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ABSTRACT 

To match the supply of Zantedeschia cut flowers and tubers to the demands of the 

international market, crops have to be timed to a schedule, which requires control of the 

growth cycle and, in particular, dormancy. In order to improve the predictability and 

accuracy of timing of Zantedeschia, the effect of different planting seasons and two 

dormancy-breaking treatments were tested on cultivars 'Black Magic' and 'Treasure', 

which were known to have a contrasting level of dormancy. Tissue-cultured plants were 

ex-flasked in July and November 1999, and grown for 180 days in a heated glasshouse 

(first cycle). Between 120 and 180 days of growth, plants were harvested at 15 days 

intervals, and tubers cured. Subsequently, tubers were stored for O or 3 weeks (10 ± 1°C; 

70-80% RH) and dipped in 100 mg-L-1 gibberellic acid plus surfactant or water plus 

surfactant, prior to planting for dormancy assessment (second cycle) . 

Growing the plants with four months difference in planting date did not cause major 

alteration in the occurrence of dormancy. Dormancy was brought forward by up to 1 O days 

after the November date of ex-flask, but this was most likely to be due to higher 

temperatures during that period. In contrast, depth of dormancy varied between cultivars, 

with 'Black Magic' taking in average 16 days longer to emerge than 'Treasure'. Storage 

partially released bud dormancy of the tubers. It increased emergence to over 80% 

regardless of the time of harvest in the first cycle and cultivar, but reduced time to 

emergence mostly after harvests at 180 days. Furthermore, following storage, time to 

emergence was reduced to over 50 and 30 days for 'Black Magic' and 'Treasure', 

respectively, which exceeded the commercially acceptable period to emerge. Gibberellic 

acid also broke bud dormancy, improving emergence to over 80%, and reduced time to 



ii 

emergence to between 29 and 57 days, irrespective of the time of harvest in the first cycle 

and cultivar. The effectiveness of gibberellic acid at any time following harvest during the 

first cycle, may imply that dormancy of Zantedeschia is not as deep as in temperate woody 

plants. 

Cessation of leaf emergence in the first cycle was found not to be directly related to 

the occurrence of dormancy. Degree-days, on the other hand, presented a possible 

alternative to predict this process. It was estimated that deepest dormancy of 'Black Magic' 

occurred between 2614 and 2732 °C-days after planting, while deepest dormancy of 

'Treasure' occurred between 2681 and 2839 °C-days after planting. 

The present study presents storage and gibberellic acid as possible options to 

control dormancy, and the use of degree-days to predict the occurrence of this process. 

Further research is necessary to develop these options as commercially applicable 

practices, and to further clarify the process of dormancy in Zantedeschia. 
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Chapter 1: Introduction 1 

1. INTRODUCTION 

1.1 Commercial significance of Zantedeschia. 

Zantedeschia spp. Spreng. is currently the second largest cut flower export for New 

Zealand after Cymbidium orchids, with a value of 4,5 million dollars being exported in the 

year to June 1999 (Topless, 2000). The counter-seasonality of the production in the 

Southern Hemisphere allows growers to supply lucrative export markets in the Northern 

Hemisphere during peak demand (Clemens et al. , 1999). 

Field production of Zantedeschia flowers in New Zealand is highly seasonal, 

extending from November through to March (Clemens & Welsh , 1993), with a peak in 

December/January (Muller, 1993). The high supply of flowers during the peak period has a 

negative impact on international prices, which consequently reach a minimum over the 

Christmas-New Year period and start to recover from mid-January onwards. Therefore, 

growers have been encouraged whenever possible to time their plantings to take 

advantage of the higher prices which occur in the shoulders of the season, i.e. October, 

November, February, March and April (Muller, 1993). 

