.
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Chapter 2

Background

The main purpose of this chapter is to collect some definitions and results used extensively

throughout the thesis in one location. The contents in the rest of the thesis draw heavily

from the ideas presented here.

2.1 Mathematical Preliminaries

First we recall a few basic definitions from calculus on real finite-dimensional vector spaces.

Definition 2.1.1. A subset A of Rn is open if, for every point p in A, there exists a δ > 0

such that Bδ(p) ⊆ A. An open set containing a point p ∈ Rn is called a neighbourhood

of p. �

It immediately follows from this definition that Bδ(p) is itself an open set. The systems

and mappings considered in this thesis are all smooth.
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Definition 2.1.2. Consider a function f : A → R where A ⊆ Rn is an open set. The

function f is said to be smooth (or C∞ or infinitely differentiable) if it possesses continuous

partial derivatives of all orders. A function f : A → B where A ⊆ Rn and B ⊆ Rm are

open sets is said to be smooth if each of its component functions is smooth. �

In this thesis we apply nonlinear coordinate changes to time-invariant control systems.

These nonlinear coordinate changes are also known as diffeomorphisms.

Definition 2.1.3. Consider a function f : A → B where A ⊆ Rn and B ⊆ Rm are

open sets. The function f is a diffeomorphism if it is bijective, smooth and its inverse

f−1 : B → A is also smooth. �

Checking whether or not a smooth function is a diffeomorphism in a neighbourhood of

a given point can be done using the classical inverse function theorem.

Theorem 2.1.4 ([32, Theorem 2.11]). Let A ⊆ Rn be an open set and let f : A → Rn be

a smooth map. If the Jacobian matrix dfp is non-singular at some point p ∈ A, then there

exists an open set U ⊆ A containing p such that f : U → f(U) ⊆ Rn is a diffeomorphism.

Definition 2.1.5. Let R be a ring and let M be a left R-module. Choose a nonempty

subset S of M . The annihilator of S is the set of all elements r ∈ R such that

rs = 0, (∀s ∈ S).

Now we give a basic definition from control theory on stability.

Definition 2.1.6. A matrix A ∈ Rn×n is stable, or Hurwitz, if all its eigenvalues are in

the open left-half plane, σ(A) ⊂ C−. If a matrix is not stable, then it is unstable. �
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2.2 Signed Circular Distance

This thesis is concerned with path following on closed curves. At various times we will

need to measure distance along these curves. Computing distances along closed curves is

closely related to computing distances along points on a circle.

Let C denote a closed, regular, non-self-intersecting curve given by a smooth (C∞)

parameterization σ : R → Rm such that C = Im(σ) and, for all λ ∈ R, ‖σ′(λ)‖ 6= 0.

Since σ is regular, without loss of generality we can assume that it has a unit speed

parameterization and ‖σ′(λ)‖ ≡ 1.

Let L > 0 denote the finite-arc length of C. We now explicitly show how any curve C

with the aforementioned properties is diffeomorphic to the unit circle.

We start by showing that C is diffeomorphic to T := R mod L. The diffeomorphism

between the two sets is produced as follows. Since σ is assumed to be unit-speed, it is

therefore L-periodic and any two points λ and λ+L in the domain of σ can be identified.

That is we say that λ1, λ2 ∈ R are equivalent if λ1 − λ2 = kL for some integer k. It is

easily verified that this defines an equivalence relation and the resulting quotient set is T.

Let [λ]L ∈ T denote the equivalence class containing λ. Define a map σ̃ : T→ Rm through

the identity

σ̃([λ]L) = σ(λ).

Now σ̃ maps T diffeomorphically onto C and has the same properties as σ: Im (σ̃) = C,

‖σ̃′(·)‖ 6= 0.

Next we show that the set T = R mod L posseses a natural differentiable structure
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which makes it diffeomorphic to the unit circle

S :=
{

(x, y) ∈ R2 : x2 + y2 = 1
}
.

A diffeomorphism between these sets is given by

F : T→ S

[λ]L 7→ (cos(2πλ/L), sin(2πλ/L))

with inverse

F−1 : S→ T

(x, y) 7→ L

2π
atan2(x, y)

where atan2 is the “smart” or four quadrant arctangent function with codomain (−π, π].

To compute the signed distance between two points on S, we use the natural isomor-

phism between R2 and the complex plane C. If p = (x, y) ∈ S then, with a slight abuse of

notation, we write p = x+ jy. Next, expressing p in polar form using Euler’s Formula we

can write

p = ejϕ = cos(ϕ) + j sin(ϕ) (2.1)

where ϕ = arg (p) and arg is the principle argument.
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Figure 2.1: Complex Exponential Visualized

Given two points p1 and p2 on the S, we define the signed distance between them as

distS : S× S→ (−π, π]

(p1, p2) 7→ arg (exp (j(arg (p1)− arg (p2)))) .
(2.2)

It is easy to check that distS (p1, p2) = arg (p1/p2) and distS(p1, p2) = −distS(p2, p1) .

2.3 Class of Control Systems

The first step in creating any controller is to model the dynamics of the system to be

controlled. This can be done using physics and Newtons’ laws of motion or empirically

with experimental data. Once a mathematical model is derived it can be analyzed and

used to simulate different controller designs. The controller can be tweaked within the

simulation to meet specifications before implementing it on the actual system. This is
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advantageous because it gives an expectation of what is to happen and many designs can

be tested without the need to worry about damaging the apparatus.

A large class of control systems can be modelled as nonlinear, time-invariant, control-

affine systems. We only consider systems with the same number of inputs as outputs. Such

a system is sometimes called square. A general model for this class of systems has the form

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t) (2.3a)

y(t) = h(x(t)) (2.3b)

where x ∈ Rn is its state vector, u := col(u1, . . . , um) ∈ Rm is its control input and, y ∈ Rm

is the output. In this thesis the functions f : Rn → Rn, gi, h : Rn → Rm are always

assumed smooth. For convenience the system can be written compactly as

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))

where g : Rn → Rn×m is given by g(x) =
[
g1(x) · · · gm(x)

]
. An important special case

of (2.3), and the main focus of this research, is the class of square L.T.I. systems with no

feed through

ẋ(t) = Ax(t) +Bu(t) (2.4a)

y(t) = Cx(t) (2.4b)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rm×n are constant matrices.
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2.4 Partial Feedback Linearization

Feedback linearization is a technique used to control nonlinear systems of the form (2.3).

When feasible, it allows control engineers to use standard L.T.I. control design techniques.

In feedback linearization one seeks a specialized local coordinate transformation and feed-

back transformation, at a point in the state space, such that in the transformed coordinates

the closed-loop system is (partially) linear, and the linear part of the dynamics is control-

lable.

2.4.1 Relative Degree

Intuitively, the relative degree of a system is the number of times one must differentiate

the system output in order for the control input to appear. For S.I.S.O. L.T.I. systems,

the relative degree equals the difference between the degree of the denominator and the

numerator of the transfer function. To generalize to nonlinear M.I.M.O. systems of the

form (2.3) care must be taken. In the M.I.M.O. case it is possible to have differentiated

one of the system outputs only to have a subset of the control inputs appear. Different

system outputs may also be dependent on different subsets of the input and may require

different degrees of differentiation. In this thesis we do not consider such systems and only

consider systems with uniform vector relative degree.

Definition 2.4.1. The system (2.3) is said to have uniform vector relative degree

{r, . . . , r} (m-times) at a point x0 ∈ Rn if

(i) (∀i ∈ {0, 1, . . . , r − 2})(∃δ > 0)(∀x ∈ Bδ(x0))
[
Lg1L

i
fh(x) . . . LgmL

i
fh(x)

]
= 0,
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(ii) det


Lg1L

r−1
f h1(x0)) . . . LgmL

r−1
f h1(x0)

...
...

Lg1L
r−1
f hm(x0) . . . LgmL

r−1
f hm(x0)

 6= 0.

�

The matrix in condition (ii) of Definition 2.4.1 is called the decoupling matrix. We will

sometimes write it using compact notation as LgL
r−1
f h(x).

Specializing the above definition to the case of an L.T.I. system (2.4) we have that the

triple (C,A,B) yields a uniform vector relative degree of {r, . . . , r} if

(∀j ∈ {0, 1, . . . r − 2}) CAjB = 0

and CAr−1B is nonsingular. For linear systems, relative degree does not depend on the

point x0 at which the conditions are checked. The extent to which a nonlinear system can

be transformed into a controllable linear system near a point x0 is directly related to its

relative degree at that point. We discuss this connection in the next section.

2.4.2 Byrnes-Isidori Normal Form

A system with uniform relative degree {r, . . . , r} can be partially feedback linearized [17].

The controllable linear subsystem has dimension mr. If mr = n then the nonlinear sys-

tem (2.3) can be fully feedback linearized in a neighbourhood of x0.

More specifically, if (2.3) has relative degree {r, . . . , r} at x0, then there exists an open

set U containing x0 and a map T : U ⊂ Rn → Rn, which is a diffeomorphism onto its
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image defined via

zi := φi(x), (∀ i ∈ Nn−mr)

qij := Li−1
f hj(x), (∀ i ∈ Nr), (∀ j ∈ Nm).

(2.5)

Here the state qij is the (i−1)th derivative of the jth output. Let qi := col(qi1, . . . , q
i
m) ∈ Rm

and let q := col(q1, . . . , qr). With these definitions, the q states represent the system

output (2.3b) and its (Lie) derivatives. Let z = col(z1, . . . , zn−mr) ∈ Rn−mr. The existence

of the functions φi : U → R such that (2.5) is a valid diffeomorphism is guaranteed by [17,

Proposition 5.1.2]. Practically, solving for the diffeomorphism may not be trivial.

If we express (2.3) in the (z, q)-dynamics defined above, the system reads

ż = p(z, q) + r(z, q)u

q̇1 = q2

· · ·

q̇r−1 = qr

q̇r = Lrfh(x) +
m∑
i=i

LgiL
r−1
f h(x)ui = Lrfh(x) + LgL

r−1
f h(x)u

y = q1

(2.6)

where x should be expressed in terms of (z, q) using the inverse of T . In general no special

structure can be imposed on the z-dynamics. The model (2.6) is the Byrnes-Isidori normal

form for (2.3).

By definition of relative degree, the decoupling matrix LgL
r−1
f h is non-singular at x =

x0. Therefore, because f , g and h are all assumed smooth, it remains non-singular in a

neighbourhood of x0 which we take without loss of generality to be U . This means that
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the state feedback controller

u =
(
LgL

r−1
f h(x)

)−1 (−Lrfh(x) + v
)
, (2.7)

with v = col(v1, . . . , vm) an auxiliary or outer-loop control signal, is well-defined in U . As

a result, so long as the state of (2.3) remains in U , the system is feedback equivalent to

ż = p(z, q) + r(z, q)u

q̇1 = q2

· · ·

q̇r−1 = qr

q̇r = v

y = q1

The q-subsystem is easily seen to be linear and controllable and the input-output relation-

ship between the input v and the output y is given in the Laplace domain by

Y (s) =
1

sr
V (s).

When mr = n, there is no z-subsystem and the system (2.3) is feedback equivalent to a

controllable linear system. When mr < n the system is only partially linearized.
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2.4.3 Invariance of Relative Degree under Output

Transformations

Relative degree is a structural property of a system and invariant under coordinate trans-

formations and feedback transformations [23]. The main result of this section is that the

relative degree of a system at a point does not change when we apply a diffeomorphism to

the output space. While such a fact may seem obvious, we are not aware of a proof of it

and therefore we include a proof for completeness. We start with some preliminary results

before proving the main result.

Proposition 2.4.2 (Scalar Vector Product Rule). If f : Rn → Rn and α : Rn → R are

differentiable functions, then

∂

∂x
(α(x)f(x)) = α(x)

∂(f(x))

∂x
+ f(x)

∂(α(x))

∂x
.

Proof. Direct calculations will be used to show the result. Let fi(x) denote the ith com-

ponent function of f . Then using the usual product rule from vector calculus we have

∂

∂x
(α(x)fi(x)) = α(x)

∂(fi(x))

∂x
+ fi(x)

∂(α(x))

∂x
. (2.8)

Apply (2.8) to each component of the vector α(x)f(x) to get the desired result.

