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a b s t r a c t

In the article (West, 2015), the author has obtained a function as the solution to fractional
logistic equation (FLE). As demonstrated later in Area et al. (2016), this function (West
function) is not the solution to FLE, but nevertheless as shown by West, it is in good
agreement with the numerical solution to FLE. The West function indicates a compelling
feature, inwhich the exponentials are substituted byMittag-Leffler functions. In this paper,
a modified fractional logistic equation (MFLE) is introduced, to which the West function
is a solution. The proposed fractional integro-differential equation possesses a nonlinear
additive term related to the solution of the logistic equation (LE). The method utilized in
this article, may be applied to the analysis of solutions to nonlinear fractional differential
equations of mathematical physics.

© 2018 Elsevier B.V. All rights reserved.

1. Logistic equation

The logistic equation,which ismentioned on occasion as theVerhulst model, is a population growthmodel introduced and
published by Pierre Verhulst [1]. The model represents a well-known nonlinear differential equation in the field of biology
and social sciences:

dN (t)
dt

= kN (t)
(
1 −

1
Nmax

N (t)
)

, t ≥ 0 , (1)

where k is the rate of maximum population growth constrained to be a real positive number, N (t) is the population and
Nmax is the carrying capacity, i.e. the maximum attainable value of population. By dividing both side of Eq. (1) by Nmax and
defining u = N (t) /Nmax as the normalization of population to its maximum sustainable value, the differential equation

du
dt

= ku (1 − u) , t ≥ 0 , (2)
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is obtained, for which there is an exact closed form solution

u (t) =
u0

u0 + (1 − u0) e−kt , t ≥ 0 , (3)

where u0 is the initial state at the time t = 0. The sigmoidal behaviour of the solution to the logistic equation has been also
used to model the tumour growth [2] and so forth. Since the logistic growth is one of the most versatile models in natural
sciences, the fractional logistic equation would be a relevant problem to be dealt with.

The Laplace transform method cannot directly lead up to a solution of such a nonlinear fractional differential equation.
In [3,4], the authors represented some creative techniques to approximate the solution to FLE. The authors of the article [5]
have analysed the FLE in the sense of a recently defined fractional derivative, which is mentioned as Caputo–Fabrizio
fractional derivative [6], and represented the solution by utilizing numerical methods. In [7], the authors have studied the
FLE with the Grünwald–Letnikov fractional derivative and assumed the solution to be in the form of a fractional Taylor
series, where the coefficients in the series are evaluated by a recursive relation. The Carleman embedding technique has
been employed by Bruce J. West (see [8]) to construct a solution to fractional logistic equation

CDβ
t w (t) = kβw (1 − w) , β ∈ (0, 1] , (4)

with the initial conditionw (0) = u0, where CDβ
t denotes the Caputo fractional differential operator with the fractional order,

β , restricted to 0 < β ≤ 1. The proposed solution, which has been obtained by West [8] and is mentioned as West function
(WF), is

w (t) =

∞∑
n=0

(
u0 − 1
u0

)n

Eβ

(
−nkβ tβ

)
, β ∈ (0, 1] , (5)

where Eβ denotes the so-called one parameter Mittag-Leffler function, but nonetheless in [9], the authors have illustrated
that the WF is not the solution to fractional differential equation (4) except the case, where the fractional order, β , is equal
to one. However, as demonstrated in [8], the WF has been shown to be in good agreement with the numerical solution of
the FLE.

