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Abstract 

Aspects of peptide metabolism in the lactococci have been investigated to increase the 

understanding of how these nutritionally fastidious bacteria, which have a central role in 

the dairy manufacturing industry, are able to grow in a complex medium such as milk. 

Peptide metabolism by lactococci in milk encompasses the processes by which large 

oligopeptides, produced from milk-caseins by the extracellular activity of the cell wall

associated proteinase, are converted into an intracellular pool of metabolisable amino 

acids. This involves the activities of both membrane-bound transport systems and 

peptidases. 

Early research into lactococcal peptide utilisation has proposed significant differences 

between Lacrococcus lactis strains with respect to the mechanisms by which these 

bacteria utilise peptides in their environment. More recent studies of the lactococcal 

peptide carrier systems, based on intensive studies of only a single strain, have proposed 

a major role for a carrier system capable of transporting di- and tripeptides, and a 

subsidiary role for another system transporting oligopeptides containing four or more 

residues. Yet to date, peptidases with an extracellular location capable of degrading the 

large casein-peptides into smaller peptides have not been isolated. 

This current study has attempted to investigate more fully the in vivo activity of the 

oligopeptide transport system, and to assess whether it may have a more fundamental role 

in peptide utilisation than previous work has suggested. For this study a model series of 

homologous peptides of increasing size from the di peptide V al-Gly to the octapeptide 

Val-GlY7, all based on the essential amino acid valine, was used. The larger peptides in 

this series, Val-GlY3, Val-Gly4 and Val-GlY7, were synthesised for this work. The ability 

of Lactococcus lactis subsp. cremoris Es to transport these peptides, and to grow in a 

chemically defined medium where they constitute the sole source of the essential amino 

acid valine, was studied . Preliminary peptide uptake studies were also performed using 

oligopeptides derived from a proteolytic cleavage of ~-casein. The collective results of 

these studies suggest that the upper size limit, and the relative activity of this transport 

system, may be sufficient to permit this strain to utilise relatively large casein-derived 

oligopeptides without the need for hydrolysis into smaller peptides and free amino acids. 

A comparative study of peptide transport by a number of Lactococcus lac tis strains was 

undertaken to investigate previously published observations indicating significant 

differences in the mechanisms of peptide uptake between lactococcal strains. 
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While the results of this comparative study are consistent with the general model 

proposing two separate peptide carrier systems, they have revealed that significant 

differences can exist between strains in the relative activities and possible substrate 

specificities of these transport systems consistent with previous work that the lactococci 

have only two peptide carrier systems. These observations imply the need for caution in 

extrapolating the results obtained from the study of a single strain to lactococci as a 

whole. In contrast to the finding of significant strain differences with respect to the 

relative rates of peptide transport, a comparative study of the relative activity of six 

different intracellular peptidases showed relatively few differences in peptidase activity 

between strains. 

An investigation was also carried out to assess whether the peptidases and transport 

systems involved in the utilisation of peptides were nutritionally regulated. No clear 

evidence was obtained for the significant induction of either the intracellular peptidase 

complement or the di-/tripeptide transport system. 

An attempt was also made to isolate a mutant of Lactococcus Iactis subsp. cremoris Eg 

unable to utilise dipeptides, to assess whether the di-/tripeptide transport system or the 

intracellular di peptidase of this strain were essential to casein utilisation. This attempt was 

not successful. 
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Chapter One: Introduction 

1.1 The importance of lactic acid starter bacteria in the dairy 
industry. 

The conversion of lactose to lactic acid, and the degradation of casein micelles to produce 

a heterogeneous mixture of peptides and amino acids, are key biochemical events in the 

manufacture of fermented milk products such as yoghurt and cheese. 

Of the various lactic acid bacteria capable of carrying out these enzymatic processes, it is 

members of the genus Lactococcus, particularly L. /actis subsp. lactis and L. lactis 

subsp. cremoris that are employed preferentially in industry as starter cultures. 

(In future these subspecies will be referred to as L . /actis and L. cremoris respectively). 