Proposition 2.4.3 (Matrix Vector Product Rule). If f, h : Rn → Rm and M : Rm →

Rm×m are differentiable functions, then

∂

∂x
(M(h(x))f(x)) =

(
m∑
i=1

fi(x)
∂(M(y)ei)

∂y

∣∣∣∣
y=h(x)

)
∂(h(x))

∂x
+M(h(x))

∂(f(x))

∂x

where ei is the ith natural basis vector of Rm.
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Proof. Once again, we prove the result by direct calculation. We have

∂

∂x
(M(h(x))f(x)) =

∂

∂x

(
m∑
i=1

fi(x)M(h(x))ei

)

=
m∑
i=1

(
∂

∂x
(fi(x)M(h(x))ei)

)
.

Now apply the results of Proposition 2.4.2 and the chain rule to each term in the above

summation. For i ∈ {1, . . . ,m} we have

∂

∂x
(fi(x)M(h(x))ei) = fi(x)

∂(M(h(x))ei)

∂x
+M(h(x))ei

∂(fi(x))

∂x

= fi(x)
∂(M(y)ei)

∂y

∣∣∣∣
y=h(x)

∂(h(x))

∂x
+M(h(x))ei

∂(fi(x))

∂x
.

Substituting this expression into the summation above yields the desired result.

Theorem 2.4.4. Consider the nonlinear system (2.3) and let T : U ⊆ Rm → Rm be a

diffeomorphism onto its image. For any k ∈ N, there exist smooth functions Mk
j : Rkm →

Rm×m, j ∈ {0, . . . , k − 1} such that

Lkf (T (h(x))) =
k−1∑
j=1

Mk
j (h(x), Lfh(x), . . . , Lk−1

f h(x))Ljfh(x)+
∂(T (y))

∂x

∣∣∣∣
y=h(x)

Lkfh(x). (2.9)

Proof. We prove the proposition by induction. For the base case suppose k = 1. By the
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chain rule

Lf (T (h(x))) =
∂(T (h(x)))

∂x
f(x)

=
∂(T (y))

∂y

∣∣∣∣
y=h(x)

∂(h(x))

∂x
f(x)

=
∂(T (y))

∂y

∣∣∣∣
y=h(x)

Lfh(x)

showing that (2.9) holds for k = 1. Now assume (2.9) is true for some k > 1 and consider

Lk+1
f T (h(x)). Proceeding

Lk+1
f T (h(x)) =

∂(LkfT (h(x)))

∂x
f(x). (2.10)

By the induction hypothesis

LkfT (h(x)) =
k−1∑
j=1

Mk
j (h(x), Lfh(x), . . . , Lk−1

f h(x))Ljfh(x) +
∂(T (h(x)))

∂x
Lkfh(x).

By Proposition 2.4.3

∂(Mk
j (h(x), Lfh(x), . . . , Lk−1

f h(x))Ljfh(x))

∂x
=

m∑
i=1

k−1∑
p=0

(
(Ljfh(x))i

∂(Mk
j (h(x), Lfh(x), . . . , Lk−1

f h(x))ei)

∂Lpfh(x)

∂(Lpfh(x))

∂x

)

+Mk
j (h(x), . . . , Lk−1

f h(x))
∂(Ljfh(x))

∂x
(2.11)
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and

∂

∂x

(
∂(T (h(x)))

∂x
Lkfh(x)

)
=(

m∑
i=1

(Lkfh(x))i
∂

∂y

(
∂(T (y))

∂y
ei

)∣∣∣∣
y=h(x)

)
∂(h(x))

∂x
+
∂(T (y))

∂y

∣∣∣∣
y=h(x)

∂(Lkfh(x))

∂x
. (2.12)

Therefore ∂(LkfT (h(x)))/∂x equals the sum of (2.11) and (2.12). Substituting this sum

into (2.10) we obtain

Lk+1
f (T (h(x))) =

k−1∑
j=1

(
m∑
i=1

[
k−1∑
p=0

(
(Ljfh(x))i

∂(Mk
j (h(x), Lfh(x), . . . , Lk−1

f h(x))ei)

∂Lpfh(x)
Lp+1
f h(x)

)])

+
k−1∑
j=1

Mk
j (h(x), Lfh(x), . . . , Lk−1

f h(x))Lj+1
f h(x)

+
m∑
i=1

(
(Lkfh(x))i

∂

∂y

(
∂(T (y))

∂y
ei

)∣∣∣∣
y=h(x)

Lfh(x)

)
+
∂(T (y))

∂y

∣∣∣∣
y=h(x)

Lk+1
f h(x)

=:
k∑
j=1

Mk+1
j (h(x), Lfh(x), . . . , Lkfh(x))Ljfh(x) +

∂(T (y))

∂y

∣∣∣∣
y=h(x)

Lk+1
f h(x).

Corollary 2.4.5. Let T : U ⊆ Rm → Rm be a diffeomorphism onto its image. Then the

system (2.3) has uniform vector relative degree {r, . . . , r} at x0 ∈ h−1(U) if, and only if

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = T ◦ h(x(t))
(2.13)

has uniform vector relative degree of {r, . . . , r} at x0.

Proof. Suppose that system (2.3) has uniform vector relative degree {r, . . . , r} at x0 ∈
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h−1(U). We must show that the conditions of Definition 2.4.1 hold for (2.13) at x0. For

all k ∈ {0, . . . , r − 1}

LgL
k
f (T (h(x))) =

∂(LkfT (h(x)))

∂x
g(x).

As shown in the proof of Theorem 2.4.4, the above differential equals the sum of (2.11)

and (2.12). Therefore

LgL
k
fT (h(x)) =

k−1∑
j=0

Mk
j (h(x), . . . , Lkfh(x))LgL

j
fh(x) +

∂(T (y))

∂y

∣∣∣∣
y=h(x)

LgL
k
fh(x).

By condition (i) of Definition 2.4.1, for k ∈ {0, . . . , r − 2}, LgLkfh(x) = 0 in a neighbour-

hood of x0. Therefore we get that LgL
k
fT (h(x)) also equals zero in a neighbourhood of x0

for k ∈ {0, . . . , r − 2}. Similarly, for k = r − 1 we get

LgL
r−1
f T (h(x)) =

∂(T (y))

∂y

∣∣∣∣
y=h(x)

LgL
r−1
f h(x).

Since h(x0) ∈ U and since T is a diffeomorphism onto its image, its Jacobian is non-

singular at h(x0). Thus LgL
r−1
f T (h(x0)) is the product of nonsingular matrices and is

therefore nonsingular.

Conversely, suppose that (2.13) has uniform vector relative degree {r, . . . , r} at x0 ∈

h−1(U). Apply the output coordinate transformation T−1 : T (U) ⊆ Rm → U ⊆ Rm and

repeat the same arguments as above with T−1 playing the role of T and T ◦ h playing the

role of h.
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2.5 Zero Dynamics of Linear Time-Invariant Systems

Following the construction from [17, 19, 26], we put a linear system with uniform vector

relative degree into the Byrnes-Isidori normal form. This allows us to isolate its zero

dynamics. Consider again a square linear time-invariant system

ẋ(t) = Apx(t) +Bpup(t)

y(t) = Cp(t).
(2.14)

Here we have added the subscript “p” to indicate plant and to distinguish the matrices

(Cp, Ap, Bp) from those that follow in this discussion.

Suppose that system (2.14) has a uniform vector relative degree {r, . . . , r}. As discussed

in Section 2.4.2, let q = T1x := (Cpx,CpApx, . . . , CpA
r−1
p x) ∈ Rrm and select a matrix

T0 ∈ R(n−rm)×n whose rows span a subspace of the annihilator of ImB such that the n×n

matrix

T :=

T0

T1


is nonsingular. Such a choice is always possible since T1 is full rank [17, Lemma 5.1.1] and

B is constant and therefore its columns define an involutive distribution [17, Proposition

5.1.2]. Additionally, see [18, Proposition 11.5.1] and [26], T0 can be chosen such that

defining z := T0x ∈ Rn−rm, in (z, q)-coordinates, system (2.4) reads

ż = A00z + A01Cq

q̇ = Âq + B̂
(
A10z + A11q + CpA

r−1
p Bpup

)
y =

[
0 C

]z
q

 .
(2.15)
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Denote the inverse of T as x = M0z+M1q where M0 and M1 are partitions of T−1 defined

implicitly by [
M0 M1

]T0

T1

 = In.

Then the submatrices in (2.15) are given by

A00 = T0ApM0, A01C = T0ApM1, A10 = CpA
r
pM0, A11 = CpA

r
pM1

and the triple (Ĉ, Â, B̂) is given by

Â =



0m Im 0m · · · 0m

0m 0m Im · · · 0m

· · · · · · ·

0m · · · · 0m Im

0m · · · · · 0m


∈ Rrm×rm, B̂ =



0m

·

·

·

0m

Im


∈ Rrm×m (2.16)

and

Ĉ =
[
Im 0m · · · 0m

]
∈ Rm×rm.

The subspace

Z? := {(z, q) : q = 0} = Im

In−mr
0

 (2.17)

is the zero dynamics manifold of (2.4) in (z, q)-coordinates. This manfold can be made

invariant by applying the globally defined linear state feedback

u?p = −(CpA
r−1
p Bp)

−1 (A10z + A11q) .
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With this controller, if the system is initialized on Z? then it remains there for all t ≥ 0

and the corresponding output signal is identically equal to zero. The dynamics of (2.15)

restricted to Z? are given by

ż = A00z.

These are the zero dynamics of (2.15). Since the system (2.15) is obtained by a similarity

transformation, it is easy to check that the transmission zeros (in the sense of [8]) of (2.15)

are identical to those of (2.4) and are precisely the eigenvalues of the submatrix A00.

26



Chapter 3

Path Following Normal Form for

Linear Systems

Consider a linear, time-invariant, square plant with no feed through of the form

ẋ(t) = Apx(t) +Bpup(t) (3.1a)

y(t) = Cpx(t). (3.1b)

assigned a closed curve, C, in its output space. The plant is assumed to have uniform

vector relative degree {r, . . . , r}.

The essential idea of this section is to define a fictitious output for a linear system with

a clear physical meaning for the path following control design problem. This output can

be viewed as a coordinate change on the output space that results in a linear system with

a nonlinear output instead of the original linear output. Then, if possible, one performs

input-output feedback linearzation of the system with its redefined output. The resulting
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(partially) feedback linearized system continues to have a useful physical interpretation in

the context of path following and the resulting normal form greatly simplifies controller

design. The costs associated with this simplification are that solutions are almost invariably

local and susceptibility to poor performance from model uncertainty.

3.1 Class of Paths Considered

In this section, we describe the class of curves assigned to each agent which is identical

to those in other works [9, 25]. The terms ‘curve’ and ‘path’ are used interchangeably

throughout this work. We assume that each curve C is closed, has no self-intersections

and has a smooth (C∞) parameterization σ : R → Rm such that C = Im(σ) and, for all

λ ∈ R, ‖σ′(λ)‖ 6= 0. We further assume, without loss of generality, that σ is unit speed

parameterized, i.e., ‖σ′(λ)‖ ≡ 1. This is possible because σ is smooth and by assumption

‖σ′(λ)‖ 6= 0.

Under these assumptions, each curve σ is parameterized by its arc-length. The assump-

tion of arc-length parametrized curves simplifies some of our subsequent analysis but the

results contained within this thesis still remain valid even when this assumption does not

hold.

Since C is closed, it has a finite length which we denote by L > 0 and the parameteri-

zation σ is L-periodic, i.e., (∀λ ∈ R) σ(λ + L) = σ(λ). In such cases, we take the domain

of σ to be T = RmodL meaning the curve has the geometric structure of a circle, see

Section 2.2.

Assumption 1 (Implicit Representation). There exists an open set U in Rm containing
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C and a smooth (C∞) function s : U → Rm−1 that has zero as a regular value such that

C = s−1(0) = {y ∈ U ⊆ Rm : s(y) = 0} . (3.2)

J

Let

Γ := {x ∈ Rn : Cpx ∈ C} = {x ∈ Rn : s(Cpx) = 0} (3.3)

denote the lift of the curve C to the state-space of (3.1). Since C is compact the following

statements are equivalent:

(i) y(t)→ C as t→∞

(ii) s(y(t))→ 0 as t→∞

(iii) x(t)→ Γ as t→∞.