An additional market for Zantedeschia flower growers and specialist propagators is 

the sale of tubers on the export market (Clemens & Welsh, 1993). These growers 

purchase tubers for pot forcing or cut flower production for sale at Christmas, New Year 

and Valentines, which implies that New Zealand growers need to be able to supply tubers 

during October-February, i.e. the normal growing season in the southern Hemisphere. 
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To supply the constant demand of the international market, the Zantedeschia cut 

flower and potted plant industries must aim to attain all year production , which implies the 

manipulation of the timing and duration of the plant's natural growth cycle (Halligan et al., 

1995; Brooking et al. , 1998). However, as it will be shown in this introduction, negative 

results of practices applied to manipulate the duration of the growth cycle of Zantedeschia, 

and a lack of knowledge on the factors that control dormancy, have made accurate timing 

of the crop difficult to achieve. 

1.2 Origin and distribution of Zantedeschia genus. 

The majority of New Zealand's production is limited to the summer calla, a term 

that groups the species Zantedeschia jucunda Letty, Z. pentlandii (Wats.) Wittm ., Z. 

rehmannii Engl. and Z. elliotiana (Wats.) Engl. , and the hybrids resulting from 

interespecific crosses. Therefore, the following review is limited to these species. 

The genus Zantedeschia corresponds to a group of geophytic plants endemic to 

the African continent. It is most prevalent to the southern regions (i.e. , Cape Province, 

Orange Free State, Natal, Lesotho, Swaziland, Transvaal) , but also extends into 

Zimbabwe, Malawi, Nigeria and Angola (Letty, 1973). Summer calla plants grow in 

mountainous regions, at altitudes of 1200 to over 2000 m, generally in grassy slopes and 

at forest margins. 

Distribution of the summer calla is restricted to cool-temperate climates, with a 

mean air temperature of 11 °C during June-July (min. 2.7 °C; max. 20 °C), and 20 °C (min. 
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14 °C; max. 27 °C) from October through to March (Funnell, 1993a). Rainfall is 

predominantly distributed during the summer. 

1.3 Cyclic periodicity. 

A major feature of geophytes (i.e. plants that survive using specialised 

underground storage organs) is the development of a cyclic behaviour or periodicity, which 

typically matches their phenologic cycle to the climatic conditions (Rees, 1972; 1984). It is 

believed that periodicity evolved as a survival means to overcome unfavourable climatic 

conditions in seasonal climates, allowing the plant to renew activity when conditions 

improved (Rees, 1981 ). 

The close relationship between environment and periodicity of a plant is still 

evident in the behavior of commercial geophytic flower crops. A general example is the 

division of geophytes into spring-, summer- and autumn-flowering plants made by 

horticulturists, according to the time of the year when active growth and flowering is 

expressed (e.g. De Hertogh & Le Nard, 1993). Although broad, this division shows the 

behaviour that the plants would have had in their natural habitat, and the requirements that 

have to be met to grow them successfully. A more specific example are the commercial 

varieties of Tulipa sp. L. , which retain within their genotype those attributes which fitted 

their ancestors to the harsh habitat of the uplands of Asia Minor (Rees, 1981). In those 

areas, winters are severe with deep snow, the springs are short and moist and the 

summers and autumns dry and hot. Consequently, tulip plants evolved into spring 

flowering with no aerial growth in summer and the resumption of aerial growth once the 

cold requirement has been fulfilled. 
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As a response to cool and dry winters and summer rainfall , Zantedeschia species 

also developed a seasonal periodicity, with complete foliage senescence during winter, 

while growth and flowering occur during late spring through summer (November-January) 

(Letty, 1973; Funnell, 1993a; Figure 1 ). A compact, disc-shaped rhizome -also called a 

tuber or corm1
- is the structure which survives under the ground during dry periods (Corr, 

1993). 

As with tulips, the seasonal periodicity of Zantedeschia is also evident in 

commercial crops, where it follows basically the same cycle as in its native habitat. In a 

normal production cycle in the Southern Hemisphere, Zantedeschia tubers are planted in 

September/ October, flowering from November through to March (Clemens & Welsh, 

1993; Halligan et al. , 1995). The new foliage stops appearing in February, and by April/ 

May leaf senescence of the plants begins (Figure 1 ). 

