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Abstract

In the last fifty years, computational mechanics has gained the attention

of a large number of disciplines, ranging from physics and mathematics to

biology, involving all the disciplines that deal with complex systems or pro-

cesses. With ε-machines, computational mechanics provides powerful models

that can help characterizing these systems. To date, an increasing number of

studies concern the use of such methodologies; nevertheless, an attempt to

make this approach more accessible in practice is lacking yet. Starting from

this point, this thesis aims at investigating a more practical approach to

computational mechanics so as to make it suitable for applications in a wide

spectrum of domains. ε-machines are analyzed more in the robotics scene,

trying to understand if they can be exploited in contexts with typically com-

plex dynamics like swarms. Experiments are conducted with random walk

behavior and the aggregation task. Statistical complexity is first studied and

tested on the logistical map and then exploited, as a more applicative case, in

the analysis of electroencephalograms as a classification parameter, resulting

in the discrimination between patients (with different sleep disorders) and

healthy subjects. The number of applications that may benefit from the use

of such a technique is enormous. Hopefully, this work has broadened the

prospect towards a more applicative interest.
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Chapter 1

Introduction

The rise of dynamical systems theory in the 60s and 70s led to a new con-

fidence that complicated and unpredictable phenomena in the natural world

were, in fact, governed by simple but nonlinear interacting entities. New

mathematical concepts together with the power of simulations (and sym-

bolic dynamics [Daw et al., 2003]) brought a way to figure out how such phe-

nomena emerged over time and space. With information theory of Shannon

[Shannon, 1948] and related studies [Kolmogorov, 1968], it became clear that

information (with its dynamics) takes a fundamental role in the context of

distributed computation. In addition, the discovery of cahos (and the cahotic

phase) [Crutchfield and Young, 1988, Crutchfield and Young, 1989] and the

studies on cellular automata, that have been studied from a large number

of researches (e.g., [Wolfram, 1983, Grassberger, 1984, Mitchell et al., 1993])

have proved that there is a rich spectrum of unpredictability spanning from

periodic to chaotic boundaries. Recently works have investigated the local

information dynamics [Lizier, 2010] deepening questions on fundamental op-

erations performed by a system: information storage, information transfer

and information modification. These operations are particularly important

from a theoretical perspective in complex systems science, where they are the

subject of a number of important conjectures about the fundamental nature

of distributed computation and its relationship to emergent complex behav-

1



2 1. Introduction

ior. One focus of such discussion is the dynamics of computation that is

the manner in which computations unfold in time and are distributed across

space. All these efforts lead to new perspective on complex systems raising

questions on how to quantify the unpredictability and the organization of

this complex phenomena. Notably, interest rises in the issue of pattern dis-

covery; given data produced by a process, how can one extract meaningful

and predictive patterns from it, without knowing in advance the kind of these

patterns? What’s the intrinsic structure of information flow and how it can

be revealed? Generalizing these questions raises the need of some structure

or topology for capturing (and for better understanding) distributed compu-

tation and its source of complexity [Crutchfield, 2012]. Information theory

metrics alone do not capture the computational effort required in modeling

these dynamics. It is therefore essential to reconstruct a model that captures

the possible ways the computation may undertake.

Building upon the concept of the conditional entropy rate, a formula-

tion resulting from these scenarios named computational mechanics was con-

ceived. This approach attempts to answer the next quantitative questions:

(i) how much historical information does a system store, (ii) where is that

information stored, and (iii) how is it processed to produce future behavior?

Based on the conditional dependences that exist between the intrinsic states

of a dynamical process, an algorithm was conceived that reconstructs the

structure of such causal states. A new observation of the process leads to a

transition from a causal state to another. Causal states and their transitions

form a deterministic automata; a particular type of hidden Markov model

(edge-label emitting machine) called ε-machine and the entropy of its causal

states is the statistical complexity of such process [Shalizi et al., 2001].

To date, computational mechanics has contribute to a range of results on

theoretical approaches conducted mostly by Jim Crutchfield and his research

group. These include Ising models [Feldman and Crutchfield, 2003], molecu-

lar systems [Nerukh et al., 2002], crystallography [Varn and Crutchfield, 2004]

and so on. On the contrary, there are few application cases; two of which
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are for security[Whalen, 2010] and for anomaly detection[Xiang et al., 2008].

Given the wide range of fields of application that could exploit this method-

ology, it is anomalous that there are not yet works or projects to make this

approach accessible to everyone; promoting its widespread diffusion. Es-

sentially, what lacks is giving to this theory a more usable and practical

accessibility; works that pave the way toward more operative investigations.

Especially in robotics, where entropy measures are widely used, not only

statistical complexity but the reconstructed models (ε-machines) can also be

exploited.

So, this thesis attempts to investigate practical aspects of these appli-

cations with the aim of broadening the path toward this direction; through

explorative experiments [Amigoni and Schiaffonati, 2016], concerning with

the finite essence of real data and contingencies that are not met in the

theoretical case, to identify the issues most closely related to the practical

aspects. With this purpose, a reconstruction algorithm was examined and

tested first. Then some experiments were conducted, trying to exploit these

models on robots. Finally, this approach was applied on series extracted

from electroencephalograms, investigating on sleep diseases, trying to show

advantages these models can bring.

The remainder of this dissertation is organized as follows. Chapter 2

introduces the basic theoretical aspects; explaining the background context

and the motivations behind this approach (and behind this work). Chapter 3,

resumes preliminary tests conducted on the reconstruction algorithm chosen

for experiments. These tests have served to comprehend the applicability

of this algorithm and, at the same time, to understand its potential. Tests

on the logistic map are conducted in this section too. Chapter 4 shows

experiments taken on robot simulations regarding the random walk and the

aggregation task. In this section focus is posed more on reconstructed models,

trying to gather the ways in which they can be exploited. Finally, in chapter

5, are shown the results of the application of this algorithm attempted on

electroencephalograms.
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Chapter 2

Background

As an introduction of the basic concepts and background, this section

considers some of the essential ideas and measures which describe the con-

text and which will be used in the following chapters. The purpose is to

give an intuitive notion of the principal ideas that have induced to conceive

complexity under these terms and at the same time, that have motivated

these studies.

Computational mechanics originates from various contexts including in-

formation theory, dynamical system theory, chaos theory, statistical mechan-

ics and physics, with seminal papers from the ’60s. Technical reviews can be

found in [Crutchfield, 1994, Feldman, 1998, MacKay, 2003]. The aim is to

summarize the logical steps that have led to computational mechanics. Why

information theory and how computational mechanics follows from it.

Thus, the first section establishes the context and the basis of this dis-

sertation. Additionally, basic notions of computational mechanics are given;

causal states, their structure (the ε-machine) and resulting measure (statis-

tical mechanics) are introduced. These are the core concepts of the theory,

subjected by this study. Finally, to present a picture of the upcoming re-

searches, a glimpse on recent works on this topic is provided.

5



6 2. Background

2.1 Motivations

We thrive in a world made of predictable and unpredictable things. But

nature is seldom simple; there are also structures, patterns, organization,

complexity. We have an intuitive sense that some things are more ”complex”

than others. Anyhow, where does this complexity come from? It is concrete

or just an illusion? What are patterns? How can they be discovered?

Measures drawn from information theory (like entropy, entropy rate or

excess entropy) serve to quantify the randomness and the deterministic part

of the process; namely, the complexity of the process. Moreover, it was

understood the need of having a concise, unique and comparable represen-

tation of complexity. Nonetheless, these metrics are merely values; they do

not have the power (as metrics) of capturing patterns and structure. In

fact, Markov models propose a structure (chains and hidden models) which

also holds adequate mathematical and statistical properties. However these

topologies are assumed a priori and then fitted with respect to data series

[Shalizi et al., 2002]. Thus, this is not pattern discovery; what is needed is a

reconstruction algorithm that infers the structure directly from the analyzed

process.

The raise of computational mechanics and its latest mathematical refine-

ments [Shalizi and Crutchfield, 2001] have consolidated the groundedness of

statistical complexity and causal states. Its goal is to detect the structure

of the information flow in a system. This is pattern discovery, and it can

provide unexpected benefits in a vast range of fields and subjects. As well as

in my interest.

Seen its wide applicability, what lacks is to make accessible the use of

computational mechanics to a more immediate approach. The aim is to

solve problems connected with the application of these models, avoiding the

theoretical debate.
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2.1.1 Why Information?

When we deal with unknown sources of information and uncertainty, we

rely on probabilities, indeed statistics. This is what information theory does;

it studies the quantification, storage, and communication of information. It

was developed by Shannon in 1948 who has provided the notion of entropy

[Shannon, 1948] while studying signals and the effect of noise on communica-

tion channels, retrieving notion of entropy used in physics for thermodynamic

equilibrium (note that every process is a communication channel). Further

investigations have led to two important quantities like entropy rate (the ir-

reducible randomness of the system) and excess entropy (a measure of the

complexity of the sequence, defined as the effective measure complexity in

[Grassberger, 1986]).