The discussion on the FLE is motivated by the relevance of the model to a wide range of applications and by the
mathematical difficulties involved in the analysis of nonlinear fractional equations emerging in mathematical biology. The
aim of this article is to investigate what equation may be satisfied by the WF (for the case k = 1), i.e. the goal is to seek for
an equation which could be satisfied by

w (t) =

∞∑
n=0

(
u0 − 1
u0

)n

Eβ

(
−ntβ

)
. (6)

In this regard, the fractional integro-differential equation

CDβ
t w (t) = w (t) (1 − w (t)) + u0

t−β

Γ (1 − β)

+

∫
∞

0

∫
∞

0

(
u (s) u (z) − u2 (s)

)
lβ (s, t) lβ (z, t) ds dz , (7)

with the initial condition w (0) = u0 is represented and proved to be satisfied by the function described in (6). In Eq. (7),
which is called as modified fractional logistic equation (MFLE), the function u is the solution to the logistic equation (2) for
the case k = 1. Thus, Eq. (7) has an additive term related to the solution of the classical logistic equation. The function lβ (s, t)
is the unique solution to the equation

CDβ
t lβ (s, t) = −

∂

∂s
lβ (s, t) , (8)

with the initial condition

lβ (s, 0) = δ (s) , (9)

where δ (s) stands for the Dirac’s delta function, and the boundary condition

lβ (0, t) =
t−β

Γ (1 − β)
, (10)

and furthermore∫
∞

0
lβ (s, t) ds = 1 . (11)

The Laplace transform of the function lβ (s, t) is∫
∞

0
e−λslβ (s, t) ds = Eβ

(
−λtβ

)
, λ > 0 . (12)
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Further details about lβ (s, t) can be observed in, for instance, [10,11].
Some necessary preliminaries about asymptotic behaviour of Mittag-Leffler function, Eβ (z), will be briefly discussed in

Section 2. Section 3 is entirely devoted to the solution of the fractional integro-differential equation (7), and fractional order
estimation of which will be discussed in Section 4.

2. Mittag-Leffler function

The so-called one parameter Mittag-Leffler function Eβ (z) is defined as a power series, denoted by

Eβ (z) =

∞∑
k=0

zk

Γ (βk + 1)
, β > 0 z ∈ C . (13)

which was first introduced by G. M. Mittag-Leffler and could be considered as the generalization of the exponential function
due to the replacement of Γ (k + 1) by Γ (βk + 1) in the exponential series formula (for instance, see [12,13]). It could be
obviously perceived that Eβ (0) = 1. In this note, the main focus of attention will be the function

Eβ

(
−λzβ

)
=

∞∑
k=0

(−1)kλk zkβ

Γ (kβ + 1)
, (14)

which provides the Laplace transform of lβ (see Eq. (12)). It is appropriately pointed out that the asymptotic behaviour of
the Mittag-Leffler function Eβ

(
λzβ

)
, for 0 < β < 2 and z ∈ R+, could be stated as follows [13–16]

Eβ

(
λzβ

)
=

1
β

exp
( z

λβ

)
−

n∑
k=1

z−kβ

λkΓ (1 − kβ)

+O
(⏐⏐λzβ

⏐⏐−1−n
)

, n ∈ N , λ > 0 , z → +∞ , (15)

and

Eβ

(
λzβ

)
= −

n∑
k=1

z−kβ

λkΓ (1 − kβ)

+O
(⏐⏐λzβ

⏐⏐−1−n
)

, n ∈ N , λ < 0 , z → +∞ . (16)

Furthermore the following inequality is held true for all non-negative real numbers, i.e. z ∈ [0, ∞) (e.g., see [13, theorem
1.6]).

For 0 < β < 2, there exists a constant C (β) such that

0 ≤
⏐⏐Eβ

(
−zβ

)⏐⏐ ≤
C (β)

1 + zβ
, 0 < β < 2 , (17)

where C (β) is a real positive constant.
By the Riemann–Liouville fractional order derivative Dβ

z , the following formula could be obtained (see [17, formula
2.2.53]) for the fractional derivative of Mittag-Leffler function

Dβ
z Eβ

(
µzβ

)
=

z−β

Γ (1 − β)
+ µEβ

(
µzβ

)
, β ∈ R+ , µ ∈ C . (18)