3.2 Path Following Outputs

As noted above, under Assumption 1, driving the output of (3.1) towards its path C can

be viewed as an output stabilization problem for the output s(y) = s(Cx). Intuitively,

‖s(y)‖ can be viewed as a distance function from y to C and asymptotically driving this

distance to zero solves the problem of making the output approach C.

Following [7], let N (C) ⊂ Rm denote a tubular neighbourhood of the curve C charac-

terized by the property that if y ∈ N (C), then there exists a unique y? ∈ C such that

dist(y, C) := infp∈C ‖y − p‖ = ‖y − y?‖. Such a neighbourhood is guaranteed to exist since
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C is, by the assumptions imposed in Section 3.1, an embedded submanifold of the output

space Rm. In fact, since C is compact, we can make the stronger statement that there

exists an ε > 0 such that

{y ∈ Rm : dist(y, C) < ε} ⊆ N (C).

Introduce the projection

$ : N (C) ⊂ Rm → T

y 7→ arg inf
λ∈T
‖y − σ(λ)‖.

(3.4)

The function (3.4) is as smooth as σ and returns the parameter λ ∈ [0, L) which

minimizes the distance from the output to the path, i.e., σ($(y)) is the point on the path

closest to y.

The feasibility of computing this projection is dependent on the complexity of the curve.

As λ belongs to a closed interval of the real line, one could exhaustively look through all

possible values for the minimizing argument, λ∗ := $(y). A more computationally efficient

method could be to use the facts that: the inner product between two orthogonal vectors

is zero and, the shortest distance from a point to a curve is always perpendicular to the

curve (see Figure 3.1 below).
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Figure 3.1: Schematic Diagram of Path Following Output $(y)

With this in mind, we can search for λ∗ by solving

〈y − σ(λ∗), σ′(λ∗)〉 = 0

using a well known root finding method such as the bisection, secant or Newton’s method.

Combining the function s : Rm → Rm−1 from (3.2) which implicitly defines the curve

C via C = s−1(0) with (3.4), we obtain a map

FPF : U ⊆ Rm → T× Rm−1

y 7→

 $(y)

s(y)

 (3.5)

whose domain is taken, without loss of generality, to be the neighbourhood U from As-

sumption 1.

31



Definition 3.2.1. The path following output of system (3.1) with respect to a closed

curve C is

C−1
p (U) ⊆ Rn → T× Rm−1

x 7→ FPF ◦ Cpx.
(3.6)

�

We write yPF = FPF(y) = FPF ◦Cpx =: hPF(x) to distinguish the path following output

yPF from the output y of (3.1b). The jth component of the path following output is denoted

using an extra subscript, i.e., hPF,j(x). The differential of the path following output has a

strong geometric interpretation as the next result shows.

Proposition 3.2.2 ([14, Lemma 3.1]). For each y ∈ C, the vector d$y is orthogonal to

the rows of dsy.

In light of Proposition 3.2.2, we are tempted to apply the classical inverse function

theorem (Theorem 2.1.4) to the path following output and say it is a diffeomorphism.

However, we must be careful because the codomain of the projection $ is T = R mod L

which is a smooth manifold, not a vector space. Therefore we need the inverse function

theorem on manifolds. To state the theorem we first require some definitions.

Definition 3.2.3. Consider a function F : M → N where M and N are smooth manifolds.

The function F is smooth if for every p ∈ M there exist coordinate charts (U,ϕ) of M

containing p and (V, ψ) containing F (p), such that the expression of F in local coordinates

F̂ = ψ ◦ F ◦ ϕ−1 is smooth. �

Definition 3.2.4. Consider a function F : M → N where M and N are smooth manifolds.

The function F is a diffeomorphism if it is bijective, smooth and its inverse F−1 :

N → M is also smooth. Two manifolds M and N are diffeomorphic if there exists a

diffeomorphism between them. �
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More generally, a map between smooth manifolds F : M → N is called a local diffeo-

morphism at p ∈M if there exists an open set U ⊆M containing p such that F : U → F (U)

is a diffeomorphism. If such a map is a local diffeomorphism at every p, then it is sim-

ply called a local diffeomorphism. The next result states that a necessary condition for a

map between manifolds to be a local diffeomorphism at a point is that its differential be

bijective.

Proposition 3.2.5. Suppose that F : M → N is a diffeomorphism. Then its differential

dFp is an isomorphism at each p ∈M .

The proof of Proposition 3.2.5 can be found in Appendix A.

The inverse function theorem on manifolds can be used to determine if a map between

manifolds is a local diffeomorphism at a given point. It states that the necessary condition

from Proposition 3.2.5 is also sufficient.

Theorem 3.2.6 ([24, Theorem 7.10]). Suppose M and N are smooth manifolds, p ∈ M

and F : M → N is a smooth map such that dFp : TpM → TF (p)N is bijective. Then there

exists an open connected set U containing p such that F : U → F (U) is a diffeomorphism.

Remark 3.2.7. The conditions of Theorem 3.2.6 can be checked as follows. Let p ∈ M

and let (U,ϕ) be a any smooth chart on M with p ∈ U . Let (V, ψ) be a smooth chart on

N with F (p) ∈ V . Then dFp is a bijection if, and only if the Jacobian matrix of its local

representation dF̂ϕ(p) is a linear bijection, i.e., a non-singular square matrix. J

Together, Proposition 3.2.2 and Theorem 3.2.6 imply that (3.5) is a local diffeomor-

phism of system (3.1)’s output in a neighbourhood of each y ∈ C. This however does

not immediately mean that (3.5) maps an open set containing the path C diffeomorphi-

cally onto its image. To conclude this stronger property, we need a generalized version of

Theorem 3.2.6 which requires the following preliminary result.
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Proposition 3.2.8 ([13, Exercise 1.3.5]). Let F : M → N be a local diffeomorphism. If F

is one-to-one, then F : M → F (M) is a diffeomorphism.

The proof of Proposition 3.2.8 can be found in Appendix A.

Theorem 3.2.9 ([13, Exercise 1.3.10]). Let F : M → N be a smooth map that is one-to-

one on a compact submanifold S of M . Suppose that for all p ∈ S

dFp : TpM → TF (p)N

is an isomorphism. Then F maps an open neighbourhood of S in M diffeomorphically onto

an open neighbourhood of F (S) in N .

The proof of Theorem 3.2.9 can be found in Appendix A.

With the above results in place, we can rigorously assert that the path following output

maps an open set containing the assigned path C diffeomorphically into T× Rm−1.

Corollary 3.2.10. The function (3.5) maps an open neighbourhood of C in Rm diffeomor-

phically onto an open neighbourhood of FPF(C) in T× Rm−1.

Proof. The result follows immediately from Proposition 3.2.2 and Theorem 3.2.9.

3.3 Path Following Normal Form

When feasible, applying input-output feedback linearization to system (3.1) with respect

to its path following output (3.6) yields a normal form which facilitates path following

control design and, to some extent, analysis. The normal form has the useful property
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of decomposing the system dynamics, as well as the control inputs, into those that are

tangential and transversal to the given path.

We begin by showing that re-defining the output of (3.1) using the path following

output (3.6) does not change its relative degree. Recall the definition of equation (3.3) for

the lift, Γ, of the path into the state-space of (3.1). The set Γ is the set of all points in the

state-space at which the corresponding output belongs to the curve C. Note that, unlike

C, the set Γ is not compact.

Corollary 3.3.1. System (3.1) with output (3.6) has a uniform vector relative degree of

{r, . . . , r} at each x ∈ Γ.

Proof. By Corollary 2.4.5, a system’s relative degree is invariant under output diffeomor-

phisms. By Corollary 3.2.10 the function (3.5) is a diffeomorphism in a neighbourhood of

C. Therefore, system (3.1) with output FPF ◦ Cpx has relative degree {r, . . . , r} at each

Cpx ∈ C.

The next two propositions are vital to constructing the path following normal form.

Proposition 3.3.2. There exists an open set in Rn containing the lift (3.3) such that, at

each point in the set, the mr differentials of Li−1
Apx

hPF, i ∈ Nr, are linearly independent.

Proof. By Corollary 3.3.1 system (3.1) has vector relative degree {r, . . . , r} at each point

of Γ. Therefore, by [17, Lemma 5.1.1], the differentials of interest are linearly independent

at each x ∈ Γ. By continuity of these differentials, they remain linearly independent in an

open set containing Γ.

Proposition 3.3.3. At each x̄ ∈ Γ, there exist n −mr independent linear functionals in

the annihilator of Im (Bp) which are linearly independent of the differentials of Lj−1
Apx

hPF,

j ∈ Nr.
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Proof. Fix x̄ ∈ Γ. By [17, Proposition 5.1.2], noting that Im (Bp) can be viewed as a

constant, and therefore an involutive distribution, it is always possible to select n − mr

functionals from the annihilator of Im (Bp) whose differentials are linearly independent

from dLj−1
Apx

hPF, j ∈ Nr, at x̄.

This shows that at each x̄ ∈ Γ, there exist b′i ∈ ann (Im (B)), i ∈ Nn−mr, such that,

defining

ζi := b′ix, i ∈ Nn−mr, (3.7a)

ηi := Li−1
Apx

hPF,1(x), i ∈ Nr, (3.7b)

ξji := Li−1
Apx

hPF,j(x), i ∈ Nr, j ∈ {2, . . . ,m} , (3.7c)

the map x 7→ (ζ, η, ξ) is a local diffeomorphism at x̄. Here ζ := (ζ1, . . . , ζn−mr) ∈ Rn−mr,

η := (η1, η2 . . . , ηr) ∈ T×Rm−1, ξ := (ξ2, . . . , ξm) with ξj := (ξj1, . . . , ξ
j
r) ∈ Rr. The state ξji

is the (i− 1)th derivative of the jth path following output.

Therefore, there exists an open connected set Ux̄ ⊂ Rn containing x̄ ∈ Γ where sys-
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tem (3.1) expressed in (ζ, η, ξ)-coordinates reads

ζ̇ = q(ζ, η, ξ)

η̇1 = η2

· · ·
η̇r−1 = ηr

η̇r = LrApxhPF,1(x) + LBpL
r−1
Apx

hPF,1up

ξ̇2
1 = ξ2

2

· · ·
ξ̇2
r−1 = ξ2

r

ξ̇2
r = LrApxhPF,2(x) + LBpL

r−1
Apx

hPF,2up

ξ̇3
1 = ξ3

2

· · ·
ξ̇3
r−1 = ξ3

r

ξ̇3
r = LrApxhPF,3(x) + LBpL

r−1
Apx

hPF,3up

· · ·
ξ̇m1 = ξm2
· · ·

ξ̇mr−1 = ξmr

ξ̇mr = LrApxhPF,m(x) + LBpL
r−1
Apx

hPF,mup.

(3.8)

Of course we should express x in terms of (ζ, η, ξ) using the inverse of (3.7) so that the

right-hand side of (3.8) is in terms of (ζ, η, ξ).

Definition 3.3.4. The path following normal form of an L.T.I. system (3.1) with

relative degree {r, . . . , r} tasked with following a curve C satisfying the assumptions in

Section 3.1 is given by (3.8). �

By Corollary 3.3.1, the m×m decoupling matrix LBpL
r−1
Apx

hPF(x) is non-singular for all
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x ∈ Ux̄. This means that the feedback controller

up = (LBpL
r−1
Apx

hPF(x))−1

−L
r
ApxhPF(x) +


v‖

vt2
...

vtm



 , (3.9)

where v := col(v‖, vt2 , . . . , v
t
m) is an auxiliary control input, is well-defined for all x ∈ Ux̄

and therefore system (3.1) is feedback equivalent to

ζ̇ = q(ζ, η, ξ)

η̇1 = η2

· · ·
η̇r−1 = ηr

η̇r = v‖

ξ̇2
1 = ξ2

2

· · ·
ξ̇2
r−1 = ξ2

r

ξ̇2
r = vt2

ξ̇3
1 = ξ3

2

· · ·
ξ̇3
r−1 = ξ3

r

ξ̇3
r = vt3
· · ·

ξ̇m1 = ξm2
· · ·

ξ̇mr−1 = ξmr

ξ̇mr = vtm

(3.10)
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for all x ∈ Ux̄. If we define the matrices

A :=



0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · ·

0 · · · · 0 1

0 · · · · · 0


∈ Rr×r, b =



0

·

·

·

0

1


∈ Rr (3.11)

then (3.10) can be compactly written

ζ̇ = q(ζ, η, ξ)

η̇ = Aη + bv‖

ξ̇2 = Aξ2 + bvt2

ξ̇3 = Aξ3 + bvt3

· · ·

ξ̇m = Aξm + bvtm.