1 The term tuber will be used in this review to avoid confusion. 
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Figure 1. Twelve-month cycle representing the phases of development of the apical 
meristem in a dominant bud of Zantedeschia 'Black Magic', grown at Palmerston 
North, New Zealand. The visible state of the plant is also depicted throughout the 
cycle (modified from Halligan et al. (1995). 

1.4 Dormancy. 

Dormancy is an integral part of the annual cycle of most geophytes, characterising 

perennial plants that exhibit seasonal growth (De Hertogh & Le Nard, 1993). Lang et al. 

(1987) defined dormancy as 'the temporary suspension of visible growth of any plant 

structure containing a meristem', and divided it into three types. These types are: eco-, 

para- and endo-dormancy, representing dormancy controlled by conditions outside the 
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plant, outside the affected organ but within the plant and within the organ, respectively 

(Dennis, 1996). Although not universally accepted (Rowland & Arora, 1997), Lang's 

terminology has been qualified as more physiologically descriptive than most of the earlier 

terminology and, therefore, it will be used in this study. 

Additionally, endo-dormancy can be further divided into two consecutive phases. 

The first corresponds to deep endo-dormancy, and is based on the inability to induce the 

buds to grow under natural conditions (Faust et al. , 1997; Figure 2). The second is a 

shallow endodormant period, which is the stage where dormancy can be overcome by 

artificial treatments. 

paradornian:y d-emodormancy s-eooodormancy · ecodormm:y 

Figure 2. A schematic representation of inhibition of budbreak during donnancy. 
Donnancy begins with para-donnancy and it deepens during deep endo-donnancy 
(d-endo-donnancy). When endo-donnancy weakens during shallow endo-donnancy 
(s-endodormancy), buds respond to donnancy-breaking treatments. The depth and 
duration of eco-dormancy is environment dependent. (From Faust et al., 1997). 
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There has been some debate concerning dormancy of Zantedeschia (Kuehny, 

2000). Early studies suggested the absence of a dormant period unless it was artificially 

induced by drying, and that year-round production of flowers could be achieved in 

greenhouses under protection (Post, 1959; Wilkins, 1985). This theory was later refuted by 

Corr & Widmer (1988), who demonstrated that Zantedeschia does have a dormant stage, 

since tubers replanted immediately after leaf removal were not able to sprout even if 

placed under ideal environmental conditions. Halligan et al. ( 1995) observed that this 

dormant period lasted from late summer (January), when leaf production stopped, to 

autumn (late April/ early May) (Fig. 1 ). During this period, the apical meristem was 

incapable of continued growth until dormancy was released . 

It is not known if bud dormancy of Zantedeschia tubers corresponds to endo- or 

para-dormancy. Previous studies reported the ability of buds to continue developing once 

isolated from the rest of the tuber and placed in agar (Halligan et al. , 1994), which 

suggests the occurrence of para-dormancy. However, it has not been possible to confirm 

these results in later experiments, due to contamination of the material. In order to avoid 

misinterpretations, the term dormancy in the present study will refer indistinctly to endo- or 

para-dormancy. 

1.4.1 Horticultural importance of dormancy 

The existence of a dormant period is convenient for horticultural purposes, since it 

permits easy handling, storage and transport of the bulbs2 (De Hertogh & Le Nard, 1993). 

Furthermore, it can be overcome by natural or artificial means at a predetermined time, 

2 The term bulb here includes all geophytes with diverse storage organs 
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which allows growers to control timing of production or flowering independently from the 

natural season to which the plant alone is constrained (Rees, 1981 ). Means of overcoming 

dormancy include storage of the bulbs and the use of growth regulators. In addition, timing 

of the production can be controlled through early lifting practices, which bring forward the 

occurrence of dormancy, allowing growers to harvest and handle the bulbs earlier in the 

season. 