These metrics provide a natural language for working with probabilities,

evade semantic or meaning issues and measure nonlinear correlations. More-

over, they are comparable with almost all systems. They let us know how

random a sequence of measurements is or how much information one mea-

surement tells us about another. Unfortunatly, they cannot capture emer-

gent patterns or any sort of structure of the information flow of the system.

These metrics effectively provide measures of complexity, however this is not

enough. The next example explains this concept.

Consider these (long or infinite) sequences of measurements generated by

two distinct processes:

S1 = . . . 0001110101001101 . . .

S2 = . . . 0101010101010101 . . .

Suppose that S1 is generated by a random binary process1 and S2 from

the period-2 process2. Now apply information theory measures to these se-

1The random binary process generates random sequences from the alphabet {0,1}
2The period-2 process generates binary strings alternating an 1 and a 0
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quences. Since they have the same distribution, then

H[S1] = H[S2] = −
∑
i∈A

pi × log2(pi) = 1

where A is the alphabet, {0, 1}, and pi is intended as the probability of the

symbol i. Note that, in this case, the entropy is maximized since the proba-

bilities of 1s and 0s are the same (pi = 1
2
, for each i). However, in both case

the entropy indicates that the two processes are equally (and highly) random.

This is true in the first case (S1) but it is not true for the second (S2). The

entropy gives us the measure of uncertainty associated with distributions;

so, based on this value we consider both series ”equally predictable”. The

entropy rate of S1 is 0. This process does not need memory. That is, the

process of S1 is the coin flip. Conversely, the process of S2 have zero entropy

rate but remember the last symbol makes perfectly predictable the series. It

is deterministic. If last occurence was 1 the next one must be a 0, if the last

was a 0 than the next will be a 1. So, S1 differs from S2 but, in this case, we

cannot perceive it.

Other measures can capture this difference; for example, if we consider

Kolmogorov-Chaitin complexity [Grunwald and Vitányi, 2004] we note that

S1 is ”not compressible” (it is random) meanwhile S2 has a much more com-

pact representation. Anyway, even if we have a measure (like KC-complexity

for this case) that can capture some sort of complexity, we cannot capture

the way the information is processed yet. The KC-complexity is suited for

this example but if we consider more complex processes (not random neither

totally deterministic ones) we realize that also this metric is not adequate.

Consider for example the even process3. It is not ”compressible” or ”re-

ducible” for Kolmogorov-Chaitin (like the random binary process) but, on

the contrary, it has a structured intrinsic process.

In short, all these measures are useful and adequate to quantify various

aspects of a system but are contextual to their objectives. So, what’s missing?

3The even process consists of two states, and generates binary strings where blocks of

an even number of 1 s are separated by an arbitrary number of 0 s
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Where are patterns? Another step has yet to be done.

2.1.2 The need of a structure

So, information theory measures cannot capture dependency structure.

Where is information? How is transferred? Structure, indeed, is taken to be

a statement about the relationship between system’s components. That is,

the more intricate the “correlations” between the system’s constituents, the

more structured its underlying distribution. For a glance of what is intended

for ”structure”, ε-machines of the processes taken above as examples are

shown in Figure 2.1.

(a) (b) (c)

Figure 2.1: ε-machines of the processes analyzed above; a)random binary

process, b)period-2 binary process and c)the even process. Nodes and arcs

are the states and the outcomes of the process, respectively. Each of them

has its probability (with label p). The label s on arcs, represents the emitted

symbol. Note that the sum of the probability values of the outgoing arcs for

each node is always 1.

These are the models reconstructed from series of the processes of the pre-

vious examples (S1, S2 and the even process). By exploiting these structures,

the flow of information becomes easily readable. Further, these structures

are unique and minimal. This means that are comparable too. For example,

the structure of the random binary process in Figure 2.1 (a), is the same of

the coin flip. This is clearly evident; changing the output alphabet ({0,1}
with {head, tail}) is enough.
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Moreover, the even process, in Figure 2.1 (c), cannot be represented by

a finite Markov chain. It can be represented by a finite hidden Markov

model, however. In particular, its ε-machine provides the most compact

presentation.

This effort also provides new perspectives. Markedly, computational me-

chanics brings the foundation for several related problems; inference versus

experimentation, information flow within and between systems, process de-

composition and perception-action cycles [Barnett and Crutchfield, 2015].

2.2 Computational Mechanics

Built on measures lent by information theory and the theory of informa-

tion transmission of Shannon and Kolmogorov (with studies on entropy rate

and excess entropy, 1960s), it was developed from efforts in the ’70s and early

’80s to identify strange attractors in fluid turbulence [Packard et al., 1980]

and in the middle of 1980s to estimate the deterministic part of the equa-

tions of motion from time series [Crutchfield and McNamara, 1987]. In pro-

viding a mathematical and operational definition of structure it addressed

weaknesses of these early approaches to discover patterns in natural systems

[Crutchfield, 2017].

Unlike the entropy metrics, computational mechanics makes use of the

notions of formal computation (from Chomsky hierarchy [Chomsky, 1956])

to conceive a structure for a system’s intrinsic information processing. It per-

mits us to see how a system stores, transmits, and manipulates information.

It considers the following situation. Given a stationary stochastic process,

the semi-infinite ”past” (or ”history”) of the process (at all times up to and

including zero) has been observed. Now the ”future” (all positive times) has

to be predicted as accurately as possible.

The central objects of the theory are the causal states. They are defined

as the elements of the minimal partition of the past that is sufficient for

predicting the future of the process. The ε-machine, containing causal states
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and their transitions, constitutes the structure that describes (statistically)

the behaviour of such process.

2.2.1 Causal States and ε-machine

Consider at some time t, the sequence

S = . . . st−2st−1stst+1s+2 . . .

taking values over some alphabet A = {s1, s2, . . . } like the symbolic series of

the process (or system) which we would like to examine. How can we predict

the next symbol? There is some sort of regularity (in the past) that helps

in this prediction? At each time t, the semi-infinite past is
←−
S = . . . st−2st−1

and the semi-infinite future is
−→
S = st+1s+2 . . . . The key step is to identify

states (in the past) with conditional probability distribution over future con-

figurations. In building this model, there is no need to distinguish between

different past configurations (called past morphs) that give rise to an identi-

cal state of knowledge about the future configurations (called future morphs)

that can follow it. Two (L-length) ”pasts”, ←−s Li and ←−s Lj , are equivalent if

and only if they give rise to the same probabilities over ”futures”. Note that

each causal state is characterized by the probability distribution of its future

morphs. It is independent if the system is in state ←−s Li or in the state ←−s Lj ,

the future is the same. So, by using this form of conditional probability, an

equivalence relation ∼ on the space of all past configurations can be defined

as
←−s Li ∼ ←−s Lj ⇔ P (−→s |←−s Li ) = P (−→s |←−s Lj )

the classes induced by this equivalence are called causal states. Causal states

incorporate all information about the future, that is available in the past.

How do we actually organize this information? The ε-machine describes the

mechanism of prediction. It is defined as a stochastic automaton (i.e., a

machine): it has a set S of (causal) states and it is initialized by one of these

states according to some initial probability distribution. At each time step

t, depending on the current internal state St, an output symbol Yt+1 from
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alphabet A and a new internal state St+1 are (stochastically) generated.

This is modeled by a transition probability T from internal states to output

symbols and internal states: T : S → P (A × S). The ε denote that, in

general, the measurements may not be direct indicators of the internal states.

For example, the symbols may be a discretization of measurements that are

continuous in space and/or time.

The model used to represent ε-machine is a particular type of hidden

markov model; precisely, an edge-emitting machine. This choice is required

to ensure the minimality of these models. Unlike HMMs, the topology of

such a model (e.g., number of states and transitions) is not set a priori.

This evades the modelling dilemma, related to the problem of ”innovation”

[Crutchfield, 1994].

Thus, in the end, we have obtained a structure (or model). What is

missing is its measure.

2.2.2 Statistical complexity

According to Feldman and Crutchfield [Feldman and Crutchfield, 1998],

a useful “statistical complexity” must not only obey the ordered-random

boundary conditions of vanishing. It must also be defined in a setting that

gives a clear interpretation to what structures are quantified.

Like said above, ε-machine (and its causal states) represents the intrinsic

structure of the system. But what measure can be retrieved from this struc-

ture? Coming from information theory, it is natural to adopt its metrics once

again. The resulting formula is

Cµ = −
∑
s∈S

p(s) · log2(p(s))

where S is the set of reconstructed causal state mentioned above. Recall-

ing computational mechanics, to achieve optimal prediction of the system

one needs only to remember the causal states. The statistical complexity

thus measures the minimum amount of memory needed to perform optimal
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prediction. That is the entropy calculated on causal states. Statistical com-

plexity measures discount for randomness and thus provide a measure of the

regularities present in an object above and beyond pure randomness.