(3.12)

Or, if we define

A := diag (A, . . . , A)︸ ︷︷ ︸
m− 1 times

, B := diag (b, . . . , b)︸ ︷︷ ︸
m− 1 times

, vt := (vt2 , . . . , v
t
m) (3.13)

even more compactly as

ζ̇ = q(ζ, η, ξ)

η̇ = Aη + bv‖

ξ̇ = Aξ + Bvt.

(3.14)
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The path following output is given by

yPF =

η1

ξ2

 . (3.15)

We choose to keep the η- and ξ-subsystems separate in (3.14) because they have different

physical meanings in the context of path following. The ξ-subsystem determines the motion

towards the path and regulating it to zero has the practical interpretation of the system

output belonging to the desired path. The η-subsystem determines the motion along

the path. This connection is exploited in Proposition 4.1.1. The ζ-dynamics represent

dynamics that have no discernable effect on the path following output. They are the

internal dynamics of the system and are closely related to the zero dynamics of the original

system (3.1).

We are tempted to argue that system (3.1) is feedback equivalent to (3.14) in a neigh-

bourhood of the entire set Γ. However, it is not immediately clear that this is the case

because of our special choice of ζ-states and because the term LrApx
hPF(x) in the feed-

back (3.9) may not be bounded over all of Γ since Γ is not a bounded set. What is true,

by [18, Proposition 11.5.1], is that there exists a diffeomorphism between an open set

containing Γ onto its image in which system (3.1) is differentially equivalent to the path

following normal form (3.8) with the difference being that the ζ-dynamics are replaced

with a differential equation of form

ζ = q(ζ, η, ξ) + p(ζ, η, ξ)up.
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3.4 Relationship Between Internal & Zero Dynamics

At this point, for clarity of exposition, it is convenient to work with system (3.1) in (z, q)-

coordinates (2.15). The system with path following output reads

ż = A00z + A01Cq

q̇ = Âq + B̂
(
A10z + A11q + CpA

r−1
p Bpup

)
yPF = FPF(Cq).

We immediately see from the definitions of the states η (eqn. (3.7b)) and ξ (eqn. (3.7c))

and from the definition of the matrices Â and B̂ (eqn. (2.16)), that in (z, q)-coordinates

the (η, ξ)-states only depend on the q states in (2.15). Let

ζi = zi, i ∈ Nn−mr, (3.16a)

ηi := Li−1

Âq
hPF,1(q), i ∈ Nr, (3.16b)

ξji := Li−1

Âq
hPF,j(q), i ∈ Nr, j ∈ {2, . . . ,m} (3.16c)

Proposition 3.4.1. The mapping defined by (3.16) maps an open subset of Rn containing

the set

Γ? :=
{

(z, q) ∈ Rn−mr × Rmr : Cq ∈ C, CÂq = · · ·CÂr−1q = 0
}

(3.17)

diffeomorphically onto its image.

To prove this result we need an even more general version of the inverse function

theorem.

Theorem 3.4.2 ([13, Exercise 1.8.14]). Suppose that F : M → N is map between mani-

folds. Let S ⊂M be a submanifold of M . If
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(i) for all p ∈ S, dFp is an isomorphism, and

(ii) F maps S diffeomorphically onto F (S),

then F maps a neighbourhood of S diffeomorphically onto a neighbourhood of F (S).

The proof of Theorem 3.4.2 can be found in Appendix A.

Proof of Proposition 3.4.1. We prove the result by showing that the conditions of Theo-

rem 3.4.2 hold.

Since (a) relative degree is invariant under similarity transformations, (b) the map from

(z, q) 7→ (η, ξ) in (3.16) is independent of z, and (c) the definition (3.16a) of the ζ states,

we have by Proposition 3.3.2 and the fact that Γ? ⊂ Γ, that the differential of the map

from (q, z) 7→ (ζ, η, ξ) is an isomorphism at each point on Γ?.

By Theorem 2.4.4 and Equations (3.16b), (3.16c), we have that the image of Γ? under

the map (3.16) is

ζ = z,

η1 = $(Cq),

η2 = · · · = ηr = 0

ξ2 = · · · = ξm = 0.

The inverse on the above set is

z = ζ

(q1, . . . , qm) = σ(η1)

(qm+1, . . . , qmr) = (0, . . . , 0)
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The existence of this inverse shows that (3.16) maps Γ? diffeomorphically onto its image.

Therefore, having shown that conditions (i) and (ii) of Theorem 3.4.2 hold, we are done.

Remark 3.4.3. Employing the analysis from Section 2.2, we see that the set (3.17) is

diffeomorphic to T× Rn−mr. The set can also be expressed in x-coordinates as

Γ? :=
{
x ∈ Rn : Cpx ∈ C, CpApx = · · · = CpA

r−1
p x = 0

}
. (3.18)

We can interpret Γ? as all those points in the state-space of (3.1) for which the output is

constant and on the assigned path. J

Remark 3.4.4. The dimension of the zero dynamics subspace (2.17) of (2.15) is one less

than the dimension of (3.17). The difference is that on the zero dynamics manifold (2.17)

the system output is constrained to be constant and equal to zero while on the path

following manifold (3.17) the system output is constant but can be located at any point

on the assigned path C. J

Let T : U ⊂ Rn → T (U) denote the coordinate transformation defined by (3.16). By

Proposition 3.4.1, the path following normal form of (2.15) (equivalently system (3.1)),

valid in an open set containing (3.17), is given by
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ζ̇ = A00ζ + A01F
−1
PF (yPF)

η̇1 = η2

· · ·
η̇r−1 = ηr

η̇r = a1(ζ, q) + b1(q)up

ξ̇2
1 = ξ2

2

· · ·
ξ̇2
r−1 = ξ2

r

ξ̇2
r = a2(ζ, q) + b2(q)up

ξ̇3
1 = ξ3

2

· · ·
ξ̇3
r−1 = ξ3

r

ξ̇3
r = a3(ζ, q) + b3(q)up

· · ·
ξ̇m1 = ξm2
· · ·

ξ̇mr−1 = ξmr

ξ̇mr = am(ζ, q) + bm(q)up

yPF =

[
η1

ξ2

]
.

(3.19)

Of course we should express q in terms of η and ξ using T−1(ζ, η, ξ) so that the right-

hand side of (3.19) is in terms of (ζ, η, ξ). We emphasize that this is a global normal form

valid not just in a neighbourhood of a point, but rather in a neighbourhood of the entire
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set (3.17). Grouping the terms in which the control input up appears we have



η̇r

ξ̇2
r

ξ̇3
r

· · ·

ξ̇mr


=



a1(ζ, q)

a2(ζ, q)

a3(ζ, q)

· · ·

am(ζ, q)


+



b1(q)

b2(q)

b3(q)

· · ·

bm(q)


up

:= dLr−1

Âq
hPF(q)B̂ (A10ζ + A11q) + dLr−1

Âq
hPF(q)B̂CpA

r−1
p Bpup.

We can simplify this expression further using Theorem 2.4.4 to note that

dLr−1

Âq
hPF(q)B̂ = dFPF|Cq .

Therefore we can write

η̇r

ξ̇2
r

ξ̇3
r

· · ·

ξ̇mr


= A(ζ, q) +B(q)up := dFPF|Cq (A10ζ + A11q) + dFPF|Cq CpA

r−1
p Bpup.

Since (3.1) is assumed to have relative degree {r, . . . , r} and since FPF is a diffeomorphism,

Corollary 2.4.5 implies that the m ×m matrix B(q) is non-singular at every point of Γ?.

Therefore,

inf
(z,q)∈Γ?

detB(q) = min
Cq∈C

det
(

dFPF|Cq CpA
r−1
p Bp

)
= det

(
CpA

r−1
p Bp

)
min
Cq∈C

det
(

dFPF|Cq
)
> 0.
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Here we use the fact that C is a compact set. Therefore, the matrix B(q) is globally

invertible in a neighbourhood of Γ?. The feedback controller

up = B−1(q)

−A(ζ, q) +

v‖
vt


is well-defined in a neighbourhood of Γ? and, if we set vt = 0, v‖ = 0, the feedback makes

Γ? invariant for the controlled system. The dynamics of the system restricted to (3.17)

become

ζ̇ = A00ζ + A01σ(η1)

where η1 is a constant determined by where on the path the system lies. This constant

equals $(Cq) = $(Cpx).

If we allow the system to move along its assigned path, then the dynamics of the system

restricted to the path, i.e., with ξ = 0 become

ζ̇ = A00ζ + A01σ(η1)

η̇1 = η2

· · ·

η̇r−1 = ηr

η̇r = v‖.

Of course since the set Γ? is unbounded, the term A(ζ, q) may be unbounded because ‖ζ(t)‖

may be undounded. As a result, in practice, it may not be possible to enforce invariance

of Γ? nor the path for all t ≥ 0 due to actuator saturation. If the system is minimum

phase, then A00 is Hurwitz and boundedness of the path ensures that the ζ dynamics are
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bounded.

Example 3.4.1. (Double mass system) We now provide an illustrative example based

on the system from [2] to demonstrate the constructions discussed. We use a double mass

system wherein a small mass m lays atop a driven vehicle with mass M in the plane. The

system can be modeled using the dynamic equations

Mÿ = D(ż − ẏ) + u, mz̈ = D(ẏ − ż) +G(z − y),

where D,G ∈ R2×2 are diagonal matrices with strictly positive diagonal elements, u ∈ R2

is the force and y, z ∈ R2 are the (x, y)-positions of the vehicle and mass in the plane,

respectively. The position of the larger mass y in the plane is taken as the system output.

The curve C in the output space is taken to be a circle of unit radius centered at the origin.

(a) Top View

(b) Side View

Figure 3.2: Double Mass System

It is easily checked through direct calculations of the conditions in Definition 2.4.1 that

the system yields a well-defined relative degree {2, 2}. Placing the double mass system into
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the path following normal form is accomplished in the following way. First define the state

vector x = [z1, ż1, z2, ż2, y1, ẏ1, y2, ẏ2]> and it’s corresponding triple (Cp, Ap, Bp) describing

the dynamics of the system. The system output is y = col(y1, y2). We define our implicit

representation of the curve as the zero level set of the unit circle, s(y) = y2
1 + y2

2 − 1. For

a circle, the projection from the system output to the closest point on the path may be

taken as $(y) = atan2(y2, y1), where atan2 is the four quadrant arctangent function with

codomain (−π, π]. We use these to redefine the output of the system to the path following

outputs.

Converting this system to the path following normal form (3.14), we get that the

diffeomorphism x 7→ (ζ, η, ξ) is defined via



ζ1

ζ2

ζ3

ζ4

η1

η2

ξ2
1

ξ2
2



=



x1

x2

x3

x4

atan2 (x7, x5)

d$yC(Ax+Bu)

x2
5 + x2

7 − 1

dsyC(Ax+Bu)


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with system dynamics



ζ̇1

ζ̇2

ζ̇3

ζ̇4

η̇1

η̇2

ξ̇2
1

ξ̇2
2



=



ζ2

D1,1

m

[(
ξ22

2
√
ξ21+R2

cos(2π
L
η1)− 2π

L
η2

√
ξ2

1 +R2 sin(2π
L
η1)

)
− ζ2

]
+G1,1

m

(
ζ1 −

√
ξ2

1 +R2 cos(2π
L
η1)
)

ζ4

D2,2

m

[(
ξ22

2
√
ξ21+R2

sin(2π
L
η1) + 2π

L
η2

√
ξ2

1 +R2 cos(2π
L
η1)

)
− ζ4

]
+G2,2

m

(
ζ3 −

√
ξ2

1 +R2 cos(2π
L
η1)
)

η2

L2
Axs(y) + [LB1LAxs(y), LB2LAxs(y)]u

ξ2
2

L2
Ax$(y) + [LB1LAx$(y), LB2LAx$(y)]u


yPF =

 η1

ξ2
1

 ,
where Bi is the ith column of Bp. We may now use the control input (3.9) to facilitate
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partial feedback linearizion



ζ̇1

ζ̇2

ζ̇3

ζ̇4

η̇1

η̇2

ξ̇2
1

ξ̇2
2



=



ζ2

D1,1

m

[(
ξ22

2
√
ξ21+R2

cos(2π
L
η1)− 2π

L
η2

√
ξ2

1 +R2 sin(2π
L
η1)

)
− ζ2

]
+G1,1

m

(
ζ1 −

√
ξ2

1 +R2 cos(2π
L
η1)
)

ζ4

D2,2

m

[(
ξ22

2
√
ξ21+R2

sin(2π
L
η1) + 2π

L
η2

√
ξ2

1 +R2 cos(2π
L
η1)

)
− ζ4

]
+G2,2

m

(
ζ3 −

√
ξ2

1 +R2 cos(2π
L
η1)
)

η2

v‖

ξ2
2

vt



.