Although being an extensively used practice, timing of bulb or flower production 

through storage and early lifting has not been successfully achieved with all geophytes. As 

it will be explained with more detail in the following pages, these practices have even 

resulted in negative responses when applied to Zantedeschia crops. Since the 

environmental and /or genetic factors that control dormancy in Zantedeschia are not 

known, it has not been possible to develop the best techniques to control the duration and 

occurrence of dormancy, and consequently, to accurately time the flower and bulb 

production . A more complete knowledge of dormancy of this crop would greatly improve 

possibilities of timing the production to the needs of the market. 

From a horticultural viewpoint, not only it is important to control the duration and 

occurrence of dormancy, but also it is essential to be able to visually detect when 

dormancy occurs. If detectable, the best lifting time and the most effective moment to 

apply dormancy-breaking treatments can be programmed. Nevertheless, to date the only 

visual change that might possibly be linked to dormancy is the cessation of leaf 

emergence and the subsequent onset of foliage senescence during the summer (Halligan 

et al., 1995). 
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1.4.2 Factors influencing dormancy onset. 

Environmental factors that induce dormancy vary with the species and their native 

environment. For the majority of the woody plant species from temperate climates, short 

days and cold temperatures cause the cessation of extension growth and the formation of 

resting buds (Wareing & Saunders, 1971 ; Wareing & Phillips, 1981 ; Olsen et al. , 1995). 

For some bulbous species, such as Gladiolus grandiflorus Hort. , corm development is also 

stimulated by short days (Hartmann et al., 1997). For others, like onion (Allium cepa L .. ) 

and Poa bulbosa L .. -a grass geophyte with summer dormancy-, bulb production and leaf 

senescence, which are considered as indicative of the onset of dormancy, are induced by 

long days (Ofir & Kigel , 1998). Dormancy of tulip bulbs, on the other hand, is triggered by 

high temperatures (Rees, 1972). 

Although periodicity of growth and development in Zantedeschia has been studied 

(e.g. Funnell & MacKay, 1987; Halligan et al. , 1994, 1995), the factors that induce the 

cessation of leaf production and, possibly bud dormancy, have not been identified yet. In 

addition , most of the research regarding the influence of the environment on Zantedeschia 

has focused on growth and flowering, and their effect on dormancy can only be inferred. 

1.4.2.1 Photoperiod 

Photoperiod plays an important role in both vegetative and reproductive growth of 

plants, since it influences processes such as seed germination, stem elongation, leaf 

growth, senescence, abscission and dormancy (Coleman & Chen, 1996). The adaptive 

value of using photoperiod as a timekeeping mechanism for synchronising growth 

transitions is evident, since it is the one environmental cue that does not vary from year to 

year. 
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There is little evidence of photoperiodic control of dormancy in ornamental bulbs, 

which is in sharp contrast to that shown in the buds of many woody plants (Rees, 1981). 

Up to now, there is confirmation of day-length effects only on dormancy of Allium species 

(Rees, 1972; Wareing & Phillips, 1981), Gladiolus (Hartmann et al. , 1997), Begonia x 

tuberhybrida Voss. (Lewis, 1951) and Dahlia pinnata Cav. (De Hertogh & Le Nard, 1993). 

Early studies by Greene et. al. (1932; cited by Dole & Wilkins, 1999), as well as 

observations by commercial growers, indicated that there are no photoperiodic effects on 

Zantedeschia's growth (Ball , 1986; Corr & Widmer, 1990) and dormancy (Funnell , 1988). 

In a later unpublished experiment, Brooking et al. (1998) confirmed that photoperiod did 

not affect the induction of dormancy, since plants remaining in a glasshouse under 

declining daylength , and plants transferred to a long-day environment entered dormancy at 

the same time. Therefore, Zantedeschia plants should be able to grow under any 

daylength conditions. 

1.4.2.2 Light intensity 

Light has been related to the release of dormancy in seeds of several species, 

such as lettuce (Lactuca sativa L.) (Wareing , 1982), celery (Apium graveolens L.) endive 

(Chicorium endivia L.) (Khan, 1996) and Arabidopsis thaliana L. (Cone & Spruit, 1986). 

However, there is no evidence of this factor affecting the onset of dormancy. 

