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Summary. Entomopathogenic fungi are potential tools to biocontrol cicadellids and delphacids, two groups of insects that 
cause extensive damage to agricultural crops. However, bacteria living on the host cuticle may inhibit fungal growth. In the 
present work, following the molecular characterization of 10 strains of Bacillus isolated from the integument of cicadellids and 
delphacids, we selected isolates of the fungi Beauveria bassiana and Metarhizium anisopliae that are resistant to the antimicro-
bials secreted by these bacterial strains. The antagonistic activity of the 10 bacterial isolates belonging to the genus Bacillus 
(i.e.,  B. amyloliquefaciens, B. pumilus, and B. subtilis) against 41 isolates of Bea. bassiana and 20 isolates of M. anisopliae was 
investigated in vitro on tryptic soy agar using the central disk test. With this approach, isolates of Bea. bassiana and M. aniso­
pliae resistant to antagonistic bacteria were identified that can be further developed as biological control agents. [Int Microbiol 
2015; 18(2):91-97]
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Introduction

Cicadellids and delphacids (Hemiptera: Auchenorrhyncha) 
include a large number of species, many of which cause 
extensive damage to agricultural crops. These insects are 

widely distributed and can be found anywhere between the 
southern United States and temperate areas of Argentina 
[29,48]. They not only cause mechanical damage to crop 
plants during feeding and oviposition, but are also vectors 
of phloem-associated plant pathogens, mainly viruses and 
bacterial phytoplasmas [21]. 

Within the cicadellids, Dalbulus maidis (DeLong & 
Wolcott, 1923) is the main vector of maize pathogens on 
the American continent, mostly in tropical areas of South 
and Central America but also in those of the Caribbean. In 
tropical America, D. maidis is a vector of Maize Rayado Fino 
Virus (MRFV), Corn Stunt Spiroplasma (CSS), and Maize 
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Bushy Stunt Mycoplasma (MBSM). Corn stunt is the most 
important disease of maize in USA, Mexico, and South and 
Central America. It was first identified in Argentina in the 
early 1990s [4]. Among the delphacids, Delphacodes kuscheli 
Fennah 1955 is the main vector of Mal de Río Cuarto virus, an 
important endemic disease in the central region of Argentina 
[22] that has had a considerable impact along the country’s 
corn belt [24]. 

Among the many different strategies developed to control 
corn diseases, the use of maize genotypes tolerant to infection 
has gained the most attention [23,46]. However, biological 
control agents, including fungi that parasitize these insects, 
offer an interesting alternative [10,12,15]. Entomopathogenic 
fungi were the first organisms considered as control agents at 
the end of the 19th century. Since then, their value in insect 
control has been widely demonstrated, mainly within Integrated 
Pest Management programs [7,14]. Generally, the application 
of entomopathogenic fungi requires high specificity and the 
absence of resistance in the target organisms. As long as no 
secondary pest outbreaks occur, long-term control is feasible. 
Moreover, the use of entomopathogenic fungal strains is 
frequently compatible with that of other biological control 
agents, certain fungicides, and many other types of pesticides. 
A further advantage is that no pre-harvest interval is required 
[5,6,42,50]. 

The commercialization of entomopathogenic fungi is 
usually restricted to those species that are amenable to mass 
production in vitro on economical substrates. Among the 
commercial products developed to date are several that are 
based on species within the Hypocreales, such as Beauveria 
bassiana (Bals.-Criv.) Vuill., Bea. brongniartii (Sacc.) Petch, 
Isaria fumosorosea Wize, Lecanicillium spp. (Cordycipitaceae),  
Metarhizium anisopliae (Metchn.) Sorokin, and Nomuraea 
rileyi (Farl.) Samson (Clavicipitaceae) [7,49]. In the control 
of cicadellids and delphacids, entomopathogenic fungi have 
considerable potential because they invade their hosts through 
the integument [38]. However, fungal invasion of the host 
occasionally fails, not only due to the presence of antimicrobial 
substances associated with the insect cuticle, such as phenol 
groups, quinones, aldehydes, poisonous alkaloids, short-chain 
fatty acids, and cationic peptides [8,11,17,30,34], but also 
because of the presence of other fungi and bacteria on the 
insect surface that, by producing antimicrobial substances, 
inhibit germination of the conidia of entomopathogenic fungi 
[9,18,29,45].