All lactococci are strictly fermentative, obtaining their ATP and reducing equivalents from 

the glycolytic metabolism of lactose to lactic acid. The production of lactate acidifies the 

milk to a final pH of 4 to 5. This acidification facilitates casein coagulation by dissolution 

of colloidal calcium phosphate in the micelles, and prevents the growth of undesirable 

micro-organisms in the resulting product 

Lactococcal bacteria have complex nutritional requirements. In addition to vitamins and 

nucleotides, they are unable to synthesise many of the amino acids required for growth 

(Reiter and Oram, 1962). L. lactis strains require fewer essential amino acids than 

L. cremoris strains (Smid, 1991). 

Lactococci can exhibit exponential growth in milk, with a doubling time of 60 minutes at 

3Q<>C. Growth to high numbers over a short period is crucial to getting acid production at 

levels needed to form milk curds on a commercial scale (Laan et al., 1989). Mille 

however, is a suboptimal medium for these fastidious bacteria, levels of free amino acids 

and usable peptides being well below their minimal requirement for protein synthesis 

(Thomas and Pritchard, 1987). More than 80 percent of milk nitrogen is locked up in the 

proteins a.51 , a.52, ~ and JC-caseins. 

The ability of lactococci to grow to high densities in milk is only possible because of a 

complex proteolytic system which enables them to rapidly degrade these caseins into 

metabolisable peptides and free amino acids. 
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1.2 The proteolytic system of lactococcal starter bacteria 

The three essential components of the proteolytic system of starter bacteria are the 

p~teinases, the peptidases and the transport systems. 

1.2.1 Proteinases 
These are cell wall associated serine proteases which catalyse the first step in milk protein 

degradation, namely the extracellular hydrolysis of caseins into oligopeptides of varying 

length. 

In general these enzymes are plasmid encoded, show an optimum activity at pH 6.6, and 

have a size range of 80- 180 kDa depending on the method by which they are isolated 

from the cell (Pritchard and Coolbear, 1993). 

The genetic determinants of these proteins are now well characterised. A pre-pro protein 

enccxled for by the prtP gene undergoes post-translational modifications in association 

with aprtM gene product before insertion into the cell membrane. Sequence analysis of 

the prtP genes enccxling proteinases from different lactococcal subspecies show them to 

be highly conserved (Kok, 1990, 1991). 

On the basis of the specificity of casein hydrolysis, two types of proteinase are currently 

recognised (Exterkate and de Veer, 1989; Visser et al., 1986). Details of these are 

summarised in Table 1.2.1.1 

Table 1.2.1.1: Classification of proteinases based on their activities towards caseins. 

PROTEINASE TYPE SPECIFICITY STRAINS 

Major activity towards !3---casein L. cremoris HP, WG2 

P1 ( HP type) and minor activity towards le-casein. Eg* 

No activity towards as1-casein L. lactis NCD06o6 

NCDO607 

P111 ( AM1 type) Activity towards as1, P and K-caseins L. cremoris SK11 AM1 
' 

Eg* 

* NB. Eg shows a mixture of both proteinase types and so may represent an intermediate form. 
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These proteinase types differ in their time dependent-cleavage patterns of P and K-caseins 

(Reid et al., 1991a; 1994), as summarised in Figure 1.2.1.1. 

(a) 

(b) 
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major early products of P1 • type proteinase action. 

major early products of Piu· type proteinase action. 
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Figure 1.2.1.1 Major peptide products produced by digestion of (a) P-casein 

(b) K-casein by the cell envelope-associated proteinase from L. cremoris H2 (a Pi-type 

proteinase-producing strain) and L. cremoris SK11 (a P111-type proteinase producing 

strain). 
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During growth in milk, the lactococcal cells will be supplied with different oligopeptide 

products depending on whether they have a P1 or P111 type proteinase. 

Proteinase synthesis is regulated by both calcium levels in the medium and the nature of 

the nitrogen source upon which the cells grow. Calcium increases the level of proteinase 

activity while high levels of free amino acids or small peptides act instead to inhibit 

proteinase synthesis (Exterkate, 1985). 

Recent studies on proteinase gene expression in genetically manipulated strains of 

lactococci containing multiple copies of the prtP gene, suggests that there are differences 

between strains in the stringency with which this gene is regulated (Bruinenburg et al., 

1992).Work with proteinase negative strains has shown these enzymes are essential to 

growth of lactococcal bacteria in milk. 

1.2.2. Peptidases 

Lactococci possess a large array of enzymes capable of degrading the oligopeptide 

products produced by the action of the cell wall-associated proteinase. A list of the 

peptidases isolated to date are presented in Table 1.2.2.1. While most of these enzymes 

have now been well characterised in vitro, several important questions remain 

unanswered about their activity in vivo. 

One such question concerns the regulation of peptidase activity in response to differences 

in the composition of the growth medium. Law (1977) found that dipeptidase levels in 

lactis strains were lower when the cells were grown on amino acid-defined media than in 

yeast broth, suggesting that the presence of peptides leads to an increase in the activity of 

this peptidase. 