Now vt can be designed to make ξ → 0 as t→∞ and have the system output approach

the designated curve. This is done independently from designing v‖ for where on the unit

circle the double mass system should be. 4
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Chapter 4

Path Following for Linear Time

Invariant Systems

In this chapter, we solve a path following problem for a linear time-invariant system as-

signed a closed path in its output space. At its core, the problem is to design a feedback

controller such that the system output approaches its specified path. The controller should

make the path invariant and should track a desired motion along the path.

4.1 Problem Statement

Consider a single linear, time-invariant, square plant with no feed through of the form:

ẋ(t) = Apx(t) +Bpup(t) (4.1a)

y(t) = Cpx(t). (4.1b)
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The pair (Ap, Bp) is assumed to be controllable and the triple (Cp, Ap, Bp) has vector

relative degree {r, . . . , r}. The plant is assigned a closed curve C in its output space

satisfying all the assumptions of Section 3.1. We are also given a desired motion along the

curve expressed in terms of an exosystem.

Assumption 2 (Exosystem). The desired motion along the assigned curve C is generated

as the output of a system of the form

d

dt
w(θ(t)) =

dθ

dt
Sw(θ(t)), w(θ(0)) = w0

r(θ(t)) = σ(Qw(θ(t)))

(4.2)

where σ(S) ⊂ C− ∪ jR, Q ∈ R1×dim(w) and θ : [0,∞)→ R is piecewise smooth.

Since the exosystem in Assumption 2 produces a reference for a system’s motion

along the path, the timing law [26] θ may be interpreted as a path parameter which

re-parameterizes the desired motion along the path. The evolution of θ can be used to

further control the motion along the path. Setting θ(t) = t results in the usual trajectory

tracking framework. In this manner, the path following control design problem can be

viewed as a tracking problem. In the first part of this chapter, we assume that θ is given

while in the second part, we use the freedom to select the timing law.

Our objective is to design a full information feedback controller such that:

(i) y → r(θ(t)) as t→∞ for all initial conditions in a neighbourhood of the path.

(ii) The path is invariant in the sense that if y(0) ∈ C and the system’s initial motion is

sufficiently tangent to the path, then y(t) ∈ C for all t ≥ 0 even when y(0) 6= r(θ(0)).

(iii) The system’s state is bounded for all time.
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4.1.1 Translation to Path Following Outputs

The utility of using the path following output (3.6) and the path following normal form (3.19)

for path following control design lies in the fact that regulating the last m− 1 components

of yPF to zero implies that the system output is approaching C. The first component of

yPF determines the point on the curve closest to the actual system output (3.1b).

Proposition 4.1.1. Consider system (3.1) assigned a curve C in its output space and a

desired motion along the curve given by (4.2). Then y(t) = r(θ(t)) if, and only if

yPF(t) =


mod(Qw(θ(t)), L)

0
...

0


Proof. Let t ≥ 0 be arbitrary and suppose that y(t) = r(θ(t)). Then y(t) ∈ C which means

that s(y(t)) = 0 and therefore the last m−1 components of yPF(t) equal zero. Furthermore,

by definition of the function $

σ($(y(t))) = y(t) = σ(Qw(θ(t))).

Therefore, since σ is L-periodic,

$(y(t)) = mod(Qw(θ(t)), L)

Conversely, suppose that yPF(t) equals (mod(Qw(θ(t)), L), 0, . . . , 0). Then s(y(t)) = 0

which implies y(t) ∈ s−1(0) = C. Since y(t) ∈ C, we again have that σ($(y(t))) = y(t).

But $(y(t)) = mod(Qw(θ(t)), L) by assumption and therfore, using the L-periodicity of
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the parameterization σ,

y(t) = σ(mod(Qw(θ(t)), L)) = σ(Qw(θ(t)))

The requirements of the problem statement may now be expressed in terms of the path

following outputs instead. Our objective is to design a full information feedback controller

such that:

(i) yPF → col(mod(Qw(θ(t)), L), 0, . . . , 0) as t→∞.

(ii) If ξ(0) = 0, then ξ(t) = 0 for all t ≥ 0.

(iii) ‖ζ‖ is bounded.

4.2 Solution for Minimum Phase Systems

In this section we make the following assumption.

Assumption 3 (Minimum Phase). All the transmission zeros of the system (4.1) have

negative real parts.

Assumption 3 means that for all λ ∈ C−,

rank

 Ap − λIn Bp

Cp 0

 = n+m.

It also means that the matrix A00 in the normal forms (2.15) and (3.19) is Hurwitz.
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In light of Proposition 4.1.1, we would like to make η1 approach mod (Qw(θ(t)), L). To

measure the error between the variable η1 ∈ T and mod(Qw(θ(t)), L) ∈ T, we use the

ideas from Section 2.2 to define the tracking error.

Definition 4.2.1. For any exosystem of the form (4.2), the arc-error is

earc :=
L

2π
distS

(
exp

(
j

2π

L
η1

)
, exp

(
j

2π

L
mod (Qw(θ(t)), L)

))
. (4.3)

�

We first map variables on T to points on the unit circle S. We then compute the signed

distance between these points on the circle and then normalize to an arc-length between

(−L/2, L/2].

Define, for i ∈ Nr, the tangential tracking errors

ei(t) :=
di−1

dti−1
(ηi(t)− mod(Qw(θ(t)), L)) . (4.4)

With this definition we have that earc = L
2π

arg
(
exp

(
j 2π
L
e1

))
and, applying the chain rule

gives that ėarc(t) = ė1(t). A proof of this statement can be found in Appendix A. Define

the vector e := (earc, e2, . . . , er) ∈ (−L/2, L/2]× Rr−1.

Remark 4.2.2. When θ(t) = t the definition of the errors (4.4) simplifies to

e1(t) = η1(t)− mod(Qw(t), L)

ei(t) = ηi(t)−QSi−1w(t), i ∈ {2, . . . , r} .

J
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The structure of the η-dynamics in the path following normal form (3.19) gives

ėarc = e2

ė2 = e3

· · ·

ėr = LrApxhPF,1(x) + LBpL
r−1
Apx

hPF,1(x)up −
dr

dtr
Qw(θ(t)).

Theorem 4.2.3. Consider a minimum phase L.T.I. system (4.1) assigned a curve in its

output space satisfying all the assumptions of Section 3.1 and a desired motion along the

curve generated by the exosystem (4.2). Consider the full information feedback control law

up =
(
CpA

r−1
p Bp

)−1

(
∂FPF

∂y

∣∣∣∣
y=Cpx

)−1
−LrApxhPF(x) +

v‖
vt

 (4.5)

with

v‖ = Kηe +
dr

dtr
Qw(θ) = −kη,1earc − kη,2e2 − kη,3e3 − · · · − kη,rer +

dr

dtr
Qw(θ)

vt = Kξξ =


Kξ,2ξ

2

Kξ,3ξ
3

· · ·

Kξ,mξ
m


(4.6)

where Kη and Kξ are selected so that, respectively, A + bKη and A + BKξ are Hurwitz.

Then there exists an open set containing Γ? such that the closed-loop system satisfies the

three objectvies of the path following problem.

Proof. By Proposition 3.4.1, system (4.1) is differentially equivalent to a system with the
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path following normal form (3.19) in an open set containing (3.18). Using Corollary 3.3.1

the feedback (4.5) is well-defined in a neighbourhood of Γ? and therefore the system (4.1)

is feedback equivalent to the system

ζ̇ = A00ζ + A01F
−1
PF (yPF)

η̇ = Aη + bv‖

ξ̇ = Aξ + Bvt

in a neighbourhood of Γ?. Transform the tangential dynamics (η-dynamics) into the tan-

gential tracking errors to get

ζ̇ = A00ζ + A01F
−1
PF (yPF)

ė = Ae + b

(
v‖ − dr

dtr
Qw(θ(t))

)
ξ̇ = Aξ + Bvt.

If we substitute the expressions (4.6) for the auxiliary controls we get the closed-loop

dynamics

ζ̇ = A00ζ + A01F
−1
PF (yPF)

ė = (A+ bKη)e

ξ̇ = (A + BKξ)ξ.

Since ξ = 0 is an equilibrium of the ξ-subsystem we get invariance of {x : ξ = 0} ⊂ Γ?.

Furthermore, by the construction of the gains Kη and Kξ we get that ξ = 0 and e = 0 are

locally exponentially stable. Finally, since the system is minimum phase, A00 is Hurwitz.

Therefore, since the curve C is bounded, FPF(yPF) is bounded and hence ζ and up are

bounded.
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Remark 4.2.4. The invariant subset {x ∈ Rn : ξ = 0} ⊂ Γ? contains all those motions

of the control system whose associated output signal lies on the assigned curve C. It is

a proper subset of Γ? because the output does not need to be constant. It just needs to

be on the path. Thus, if ξ(0) = 0 but earc(0) 6= 0, the closed-loop system will track the

desired motion generated by the exosystem but it will not leave the path.
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Chapter 5

Synchronized Path Following

Consider a homogenous multi-agent system with N ∈ N agents modelled by identical

linear, time-invariant, square plants with no feed through of the form:

ẋi(t) = Apxi(t) +Bup,i(t), i ∈ NN , (5.1a)

yi(t) = Cpxi(t). (5.1b)

We assume throughout that the pair (Ap, Bp) is controllable, the triple (Cp, Ap, Bp) has

vector relative degree {r, . . . , r} and that the systems are minimum phase.

Each agent is assigned a (possibly distinct) closed curve in its output space and is tasked

with following its assigned curve while synchronizing its postion along the path with the

other agents in the system. The agents exchange information with each other in order to

synchronize.
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5.1 Inter-Agent Communication

Communication between systems is modelled by an undirected graph G = (V , E) with

vertex set V = {v1, . . . , vN}, arc set E ⊂ V × V , and adjacency matrix AG. The vertex

vk ∈ V represents the kth system. The (j, k)th entry of the adjacency matrix AG, denoted

ajk, equals the number of edges from vertex j to vertex k. This means {vj, vk} ∈ E if, and

only if, akj 6= 0 and indicates that systems j and k can exchange information.

The Laplacian matrix LG associated to the graph G is defined element-wise to be

[LG]kj :=


∑N

i=1 aki, j = k

−akj, j 6= k.

Definition 5.1.1. An undirected graph G is connected if for any two distinct vertices

vi, vj ∈ V , there is a sequence of edges in E connecting vi and vj. �

We make the following assumption throughout this chapter.

Assumption 4 (Connected communication graph). The undirected graph G modelling

information flow in the multi-agent system is connected. J

In practice, the curves that each agent must follow may be spatially far apart eroding the

ability to communicate and making the communication graph time-varying. Assumption 4

idealizes the way that agents communicate. Furthermore, there are no constraints in terms

of channel capacity though as we will see, the proposed solution does not require large

amounts of data exchange.
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5.2 Synchronization

Agent i is assigned a closed-curve Ci which satisfies all of the assumptions from Section 3.1.

We do not assume that Ci equals Cj and therefore the paths in general have different lengths

Li and Lj. The desired motion along each path is generated by an exosystem which, for the

purposes of synchronization, is slightly different than the one considered in Assumption 2.

Assumption 5 (Common Exosystem Dynamics). The desired motion for agent i ∈ NN

along its assigned curve Ci is generated as the output of a system of the form

d

dt
wi(θ(t)) =

dθ

dt
Swi(θ(t)), wi(θ(0)) = wi,0

ri(θ(t)) = σi

(
Li
2π

mod (Qwi(θ(t)), 2π)

) (5.2)

where σ(S) ⊂ C−∪ jR, Q ∈ R1×dim(wi) and θ(t) = ct+ t0 where c > 0 and t0 are constants.