According to Steinhaus [33], the bacterial populations 
found on the external surface of the insects are predominantly 

gram-positive, aerobic, spore-forming bacilli. Toledo et al. 
[40] recently isolated different Bacillus species, including 
B. subtilis, B. pumilus, and B. amyloliquefaciens, from the 
integument of D. maidis and D. kuscheli. The bacteria were 
found to be antagonistic to entomopathogenic Bea. bassiana, 
inhibiting germination as well as growth of conidia. Indeed, 
the ability of Bacillus to produce antibiotic-like compounds, 
antifungal compounds, and/or bacteriocins, such as surfactin, 
bacylisin, fengycin, bacyllomicin, subtilin and iturin, has led 
to the use of these bacteria throughout the world to control 
phytopathogens [2,3,16,20,36].

The development of novel formulations of biocides for 
use in the sustainable management of maize agroecosystems 
requires an understanding of the interactions between 
entomopathogenic fungi and the microbial populations 
living on the cuticle of insects. Thus, in the present work we 
characterized 10 strains of Bacillus by means of molecular 
techniques and then selected isolates of Bea. bassiana and M. 
anisopliae that were resistant to the antimicrobial compounds 
secreted by these bacteria.

Materials and methods 

Bacterial strains. All bacterial strains used in this study were isolated 
from the integument of D. maidis and D. kuscheli [40]. Genomic DNA was 
extracted from these strains using the Wizard Genomic DNA purification kit 
(Promega). The 16S rDNA of strains Dm-B3, Dm-B4, Dm-B10, Dm-B17, 
Dm-B22, Dm-B23, Dm-B47, Dm-B55, Dm-B59, and Dk-B25 was amplified 
in a thermocycler (Minicycler, MJ Research) and sequenced according to 
Sanger et al. [27]. The sequences were deposited in the GenBank database of 
the National Center for Biotechnology Information (NCBI). From an analysis 
of the sequences using the Basic Local Alignment Search Tool (BLAST), 10 
sequences were obtained and then aligned with those of reference strains B. 
amyloliquefaciens, B. pumilus, B. megaterium, B. cereus, and B. thuringiensis 
by means of the multiple sequence alignment program Clustal W. A UPGMA 
phylogenetic tree was constructed using Molecular Evolutionary Genetics 
Analysis version 5 (MEGA5) [35].

Fungal isolates. Forty-one isolates of Bea. bassiana and 20 isolates of 
M. anisopliae were used in this study. Fungal isolates were obtained from 
their insect hosts, which belonged to the orders Hemiptera, Coleoptera, and 
Dermaptera, and from soil samples collected from sorghum and corn crops. 
All of the isolates were obtained in Buenos Aires, Corrientes, and Tucumán 
provinces of northern Argentina. They were stored in the Mycological 
Collections of Centro de Estudios Parasitológicos y de Vectores (CEPAVE, 
La Plata, Buenos Aires, Argentina), in the Agricultural Research Service, 
Collection of Entomopathogenic Fungi (ARSEF, Ithaca, New York, USA), 
and in the collection of the Centro de Investigaciones de Fitopatología 
(CIDEFI, La Plata, Buenos Aires, Argentina). The isolates were characterized 
according to both their morphology [39] and their virulence against cicadellids 
and delphacids [38]. 
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Inhibition of fungal growth by bacteria. The antagonistic activity 
of 10 Bacillus strains against 41 isolates of Bea. bassiana and 20 isolates of 
M. anisopliae was tested using the central disk test [26]. Fungal isolates were 
cultured on malt extract agar (MEA 2%) at 25°C in the dark for 7 days. A 
7-mm mycelium disk was cut and transferred to the center of a tryptic soy 
agar (TSA; Britania) plate and cultured at 30°C for 48 h. Three such disks 
were transferred to each TSA plate and placed at equidistant points from the 
central disk. Each treatment consisted of six replicates and one control (plates 
containing only a central disk of the fungus). The plates were incubated at 
30ºC in darkness. Mycelial growth was estimated based on the radial increase 
in colony size, which was measured between two orthogonal diameters 
drawn 10 days after the incubation. Antagonism was estimated based on the 
percentage of mycelial growth inhibition (MGI), which was calculated as 
suggested by Michereff et al. [19]. 