Few studies have investigated the effect of light intensity on growth and 

development of Zantedeschia. Warrington & Southward (1989) and Funnell (1993a) found 

that, under a constant temperature and low light conditions (350 µmol s-1m-2) , leaf area 

expansion was extended and leaf senescence delayed, as compared with high light 
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intensity (700 µmol s-1m-2). However, neither of the experiments measured any parameter 

that could directly be related to the onset of dormancy. In addition, both experiments were 

carried out in controlled environment rooms, and it has been suggested that the observed 

response may be related to photoassimilate partitioning and not necessarily to dormancy 

(Funnell, pers. comm.). 

As shown in this section, there is no information that associates light intensity with 

the induction of dormancy on Zantedeschia. However, studies with other species suggest 

that these two factors may not be directly related. 

1.4.2.3 Cultivars 

Length and depth of dormancy of many species is largely under genetic control. 

For example, cultivar- and species-dependent periods of dormancy have been noted in 

potato (Solanum tuberosum L.) and yam (Oioscorea alata L.) (Turnbull & Hanke, 1985; 

Burton , 1989) onion (Carter et al. , 1999) and Dahlia (Konishi & Inaba, 1967 cited by De 

Hertogh & Le Nard, 1993). 

In Zantedeschia, it appears that there is significant variation in both tuber 

maturation and dormancy among cultivars (Halligan & Fulton, 1998). Reports show that 

tubers of the cultivars 'Treasure' and 'Cameo' were able to sprout within 1.5-3 weeks when 

replanted without a storage period. In contrast, tubers of the cultivars 'Black Magic' and 

'Dominique' sprouted after a minimum of sixteen weeks or failed to sprout altogether. 
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In addition, a difference of 7-8 weeks in the occurrence of cessation of growth and 

leaf senescence between cultivars 'Black Magic' and 'Pink Persuation' (Clemens & Welsh, 

1993), suggests that timing of the onset of dormancy may also depend on the cultivar. 

1.4.2.4 Temperature 

Of the various climatic variables to which a plant is exposed, temperature has been 

considered as a major environmental factor determining variations in growth (Pinera, 

1995) and development (Terry, 1968; Passian & Lieth, 1994). Higher temperatures 

generally lead to the earlier onset of a phenological event, like time to flower of Hibiscus 

moscheutus (Wang et al., 1998), Dahlia pinnata (Bnzrndum & Heins, 1993) and rose (Rosa 

x hybrida L.) (Pasian & Lieth , 1994), while low temperatures suppress processes such as 

sprouting of potato tubers (Suttle, 1995). 

Warmer temperatures lead to a chronologically earlier onset of all events in growth 

and development of Zantedeschia , including shoot and leaf appearance, flowering , rapid 

tuber growth, cessation of leaf appearance and leaf senescence (Funnell, 1993b). For 

instance, Z. rehmannii plants grown at an ambient temperature of 20 °C flowered approx. 

18 days earlier than plants grown at 15 °C (Corr & Widmer, 1990). Similarly, senescence 

was advanced by 60 days in plants grown at high temperature (28/22 or 22/16 °C day 

/night), as compared with plants grown at low temperature ( 16/1 O °C) (Warrington & 

Southward, 1989; Funnell, 1993a). If we assume that there is a relation between cessation 

of growth and dormancy, then this could indicate that the onset of dormancy is probably 

also affected by the temperature regime. 
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1.4.2.4.1 Temperature as a predictor of the occurrence of dormancy 

Given the importance of dormancy on timing and scheduling floricuttural crops, the 

ability to predict its occurrence is essential for growers who aim to supply the international 

market during highest demand. In many temperate woody species, prediction of dormancy 

does not represent an obstacle, since the factors that trigger the process are well known 

(refer to section 1.4.2). However, prediction of dormancy in Zantedeschia has not been 

possible since, as shown in this chapter, the environmental and/or physiological factors 

involved in its induction have not been identified. Thus, the accumulation of temperature 

by the plant, measured as degree-days, may be a useful tool for the prediction of the 

occurrence of dormancy. 