However, van Boven et al. (1988) reported no observable differences in dipeptidase 

activity of the lactis strain W g2 when grown on different nitrogen sources. A 

comprehensive study is required to resolve these differences. 

Another unresolved question is which of the various peptidase activities listed in 

Table 1.2 2.1 are essential for growth upon milk caseins. Answers to this question are 

best approached by the isolation of mutants deficient in a particular peptidase activity. 

Already such work using the highly specific technique of integrative gene inactivation 

(Leenhouts et al., 1991) has demonstrated that neither endopeptidase PepO (Mierau et al., 

1993) nor X-prolyl dipeptidyl arninopeptidase (Mayo et al., 1993) is essential for growth 

of lactococci in milk. Eventual identification of the essential enzyme complement for 

growth on casein is important for the development of improved industrial starters. 
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Table 1.2.2.1 A summary of the lactococcal peptidases characterised to date. 

ENZYNIE SPECIFICITY REFERENCES 

Di peptidase X---Y Hwang etal., 1981;1982. 

van Boven et al., 1988 

Tripeptidase (PepT). X---YZ Bosman et al., 1990. 

Endopeptidase LEPI ... WX---YZ-:. . Yan et al., 1987a 

LEPII Yan et al., 1987b 

PepO Tan et al., 1991 

Aminopeptidase A (PepA). Glu---XY. .. Exterkate et al., 1987 

Asp---XY ... Niven, 1991 

Aminopeptidase N (PepN) W---XY ... Tan and Konings, 1990. 

Exterkate et al., 1992 

Tan et al ., 1992 

Midwinter and Pritchard., 

1994 

Aminopeptidase C (PepC). W---XY. .. Neviani et al., 1989 

Chapot-Chartier et al., 1992 

Prolidase X---Pro Kaminogawa et al., 1984 

Booth et al., 1990 

Proirninopeptidase Pro---X Baanlaeis et al., 1991 

Zevaco et al., 1990 

X-prolyl dipeptidyl X---ProY Keifer-Partsch et al., 1989 

aminopeptidase Lloyd and Pritchard, 1991 



Much debate also surrounds the cellular location of the peptidases, as will be discussed in 

Section 1.5. 

1.2.3 Transport proteins 

Research to date has identified three possible routes by which the products of 

extracellular protein and peptide degradation could enter the cell, namely as free amino 

acids, as di- or tripeptides, or as oligopeptides. 

(i) Amino acid transporters. 

These are integral membrane proteins which are highly selective for specific 

structural types of amino acids. Different bioenergetic mechanisms are employed in 

their function (Konings et al., 1989). 

(a) proton motive force linked transporters. 

Couple transport of an amino acid to the movement of protons down their 

concentration gradient 

Examples: Val, Leu, and Ile by the branched chain amino acid transporter. 

Ala, Gly and Ser by the neutral amino acid transporter 

(b) antiporters/ exchange transporters 

Couple the outward movement of a product down its concentration 

gradient with the inward movement of a substrate. 

Example: arginine- ornithine antiporter in L. lactis strains. 

(c) phosphate bond linked transporters 

Couple amino acid transport directly to the hydrolysis of ATP or some 

other "high energy" phosphate bond. 

Example: glutamate transport 

As yet no genes for these transporters have been identified or characterised. 

Expression of some amino acid transport systems appears to be regulated by 

peptides in the growth media (Poelman and Konings, 1988; Smid, 1991). 

The arginine-omithipe antiporter has also been shown to be repressed when cells 

are grown in arginine-deficient media (Konings et al., 1989). 
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(ii) Di-/tripeptide transport 

The failure of tripeptides to inhibit Glycyl[14C]leucine uptake in early studies with 

the cremoris strains Eg and 2016 suggested that separate proteins transported 

dipeptides and tripeptides (Law, 1978) 

However it is now believed that one major system transports both peptide types. 

Strong evidence supporting this conclusion has come from the isolation of a mutant 

of the cremoris * strain :tv1L3 resistant to the action of the toxic dipeptide 

L-alanyl-~-chloroalanine (A~ClA). When cleaved, this peptide releases 

f)-chloroalanine which blocks an alanine racemase essential to cell wall formation. 

Lactococci which can grow in its presence are deficient in their ability to either 

transport this peptide, or to hydrolyse it. 

Careful physiological characterisation of this mutant showed it to be deficient in its 

ability to transport both dipeptides and tripeptides. 