3. Modified fractional logistic equation

In [8], the author has utilized the Carleman embedding technique to construct an infinite-order system of linear fractional
differential equations equivalent to the nonlinear fractional differential equation (4) and has obtained a solution in terms of a
weighted sum over theMittag-Leffler functions (see Eq. (5)). The authors in [9] indicated later that the Carleman embedding
technique solves integer-order differential equations, not the fractional ones. Nonetheless, for β = 1, the WF results in the
solution to classical logistic equation. As illustrated in Fig. 1, it is observed that the WF in (6), is in good agreement with the
numerical integration of fractional logistic equation

CDβ
t w (t) = w (1 − w) , β ∈ (0, 1] . (19)

Fig. 1 shows the graph of the numerical solution to the fractional logistic equation (19) and the WF represented in (6)
for the fractional order β = 0.7. The MATLAB code fde12.m [18], which implements the predictor–corrector method of
Adams–Bashforth–Moulton type described in [19], is used in order to represent the numerical solution of Eq. (19). The WF
is numerically evaluated by means of the MATLAB code ml.m [20], which is based on the numerical inversion of the Laplace
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Fig. 1. Comparison of the West Function (WF) expressed in Eq. (6) and the numerical integration of the FLE (Eq. (19)), for β = 0.7 and u0 = 0.75.

transform of Mittag-Leffler function [21]. In this section, the goal is to demonstrate that the WF, which has been expressed
in (6), is the solution to fractional integro-differential equation (7).

Referring to Eqs. (2) and (3) , it can be observed that the solution to classical logistic equation u̇ = u (1 − u) is as follows

u (t) =
u0

u0 + (1 − u0) e−t , t ≥ 0 , (20)

The function u in (20) can be rewritten as below

u (t) =
u0

u0 + (1 − u0) e−t

=

∞∑
k=0

(
u0 − 1
u0

)k

e−kt . (21)

By using Eqs. (12) and (21), the function w (t), represented in (6), can be appropriately expressed in terms of lβ (s, t)

w (t) =

∞∑
k=0

(
u0 − 1
u0

)k

Eβ

(
−ktβ

)
=

∞∑
k=0

(
u0 − 1
u0

)k ∫
∞

0
e−kslβ (s, t) ds

=

∫
∞

0

∞∑
k=0

(
u0 − 1
u0

)k

e−kslβ (s, t) ds

=

∫
∞

0
u (s) lβ (s, t) ds . (22)

From Eq. (6), it could be obtained that

w2 (t) =

∞∑
k=0

∞∑
i=0

(
u0 − 1
u0

)k+i

Eβ

(
−itβ

)
Eβ

(
−ktβ

)
=

∞∑
k=0

∞∑
i=0

(
u0 − 1
u0

)k+i∫ ∞

0
e−kslβ (s, t) ds

∫
∞

0
e−iz lβ (z, t) dz

=

∫
∞

0

∫
∞

0

∞∑
k=0

∞∑
i=0

(
u0 − 1
u0

)k+i

e−kse−iz lβ (s, t) lβ (z, t) dsdz

=

∫
∞

0

∫
∞

0
u (s) u (z) lβ (s, t) lβ (z, t) dsdz . (23)
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Fig. 2. Comparison of the West Function (WF) expressed in Eq. (6) and the numerical integration of the FLE (Eq. (19)), for β = 0.9 and u0 = 0.75.

The substitution of (23) for the term w2 (t) in (7) leads to

CDβ
t w (t) =

u0t−β

Γ (1 − β)
+ w −

∫
∞

0

∫
∞

0
u2 (s) lβ (s, t) lβ (z, t) dsdz

=
u0t−β

Γ (1 − β)
+ w −

∫
∞

0

(
u2 (s) lβ (s, t)

∫
∞

0
lβ (z, t) dz

)
ds , (24)

and by referring to (8) and (11), it is eventually obtained from Eq. (24) that

CDβ
t w (t) =

u0t−β

Γ (1 − β)
+ w −

∫
∞

0
u2 (s) lβ (s, t) ds

=
u0t−β

Γ (1 − β)
+

∫
∞

0

(
u (s) − u2 (s)