2.3 Recent developments

The latest work [Strelioff and Crutchfield, 2014] focuses on a subset of ε-

machine. Called Bayesian Structural Inference (BSI), this method relies on a

set of candidate topologies (unifilar HMM) to infer the process structure from

data series. This eliminates the transient states and ensures the minimality

of the model. Inferred models are guaranteed to be ε-machines, irrespective

of estimated transition probabilities. Anyway, transient states remain useful

in some context like anomaly detection or pure exploration of an unknown

system or process (or phenomenon).

In [Grassberger, 2017b, Grassberger, 2017a] Grassberger points out that

computational mechanics substantially represents the same mechanism of

order theories based on uHMMs. On top of that, one of the motivating ideas

behind the effort spent in this dissertation is that no matter what kind of

reconstruction and other theoretic issues (and debates) this model involves.

These kinds of reconstructions can provide models that can be applied and

can be useful for almost all disciplines. Swarms in robotics or fluid flows in

physics or the brain dynamics in neurosciences and so on. All must deal with

the chaos; at least, these methods can assist us.

Last updates and publications ca be found on Crutchfield’s Computa-

tional Mechanics Archive [Crutchfield, 2018].
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Chapter 3

Tests

As in all theoretic models, some assumptions fall apart when passing from

theory to practice; in the latter case problems rise due to the finite nature

of data collected and the finite memory size, assumed infinite in the former

one. To date, application tests are required. Unfortunately, there is no public

stable code available and, in fact, there are not so many applications based

on these ”machines”.

Instead of creating a brand new implementation, we preferred to re-use

and analyzing existing ones, as they were devised by reliable scholars. Be-

sides, this saved us from exploring different options in the theoretical model.

For example, the choice of the method of reconstruction (splitting or merging

causal states? [Shalizi et al., 2001]). Thus, preliminary tests are conducted

for choosing a reliable reconstruction algorithm. Additionally some ”canon-

ical example”, like the even process or the logistic map, are observed. This

served for understanding what and how the model captures the states and if

the inferred structure can be useful for prediction or detection of anomalies.

This step tries to investigate these issues and it aims at understanding

the limits of using ε-machines on real finite data. Hopefully, this may reveal

some insights on applicability of these models.

15
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3.1 Reconstruction algorithms

The main purpose of this step, is to discover a sound and well performing

algorithm for reconstruction of ε-machines. Once obtained, these models

(and metrics) can be used in robotics and IoT. Particularly in the context of

swarm of robots, for its complex dynamics; here ε-machines can be used to

infer or monit (anomaly detection) some behaviours of the swarm or simply

to measure and analyze its complexity.

To date it is difficult to find well defined and properly documented re-

construction algorithms. Of the few implementations found, most are ad hoc

and without official documentation or publication. Of these works, the last

available found is the Brodu’s one, referenced in [Brodu, 2011].

The Brodu’s code is based upon Shalizi work [Shalizi and Shalizi, 2004]

and, according to its author, also improves it. Compared to CSSR1, the

REMAPF2 algorithm is faster. CSSR is slower because it calculates all the

”pasts” for all lengths up to L. On the contrary the REMAPF considers only

the ”pasts” at given length L. For the same reason REMAPF is more stable; it

doesn’t have state explosion like the CSSR. Nevertheless, the results obtained

are commensurate. Consequently, the REMAPF was chosen because it is

faster and facilitates tests and experiments.

Thus, these tests verifies if Brodu’s reconstruction algorithm works well

and if reconstructed ε-machines, once applied, are useful as predictive models.

This implementation does not only reconstruct the ε-machine; it also allows

the application of a utility function that allows reconstructing the decisional

states, which are a coarser level of the causal states. For the purpose of this

thesis, however, this functionality has not been considered.

1Causal States Splitting Reconstruction
2Reconstruction of ε-machine in Predictive Framework
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3.2 Preliminary tests

These preliminary tests serves to investigate on applicability issues. Is

there a minimun number of occurences that allows reconstruction? What is

the ratio between history lengths and number of occurences? Further, are

perturbations captured? Is the reconstructed model correct? Series that the

model reproduces are statistically the same of those used in input?

By means of symbolization, process (or system) dynamics are represented

by strings. Every charachter (or symbol) represent a state (or the outcome)

of the process. Thus, the string is the temporal succession of the outcomes

of the analyzed process; that is, its symbolic dynamics. As transducers,

ε-machines are able to (statistically) reproduce the process by which they

have been reconstructed. For this reason, some tests have been conducted to

verify the statistical correctness of the series reproduced by the model. For

these verifications, some of the classical measurements of information theory

(e.g. block entropy) have been applied. These measures were also applied

to input series and compared to each other. The number of errors (of the

even process) reproduced in output has also been taken into account, as the

number of symols occurences.

The next section describes the kind of input strings (processes) used for

this tests. Then, the procedure adopted and the measures used are explained.

The last section shows results obtained.

3.2.1 Bynary series and the even process

The program takes strings as input; they are representations of the sys-

tem. That is, these strings are sequences of succeding symbols (e.g., mea-

surements) representing the process’s dynamic.

For sake of semplicity and without loss of information, tests are conducted

mainly on binary strings. Some tests with alpha-numerical series are taken

too, but no differences are noted and indeed not mentioned. All possible

types of series, corresponding to the types of process that generates them,
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are considered; from totally ordered to random strings, including periodic

and perturbed ones. In particular, series generated from the even process (it

consists of two states, and generates binary strings where blocks of an even

number of 1 s are separated by an arbitrary number of 0 s) are tested. Despite

its apparent simplicity the even process does not correspond to any finite

Markov chain, and requires the power of an ε-machine to be reconstructed.

Some examples from series with more than two symbols are reported too.

More complicated examples could be tested but complexity of the model

grows too, as the number of states; then, in this tangle made of iteractions,

could be difficult to comprehend dynamics and particularitites. And so, are

reported only the characteristic and the more clear cases, ommitting the

more complex ones. This is because the attention is placed more on the

reconstructed model than on the complexity measure.

3.2.2 Procedure

First of all, Brodu’s code was compared with Shalizi’s one3. This prelim-

inary step serves for verifying if Brodu’s work is consistent with the CSSR,

taken as benchmark. Resulting reconstructions are substantially the same;

despite the authenticity of CSSR, Brodu’s work is earlier and (for the author)

more stable. So deciding to take the one or the other became only a personal

decision.

From the available code4, two components are used; the EvenProcess and

the SymbolicSeries. The former is a simple even process generator. Used

for generating some test series. The latter is the algorithm that processes

symbolic series to generate the ε-machine.

The SymbolicSeries program ingests a string (or a number of strings) as

input, and produces the causal states graph (the ε-machine). At this point,

a piece of code reads this graph and generates from it the output series with

the same number of occurrences of the input one. While accomplishing this,

3Source: http://bactra.org/CSSR/
4Source: http://nicolas.brodu.net/recherche/decisional_states/index.html

http://bactra.org/CSSR/
http://nicolas.brodu.net/recherche/decisional_states/index.html
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the number of symbols occurrences is collected as well as their probability

distribution.

After having generated output another program is run, to apply remain-

ing metrics (entropy, local entropies and block entropy for some L). This

code works only on binary strings, and is not applied on alphanumeric ones.

It is used only for a preliminary test on statistical verification of the recon-

struction, where series with more than two symbols were not accounted.

Various functions are created to read different type of input series and

feed the dataset of this algorithm. Ad example, for reading series of integers

(with varying precision) or ”blocks of chars” as a symbol. Integers can also be

treated as strings; nevertheless, the function that scans them has been created

in order to be able to decide the precision with which to interpret these data.

The case of the ”blocks of chars” as symbol is used in the experiments with

robots to consider the state of many robots together, as single state, at each

step. This has permitted more investigations.

3.2.3 Metrics

To verify the statistical properties of the reconstructed model, classical

metrics from information theory have been used. From all other metrics

available in this context (joint entropy, conditional entropy, mutual informa-

tion, and non-statistical ones like Kolmogorov-Chaitin complexity) the most

significative one seems to be (theoretically) the block entropy. It is the appli-

cation of the entropy rate on finite length series with finite memories. That

is, entropy rate is the block entropy taken to the limit. The entropy rate (or

entropy density or the metric entropy) Hµ measures the unpredictability (in

bits per symbol) of the sequence and it is considered one of the most effective

measures of complexity.

Metrics used as statistics over series are:

• the global entropy

H(X) = −
∑

x∈X p(X = x)× log2(p(X = x))
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• the local entropies, defined for each symbol x,

H(x) = − log2(p(X = x))

• the block-entropy, it is defined for some blocks length L,

H(L) = −
∑

S1∈A · · ·
∑

SL∈A P (S1 . . . SL)× log2(P (S1 . . . SL)).

Number of occurences and basic statistics (the number of occurrences and

the number of generated errors) are monitored as well. These measurements

will serve only as a verification of the statistical reliability of the series that

are produced by the reconstructed model.