Statistical analysis. The effects of treatments were determined by the 
factorial analysis of variance (ANOVA). The mean values were separated 
using Tukey’s honestly significant difference (HSD) test (P < 0.05) [31].

Results and Discussion

Bacterial isolates. The 16S rDNA sequences confirmed 
that all of the strains belonged to the genus Bacillus and 
suggested that strain Dm-B3 was Bacillus amyloliquefaciens 
(Gen Bank accession number: HQ339952), strains Dm-
B22, Dm-B23, and Dk-B25 were B. pumilus (KC460218, 
KC460219, and KC460215, respectively), and that strains 
Dm-B4, Dm-B17, Dm-B47, and Dm-B55 were B. subtilis 
(HQ111352, KC460217, HQ111353, and HQ111354, respect
ively). However, strains Dm-B10 and Dm-B59 (KC460216 
and KC460220), initially identified by Toledo et al. [40] by 
means of biochemical reactions as B. megaterium, had a 

Fig. 1. Dendrogram showing the identity and relationship of the major antagonistic bacteria isolated from the cuticular surfaces of Delphacodes 
kuscheli and Dalbulus maidis. Numbers on the branches represent bootstrap values obtained from 1000 replicates. The bar indicates 0.02 
substitutions per site. Species names are followed, in parentheses, by the National Center for Biotechnology Information (NCBI) GenBank 
database accession numbers.
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16S rDNA sequence 99% homologous to the full sequence 
of B. subtilis and B. amyloliquefaciens. Therefore, pending 
additional molecular data, both strains were reclassified as 
Bacillus sp. (Dm-B10 and Dm-B59, respectively).

The bacterial strains were grouped into four clusters (Fig. 
1). The first one comprised six strains and two reference 
sequences of B. amyloliquefaciens. It was supported by a 
bootstrap value of 100%. Within the cluster, there were four 
representatives of B. subtilis (Dm-B17, Dm-B4, Dm-B47, and 
Dm-B55) and two of Bacillus sp. (Dm-B59 and Dm-B10). 
The isolates of B. subtilis were clustered in separate groups; 
thus, Dm-B4, Dm-B17, and Dm-B47 formed a cluster (30% 
bootstrap) that was clearly distinct from that formed by strain 
Dm-B55 (B. subtilis). The second cluster was also supported 
by a bootstrap value of 100% and was made up of three 
isolates of B. pumilus (Dm-B22, Dk-B25, and Dm-B23) and 
the reference sequences of B. pumilus (BY-1) and Bacillus sp. 
(SAP751.2). The third cluster contained a single isolate, Dm-
B3, identified as B. amyloliquefaciens. It merits further study 
to confirm its identity and to identify the nucleotides that 
render it distinct—including, perhaps, phenotypically—from 
the other isolates of the same species. Nonetheless, all of the 
studied strains belong to a monophyletic cluster comprising 
closely related organisms with strong similarity at the 16S 
rDNA sequence level and clustering separately from other 
Bacillus species, among them B. cereus, B. thuringiensis, and 
B. megaterium. 

Inhibition of fungal growth by bacteria. The 
MGI of M. anisopliae was dependent on the bacterial strain 
(F = 9.5; df = 9, 1171; P < 0.0001) and on the targeted fungal 
isolate (F = 35.8; df = 19, 1171; P < 0.0001). The 10 bacterial 
strains differed in their antifungal activity (P < 0.05) and could 
be separated into four homogeneous groups. Bacillus subtilis 
Dm-B47 (68.4%), B. amyloliquefaciens Dm-B3 (64.4%), and 
B. pumilus Dk-B25 (64.3%) differed significantly from the 
other strains and showed the greatest antagonism against M. 
anisopliae, whereas B. subtilis Dm-B17 (52.8%) and Bacillus 
sp. Dm-B10 (52.6%), were the least antagonistic against the 
fungus. Similar results were obtained with Bea. bassiana. 
Both the bacterial strains (F = 10.8; df = 9, 2350; P < 0.0001) 
and the fungal isolates (F = 91.2; df = 40, 2350; P < 0.0001) 
had a significant effect on MGI. In this case, the bacterial 
strains could be separated according to their antagonistic 
activity into five statistically different groups (P < 0.05). 
Bacillus pumilus Dm-B22 (64.6%), Dm-B23 (62.8%), and 
Dk-B25 (63.2%) differed significantly from other strains and 