Under Assumption 5, every agent’s exosystem uses the same matrices S and Q as well

as the same timing law θ. Different motions result from (i) different initial conditions wi,0

and (ii) different curve parameterizations σi. The fact that each agent uses the same S,

Q, and θ is motivated by [41, Theorem 3] which roughly states that a necessary condition

for output synchronization is that all the agents use a copy of the same exosystem.

By Proposition 4.1.1, having the system output track the desired motion generated

by (5.2) is equivalent to having si(yi) = 0 so that agent i is on its path and $i(yi) =

Li

2π
mod (Qwi(θ(t)), 2π). With this in mind, we now give an interpretation of what it

means to be synchronized.
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Definition 5.2.1. The synchronization error between agents i, j ∈ NN is given by

e(i,j)
sync :=

1

2π
distS

(
exp

(
j

2π

Li
ηi,1

)
, exp

(
j

2π

Lj
ηj,1

))
. (5.3)

The agents are said to be performing synchronized path following at time t if yi(t) ∈ Ci,

yj(t) ∈ Cj and e
(i,j)
sync(t) = 0. �

The synchronization error is defined by first normalizing each agent’s position on the

path ηi,1 to a percentage of a revolution around the path. Next, the difference is multiplied

by 2π so that the complex exponential generates a point on the circle. We compute the

signed distance between the points on the circle and finally normalize the synchronization

error to between (−0.5, 0.5] so that it can be interpreted in terms of revolutions of the

path.

The synchronized path following problem considered here is to drive e
(i,j)
synch to zero for

all i, j ∈ NN while simultaneously driving the agents to their paths yi → Ci as t→∞. We

would like each agent’s controller to render its assigned path controlled invariant.

Proposition 5.2.2. Let i, j ∈ NN . If there exists a time t at which wi(t) = wj(t) and

ηi,1(t) =
Li
2π

mod (Qwi(θ(t)), 2π), ηj,1(t) =
Lj
2π

mod (Qwj(θ(t)), 2π),

then e
(i,j)
synch(t) = 0.

Proof. Using the definition (5.3) of synchronization error we have

e
(i,j)
synch(t) =

1

2π
distS

(
exp

(
j

2π

Li
ηi,1

)
, exp

(
j

2π

Lj
ηj,1

))
=

1

2π
distS (exp (j mod (Qwi(θ(t)), 2π)) , exp (j mod (Qwj(θ(t)), 2π))) .
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Since wi(t) = wj(t) the claim follows immediately.

In principle then, one way to solve the synchronized path following problem posed here

is to have all the agents agree on a common initial condition for their exosystems and

then have each of the agents employ the controllers proposed in Chapter 4. A more robust

solution is to leverage the results in [37] and [41] and have each agent modify its local copy

of the exosystem using the information available from its neighbours.

Theorem 5.2.3 (Convergence of Exosystems). Consider N systems of the form

d

dt
wi(θ(t)) =cSwi(θ(t)) + vi(t), wi(θ(0)) = wi,0, (5.4)

where σ(S) ⊂ C− ∪ jR, c > 0 and vi(t) is a control input. If

vi(t) =
N∑
j=1

aij(wj(θ(t))− wi(θ(t))) (5.5)

where aij is the (i, j)th entry of the adjacency matrix AG associated with a connected com-

munication graph G, then there is a solution of ẇ0 = Sw0 to which wi(t), for all i ∈ NN ,

exponentially converges.

More formally, Theorem 5.2.3 says that

(∀i ∈ NN)(∀t ≥ 0)(∃δ, λ > 0)(∃w0(0) ∈ Rdim(wi))‖wi(t)−ecStw0(0)‖ ≤ δe−λ̄t‖wi(0)−w0(0)‖.

Proof. Consider the exosystem dynamics (5.4) with feedback control input (5.5) and apply

the time-varying coordinate change

qi(t) = e−cStwi(θ(t)), i ∈ NN .
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Then

q̇i = −cSe−cStwi(θ(t)) + ce−cStSwi(θ(t)) + e−cSt
N∑
j=1

aij(wj − wi)

= e−cSt
N∑
j=1

aij(wj − wi)

=
N∑
j=1

aij(qj − qi).

Stacking this differential equation for each i ∈ NN into a vector we obtain

q̇ = −(LG ⊗ Idim(wi))q

where ⊗ is the Kronecker product. By assumption G is connected. Therefore, using well-

known results on consensus algorithms [19, Proposition 5.3], all the qi(t) exponentially

converge to a common constant w0 ∈ Rdim(wi) as t → ∞. This means that there exists

δ, λ > 0 such that

(∀i ∈ NN) ‖qi(t)− w0‖ ≤ δe−λt‖qi(0)− w0‖.

Using the fact that qi(t) = e−cStwi(θ(t)) we have that

‖e−cStwi(θ(t))− w0‖ ≤ δe−λt‖wi(θ(0))− w0‖

⇒ ‖e−cSt
(
wi(θ(t))− ecStw0

)
‖ ≤ δe−λt‖wi(θ(0))− w0‖

⇒ ‖ecSt‖‖e−cSt
(
wi(θ(t))− ecStw0

)
‖ ≤ δe−λt‖ecSt‖‖wi(θ(0))− w0‖.
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Using the triangle inequality we have

‖ecSte−cSt
(
wi(θi(t))− ecStw0

)
‖ ≤ ‖ecSt‖‖e−cSt

(
wi(θ(t))− ecStw0

)
‖.

Combining these inequalities yields

⇒ ‖wi(t)− ecStwo‖ ≤ δe−λt‖ecSt‖‖wi(θ(0))− wo‖.

As all the eigenvalues of the matrix cS have at most zero real part, there exists a constant

λ̄ > 0 such that

⇒ ‖wi(t)− ecStwo‖ ≤ δe−λ̄t‖wi(θ(0))− wo‖.

Remark 5.2.4. As noted in [37, Remark 1], If S were to have eigenvalues with a pos-

itive real part, it is important that G satisfy Assumption 4 in order for the exponential

synchronization of (5.4) to dominate over the instability of S.

Theorem 5.2.3, in conjunction with the controllers from Theorem 4.2.3, suggest a viable

solution to the synchronized path following problem. Each agent uses the consensus algo-

rithm of Theorem 5.2.3 to modify its local copy of the exosystem. At the same time, the

individual systems employ a feedback controller of the form found in Theorem 4.2.3. What

results is that each agent approaches its assigned path, each agent tracks the reference tra-

jectory generated by its exosystem and simultaneously, all the exosystems converge to a

common trajectory. We formalize this result because there is some subtly in the stability

analysis.
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Define, for each agent i ∈ NN , the errors

ei,1(t) = ηi,1(t)− mod(Qwi(t), Li)

ei,j(t) = ηi,j(t)− cj−1QSj−1wi(θ(t)), j ∈ {2, . . . , r} .
(5.6)

Further define ei,arc as per Definition 4.2.1. As in Chapter 4, the chain rule gives that

ėi,arc = ėi,1. Note however that if we are using the consensus algorithm from Theorem 5.2.3,

then it is no longer true that ėi,j = ei,j+1 for j ∈ {1, . . . , r − 1}. Instead we get, again using

the structure of the η-dynamics in the path following normal form (3.19), the differential

equations

ėi,arc = ei,2 −Qvi

ėi,2 = ei,3 − cQSvi

· · ·

ėi,r−1 = ei,r − cr−2QSr−2vi

ėi,r = LrApxi
hPFi,1(xi) + LBpL

r−1
Apxi

hPFi,1(xi)up,i − crQSrwi − cr−1QSr−1vi

where vi =
∑N

j=1 aij(wj(θ(t)) − wi(θ(t))). Define e(i) := (ei,arc, ei,2, . . . , ei,r). We are now

ready to state the main result of this Chapter.

Theorem 5.2.5. Consider the multi-agent system (5.1) with a connected communication

graph where each agent is assigned a curve in its output space satisfying all the assumptions

of Section 3.1. Each system is given a desired motion along the curve generated by the ex-

osystem (5.2). Suppose that each agent modifies its exosystem according to (5.4) and (5.5)
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and selects the feedback control law

up,i =
(
CpA

r−1
p Bp

)−1

(
∂FPFi

∂y

∣∣∣∣
yi=Cpxi

)−1
−LrApxi

hPFi
(xi) +

vi,‖
vi,t

 (5.7)

with

vi,‖ = K(i)
η e(i) + crQSrwi

vi,t = K
(i)
ξ ξ

(i)
(5.8)

where K
(i)
η and K

(i)
ξ are selected so that, respectively, A + bK

(i)
η and A + BK

(i)
ξ are Hur-

witz. Then there exists an open set of initial conditions where the three objectvies of the

synchronized path following problem are achieved.

Proof. Following the same argument as in the proof of Theorem 4.2.3, using the proposed

controllers, each agent is feedback equivalent to the system

ẇi = cSwi(θ) +
N∑
j=1

aij(wj(θ)− wi(θ))

ζ̇(i) = A00ζ
(i) + A01F

−1
PFi

(yPFi
)

ė(i) = (A+ bK(i)
η )e(i) +


Q

cQS

· · ·

cr−1QSr−1


N∑
j=1

aij(wj(θ)− wi(θ))

ξ̇(i) = (A + BK
(i)
ξ )ξ(i).

Since ξ(i) = 0 is an equilibrium of the ξ(i)-subsystem we get invariance of
{
xi : ξ(i) = 0

}
.

By definition of the ξ-states, points on this invariant set result in the output of the system

being on its path Ci. By the construction of the gain K
(i)
ξ we get that ξ(i) = 0 is locally

67



exponentially stable. This shows that agent i approaches its path Ci.

By Theorem 5.2.3, the consensus error between exosystems converges to zero expo-

nentially so that the sum
∑N

j=1 aij(wj(θ) − wi(θ)) goes to zero exponentially. By the

construction of the gains K
(i)
η , A + bK

(i)
η is Hurwitz. Therefore we have an exponentially

stable linear system being driven by a forcing function that is decaying to zero exponen-

tially fast. This allows us to conclude that e(i) = 0 is locally exponentially stable. By

Proposition 5.2.2 this implies that e
(i,j)
synch approaches zero for all i, j ∈ NN .

Finally, since each system is minimum phase A00 is Hurwitz. Therefore, since the curve

Ci is bounded, FPF(yPFi
) is bounded and hence ζ(i) and up,i are bounded.
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Chapter 6

Laboratory Results

In this chapter we illustrate the effectiveness of the controllers from Chapters 4 and 5

through simulation and through implementation on mobile robots following circular paths.

6.1 Differential Drive Robot Model

We consider a multi-agent system consisting of two differential drive robots whose kinematic

models are given by
ẋi,1

ẋi,2

ẋi,3

 =


ui,1 cos(xi,3)

ui,1 sin(xi,3)

ui,2


 yi,1

yi,2

 =

 xi,1 + ` cos(xi,3)

xi,2 + ` sin(xi,3)

 , ` ∈ R \ {0}

(6.1)
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where i ∈ N2. For each system, xi ∈ R2 × S is the state vector, ui := col(ui,1, ui,2) ∈ R2

where ui,1 and ui,2 are the linear and angular velocity inputs, respectively, and yi ∈ R2

is the output. The first two plant states correspond to the (x1, x2)-planar position of the

robot’s centre of mass with the third state being its heading angle with respect to the

positive x1-axis (see Figure 6.1 below).

Figure 6.1: Schematic Diagram of a differential drive robot.

The output is taken to be a point ` 6= 0 units from the robot along its directional

heading as illustrated in Figure 6.1, in order to avoid singularities.

Lemma 6.1.1. System 6.1 has relative degree {1, 1}

Proof. For now, drop the subscript i in the plant model and note that this is a plant of

the form (2.3) with m = 2 and

f(x) = 0, g1(x) =


cos (x3)

sin (x3)

0

 , g2(x) =


0

0

1


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and

h1(x) = x1 + ` cos(x3), h2(x) = x2 + ` sin(x3).

To prove the lemma the conditions of Definition 2.4.1 are checked. The first condition is

trivially satisfied as there are no elements in the set. For the second condition, calculating

the entries in the decoupling matrix gives

det

 Lg1h1(x) Lg2h1(x)

Lg1h2(x) Lg2h2(x)

 = det

 cos(x3) −` sin(x3)

sin(x3) ` cos(x3)


= ` cos2(x3) + ` sin2(x3)

= `.