3.2.4 Results

The primary question is about the minimal number of occurrences needed

for a plausible reconstruction and the trade off with the length of memory

(or ”pasts length”). This is the first and crucial step; if the reconstruction

requires an order of magnitude that is not available in real datasets, no appli-

cation can be made. We must take into account that the minimum number

of occurrences depend also from the size of the vocabulary: if the alphabet

is large, more occurrences are needed. From Shalizi’s documentation of the

CSSR, a rough guide-line is to limit L to no more than logN/ log k, where k

is the alphabet size and N is the number of occurrences. This is confirmed

by these results.

So these results are presented first. Then, having fixed both memory

length and the minimum number of occurrences, test with different input

series are shown.

In Table 3.1 are shown errors5 for each observation length and for each

memory length. The number of errors generated in the output series repre-

sents how well the model captures the process dynamics. When occurrences

are not enough (< 100), the model cannot be reconstructed or even when

this happen, the result is not so fitting. This is the meaning of symbol ”-”;

the model was not reconstructed well, or it was not reconstructed at all.

5In the even process, an error is a block of an odd number of 1 s (like ”010” or ”01110”).
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# observations
memory lengths

1 2 3 4 5 10

100 - - - - - -

1000 ∼ 80 ∼ 60 ∼ 10 0 0 -

10000 ∼ 900 ∼ 600 0 0 0 0

100000 ∼ 8200 ∼ 5600 0 0 0 0

Table 3.1: Even process: generated errors for various series and memory

lengths

When occurrences raise up (> 1000), things go better. The model now

reproduces the real dynamics; with short memories, samples taken cannot

capture the patterns which have longer periods (e.g., ”11”). This situation

does not change even with a higher number of observations. Differently, with

memories of length greater than three errors vanish. These are only some

cases from a large number of tries that confirm this trend too.

Another problem that affects the reconstruction, as mentioned more times,

is the finite length of pasts. It causes some transient states to raise up. Due

to this limit (in this case fixed at #symb×memLen <= 64), the algorithm

cannot distinguish whether the last symbol 1 was emitted from one recur-

rent state or the other. Logically, it observes that 1/3 of the time the next

symbol is a 0 in the data set and 2/3 of the time it is a 1, matching the

proportions of the symbols. Nevertheless, the probability of this transient

state is negligible if compared with recurrent’s ones and it varies, of course,

with the proportion of memory length and the number of observations.

Metrics are respected. Brodu’s complexity, calculated on ε-machines,

resembles the entropy calculated on series. Although they are different se-

quences, input and output series have the same metrics. When distributions

of symbols are respected, the global entropy is clearly respected too. Block

entropy, which considers (all) block occurrences, should be a little bit sensi-

tive; instead, like shows Table 3.2, is respected like the other measures. These
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series H(X) H(1 ) H(0 )
H(L)

1 2 4 8 10 20

IN 0.9169 0.58 1.59 0.87 0.79 0.73 0.68 0.67 0.53

OUT 0.9167 0.58 1.59 0.87 0.79 0.73 0.68 0.67 0.53

Table 3.2: Statistics from input and ouput series (number of observations:

100000)

measurements serve only as a confirmation of the (statistical) correctness of

the reconstructed model.

The even process and the other binary strings have been well recon-

structed. However, this is the Brodu’s benchmark too. Interesting things

come up when different types of process are considered.

(a) (b)

Figure 3.1: Other examples with various input series; a) 3-symbols periodic

pattern generating series, in this example ”abc”, and c) perturbed one with

symbol ”x”.

Figure 3.1 shows the model obtained from a pattern-only reproducing

series (in this case: ”abcabcabc. . . ”) and its perturbations (with symbol ”x”).

When occurrences became consistent, transitions are caught within the model

and new (often transient) states raise up. This is well managed by ε-machines.

In Figure 3.2, the models is generated with series where some pattern are

inserted in arbitrary symbol sequences; in this case the pattern ”abc” in series
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(a)

(b)

Figure 3.2: Other examples with various input series; a) pattern ”abc” in-

serted arbitrarily in ”s” and ”t” repeating series, b) transient states are

shown too. If we look at the probabilities of transient states, we can see

how low they are. So, by setting a threshold it would be possible to give

the reconstruction the possibility of varying the ”sensitivity” with respect to

causal states inherent in the process.
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like ”. . . ttststsst. . . ”. Graph including transient states is shown too. The re-

current model captures well the pattern ”abc” and the principal distribution

but if we examine the graph which also includes transient states, we can note

that with transient states the model has caught also other interactions (those

of perturbations). This means that the model captures all intrinsic dynamics

of the process observed but not all are chosen as fundamentals. When we

access this deepen world of transient contingencies, we can really understand

the internal dynamics of a process; if errors, caused by finiteness, were not

present, an even more clear representation could be result. This could pave

the way toward anomaly detection methods based on this technique. That

is, the recurrent model extracts the main interactions and states, when a

more rigorous inspection is needed, transient states could indicate particular

anomalies or perturbations that are not caught by the model itself.

Except for particular cases (where observations are not enough, when

memory length is not sufficient or when perturbations are enough occurrent

to be considered as real transitions, etc.), the model is well reconstructed, and

statistics are respected. Furthermore, even with a relatively small dataset,

the algorithm seems stable.

3.3 Logistic Map

Preliminary tests were useful to understand the effectiveness of the re-

construction and to verify the basic property of the model. The logistic map

is a more realistic example. It is a canonical phenomenon and indeed well

studied and known. It is often mentioned as a sample of how complex and

chaotic behaviour can arise from very simple non-linear dynamical equations.

It falls back under tests because, in this case, the process is well known, in-

deed we know what to expect. In particular its behaviour can be controlled

by parameter r and so various dynamics arise from it and can be analyzed.

It is a non-linear difference equation used frequently as model for population
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growth:

xt+1 = rxt(1− xt)

By varying the parameter r, various behaviors are observed, in particular:

• Between 0 and 1, it converges to 0.

• Between 1 and 3, it will quickly approach the value r−1
r

, independent

of the initial value.

• From 3 increasing beyond 3.56, from almost all initial conditions the

population will approach oscillations among 2, 4, . . . , 16, 32, etc. This

behavior is an example of a period-doubling cascade.

• At r ' 3.56995, the onset of chaos, at the ending of the period-doubling

cascade. From almost all initial conditions, we no longer see oscilla-

tions of finite period. Slight variations in the initial population yield

dramatically different results over time, a prime characteristic of chaos

(sensibility from initial condition).

• With r between 3.6 and 4, behaviour is chaotic.

• Beyond r = 4, almost all initial values eventually leave the interval

[0, 1] and diverge.

Therefore, by varying the parameter, all kinds of behaviour are repro-

ducible and then be subjected to these tests. Knowing what the result will

be, this test serves to verify, in practice, how the machine is reconstructed

and what its topology represents. That is, what the causal states capture,

what their interactions are and what they represent. This concedes us the

possibility to understand how to read the results and how to interpret them,

so it is considered a verification test and not an application test (the last

chapter emphasizes this difference).
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3.3.1 Finitness and the disequilibrium

In Figure 3.3, the statistical complexity of the logistic map is shown.

Five series of 1000 occurrences were generated with initial value x = 0.53

and varying the parameter r (2.3, 2.8, 3.2, 3.5, 3.8).

Figure 3.3: Statistical complexity of the logistic map

In Figure 3.3, something went wrong. It was said that a measure of

complexity must respect the order-random boundaries; i.e. its value is 0 for

both fully deterministic and totally chaotic processes. Instead, it is evident

from the histogram that this is not the case. The statistical complexity is

initially 0 and respects the logistical map trend for initial values but continues

to grow even when the system becomes chaotic, and this is not correct.

So what has happened? This is an example of the problem of the finiteness

of occurrences. Typical of when a theoretical model incorporating theoretical

limits and theoretical convergences is conveyed to practice. In the theoretical

case, when entering a chaotic phase, the signal takes on infinite values. This

leads the reconstruction algorithm to create a unique causal state where all

the transitions produced by the process start and arrive. This is because
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distribution becomes normal and equiprobable (IID) and no conditional de-

pendency is found. So the model is reconstructed in the same way as the

coin toss; that is, it is presented as totally random. Conversely, in the prac-

tical case, due to the accuracy of measuring instruments, machine precision,

assumed rounding or symbolization and so on, the algorithm detects depen-

dencies (or patterns) which are reported in the reconstructed model.

This is the most important practical problem. It behaves the opposite of

what we expect. Is the reconstruction method wrong? Not necessarily. In

this case the problem is the finiteness of data, that’s it. It is only a practical

aspect. And so, how can we resolve it?

In cases like this, where the process analyzed is basically random but

some causal states are identified, the reconstructed model not only tends

to have several states but the distributions of these are also substantially

comparable. In other words, the reconstructed model resembles that of an

IID process. For this reason, a first attempt was to divide the statistical

complexity of the model by its number of causal states. Obviously this value

can be applied to these cases but, in general, it does not behave well. It

always remains to be discovered if given a process, this is completely chaotic

or if it is extremely complex (i.e. it hides very long cycles, but not infinite)

by observingthe number of its reconstructed states. Nevertheless, this can

be a reference measure for some cases.