1.4.2.4.1 .1 Degree-Days 

Heat units, measured in growing degree-days, relate the accumulation of heat 

energy by a crop during a given period to the progress in development or growth 

processes (McMaster & Wilhelm, 1997). This system is currently being used to monitor 

growth and development of many crops (O'Rourke & Branch, 1987), and has vastly 

improved description and prediction of phenological events as compared to other 

approaches, such as time of the year or number of days (McMaster & Wilhelm, 1997). 

There are no precedents on the use of degree-days to monitor growth and 

development, or to predict the occurrence of dormancy in Zantedeschia plants. However, 

interpretations of the studies carried out by Halligan et al. (1995) and Halligan & Fulton 

(1998), and the temperatures recorded during their experiments, lead to suggest that the 

onset and release of dormancy may occur between 1000-1600, and between 2600-2900 

~C-days, respectively (Appendix 1). 
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1.4.3 Manipulation of dormancy 

1.4.3.1 Early lifting practices 

Early lifting of geophytic crops may provide a means of reducing the need for long

term storage, to supply tubers and flowers for early season exports (Funnell & MacKay, 

1989). Practices applied for early lifting include mechanical removal of the foliage and 

promotion of early foliage senescence by means of herbicide application and withholding 

water. 

Studies performed on early lifting of Caladium x hortulanum L .. showed that foliage 

mowing was effective in reducing weight of roots and shoots of the plants (Gilreath & 

Harbaugh, 1986). The application of herbicides like paraquat, oxyfluorfen and, to a minor 

extent, ethephon, was equally effective in promoting foliage senescence without affecting 

growth in the subsequent cycle. 

Although both Caladium and Zantedeschia belong to the Araceae family, the use of 

the same practices, as described above, on Zantedeschia crops has resulted in negative 

outcomes. Plants subjected to foliage mowing and subsequently left under conditions 

favorable for sprouting, were not able to resume growth until they were lifted and their 

roots removed (Corr & Widmer, 1988; Brooking et al., 1998). In contrast, tubers that were 

lifted and cured or stored grew soon after being replanted (Corr & Widmer, 1988; 

Brooking, Pers. Comm). 

Similarly, the artificial induction of foliar senescence through withholding water 

caused slow and erratic emergence during the following growth cycle (Funnell & MacKay, 

1989). In addition, the application of ethephon did not induce foliage senescence, and 
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progressive increases in the doses resulted in a reduced increase in tuber dry weight. 

Since export tubers, like cut flowers, have to meet quality standards such as high quality 

flowers and productivity and flowering programmability (New Zealand Calla Council, 1994), 

erratic emergence represents a serious problem for exporters. 

Practices to promote early senescence of the foliage are thought to induce 

dormancy of buds on tubers of Zantedeschia (Corr & Widmer, 1988). This would explain 

the poor results obtained. Clearly, it will be necessary to fully understand the natural 

periodicity and dormancy of this species before being able to develop techniques for the 

early lifting of the plants. 

1.4.3.2 Storage duration and temperature 

Storage of Zantedeschia tubers is currently used to facilitate production 

programming for both pot plant and cut flower production (Funnell & Go, 1993). While the 

primary objective of long term storage is to allow scheduled planting and flowering by 

inhibiting shoot growth, the aim of short-term storage is to break bud dormancy of the 

tubers. In the past years, a considerable amount of research focused on the effect of 

storage duration and temperature on subsequent performance of Zantedeschia, but only a 

few investigations dealt with its effect on bud dormancy, and mostly non-dormant tubers 

were used. Only recently dormancy has become a major subject in research related with 

storage. 

Earlier investigations suggested that dormancy of Zantedeschia could be overcome 

with storage at 20 °C for several months (Cohen, 1981). The effects of a storage period on 

dormancy release were later confirmed by MacKay (1985), who determined that time to 
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emergence of cultivars 'Pink Persuation' and 'Pacific Pink' could be reduced by 45-50 days 

if tubers were stored for two weeks at 5-7 °C. Likewise, a reduction in time to emergence 

of approx. 50% was observed in cultivar 'Black Magic', when storage duration was 

increased from Oto 3 weeks at 10 °C (Halligan & Fulton, 1998). 