Tripeptide transport mutants resistant to the toxic tripeptide ~-chloro-L-alanyl-L

alanyl-L-alanine are phenotypically identical to the A~ClA mutants (Smid, 1991). 

Competition studies with these mutants suggests that this transport protein has a 

broad substrate specificity, except for di- or tripeptides containing arginine. Free 

amino acids and oligopeptides are not transported by this protein. 

Transport by this system is believed to be a two step process, peptide translocation 

across the cytoplasmic membrane by an integral membrane protein being followed 

by intracellular hydrolysis by peptidases (Smid et al., 1989a). 

Studies of membranes from the wild type :tv1L3 strain fused with liposomes 

containing beef heart cytochrome c oxidase has shown transport to be an active 

process driven by the proton motive force (Smid et al., 1989a). 

The inability of di-/tripeptide transport mutants to grow in media where ~-casein is 

the sole nitrogen source demonstrates that one or more essential amino acids from 

this milk protein must enter the cell only as a di peptide or tripeptide. (Smid et al., 

1989b). 

Di-/tripeptide transport is also important to meeting the proline demands of a rapidly 

growing starter culture. This amino acid makes up over 18 percent of ~-casein 

* 
ML3 was formerly regarded as a lactis strain. It now has been shown to be much more closely 

related to the cremoris strains (Godan et al., 1992). 
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It is essential to L. cremoris strains for growth, and stimulatory to L. lactis 

strains. There is no carrier protein for free proline and although passive diffusion 

does occur it does so at very slow rates. Proline containing peptides are however 

good substrates for this peptide transport system (Smid et al., 1990). 

Work with the cremoris strain Eg grown on different nitrogen sources suggests that 

this transport system is constitutively expressed (van Boven et al., 1988). 

Recently the gene enccx:ling this protein, dtpT, has been cloned and sequenced 

(Hagting et al., 1994). The dtpT gene encodes for a 463 residue protein, which on 

the basis of topology studies, is believed to be composed of twelve membrane 

spanning helices (see Figure 1.2.3.1). 

B out 

N V VI VII Vlll IX X XI XU I • m rv V VI \Ill VIII IX X XI XII 

in in 

Figure 1.2.3.1 Possible topological models of the di-/tripeptide transport protein of 

La.ctococcus lactis (Hagting et al., 1994). 

This protein has no significant homology with other bacterial peptide transport 

systems and so may represent a new type of transport protein. 

Future work with the DtpT protein should provide clearer answers with respect to 

the mechanisms of transport and regulation of that process. 

(iii) Oligopeptide transport 

Various research supports the presence of a membrane carrier system for 

oligopeptides. The early work of Rice et al. (1978), and Law (1978) showed 

that oligopeptides can be used as an amino acid source. Apart from the results of 
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competition studies, little information was obtained about the mechanism by which 

such peptides were utilised. 

For example, it was not known whether oligopeptides greater than three residues 

were transported intact, or only after hydrolysis into di -/tripeptides and amino 

acids 

The isolation of L. cremoris ML3 mutants deficient in L-alanine, di-L-alanine and 

tri-L-alanine transport, but still capable of accumulating alanine when it was 

supplied as a tetrapeptide or pentapeptide suggested strongly that a separate transport 

system for oligopeptides did exist (Kunji et al., 1993). 

These results are supported by complementation studies. The introduction of a 

cloned DNA fragment from L. lactis strain SSL135 into a proteinase-positive strain 

not capable of growth in milk , enabled this mutant to grow on tryptic peptides of 

casein (Tynkkynen et al., 1993). Work with the DNA fragment in Escherischia coli 

cells showed that it encoded an oligopeptide transport system (Tynkkynen et al., 

1993). 

Whereas the di-/tripeptide transport system is encoded for by one gene, the 

oligopeptide transport system appears to be enccxied for by an operon of five genes 

- opp DFBCA (Tynkkynen et al., 1993). The proteins produced from the 

opp DFBCA operon constitute a system that is characteristic of the ATP-binding 

cassette family of transport proteins (see Figure 1.2.3.2). Oligopeptide transport is 

an active process which occurs in the absence of electrochemical gradients and can 

be inhibited by A TPase inhibitors such as vanadate. These results suggest that 

transport is coupled to hydrolysis of ATP (Kunji et al., 1993). 

Work with cremoris ML3 mutants suggests that this protein has a narrow substrate 

specificity. Oligopeptides containing prolyl, glutamyl, aspartyl or arginyl residues 

are not substrates for this transport protein (Smid, 1991). 