As shown in the Figure 3.4, the logistical map seems to be one of these

cases. In this case, more precise values were used for the logistics map. What

the figure above shows is exactly the behavior expected from a measure of

complexity. Its complexity grows to r values around 3.5; i.e. as long as

the logistic map’s behaviour is linear. Then, for values between 3,565 and

3,5689, the edge of chaos. This is the phase where the logistics map reaches

its maximum complexity. Here we are in a phase of deterministic chaos. After

3.6 the model follows very simple deterministic rules yet produces apparent

randomness. This is chaos: deterministic and aperiodic. That is, behavior

becomes completely chaotic, causing our measure of complexity to be 0.
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Figure 3.4: Statistical complexity of the logistic map divided by the number

of causal states

Considering the number of causal states is therefore not always correct.

So we had to find a way to weigh more unbalanced models, those with

causal states that were not equiprobable. This is in order to favour sys-

tems where the high number of causal states was justified by a real complex-

ity (very different from the equiprobability of the coin toss). Thus, further

thoughts and investigations led to consider the disequilibrium of the system

[Lopez-Ruiz et al., 1995]:

D =
N∑
i

(pi −
1

N
)2

Defined in this way, disequilibrium would give an idea of the probabilistic

hierarchy of the system. “Disequilibrium” would be different from zero if

there are privileged, or more probable, states among those accessible and D

= 0 on the limit of equiprobability. According to this definition, a crystal has

maximum disequilibrium while the disequilibrium for an ideal gas vanishes.

At this point, the idea was to mediate the number of causal states in
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order to be able to balance the ratio of the formula in the first attempt. The

resulting formula is
Statistical Complexity

#CS(1−D)

In this way we tried to generalize the behaviour of the formula with the

number of causal states, used previously. In the case of the logistic map

(but also in the experiments that follow) the behaviour remains substantially

unchanged.

r Statistical Complexity #CausalState Complexity / #CS D Complexity / (#CS * (1-D))

2.8 0.0626027 3 0.0208676 0.653717 0.0602616

3.3 1 2 0.5 0 0.5

3.5 2 4 0.5 0 0.5

3.565 6.82698 423 0.0161394 0.0455293 0.0169093

3.5689 9.42063 762 0.012363 0.00141461 0.0123805

3.57 0 0 0 0 0

3.7 0 0 0 0 0

3.9 0 0 0 0 0

Table 3.3: Values of derived formulae from statistical complexity; with the

number of causal states and with the disequilibrium.

In Table 3.3, values from derived measures are shown. These are the

values depicted in Figure 3.4. This table is used as summary of these test.

The formula with the disequilibrium behaves like that with the number of

causal states. The number of causal states of the first row of the table (with r

= 2.8) is not zero; this due to the issue on number of occurrences, discussed

in the previous chapter. Statistical complexity for r=3.565 and r=3.5689

should be 0 (the edge of chaos is breached). Nevertheless with the adoption

of derived formulae, this problem is mitigated. A remark should also be

made on the model; the two underlined lines (with r=3 and r=4) in the

table represent the period-doubling cascade. It is paramount to note that

the number of reconstructed causal states indicates accurately the length of

the cycle period.

In conclusion, we saw the tests on the logistics map were also successful.

By combining statistical complexity with the number of causal states and

disequilibrium, we obtain the desired effect. We are therefore ready to raise
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the shot and consider experiments in contexts tending towards more concrete

cases; namely, robotics simulations.



Chapter 4

Experiments

Previous tests have confirmed the effectiveness of the algorithm. In addi-

tion, in doing so, we have deepened our knowledge of reconstructed models

and the statistical complexity trends. Even the logistic map case, with some

adaptations, has shown that the model captures well the system dynamics

and that the measures can be significative.

But how can we use ε-machines now? What can we accomplish with

such a model in our hands? The first thought was on robot simulations. As

computer scientists, it is also the most logical solution; we could acquire not

only the ability to generate data at will, but also the possibility of actually

trying out the results in real environments. After all, experiments took their

course taking us, in the end, to another direction.

So, being available the results of some experiments with robots on two

classical exercises such as the random walk [Roli et al., 2018] and the aggre-

gation task [Francesca et al., 2015], the attempt was to exploit the recon-

structed models within these scenarios. As robot controllers, for anomaly

detection or automatic design of robots, for example. Moreover, aggregation

is a very compelling case. It is not stationary and theoretically all statistical

metrics fail in such cases [Liu et al., 2014].

Some preliminaries thoughts, involving memory issue and data mapping,

are discussed in the next section. Subsequently, aforementioned tasks and

31
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the related results are discussed.

4.1 Preliminaries

We tried to exploit the knowledge of the context (i.e., robot simulations,

that generated the data) to understand how ε-machines can be useful. The

random walk and the aggregation are well-known tasks in robotics. Addition-

ally, they represent theoretical opposite processes; the former is stationary

and ergodic, the latter is not-stationary and converges to a standstill situa-

tion.

In addition, since these data are related to swarms of robots, some ex-

periments have been attempted considering at each time step the state of

the swarm at once rather than the isolated state of each individual robot.

Thus, various approaches have been attempted; varying lengths, precisions

and mappings of the data for the reconstruction (symbolization).

The number of the occurrences was set to 1200 for all experiments. This

is to attain more comparable results; data of aggregation had this dimen-

sionality.

The memory issue

The length of the past and the future has been fixed to one (as previous

examples). This because from the first tests made, it was the most suitable

one. It makes the reconstruction algorithm more robust, and also makes

the results comparable. As for analyzed series with ”robot ensembles” as

states, discussed below, where are considered one block for the past and one

block for the future. In general, the same applies as before; as the length

increases, the number of symbols increases too. And the model becomes more

complicated. This is related always to the same motif (the same reason that

causes a minor explosion of states in REMAPF respect to CSSR). Recalling
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what said in Chapter 2, a suitable memory length respects

Lmem ≤
log(N)

log(k)
,

with k number of symbols and N the number of occurrences. For Shalizi the

smaller this ratio, the better. This is one of the factors that influenced the

choice of using a 1-length memory. Anyway, some trials with different lengths

were carried out during experiments, especially in those cases of doubt, but

no particular differences were found.

This issue is the frontier lay between theory and practice. All the trials

involved in this thesis concern this question.

Blocks as series

During initial trials, mainly with aggregation data, we realized that ana-

lyzing the complete series could hide some interesting dynamics. Since this

process is non-stationary, both the transient phase (where robots move, look-

ing for the point of aggregation, trying to avoid collisions) and the final phase

(when all robots reach the centre of the arena) were captured in the same

model. As the case of bearing an excessive number of symbols compared

with the inadequate number of occurrences. After some attempts (consid-

ering tests results), the idea was consequently to analyze smaller pieces of

series. Since the series did not contain many measurements (1200) they were

analyzed using sliding windows of fixed length. Various tests on length of

windows were carried out; at the end, 300-occurrences length was chosen, the

blocks precisely. A similar approach will be used for electroencephalograms

too, in next chapter.

States as ensemble (symbolization)

Having data series arranged with more robots (multi-robot series are both

for the ”aggregation” and the ”random walk”), another mapping of the states

was attempted. In this experiment, states of the system are interpreted no

longer considering a unique robot but a number of robots as a group. As
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example, if a robot can perform 3 moves (A, H and R) at a given step, it

can be represented with three symbols. A group of two robots, instead, is

represented by the symbols AA, HH, RR, AH, AH, HR, etc. (they are exactly

32 = 9). This clearly causes an explosion of the symbols (i.e., system states)

of the series and thus an explosion of the states of the model. Accurately, it

is nm with alphabet size n = |A| and m the block length.

First tests are accomplished considering the status of all robots (as blocks)

in the multi-robot series; the number of states and symbols is very high,

the reconstructed model is also difficult to visualize. The computation time

markedly increases. Reconstruction is not completed in 40 robot tests. The

model is almost as complex as the series because samples are few to gener-

alize, therefore the algorithm yields nothing more than a track equivalent to

the observed series. It is like the previous case of blocks.

4.2 Random walk

In swarm robotics, used mainly as exploration algorithms, random walks

are basic building blocks for the individual behaviour that support the emer-

gent collective pattern. Although very simple, they are used in many dis-

ciplines. A random walk is a stochastic process which generates a path by

steps. At each step the direction is chosen randomly. Implementing swarms

where individuals behave in this manner results in an efficient strategy for

exploring a given space; especially when there are no (environmental) cues

that can drive motion. In this case it is implemented as straight movements

and static rotations.