were the most antagonistic strains when tested against Bea. 
bassiana, whereas B. subtilis Dm-B55 (57.5%) and Dm-B4 
(57.3%) were the least antagonistic (Table 1). Some bacterial 
strains differed in their behavior against the two fungal 
species. For example, B. subtilis Dm-B4 was one of the least 
antagonistic strains against Bea. bassiana but it was one of the 
most antagonistic ones against M. anisopliae isolates. 

The most antagonistic bacterial strains in our study 
belonged to the B. subtilis group, which includes B. amy­
loliquefaciens, B. licheniformis, B. pumilus and other close 
relatives of B. subtilis. In previous reports, a number of 
species of bacteria belonging to the B. subtilis group, such 
as B. pumilus, B. licheniformis, B subtilis, B. atrophaeus, and 
B. amyloliquefaciens, were shown to secrete inhibitors of 
bacterial and fungal growth. These compounds are thought 
to play a crucial role in competition or microbial interactions 
[2,3,16,36,47].

Fungal susceptibility to antagonistic bacteria seems to be a 
variable trait. In this study, the susceptibility of Bea. bassiana 
was much more variable than that of M. anisopliae. Thus, Bea. 
bassiana isolates 099 (5.9%) and 111 (12.4%) were the least 
inhibited, and isolates Bb075 (78.1%) and Bb189 (76.5%) the 
most inhibited ones (Table 2). By contrast, representatives 
of M. anisopliae exhibited less variability in terms of 
their susceptibility to bacteria. For these species, bacterial 
inhibition was strongest for isolates Ma120 (77.9%), Ma35 

Table 1. Mycelial growth inhibition (MGI) of the entomopathogenic 
fungi Beauveria bassiana and Metarhizium anisopliae by Bacillus strains 
isolated from the cuticular surfaces of cicadellids and delphacids

Bacterial strain

MGI (%)*

M. anisopliae Bea. bassiana

Dm-B10 52.6 ± 1.7 a 61.4 ± 0.8 cde

Dm-B17 52.8 ± 1.7 a 58.3 ± 0.8 abc

Dm-B55 56.2 ± 1.7 ab 57.5 ± 0.8 ab

Dm-B23 57.7 ± 1.7 abc 62.8 ± 0.8 de

Dm-B22 58.3 ± 1.7 abc 64.6 ± 0.8 e

Dm-B59 60.7 ± 1.7 bc 57.9 ± 0.8 abc

Dm-B4 63.3 ± 1.7 bcd 57.3 ± 0.8 a

Dk-B25 64.3 ± 1.7 cd 63.2 ± 0.8 de

Dm-B3 64.4 ± 1.7 cd 61.3 ± 0.8 cde

Dm-B47 68.4 ± 1.7 d 60.9 ± 0.8 bcd

*Mean ± standard error. Values with the same letters are not significantly 
different according to Tukey’s HSD test (P < 0.05).
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(76.7%), Ma38 (76.3%), and Ma160 (74.9%) and weakest for 
isolates Ma003 (36.9%) and Ma079 (31.8%) (Table 2).  

Therefore, in this study we identified two isolates of 
Bea. bassiana (Bb099 and Bb111) and two of M. anisopliae 
(Ma003 and Ma079) as the most resistant to antagonism by 
the ten Bacillus strains tested. Figure 2 shows the results of 
the disk tests for the most and the lest inhibited fungal species. 

The differences in the responses of the fungal isolates 
to bacterial attack might be due to their different abilities 
to detoxify bacterial growth inhibitors, for example, by 
producing secondary metabolites with antibacterial activity. 
Diverse toxic metabolites have been described in several 
fungal biological control agents, including species of 
Beauveria, Metarhizium, and Isaria [43]. Some of these 
metabolites have antibiotic, fungicidal, or insecticidal pro
perties [13,43]. Recently, Sahab [28] characterized a crude 

ethyl acetate extract of Bea. bassiana with antibacterial and 
antifungal activities. The antibacterial activity was effective 
at any of the concentrations tested when used against different 
strains of gram-positive and gram-negative bacteria.