)
lβ (s, t) ds

=
u0t−β

Γ (1 − β)
+

∫
∞

0
u′ (s) lβ (s, t) ds

=
u0t−β

Γ (1 − β)
+ u (s) lβ (s, t)

⏐⏐∞
s=0 −

∫
∞

0
u (s) ∂slβ (s, t) ds

=
u0t−β

Γ (1 − β)
+

(
0 − u0

t−β

Γ (1 − β)

)
+

∫
∞

0
u(s)CDβ

t lβ (s, t) ds

=
CDβ

t

∫
∞

0
u (s) lβ (s, t) ds

=
CDβ

t w (t) . (25)

Therefore the function w (t), expressed in (6), satisfies the fractional differential equation (7). Fig. 2 illustrates the graphs
of the WF and numerical solution to (19) and shows that the WF is in good agreement with the numerical solution of FLE.
Specifically, as mentioned in [8], the WF and numerical solution to FLE coincide for β = 1. As it is obvious from Eq. (6), the
solution to MFLE is obtained by means of a series of Mittag-Leffler functions. Thus, series of Mittag-Leffler functions seem
to play an interesting role in the context of fractional logistic equations. The properties of series of Mittag-Leffler functions
have been studied in [22].

4. Estimation of the fractional order

The determination of the order of fractional differential equations is an issue, which has been analysed and discussed in
recent years [23,24] and it has a wide range of applications in physical phenomena such as fractional diffusion equations.
In [24], fractional order estimation has been conducted for some classes of linear fractional differential equations. In this
section, the relationship between the fractional order and the asymptotic behaviour of the solution to MFLE is proved. The
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Fig. 3. The graph of the WF for β = 0.7, β = 0.8, β = 0.9 .

solution to (7) could be asymptotically expressed by referring to (16):

w (t) =

∞∑
k=0

(
u0 − 1
u0

)k

Eβ

(
−ktβ

)
= 1 +

∞∑
k=1

(
u0 − 1
u0

)k

Eβ

(
−ktβ

)
, (26)

and for large t , by using the Eq. (16), w (t) will be approximately equal to

w (t) ≈ 1 +

∑
k≥1

(
u0 − 1
u0

)k ∑
s≥1

(−1)s+1
(

1
ktβ

)s 1
Γ (1 − βs)

≈ 1 +

∑
k≥1

∑
s≥1

(−1)s+1
(
u0 − 1
u0

)k t−sβ

ks
1

Γ (1 − βs)

≈ 1 +
t−β

Γ (1 − β)

∑
k≥1

(
u0 − 1
u0

)k 1
k

+

∑
s≥2

(−1)s+1 t−sβ

Γ (1 − βs)

∑
k≥1

(
u0 − 1
u0

)k 1
ks

, (27)

Remark. By observing the Eq. (27), it is obviously found that the function w (t) has the limit w∞ = 1, which is independent
of the fractional order, β , as time tends to infinity.

Fig. 3 shows that the solution to MFLE is asymptotically independent of the fractional order, β , and its limit is equal to
one as t goes to infinity. For u0 ≥

1
2 , Eq. (27) is as follows

w (t) ≈ 1 +
t−β

Γ (1 − β)
ln u0

+

∑
s≥2

(−1)s+1 t−sβ

Γ (1 − βs)

∑
k≥1

(
u0 − 1
u0

)k 1
ks

, u0 ≥
1
2
. (28)

As t tends to infinity, by neglecting the third term of the right-hand side of (28), the function w (t) is asymptotically equal
to

w(t) ≈ 1 +
t−β

Γ (1 − β)
ln u0 , u0 ≥

1
2

. (29)
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Therefore, by using the asymptotic behaviour of the function w (t), the order of the fractional integro-differential equation
(7) is determined

lim
t→+∞

tw′ (t)
1 − w (t)

= β . (30)

5. Conclusion

A fractional integro-differential equation is represented, to which the WF expressed in (6) is a solution. The proposed
fractional integro-differential equation is called modified fractional logistic equation (MFLE) and its solution is in the form
of a series of Mittag-Leffler functions.
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