Tetraalanine uptake in these mutants was also found to occur at a much slower rate 

than dialanyl or trialanyl uptake, indicating this system to be significantly less active 

than the di-tripeptide transport system. These results are supported by the earlier 

studies of Rice et al. (1978). They found that rates of Gly3[14C]Leu-Gly and 

Gly2[14C]Leu-Gly uptake by the cremoris strain C10 to be one-seventh and one

fifth the rate of Gly-[14C]Leu uptake. 
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Figure 1.2.3.2 

(a) Genetic organisation of the opp operon of L. lactis 

(b) Proposed model of the L. lac tis oligopeptide system encoded for by 

the opp operon (Kok and de Vos, 1994). 

The inability of other mutants of strain ML3, in which either opp A or the entire 

operon were deleted, to grow in milk demonstrated that this transport system was 

essential to casein utilisation (fynkkynen et al., 1993; Yu , 1994). 

Initial findings also suggested that the activity of this transport system was 

dependent upon the nature of the nitrogen source present in the medium 

(Kunji et al., 1993). 
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1.3 Peptide metabolism and its significance. 

Peptide metabolism can be viewed as those processes involved in the transformation of 

casein~derived oligopeptides into an intracellular pool of metabolisable amino acids. 

This is a significant area of research for two principl,e reasons. 

(a) Lactococcal nutrition. 

Although proteinase activity is essential to the degradation of milk proteins, further 

metabolism of the oligopeptides to free amino acids is essential to supply the amino 

acid requirements for growth because of the low amount of free amino acids 

available in milk. 

Supplying milk-grown, proteinase positive and proteinase negative strains with 

small peptides and free amino acids improves both growth rates and yields 

(Tbomas and Mills, 1981).The maximum growth rates attained when lactococci are 

grown in media containing peptides as sources of essential amino acids are higher 

than those in media containing amino acids alone (Hugenholtz et al., 1987). 

A comprehensive understanding of peptide metabolism is therefore essential for 

success in the pursuit of faster growing strains for industry. 

(b) Product quality. 

Peptide metabolism influences the flavour and texture of cheeses. Distinct flavour 

characteristics such as bitterness are a consequence of the accumulation of peptides 

not utilised by starter bacteria during both the initial period of cell growth and while 

the cheese is ripening (Stadhouders et al., 1983; Visser et al., 1983). 

Certain strains characteristically produce savoury cheeses while others typically 

produce bitter ones. This implies important differences in the mechanisms by which 

these strains metabolise milk peptides. An understanding of these differences 

should enable us to manipulate starter cultures to produce cheeses with consistently 

favourable organoleptic properties. 
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1.4 The role of peptide metabolism in the lactococcal 
proteolytic pathway. 

While peptide metabolism encompasses the action of both peptidases and transport 

systems, the relative contribution of each to the utilisation of casein peptides is much 

debated. 

1.4.1 Current models of peptide metabolism 

Two models can be proposed from the research available to date. 

(a) Extracellular cleavage precedes transport. 

In this model extracellular peptidases act to degrade the oligopeptides produced by 

the cell wall-associated proteinase into smaller peptides, principally di-/tripeptides, 

and free amino acids (see Figure 1.4.1.1) . 
. , 

medium cytuplasm 

di-tripcptidcs 

i----- oligopcptidcs 

Figure 1.4.1.1: A possible organisation of the lactococcal proteolytic pathway~ 

Current evidence indicating low relative rates of activity of the oligopeptide 

transport system (Smid, 1991; Kunji eta/., 1993), support this model which 

favours a predominant role for the di-/tripeptide transport system 
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It has been predicted from knowledge of the type of oligopeptides produced by the 

cell wall-associated proteinases, that the extracellular peptidase complement would 

have to involve at least a general aminopeptidase, an X-prolyl dipeptidyl 

aminopeptidase, and a glutamyl aminopeptidase (Smid, 1991). 

Other studies have implicated an extracellular presence for a dipeptidase (Kolstad 

and Law, 1985), a tripeptidase (Bacon et al., 1993; Sahlstrom et al., 1993), a 

general aminopeptidase (Exterkate, 1984), an aminopeptidase A (Exterkate and 

de Veer 1987a), and an endopeptidase (Yan et al., 1987a; O'Harte et al., 

1993). 

However, The results of many of these studies are not conclusive, a major cause of 

uncertainty lying in the difficulty of obtaining cell fractions free from intracellular 

enzyme contamination. For example, the "cell wall" associated di peptidase 

identified by Kolstad and Law (1985) was found to have specificity profiles very 

similar to that of its intracellular counterpart. 