Series contain a lot of measurements in this case but, knowing that the

process is stationary, we decided to size them to make results comparable

with those of aggregation. Additionally, blocks of more limited size (greater

was to much) are been analyzed too. The same approach is used for the

aggregation.
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4.2.1 Data series

Random walk data are collected on simulations from on a dodecagonal

arena and from related ones simulated in an infinite arena. Those for the

infinite arena are only for one robot at time. Those on dodecagonal exist for

one, ten, twenty and forty robots. Each one comprises 10 simulations with

45, 90 and 180 degrees as turning angle and 10, 20 or 30 steps of S (symbol for

straight) that robot does as first action, every cycle. So there are 90 series for

each robot. Experiments are 450, overall. Analyzed data are symbolization

of the simulated measurements. The input series are generated by robots

that can make 3 moves at each step: turn right (R = right), turn left (L =

left) and move forward (S = straight). So the series for each robot are of the

type:

. . . SSRSSLSRRSRSLSSSRSL . . .

For the multi-robot series instead, is the column that indicates the single-

robot series in time. So for example, a file representing the measurements of

a ran simulation with 10 robots comprises series as

· · ·

SSRRRRRRSR

SSRRRRRRRS

SSRSRSSRRS

· · ·

Reading the first column, we know that the first robot (as the second)

has moved forward (S) for almost these three steps. Reading the last column

lead to known that after turning right in the first step, the tenth robot has

moved forward twice, and so on. The function which read robot ensembles

as states treats every row of this file as a unique state. Thus, in the example

above are represented also three step of a ten-robot ensemble. Note that this

kind of mapping completely alters the state space, indeed the alphabet of

the read series.
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4.2.2 Results

After having developed several tests it was clear that with 1-symbol mem-

ory it was possible to reconstruct the same model for all robot series (regard-

less of the degree of rotation and the length of the period ”straight”). In

these cases, the ε-machine constructed with the ”transient” states matches

with that of the ”recurrent” states.

Increasing the memory length (therefore, for tests with memory from 2

to 40) reveals many differences between reconstructed models; it becomes

burdensome to compare or evaluate them. Here, the concrete problem is

that within the same typology the reconstructed models do not seem to be so

equal. There are also cases where these models do not capture all transitions

(when the period of the series somehow combines with memory, transitions

with ”L” and ”R” may not be present in the reconstructed model). These

cases, however, are also compelling; some (in particular those of aggregation)

manage to capture the sequence of ”S” (to count its occurrences as a finite

automaton) for example. Manifestly, the question of ”augmented” memories

(past and future size) would have to be investigated more thoroughly. The

cause, however, may be the Brodu’s algorithm, theoretically it not capture

all the pasts (it is the question of considering all pasts up to length L).

In summary, two particular cases have been identified. First, the differ-

ence between the one robot model in the infinite arena (pure random walk)

and the one in the infinite arena (with obstacle avoidance). The second

concerns the differences within the finite arena (dodecagonal); between the

various behaviours induced by the degrees of rotation and the number of

steps of straight movement.

One robot

Initially, the main objective was to obtain robot controllers from the

reconstructed ε-machines, so they were analyzed first. Models of the infinite

arena were compared with the models of the single robot from the finite

one. An interesting thing comes up. The model of the finite arena has a
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transition that the models of the infinite one do not have. Also in multiple

series on the dodecagonal arena (10, 20 and 40 robots), the same model is

always reconstructed for the single robot. Namely when each column (from

block of 10, 20 o 30) was analyzed as if it was a series per se. These models

are shown in Figure 4.1. The number of states, in the reconstructed model

is always three. By no coincidence they are ”left”, ”straight” and ”right”.

Labels represent probabilities (p) of state and transition and the symbols (s)

emitted on transitions.

(a)

(b)

Figure 4.1: ε-machine reconstructed from one robot random walk in a)finite

arena and b)infinite arena.

Based on the model, seems that the robot never does ”inversions” (R→L

or L→R actions) in the infinite arena. That is, after turning movement,

it always continues straight. This is certainly feasible, but it is a different

behaviour than the robot in the finite arena. Obstacle avoidance interferes

with direction perhaps because a turn leads to another obstacle or wall or

robot, which implies another turn. All series are represented by these two

models, only differs for probability values of causal state and transitions. A

feature has been found that makes it possible to distinguish them.
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Moreover, results of applied measures were analyzed. The statistical com-

plexity for these series does not help. This similarity is also shown in the

results of the comparison between healthy and sick subjects, in chapter 4

(Figure 5.1 and Figure 5.2). The resulting signal is oscillating and has no

particular phases. Nevertheless in the case of eegs, when it is divided by the

number of causal states (or by the number of causal states weighted by dis-

equilibrium) correlation with hypnograms rises. Hence, unlike in the latter

case, statistical complexity was dismissed here to focus more on its derived

measures.

(a)

(b)

Figure 4.2: Statistical complexity of one robot aggregation behavior in

a)infinite arena and b)dodecagonal arena
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Looking at Figure 4.2, it can be observed that statistical complexity (like

entropy rate) is higher when there are few straight steps. The same for the

angle of rotation. In accordance with what we expected. A smaller number of

straight steps results in fewer steps needed to undertake a rotation, so robots

vary their movement frequently. At the same manner, the rotation angle

makes rotations more effective also causing a more unexpected trajectory

of robots. Namely, these factors affect the complexity of the random walk.

However, if the case of the infinite arena confirms this behaviour, in the

finite one, this correlation seems almost to disappear. If for one robot in the

finite arena (Figure 4.2, b) this ratio is less marked but maintained, when

we consider more robots this situation changes.

Robot ensemble

The analysis per single robot has produced interesting outcomes. Given

the simplicity of the controllers that direct them, this was a result we could

expect. But what if instead of considering the individual robot, the group

is considered as a system? What we require to analyze is the complexity of

the swarm, its behaviour. Not only the single robot complexity but that of

the robots as ensemble. So, instead of reading files per column, a row of the

file is considered as a symbol (or state) of the series (or process). Obviously,

states exponentially grow with the number of robot (the number of symbols,

indeed). Thus reconstructed, the models have a number of states just less

than the total. Also this behavior was expected.

In the original series (those with 12.000 occurences), tests on computa-

tional time are been conducted1: with 5 robots the algorithm takes less than

a second, with 7 robots from 1 to 5 seconds, with 10 robots from 10 to 30

seconds..With 20 robots after one hour the algorithm still running. Com-

putation time grows as the number of causal states. Although reducing the

number of occurences leads to results, it leads also to the same old problems

(memory length and number of symbol).

1With a portable computer with common performances
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(a)

(b)

(c)

Figure 4.3: Statistical complexity of a)10-robot, b)20-robot and c)30-robot

simulations, in a dodecagonal arena
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Figure 4.3 shows statistical complexites of all the multi-robot series. In

this way we are analyzing the behaviour of the swarm, not the individual

behaviour. The complexity, as we could have expected, grows and things

become inoperable. With 10 robots the behavior tends to vanish but share

something with that of 1-robot. With 20 robots it seems almost like a sat-

urated signal, with 40 robots very few models (13 of 90, Figure 4.3, c) are

reconstructed; the complexity drops to zero. Various block lengths were

tested; typically, the trend is that of those shown. With such a higher num-

ber of symbols, the series may be too short. Or simply the system is chaotic?

It is the problem of memory length? An examination of these cases would

be of interest.

Analysing the series by means of sliding windows did not result in signif-

icant cases; narrower segments have shown the same trend as the complete

series.

4.3 Aggregation

This task concerns the ability of a swarm to aggregate. As random walk,

the aggregation is one of the fundamental behaviors in nature, indeed studied

from different disciplines. In robotics both represent computational method

inspired by the natural evolution. As already mentioned, unlike the random

walk it is not stationary; finally robots stop in the center of the arena.

The cases examined are characterized by the fact that the black spot is

not wide enough to contain all the robots, therefore at least one robot will

ramain outside the spot, trying to enter the black zone. This situation can

be said to be the final attractor of the system.

4.3.1 Data series

For aggregation task, we have data collected on simulations taken on the

dodecagonal arena with a full-black circle drawn in the center. Simulations

with twenty robots are recorded. Thus, data are organized in twenty file
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containing series with twenty symbols per row. Also in this case the data

analyzed are a mapping of simulated data. As the random walk, each robot

can take three behaviours: aggregate (A = aggregation) stop (H=halt) and

move away (R = repulsion). So the series are of the type:

· · ·

AAAAAAAAAAAAAAAAAAAA

ARAAAAARAAAHAARAAAAR

AARAAAAAAAARAAAAARAA

· · ·

From the first column, the first robot (as the fourth or the fifth) has main-

tained the aggregation behaviour for all three steps. The same approach of

the random walk is used. Thus, each column represents a robot dynamic

and rows are considered also as twenty-robot ensemble (or less). Differences

with the random walk are evident even just looking at the whole data file;

unlike the random walk data which show its homogeneity, data of aggre-

gation show distinct phases. Initially almost all robots move (many A are

visible), then some robots reach the black zone and halt (and likely they

do not move anymore). Finally almost all robots stop, except the one that

continues performing aggregation (A) and repulsion (R) moves indefinitely.