As ` 6= 0 by assumption, all the conditions of Definition 2.4.1 have been satisfied with

{r, r} = {1, 1}.

Remark 6.1.2. The model used here is idealized and very simplistic. Some phenomena

the model does not take into account are traction availability and motor responses (i.e.,

dynamics). The concrete floor of the testing ground is dusty and a low coefficient of friction

is observed between it and the wheels of the robot. When a command signal is too high

this low coefficient of friction causes the wheel to spin in place and slippage occurs. Any

rotating mass induces a moment of inertia which is a measure of how resistant the mass

is to changes in its angular velocity. A typical DC motor has a first order step response

for voltage input to angular velocity output. The model ignores this and assumes any

commanded angular velocity is applied immediately. J

We put each system into its Byrnes-Isidori normal form by defining the coordinate
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transformation (again dropping the subscript i)

T : R2 × S→ R2 × S

x 7→


x1 + ` cos(x3)

x2 + ` sin(x3)

x3

 .

If we let (q1, q2, z) = T (x) then the inverse of the function is given by

T−1(q, z) =


q1 − ` cos (z)

q2 − ` sin (z)

z


from which we see that T is a global diffeomorphism. As a result, selecting the preliminary

feedback

u =
1

`

 ` cos (x3) ` sin (x3)

− sin (x3) cos (x3)

v1

v2


causes the unicycle models (6.1) to be globally feedback equivalent to

ż =
1

`
(− sin (z)v1 + cos (z)v2)

q̇1 = v1

q̇2 = v2

y =

q1

q2

 .
(6.2)

Although system (6.2) is not L.T.I., we will use it to illustrate the results of this thesis
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by essentially ignoring the nonlinear zi-dynamics. In this case, since zi = xi,3 ∈ S, the

state is always bounded so there is some justification in doing so. Thus we have taken

Ap = 0, Bp = I2, Cp = I2.

6.1.1 Circular Paths

In order to conduct experiments with the simplest possible implementation, the simplest

type of closed curve is used, a circle. All circles are centered at the origin with varying

radii. Each circle produces a curve for the output yi to track with smooth parameterization

σi : Ti → R2

λi 7→ Ri

 cos(λi/Ri)

sin(λi/Ri)


where Ri is the radius of the circle to follow. The arc-length of path i is Li = 2πRi. This

curve satisfies all the criteria of Section 3.1. In particular, Assumption 1 is satisfied with

si(yi) = y2
i,1 + y2

i,2 −R2
i .

To avoid collisions in the M.A.S. case, care is taken to avoid initial conditions that would

lead to collision trajectories. The difference in radii is also kept greater than two-and-a-half

times that of the diameter of the robot as it sits upright.
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6.2 Implementation

Figure 6.2: Turtle-
bot II robot from
Clearpath Robotics

Multiple two-wheeled, differential drive, autonomous Turtle-

Bot2 robots from Clearpath Robotics are used for physical exper-

iments. The robots are controlled through the R.O.S. on a laptop

running in a linux environment via a Ubuntu operating system. A

R.O.S. version is called a distribution and it is the collection of of-

ficially released R.O.S. packages all belonging to the same version

number. The R.O.S. distribution used is ROS Indigo Igloo

with Ubuntu version 14.04, nicknamed Trusty Tahr.

Each laptop is connected to a common router wirelessly and

can interact with a VICON motion capture camera system to

obtain positional information. The interaction is aided by the use of R.O.S. package

vrpn client ros. The VICON motion capture system has a total of sixteen (16) cameras

whose field of view overlap to cover the entire testing grounds in which the experiment

takes place. The testing area is a concrete floor with dimensions 4.5× 4.5 [m2] located in-

doors. This also helps avoid unnecessary disturbances such as wind and rain from entering

the experiments.

Communication between laptops is made possible with the R.O.S. package multimas-

ter fkie. Technical report [21] is used to configure the laptops so that two or more

R.O.S. networks act as one. To showcase the distributed nature of the solution only the

normalized reference signals are passed between robots which then carry out all necessary

computations using only on-board processors.
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6.3 Path Following Normal Form

The simple nature of the curves simplifies the expression of the projection (3.4). This gives

a very simple form for the path following output (3.6)

FPF : R2\ {0} → T× R

y 7→

 Riatan2
(
yi,2
yi,1

)
y2
i,1 + y2

i,2 −R2
i

 (6.3)

where atan2 is a branch of the 4-quadrant arctangent function with codomain (−π, π].

To put the system into the path following normal form, we use the coordinate change (3.7)

with

ζi = zi

ηi,1 = Riatan2

(
qi,2
qi,1

)
ξ2

1,i = q2
i,1 + q2

i,2 −R2
i .

Then the path following normal form is given by

ζ̇i =
1

`
(− sin (ζi)vi,1 + cos (ζi)vi,2)

η̇i,1 =
Ri

q2
i,1 + q2

i,2

(−qi,2vi,1 + qi,1vi,2)

ξ̇2
1,i = 2qi,1vi,1 + 2qi,2vi,2.
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The feedback (4.5) simplifies to

vi,1
vi,2

 = (CpBp)
−1

(
∂FPFi

∂yi

)−1
vi,‖
vi,t


=

 −Riqi,2
q2i,1+q2i,2

Riqi,1
q2i,1+q2i,2

2qi,1 2qi,2

−1 vi,‖
vi,t

 .
This feedback is well-defined on R2\ {0} and so the unicycles are almost globally feedback

equivalent to

ζ̇i =
1

`

(
1

Ri

(qi,1 cos (ζi) + qi,2 sin (ζi)) v
i,‖ +

Ri

2(q2
i,1 + q2

i,2)
(qi,2 cos (ζi)− qi,1 sin (ζi)) v

i,t

)
η̇i,1 = vi,‖

ξ̇2
1,i = vi,t

yPFi
=

ηi,1
ξ2

1,i

 .
(6.4)

6.4 Path Following with a Single Robot

In this section, we present laboratory results for a single agent so we drop the i notation.

As always, the goal is for a single agent to reach a curve in its output space such that the

curve is made invariant. A ramp function is chosen as the reference (4.2) for η with timing
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law θ(t) = t so that

S =

 0 1

0 0

 , Q =
[
1 0

]
.

This produces a saw-tooth waveform in T meaning that the robot should continuously loop

around its path. In this case the tangential and transversal controllers (4.6) simplify to

v‖ = kηearc +QSw = kηRdistS

(
exp

(
j
η

R

)
, exp

(
j

1

R
mod (w1(t), 2πR)

))
+ w2(t)

vt = kξξ

with kη, kξ < 0. Notice that each subsystem of the path following normal form is one

dimensional so the gains are scalars.

Two test cases are shown to illustrate that the purposed control law (4.5) works in

practice. The differences between cases are highlighted in Table 6.1 with parameter values

listed in Table 6.2. Stability of ξ = 0 can be seen in Figures 6.5 and 6.9 for each test

case respectively. The fact that the tangential state tracks the ramp signal is shown in

Figures 6.6 and 6.10 for each test case respectively. This is also shown in the arc-error

plots witch are plots of earc versus time.

Test Case R x1(0) x2(0) x3(0) w1(0) w2(0)
[m] [m] [m] [rad]

1 1 1.96 0.97 3.04 0 0.3
2 2 0.84 0.12 1.08 0 0.4

Table 6.1: Single Agent Initial Conditions
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Parameter Value
Kξ −20
Kη −10
θ(t) t
` 0.2 [m]

Table 6.2: Single Agent
Parameter Values

Figure 6.3: Orientation Marker
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Figure 6.4: System Output - Test Case 1
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Figure 6.5: Transverse Subsystem (ξ) - Test Case 1
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Figure 6.6: Tangential Subsystem (η) - Test Case 1
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Figure 6.8: System Output - Test Case 2
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Figure 6.9: Transverse Subsystem (ξ) - Test Case 2
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Figure 6.10: Tangential Subsystem (η) - Test Case 2
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Figure 6.11: Arc Error - Test Case 2

Performance is inevitably worse in practice compared to simulation due to model un-

certainty as discussed in Section 6.2 and noisy sensor measurements. The VICON camera

system uses I.R. markers placed on the robot to sense positional information. A misalign-

ment of I.R. markers can be devastating for performance because the feedback control

depends on the position and orientation of the robot.

6.4.1 Alternative Implementation

As one of our motivating applications deals with autonomous vehicles, we consider an

augmented control algorithm to accommodate some practical considerations. Laboratory

results could not be collected so only simulation results will be shown. The path following

objective is primarily interested in driving the system output to an assigned curve. Sec-

ondarily, a reference for the curve should be followed. For this reason, we slightly modify
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the controller logic and first stabilize the system output to the point closest on the curve.

This is easily accomplished by stabilizing

η2 = · · · = ηr = v‖ = 0

so that the closest point on the path doesn’t change very much over time.

A typical motion for an agent is to loop around its designated path continuously. Once

the system output is near the path (‖ξ‖ < ε1, ε1 > 0), the system should wait for ‖earc‖ → 0.

After ‖earc‖ < ε2, ε2 > 0 the controller discussed in Chapter 4 can be implemented.

Instead of continuing towards the path exponentially with v‖ = 0, once the reference is

close enough the tangential subsystem controller is switched to

v‖ = Kηe +
dr

dtr
Qw(θ).

This is advantageous because now the system output is quickly forced to a point on

its path and remains there until the reference is near. This helps lower the overall control

effort used and diminishes the distance traveled off of the curve.

Simulated results illustrating this idea are shown in the figures below. Stability of the

transversal subsystem can be seen in Figure 6.13. The new behavior exhibited in regards

to tracking is shown in Figure 6.14. Parameter values are the same as those in Table 6.2.

Test Case R x1(0) x2(0) x3(0) w1(0) w2(0)
[m] [m] [m] [rad]

3 1 1.96 -0.97 3.04 0 0.2

Table 6.3: Alternate Single Agent Initial Conditions
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Figure 6.12: System Output - Test Case 3
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6.5 Synchronized Path Following

We now illustrate the results of Chapter 5 in the laboratory. Each robot executes control

law (5.7) from Theorem 5.2.5 while modifying their internal model of the exosystem ac-

cording to the results of Theorem 5.2.3. We use the same θ, S and Q as in the previous

section so that robot 1 has as its exosystem

ẇ1 =

0 1

0 0

w1 + (w2 − w1)

r1(t) = R1

 cos (mod(w1,1(t), 2π))

sin (mod(w1,1(t), 2π))

 .
and robot 2 uses

ẇ2 =

0 1

0 0

w2 + (w1 − w2)

r2(t) = R2

 cos (mod(w2,1(t), 2π))

sin (mod(w2,1(t), 2π))

 .
Two test cases are shown. The differences between cases are highlighted in Table 6.4 with

parameter values listed in Table 6.5. Stability of the ξ-subsystems and the synchronization

in the η-subsystems is shown in the figures below.

Test Case Agent Ri xi,1(0) xi,2(0) xi,3(0) wi,1(0) wi,2(0)
[m] [m] [m] [rad]

4 1 2 -2.75 0.32 5.84 0 0.1
2 1 -1.97 -1.43 0.37 0 0.3

5 1 2 1.31 -1.77 1.04 0 0.1
2 1 -2.39 0.31 5.70 0 0.3

Table 6.4: Multi Agent Initial Conditions
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Parameter Value
Kξ −20
Kη −10
θ(t) t
` 0.2 [m]

Table 6.5: Multi Agent Parameter Values
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Figure 6.16: System Output - Test Case 4
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Figure 6.17: Transverse Subsystem (ξ) - Test Case 4
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Figure 6.18: Normalized Tangential Subsystem (η) - Test Case 4
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Figure 6.19: Synchronization Error - Test Case 4
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Figure 6.20: System Output - Test Case 5
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Figure 6.21: Transverse Subsystem (ξ) - Test Case 5
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Figure 6.22: Normalized Tangential Subsystem (η̄) - Test Case 5
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Figure 6.23: Synchronization Error - Test Case 5

Once more, performance is inevitably worse in practice compared to simulation. In

addition to all the previous hindrances, the M.A.S. introduces communication delays and

the possibility to collide with one another. Collisions are avoided at all costs by using

appropriate initial conditions and ensuring each agent’s output path is distinct with a

sufficient separation between the paths at all times.