Several studies have shown that the insect cuticle is an 
ecological niche for microbes, where fungi and bacteria co-exist 
and interact [9,18,29,45]. Among the mechanisms proposed 
for the biocontrol activity of Bacillus spp., competition, the 
induction of systemic resistance, and antibiotic production 
appear to be the most important one [1,32,37]. 

A better understanding of fungal-bacterial interactions 
may lead to the development of potent formulations of Bea. 
bassiana and M. anisopliae for their use in insect control. 
Further studies on the diversity of microorganisms that 
colonize the insect cuticle, their role, and their impact in 
nature are needed in order to develop biological control agents 

Table 2. Isolates of Beauveria bassiana and Metarhizium anisopliae and the inhibition (expressed as the percent of the control) of mycelial 
growth (MGI) by Bacillus strains

Isolate MGI (%)* Isolate MGI (%) Isolate MGI (%)

Ma079 31.8 ± 2.4 a Bb099 5.9 ± 3.6 a Bb147 69.1 ± 1.6 jklmnop

Ma003 36.9 ± 2.4 ab Bb111 12.4 ± 1.8 a Bb112 69.1 ± 1.6 jklmnop

Ma34 44.1 ± 2.4 bc Bb001 31.8 ± 1.6 b Bb137 69.6 ± 1.6 jklmnopq

Ma31 44.3 ± 2.4 bc Bb061 33.3 ± 1.6 b Bb081 69.9 ± 1.6 jklmnopq

Ma33 45.6 ± 2.4 bc Bb074 33.3 ± 1.6 b Bb175 70.1 ± 1.6 jklmnopq

Ma076 51.0 ± 2.4 cd Bb072 33.3 ± 1.6 b Bb148 70.5 ± 1.6 jklmnopq

Ma36 53.6 ± 2.4 cd Bb092 44.1 ± 1.6 c Bb114 71.0 ± 1.6 klmnopq

Ma37 53.7 ± 2.4 cd Bb249 46.7 ± 1.6 cd Bb145 71.1 ± 1.6 klmnopq

Ma30 55.5 ± 2.4 cde Bb140 48.4 ± 1.6 cde Bb143 71.1 ± 1.6 klmnopq

Ma078 58.9 ± 2.4 def Bb117 53.9 ± 1.6 def Bb146 71.5 ± 1.6 lmnopq

Ma178 61.1 ± 2.4 defg Bb136 57.1 ± 1.6 efg Bb176 72.2 ± 1.6 lmnopq

Ma095 67.3 ± 2.4 efgh Bb149 57.4 ± 1.6 fg Bb142 72.9 ± 1.6 mnopq

Ma39 68.0 ± 2.4 fgh Bb080 58.3 ± 1.6 fgh Bb54 73.2 ± 1.6 mnopq

Ma086 71.6 ± 2.4 gh Bb083 59.9 ± 1.6 fghi Bb153 73.6 ± 1.6 mnopq

Ma32 73.5 ± 2.4 h Bb118 62.2 ± 1.6 fghij Bb069 73.7 ± 1.6 mnopq

Ma29 74.2 ± 2.4 h Bb119 62.6 ± 1.6 fghijk Bb116 75.1 ± 1.6 nopq

Ma160 74.9 ± 2.4 h Bb077 63.7 ± 1.6 ghijkl Bb150 75.3 ± 1.6 opq

Ma38 76.3 ± 2.4 h Bb113 66.2 ± 1.6 hijklm Bb141 75.5 ± 1.6 pq

Ma35 76.7 ± 2.4 h Bb138 66.5 ± 1.6 hijklmn Bb189 76.5 ± 1.6 pq

Ma120 77.9 ± 2.4 h Bb002 66.6 ± 1.6 hijklmno Bb075 78.1 ± 1.6 q

Bb151 66,7 ± 1.6 ijklmnop

*Mean ± standard error. Values with the same letters are not significantly different according to Tukey’s HSD test (P < 0.05).
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that are effective against insect pests such as cicadellids and 
delphacids. 
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