While it is possible that some extracellular peptidase activity could result from 

cellular leakage itself, this is unlikely to become significant until the later stages of 

growth when cell numbers are already at high densities. 

The recent isolation and sequencing of genes encoding lactococcal peptidases has 

provided evidence against an extracellular location for peptidase activity, as none 

of the peptidases characterised to date has the leader sequence characteristic of 

extracellular targeted proteins (Kok and de Vos, 1994). 

(b) Transport precedes intracellular cleavage. 

In this mcx:lel the products of proteinase-catalysed casein degradation are 

transported directly into the cell after which they are rapidly degraded by internal 

peptidases (see Figure 1.4.1.2). 

However, the demonstration that the di-/tripeptide carrier system is essential for 

growth of the cremoris strain ML3, necessitates a more extensive cleavage of 

f}-casein than is currently known to be the case (Smid et al., 1989b). 
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Figure 1.4.1.2. An alternative organisation of the lactococcal proteolytic pathway. 

Current evidence on the identity of the peptide products of casein hydrolysis by the 

cell wall-associated proteinase (Monnet et al., 1989; Visser et al., 1988, 1991, 

1994; Reid et al., 1991a, 1991b, 1994) indicate that the minimum size of these 

peptides is 6 to 7 amino acid residues. However, it is possible that smaller products 

are not being detected by the analytical techniques used. Alternatively, small 

peptides may not be produced by the proteinase when it is released from the cell 

wall for in vitro studies. 

If all the peptidases are eventually shown to have an intracellular location, then the 

extent to which lactococcal proteinases can degrade casein will be an area requiring 

extensive research. 

This model implies a predominant role for the oligopeptide transport system. 

Current knowledge (Smid, 1991; Kunji et al., 1993) does not suggest that this 

system is capable of transporting a sufficient range of larger peptides at a rate which 

would support rapid growth. However these conclusions come from a small 

number of studies involving only a single lactococcal strain. Furthermore the 

results of these are in conflict with other earlier research done in this area as 

discussed previously. 

More information is therefore needed about this transport system particularly 

regarding the upper size limit of peptides it will transport, substrate specificity and 

the relative rates of peptide transport 
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1.4.2 Strain Differences in Peptide Metabolism. 

Most of the work carried out on peptide transport systems has come from the studies in 

Koning's laboratory in Groningen on the cremoris strain N1L3 and its mutants. While 

these have provided us with valuable information, they have not questioned whether the 

N1L3 strain is "typical" of the major cheese producing strains. 

Law (1977) found that there were actually three quite distinct groups with regard to 

peptide utilisation. 

(1) Those lactococci that transport dipeptides prior to hydrolysis ie the dipeptides 

are transported as such. 

(2) Those lactococci that transport the amino acid constituents after dipeptide 

hydrolysis 

(3) Those lactococci that did not transport dipeptides at all. 

This raises important questions about the validity of applying the knowledge obtained 

from the :ML3 strain to the lactococci as a group. 
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1.5 Aims of the Current Study 

The central objective of this research is to investigate aspects of peptide utilisation by 

whole lactococcal cells. The results from this work will hopefully provide answers to 

some important questions in this area. 

(1) Is the oligopeptide transport system capable of transporting large peptides 

and at physiologically relevant rates ? 

(2) Are there any significant differences in the process of peptide utilisation between 

the ML3 strain and other strains ? 

(3) What peptidases are essential for growth ? 

(4) What factors regulate the enzyme component of peptide utilisation? 

An attempt to answer some of these questions will involve the following experimental 

strategies: 

(a) The synthesis of a homologous series of peptides of increasing size from the 

dipeptide Val-Gly to the decapeptide Val-Gly9_ Valine was chosen as the amino 

acid on which to base this series as is essential to the growth of both lactis and 

cremoris strains (Reiter and Oram, 1962). 

(b) Peptide uptake studies with this series of peptides by the cremoris strains ML3, 

Eg, and SK11, and the lactis strains 1403 and 920. 

(c) Growth studies with these same strains in chemically defined media, where free 

valine is substituted for by the V al-(Gly)x series of peptides. 

(d) Peptide uptake studies using oligopeptides isolated by HPLC from a proteinase 

digest of P-casein. 

(e) The isolation and characterisation of mutants deficient in peptide utilisation 

from one lactococcal strain. 

(f) The investigation of the effect of nitrogen source type upon the expression and 

activity of intracellular peptidases. 
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