6.5.1 Alternative Considerations

Once again, a different situation is considered using autonomous vehicles as a basis for

showcasing the practical potential possible using the control architecture. Laboratory

results could not be collected so only simulation results will be shown. The path following

objective is primarily interested in driving the system output to an assigned curve. In this

case, the assigned curve of each system is identical. The secondary objective of the path
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following problem is then to maintain a constant distance between each system. This is

useful for allowing multiple cars to use the same lane of traffic.

Simulated results illustrating this idea are shown in the figures below. Stability of the

transversal subsystem can be seen in Figure 6.25. The new behavior exhibited in regards

to tracking is shown in Figure 6.27. Parameter values are the same as those in Table 6.5.

Test Case Agent Ri xi,1(0) xi,2(0) xi,3(0) wi,1(0) wi,2(0)
[m] [m] [m] [rad]

6 1 2 0.7 -1.5 5 0 0.2
2 2 2.1 1.7 2 0 0.4

Table 6.6: Multi Agent Initial Conditions
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Figure 6.24: System Output - Test Case 6
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Figure 6.25: Transverse Subsystem (ξ) - Test Case 6
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Figure 6.27: Synchronization Error - Test Case 6

The simulation does not take into account collisions and simply allows the vehicles

to pass through one another. Although this is not practical, more advanced algorithms

could always be implemented to accommodate collision avoidance without degrading the

integrity of the control algorithm itself.

Consistent with Definition 5.2.1, the steady state error in Figure 6.27 shows that the

two systems maintain a constant distance apart while traversing the curve. This distance

is also measured in revolutions of the path.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis, we applied output synchronization techniques to the path following control

design problem. A special normal form with useful characteristics aids our process. Fur-

thermore, some mild attention is placed on performance limitations for individual N.M.P.

systems in the context of path following. Chapter 3 provides the path following outputs

and normal form, essential tools used in the development of a solution. The path following

outputs define the system’s original output in transformed coordinates for a useful physical

meaning. They represent the minimum distance to the path and how far the system has

traversed the path relative to an initial starting point. The normal form is then used as

the basis for controller design. In Chapter 4 only a single system is considered with the

objective of getting to the path and enforcing invariance of the path. In the case of N.M.P.

systems, the purposed control law is augmented to allow for increased performance by way

of [1]. Chapter 5 extends the single agent case to a M.A.S.. By altering each system’s
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reference, a common normalized trajectory is found that all agents must follow. Following

[41], a consensus algorithm is used on the references to make them identical. The internal

model principal is observed to be satisfied and synchronization is achieved. Simulation and

experimental results are presented in Chapter 6. The physical experiment acts to further

simulation results by introducing a real world environment with time delays in commu-

nication, friction and many other unmodeled dynamics. In practice the purposed control

law is seen to work within a reasonable degree of error.

7.2 Future Research

It would be interesting to apply the results of [1] to the M.A.S. case in which the agents

were N.M.P.. Since the control algorithms for path following and synchronization are

decoupled there are a number of ways both [1] and [41] could be applied. It could be that

both algorithms are run simultaneously from the very beginning. Another implementation

could be to run the step-down approach of [1] for an agreed upon length of time. Then

afterwards, agents are guaranteed to be on their respective paths with decreased arc error.

Afterwards, the agents use the communication graph to exchange information regarding

their references in order to synchronize.

Minimizing synchronization and arc error simultaneously could then be investigated.

All the underlying theory presented can be executed by individual systems sharing a com-

mon normalized path following output. It is unnecessary that each system be identical

and different types of autonomous vehicles could be used producing a heterogenoeous

M.A.S.. Assumption 4 imposes strict characteristics of the interconnection graph used by

the M.A.S.. As the number of agents in the M.A.S. increases, less stringent, time varying

interconnection graphs could be explored.
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Secondly, mostly all of the results presented in Chapter 6 use only two agents with non-

intersecting circular paths. Application in which collision avoidance and safety are number

one priorities could benefit from more intricate output paths with possible intersection.

The distributed nature of the solution could also be showcased by using a larger M.A.S..

Lastly, applying the algorithms discussed in this thesis on real world highways could

be explored. Although Assumption 1 imposes strong geometric constraints on the type

of paths considered theoretically; practically all that is needed is for the curve to be as

differentiable as the transverse subsystem. This means that splines could be used to piece

together a real world highway. Once complete, all the geometric properties associated with

each spline segment would be used to implement the final controller.
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Appendix A

Miscellaneous Proofs

A.1 Proposition 3.2.5

Proof. Let F−1 : N → M denote the smooth inverse of F . Then F ◦ F−1 = IN and

F−1 ◦ F = IM . Differentiating these expressions and applying the chain rule for manifolds

we have that, for each p ∈ M , I = d(F ◦ F−1)F (p) = dFp ◦ dF−1
F (p) and I = d(F−1 ◦ F )p =

dF−1
F (p) ◦ dFp. Thus dFp is invertible and therefore it is an isomorphism between vector

spaces.

A.2 Proposition 3.2.8

Proof. The map F : M → F (M) is surjective since we’ve restricted its codomain. It is

injective by hypothesis thus F : M → F (M) ⊆ N is bijective and therefore has an inverse

F−1 : F (M)→M . We are left to show that F and F−1 are smooth.
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Let p ∈ M be arbitrary. Since F is a local diffeomorphism there exists an open set

U ⊆ M containing p which F maps diffeomorphically onto F (U) ⊂ N . Without loss of

generality, shrinking U if necessary, let (U,ϕ) be a coordinate neighbourhood of M about

p and let (F (U), ψ) be a coordinate neighbourhood of N about F (p). Then, since F is a

local diffeomorphism, we have that F̂ = ψ ◦ F ◦ ϕ−1 and F̂−1 = ϕ ◦ F−1ψ−1 are smooth

functions between Euclidean spaces. Applying Definition 3.2.3 and noting that p ∈M was

arbitrary, we conclude that F and F−1 are smooth functions.

A.3 Theorem 3.2.9

Proof. Since dFp is an isomorphism at each p ∈ S, by Theorem 3.2.6 there exists an open

set Up containing p on which F : Up → F (Up) is a diffeomorphism. The collection of open

sets {Up}p∈S is an open cover of S. Since S is compact, there exists a finite subcover of S.

Denote this subcover by {Ui}i∈NN
for some finite natural number N and define U := ∪Ni=1Ui.

Again, by Theorem 3.2.6, F is a local diffeomorphism at each p ∈ U . Therefore, to

prove the theorem we appeal to Proposition 3.2.8 and show that there exists an open set

containing S on which F is one-to-one. If such a set exists, then by Proposition 3.2.8 F is

a diffeomorphism onto its image with its domain taken to be the intersection U and this

open set.

By way of contradiction, suppose that no such neighbourhood exists. First we construct

a compact set containing S and contained in U . Every manifold is a locally compact

Hausdorff space [24, Corollary 1.7]. Therefore, by [29, Theorem 29.2], given p ∈ S ∩ Up,

where Up is one of the sets from the (infinite) open cover constructed above, there exists a

neighbourhood Wp of p such that the closure of Wp is compact and contained in Up. Then

{Wp}p∈S is an open cover of S with Wp ⊆ Up. Since S is compact, there exists a finite
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subcover. Denote this subcover by {Wi}i∈NN
for some finite natural number N and define

W := ∪Ni=1Wi. By construction W ⊆ U . Since the union of a finite number of compact

sets is compact W̄ := ∪Ni=1 cl (Wi), where cl (Wi) is the closure of Wi, is a compact set.

Let {Vi}i∈N be a sequence of open sets with S ⊂ Vi, Vi ⊂ W̄ and Vi+1 ⊂ Vi (strict

inclusion). Let {ai}i∈N and {bi}i∈N be infinite sequences with ai, bi ∈ Vi. Since ai, bi belong

to the compact set W̄ , each sequence {ai}i∈N and {bi}i∈N has a convergent subsequence

with limit point, respectively, a, b. By construction of the sets Vi these limit points must

belong to S. Since, by assumption, F is one-to-one on S, a = b = p. However this implies

that F cannot be a local diffeomorphism at p which is a contradiction.

A.4 Theorem 3.4.2

Proof. Since dFp is an isomorphism at each p ∈ S, by Theorem 3.2.6 there exists an open

set Up containing p which F maps diffeomorphically onto F (Up) ⊂ N .

The set {F (Up)}p∈S forms an open cover of F (S). Since every manifold is paracom-

pact [24, Proposition 2.24], the open cover {F (Up)}p∈S admits a locally finite refinement1.

Let {Vi} be a locally finite refinement of {F (Up)}p∈S. In each Vi, the function F has local

inverse Gi, i.e., Gi : Vi →M is such that F ◦Gi = IVi .

Define W := {q ∈ N : Gi(q) = Gj(q) whenever q ∈ Vi ∩ Vj}. On W , we can define a

global inverse G : W → M of F via G(q) = Gi(q) for any i such that q ∈ Vi. This is

well-defined on W since Gi(q) = Gj(q) whenever q ∈ Vi ∩ Vj.

The set W contains F (S) since F maps S diffeomorphically onto F (S). Therefore

1Given an open cover {Ui} of a manifold M , another open cover {Vi} is called a refinement of {Ui} if
for each V ∈ {Vi}, there exists a U ∈ {Ui} such that V ⊆ U . An open cover {Ui} of M is locally finite
if each point of M possesses a neighbourhood that intersects only a finite many of the sets Vi.
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Gi(q) = Gj(q) = F−1(w) for any q ∈ F (S). Now fix p ∈ S and F (p) ∈ F (S). We will

show that W contains a neighbourhood V of F (p). Since {Vi} is a locally finite cover of

F (S), there exists a neighbourhood V of F (p) which intersects only a finite number of the

Vi. Re-indexing them if necessary, call them V1, . . . , Vk.

Then Ṽ = V ∩ V1 ∩ · · · ∩ Vk is the finite intersection of open sets containing F (p)

and therefore Ṽ is open and contains F (p). Moreover, on Ṽ , each of the functions Gi

is an inverse: Gi(Ṽ ) ⊂ Up for i ∈ {1, . . . , k}. Since all the Gi agree on Ṽ we have that

Ṽ ⊂ W .

A.5 Time derivative of the arc error

We prove that ėarc(t) = ė1(t).

Proof. Direct calculations will be used to show the result. We have that

earc =
L

2π
arg

(
exp

(
j

2π

L
e1

))
.

107



Taking the derivative of this expression using the chain rule gives

ėarc =
dearc

de1

de1

dt

=
d

de1

[
L

2π
arg

(
exp

(
j

2π

L
e1

))]
de1

dt

=
d

de1

[
L

2π
arg

(
cos

(
2π

L
e1

)
+ j sin

(
2π

L
e1

))]
de1

dt

=
d

de1

[
L

2π
tan−1

(
sin
(

2π
L
e1

)
cos
(

2π
L
e1

))] de1

dt

=
d

de1

[
L

2π
tan−1

(
tan

(
2π

L
e1

))]
de1

dt

=
d

de1
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L

2π

(
2π

L
e1

)]
de1

dt

=
de1

de1

de1

dt

=
de1

dt

= ė1

108


	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivating Applications
	Literature Review
	Performance Limitations
	Output Synchronization

	Notation
	Contributions

	Background
	Mathematical Preliminaries
	Signed Circular Distance
	Class of Control Systems
	Partial Feedback Linearization
	Relative Degree
	Byrnes-Isidori Normal Form
	Invariance of Relative Degree under Output  Transformations

	Zero Dynamics of Linear Time-Invariant Systems

	Path Following Normal Form for Linear Systems
	Class of Paths Considered
	Path Following Outputs
	Path Following Normal Form
	Relationship Between Internal & Zero Dynamics

	Path Following for Linear Time Invariant Systems
	Problem Statement
	Translation to Path Following Outputs

	Solution for Minimum Phase Systems

	Synchronized Path Following
	Inter-Agent Communication
	Synchronization

	Laboratory Results
	Differential Drive Robot Model
	Circular Paths

	Implementation
	Path Following Normal Form
	Path Following with a Single Robot
	Alternative Implementation

	Synchronized Path Following
	Alternative Considerations


	Conclusions and Future Research
	Conclusions
	Future Research

	References
	APPENDICES
	Miscellaneous Proofs
	Proposition 3.2.5
	Proposition 3.2.8
	Theorem 3.2.9
	Theorem 3.4.2
	Time derivative of the arc error