4.3.2 Results

The reconstructed ε-machines are almost as complex as the series simply

because there are not intrinsic causal states in this case. Those the model

captures are local correlations that emerge because of the low probability that

other states have too. The repetition of a few sequences of symbols (i.e., in

the final phase) is sufficient to reveal a state in the model. And therefore

the algorithm yields nothing more than a track equivalent to the observed

series; capturing also the final sequence before all robots stop. Approaching

the end, moves decrease. The more robots reach the center and stop, the less
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rotations are performed. This induces these ”silent” states to emerge. This

case shows a limit of the ε-machines. Nonetheless, the reconstructed models

represent this peculiarity (of non stationarity). This possibility of capturing

also transient phases can be exploited.

Table 4.1 shows result of series analyzed as ensemble of 20 robots. All

simulations show low statistical complexity but a (relative) high number of

states. Even this case underlines the need for a model (or structure) in

addition to the measure; differences with the random walk are not so clear

observing only the values on the table. Additionally, envisioning also the

comparison with other processes, dividing the complexity by the number of

causal states may be results in a more considerable metric then the statistical

one.

file 1 file 2 file 3 file 4 file 5 file 6 file 7 file 8 file 9 file 10

Statistical Complexity 2.87655 2.1266 0 2.81613 2.86984 2.90691 3.0226 1.9702 0.969055 3.03094

# Causal State 23 24 19 20 19 23 23 21 22 23

Complexity / #CS 0.125068 0.0886085 0 0.140807 0.151044 0.126387 0.131417 0.093819 0.0440479 0.13178

file 11 file 12 file 13 file 14 file 15 file 16 file 17 file 18 file 19 file 20

Statistical Complexity 3.06821 0.773707 2.49757 2.19103 2.52661 0 2.96153 3.13838 1.81111 2.32213

# Causal State 23 20 24 24 18 23 19 25 21 21

Complexity / #CS 0.1334 0.0386853 0.104065 0.0912931 0.140367 0 0.15587 0.125535 0.0862434 0.110578

Table 4.1: Results of aggregation

Things change when these series are analyzed per blocks (narrower seg-

ments). Three phases are identified; an initial phase, when robots start

to move in search of the point of aggregation, a chaotic phase, almost all

robot are moving (the resulted complexity is zero) and a final phase, when

robots begin to stop in the centre. Particularly, the third phase in not always

present. A peculiarity of the final phase is the ”attractor” that sometimes

emerge. At this stage one robot may be situated near the central circle

without being able to enter it.
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Chapter 5

An application:

electroencephalograms

Electroencephalography (eeg) is a method to record electrical activity of

the brain. Signals are extracted from polysomnographic recordings and are

used especially for sleep disorder diagnoses. Especially in recent years, with

the advent of complexity measures, interest rises in applying these metrics

to these contexts. In addition, with a glance towards automatic design,

through tools such as ε-machines, it might be interesting and very useful to

automatically distinguish between healthy and cases, for example. Or be able

to diagnose a disease by determining an anomaly in the model representative

of patients. In addition, it is an interdisciplinary context that finds a vast

number of uses and applications, especially in the medical field.

Brain dynamics are similar to the kinds of process analyzed in this disser-

tation: spindles indicate a transfer of information between the hippocampus

and the neocortex. K-complexes are essentially the patterns found in such

brain dynamics[Amzica and Steriade, 2002]; their occurrence and their peri-

odicity align with the changes in sleep architecture that people experience

as they age [De Gennaro and Ferrara, 2003]. They are linked to intelligence

too [Fogel and Smith, 2011]. A number of studies involve the analysis of

these brain dynamics to evaluate, for example, the disorders of consciousness

45
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[de Biase et al., 2014].

Another factor influencing this choice was the data availability. This also

thanks to the work in [Devuyst et al., 2011], who made these datasets freely

available on the web. Data come from the DREAMS project because are

published electroencephalograms of both healthy and sick subjects related

to the same channel, so comparable (although these datasets are accounted

in distinct works). Moreover, the existing systems are badly adapted to

pathological subjects and involve several corrections on the analysis of the

eeg signals. The inefficiency of those systems is due to the sleep signals

instability, the abundance of artifacts, the difficulty to apply classification

criteria. The insufficiency of the sleep’s macrostructure analysis (sleep stage

analysis), which needs to be assisted by a microstructure analysis [Lab, 2018].

This seems fertile terrain for computational mechanics.

Finally, this context is not at all well known by those who have written

this thesis, contrary to how it was in the case of experiments. Thus, this case

was also chosen to show accessibility to research that this method offers.

Further, having a tool to employ these theories would also withdraw the

issue from informatic context.

As for the experiments of the previous chapter, electroencephalograms

are analyzed applying sliding windows on series: in this case, because of

the volume of data, tests are conducted with blocks of series but not as

sliding windows but as consecutive samples of the series. Unlike previous

case, a block length of 1000 is used. So each series is divided into blocks

of such dimensions. Reconstructing the ε-machine in this way makes results

perfectly comparable with their hypnograms (sampled every 5 seconds, as

the time covered by 1000 observations at 200Hz).

Thus, focus is mainly on two aspects: i)correlations between hypnograms

and the statistical mechanics measures and ii)relations between health con-

trols and patients.
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Datasets

The first dataset consist of eight excerpts of 30 minutes of the central eeg

channel. At the sampling frequency of 200Hz, 100Hz or 50Hz. A segment

of 30 minutes of the central eeg channel was extracted from each whole-

night recording for spindles scoring. Recordings come from patient with

various pathologies: dyssomnia, restless legs syndrome, insomnia and ap-

noea/hypopnoea syndrome [Devuyst, 2018b]. Each excerpt is a textual file (a

series of measurements) containing one column with the values (amplitudes

in microvolt) of the central eeg samples. The number of samples depends

on the sampling rate corresponding to the excerpt. So we have excerpts of

90.000, 180.000 and 360.000 measurement for 50Hz, 100Hz and 200Hz re-

spectively. Except for 1 and 3, the others will be used for comparison with

excerpts of healthy subjects; they have the same sampling rate of the same

channel (CZ-A1), at 200Hz.

The second dataset consist of 10 excerpts, all of the same channel (CZ-

A1), but coming from healthy subjects [Devuyst, 2018a]. Sample frequency

is 200Hz for all excerpts. This database was discovered later. The idea of

comparing healthy subjects and patients was born thanks to the discovery

of its availability.

For each excerpt, we also have the related hypnogram available, in both

databases. In other words, the various patient states (sleep, wake, REM

stage) were annotated during the recordings. Hence the first idea of trying

to infer these states (that of the subject’s hypnogram) from the statistical

complexity (and related transformations) of the excerpt.

In this case, the algorithm was modified to read series of integers. This

because we could thus have the opportunity to change its accuracy (in reading

the values). This permits us to quickly change the mapping done on the

values and therefore to make various attempts. The series of healthy subjects

have, unfortunately, an accuracy up to the first decimal number, hence much

less than the measurements of patients. To make the results comparable,

once again, the same precision (of healthy subject’s series) is used for the
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patients of the first database.

5.1 Correlation with the hypnogram

Since these datasets also provide hypnograms, a first attempt was to infer,

from the resulting models, the status of the subject (wake, sleep and so on).

These hypnograms are integers series. These integers correspond to the sleep

stage annotated by the expert:

• 5 correspond to the wake stage,

• 4 is the REM stage,

• 3 ,2, 1, 0 are respectively, sleep stage S1, S2, S3, S4,

• -1 represent sleep stage movement,

• -2 or -3 are unknow sleep stage.

These kinds of measurements have permitted us to easily compare these

sleep stages with the related metrics derived from the ε-machine reconstruc-

tion applied on excerpts.

In this case, graphs did not show great correlations, so it was thought

to aggregate the data in averages to have more immediate results. Working

with R1 we utilized it to calculate correlations. The command is cor(x,y)

where x and y are series of values. In R this command calculates the Pear-

son correlation formula (as default). Excerpt 1 and 3 were not considered.

Due to the sampling frequency of the measurements they contain less value;

respectively 180.000 (100Hz) and 90.000 (50Hz) values.

In Figure 5.1 the correlation between statistical complexity measures and

hypnograms of sick subjects is shown. Some excerpts like the fourth, the

fifth, and the eighth have no significance. The second and the sixth show

1A tool for statistical computing and graphics: https://www.r-project.org/about.

html

https://www.r-project.org/about.html
https://www.r-project.org/about.html


5.1 Correlation with the hypnogram 49

Figure 5.1: Correlations between statistical complexity measures and hypno-

grams of electroencephalograms of patients

a higher correlation of the measures derived (both have generally the same

trend). On the contrary, the seventh show a negative correlation for the same

metrics.

Figure 5.2: Correlations between statistical complexity measures and hypno-

grams of electroencephalograms of healty controls

In Figure 5.2 are shown correlation (Pearson Formula) between statistical

complexity measures and hypnograms of eeg of the healthy subjects. Also

here some case are not significant: excerpt 10 and excerpt 3 and excerpt 9.

Anyway in all other cases, correlation is more regular respect to previous case.

Moreover, it is interesting to note that statistical complexity, generally has a

negative correlation even higher than the correlation of the other measures.

Negative or not, in this case the trend of correlation seems more stable.
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5.2 Patients and healty controls

From the first analysis, we realized that the signal of healthy patients was

on average more stable. The statistical complexity was lower as well as the

number of the causal states of the reconstructed model. Less evident in mod-

els reconstructed from whole series (which also confirms this relationship),

in this case (360 blocks for each series) the number of causal states is enough

to get the distinction clear.

Values of series from the first database (that of the patients) are trun-

cated at the first decimal digit. This may be a severe discretization. Actually,

experiments with various precisions were conducted. Measure trends do not

display particular modifications. Nonetheless, on average statistical complex-

ity grows with precision, like the number of causal states. Given the results

that are being shown, this would only make clear the difference between

patients and healthy controls. We cannot say anything regards precision

adopted on healthy subject’s series; ”raw” measurements had this precision.

File Statistical Complexity #CausalState Complexity / #CS Disequilbrium Complexity / (#CS * (1-D))

excerpt1 9.3711 928 0.0100982 0.000762681 0.0101059

excerpt2 10.0658 1609 0.00625593 0.00055217 0.00625939

excerpt3 9.2208 732 0.0125967 0.000551949 0.0126037

excerpt4 9.06425 983 0.009221 0.00141658 0.00923408

excerpt5 9.42968 1144 0.00824273 0.000967739 0.00825071

excerpt6 9.61761 1292 0.00744397 0.000864461 0.00745041

excerpt7 9.70664 1397 0.00694821 0.000816813 0.00695389

excerpt8 9.49774 1135 0.00836806 0.000828859 0.008375

AVG 9.4967025 1152.5 0.00864685 0.0008451565 0.008654135

Table 5.1: Averages of eeg of patients

In Table 5.1 averages of the measures taken over block of series, from

the first database, are shown. These are result from sick subjects. Sich

people have a more ”noisy” dynamic signal, reflecting in a higher number of

symbols per block. Indeed a higher number of states in the model. Thus,

complexity grows. However, these results have a linear trend. Averages show

that typically 1000 states are reconstructed, approximately; the excerpt 2

slightly differs from other series in the number of causal states. This is
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confirmed by the statistical complexity too. This is one of the cases where

derived measures would be able to say something more; the number of states,

given the same statistical complexity, lowers the value of the measure. When

many more states are reconstructed, compared to those that the process

typically have, they will tend to have a more uniform probability distribution.

This is the case with few occurrences and too many symbols. Perhaps due to

the particular transient phase of the process.The probabilities of actual causal

states do not emerge (or simply they are not in this phase). The model ends

up capturing many more states than it normally captures. In these cases,

dividing by the number of causal states (consider also disequilibrium), lowers

the value of complexity for this particular contingency.

These differences are also well captured by the metrics with the disequi-

librium (being really low, it causes few deviations from the formula with the

number of causal states). The use of these derived formulae should be better

investigated.

File Statistical Complexity #CausalState Complexity / #CS Disequilibrium Complexity / (#CS * (1-D))

excerpt1 7.42997 381 0.0195012 0.00509487 0.0196011

excerpt2 7.24375 367 0.0197377 0.00590381 0.0198549

excerpt3 6.67477 243 0.0274682 0.0084673 0.0277028

excerpt4 7.79509 504 0.0154664 0.00413224 0.0155306

excerpt5 7.31137 460 0.0158943 0.00664632 0.0160006

excerpt6 7.30276 302 0.0241813 0.00488707 0.0243001

excerpt7 7.31925 275 0.0266155 0.00456205 0.0267374

excerpt8 6.379 247 0.0258259 0.0284164 0.0265812

excerpt9 6.76451 228 0.0296689 0.00723727 0.0298852

excerpt10 7.17431 289 0.0248246 0.00507237 0.0249512

AVG 7.139478 329.6 0.0229184 0.00804197 0.02311451

Table 5.2: Averages eeg of healty controls

When the results of healthy subjects were averaged (Table 5.2), the out-

come became evident. From the analyses which have been conducted, statis-

tical complexity, as well as the number of causal states of the reconstructed

model, seem to have a more stationary trend. So (and this is the most inter-

esting thing) they have averages not comparable with those of sick subjects.

In this case, this values are much lower. This means that they are perfectly
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distinguishable. We have found a satisfactory result.

Although not so scentifically important, it is a result that confirms the

usefulness of ε-machine and the statistical complexity. In this case derived

measures are less significative.
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In this thesis, practical aspects of the application of computational me-

chanics were examined. Tests are conducted to discuss properties and prac-

tical limits of the application of this approach and to validate the algorithm

chosen for these evaluations. With the experiments on robot simulations,

details of the model and the ways it can be exploited are shown. Finally, this

method was applied on electroencephalograms as applicative example.

The aim of this dissertation was to explore the possibilities (and contin-

gencies) of applying this approach. It is not important which algorithm has

been chosen for these assessments, however, this choice has influenced the

results. The Brodu’s algorithm is faster, compared to the CSSR. This is due

to the fact that the former does not consider all pasts up to the length of

memory. This also causes a lower growth rate of the number of causal states

when memory length increases (because of lack of occurrences). Neverthe-

less, results of the two reconstructions are comparable and no substantial

differences have been found. Consequently, the fastest was selected.

A first issue raised from the preliminary tests is about the ratio of the

number of observations and the size of the alphabet (used to represent the

process state space). Usually, when the number of occurrences is adequate

with respect to the number of symbols (recalling Shalizi rule) the right model

can be reconstructed also with limited data. Conversely, when observations

are not enough, the reconstructed model contains causal states with negligible

probability or contains sequences of states with a single transition. This is the

same situation observed in the case of aggregation; when the process in not

53
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stationary. This represents a limit case for such algorithms. However, at the

same time these peculiarities of the model can be exploited; that is, the non-

stationarity of aggregation is represented in the model and transient states

can be analyzed to detect particular ”sub-dynamics”, as anomalies or errors

(e.g., an incorrect procedure performed by a robot). Tests on the logistic map

have confirmed that just said above; the generation of these anomalous states,

in the reconstructed model, causes the statistical complexity to be non-zero

even when the process is chaotic. This is in contrast with the ordered-chaotic

boundary conditions of vanishing. However, it can be easily overcome by

setting a threshold in the reconstruction algorithm or, for example, combining

statistical complexity with other metrics (like the number of causal states or

the disequilibrium of the model). More investigations are needed to best

evaluate these contingencies.

Experiments have shown advantages of exploiting the models (ε-machines)

rather than the metrics (statistical complexity). As inferential models, that

are reconstructed by means of an algorithm, ε-machines can be helpful in

autonomous robots; for anomaly detection, image filtering, previsions and so

on. In this case, differences were found between the infinite arena and the fi-

nite arena (with obstacle avoidance). However, the model reconstruction can

be exploited in various ways. Signals from actuators (e.g., wheel motors) and

sensors, of a robot, could also be taken into account. For example, encoding

the movement in the system’s state characterization; mapping the values of

the motors and the values of the sensors, means obtaining a model that en-

codes within its causal states also the sensor-actuator dependencies. Such a

model can be used as a new controller because it encodes the intrinsic sense-

plan-act cycle of the robot. Being reconstructed by an algorithm, it is done in

a totally autonomous way. One of the most important results concerns this

question is that mapping (or symbolization) of input data which becomes

fundamental; by acting on it, models of different types, capturing different

dynamics, can be reconstructed from the same process. As in the example

described above. That is, the characterization of symbols from system states
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becomes a crucial aspect (more than before). This should be analyzed much

further.

The attempt on electroencephalograms has shown that results can be ob-

tained, through the application of these models, even in less known contexts.

In this case, statistical entropy (and its derived measures) was more useful;

these signals are noisy, indeed the reconstructed models are quite complex

and not easy to analyze. Nevertheless, more deeper investigations (and ex-

periments) are needed; for example, since eeg signal is noisy, it would be

interesting to apply the BSI (Bayesian Structural Inference method, see the

section on recent developments). This method avoids many of the problems

because de facto the reconstructed models are not sensitive to perturbations

(and perhaps noise). It would be interesting to apply it also on data as that

of aggregation, that are not stationary. So future works should include that

of analyzing these new reconstructions (i.e., BSI) to understand the benefits

they would bring and the new properties that can be exploited.

These scenarios show that there is a wide range of possibilities for ex-

ploiting ε-machines. Almost all research fields, which involve the study of

complex system dynamics, can take advantage from computational mechan-

ics (e.g., neurosciences, biology, economics and so on). Given the potential of

ε-machines and given the attractiveness of computational mechanics, more

practical experiments would be undertaken; they would facilitate the use of

this method in all contexts, thus encouraging its dissemination.
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