As for the optimum temperature to break dormancy, no differences in the release of 

dormancy were found between tubers stored either at 1 O O or 20 °C (Brooking, Pers. 

Comm.). Similarly, no significant effects on growth were found on tubers of Z. elliottiana 

and Z. rehmannii after a storage period of six weeks at 4, 9 or 22 °C, although the highest 

temperature largely reduced fresh weight of the tubers, and dormancy of the tubers had 

been already partially released (Corr & Widmer, 1988). Thus, it would be advisable to use 

temperatures close to 10 °C, in order to avoid high water losses during the storage period. 

Storage duration also influences time to sprout and the plant's final performance. 

Storage of dormant tubers for nine weeks increased time to sprout by 200%, compared 

with tubers stored for 0, 3 or 6 weeks (Halligan & Fulton, 1998). Additionally , storage for 

six months reduced flowering potential of the tubers up to 100% if gibberellins were not 

applied (Funnell & Go, 1993). In contrast, a minimum storage period of three weeks has 

shown to be effective in breaking dormancy of cultivars with deep dormancy (Halligan & 

Fulton, 1998), as well as in increasing plant height, number of leaves and shoots per tuber 

(Corr & Widmer, 1988). 

1.4.3.3 Gibberellins 

Among the phytohormones involved in growth and development of plants, 

gibberellins are the hormones most commonly associated with dormancy release (Wareing 
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& Phillips, 1981). When exogenoulsy applied, they have proved to be effective in breaking 

dormancy of seeds (Desai et al., 1997), buds (Saure, 1985), Lilium sp. L.. bulbs (Ohkawa, 

1979; Niimi et al., 1988), and potato tubers (Tsukamoto et al. , 1961; Wiltshire & Cobb, 

1996), among other crops. 

In Zantedeschia, gibberellin application has been widely used for the promotion of 

flowering (e.g. Funnell et al. , 1988; Corr & Widmer, 1990; Funnell & Go, 1993; Dennis et 

al. , 1994 ). Its application increases flower production through an increase in the number of 

buds emerging as primary shoots (Funnell & Go, 1993), and also induces flowering in 

tubers that otherwise would not be able to flower due to reduced size or prolonged storage 

(Funnell et al. , 1988). Nevertheless, their possible effect on dormancy release has not 

been studied. 

In potato crops, gibberellin concentrations recommended to break dormancy range 

from 1 mg-L-1 (Contreras, Pers. Comm.) to 50 mg-L-1, depending on the cultivar and 

storage duration (Dean, 1994; Centro Internacional de la Papa, 1988). On the other hand, 

concentrations used to promote flowering of non-dormant Zantedeschia tubers varies 

between 50 mg-L-1 and 600 mg-L-1 (Funnell et al., 1988; Reiser & Langhans, 1993; Dennis 

et al. , 1994) when applied as a preplanting dip. However, the concentrations that would be 

most effective in breaking dormancy of Zantedeschia tubers are unknown. 

1.5 Summary and objectives 

One of the aims of the Zantedeschia cut flower and potted plant industries is to 

match the supply of flowers and tubers to the constantly increasing demand of the 
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international market. To achieve this, crops have to be timed to a schedule, which often 

implies the artificial shortening of the growth cycle, or the extension of the period of 

inactivity. In other species, cultural practices to manipulate the duration of the growth cycle 

such as early lifting and storage are widely used, but their application on Zantedeschia 

crops have not provided the predictability and accuracy desired. 

Studies have been carried out to clarify Zantedeschia periodicity, aiming to develop 

more effective techniques of manipulating the growth cycle (Halligan et al., 1994 & 1995). 

In these studies, special attention has been paid to dormancy, since its occurrence 

determines the duration of the growth cycle and the storage requirements of the tubers, 

and consequently , the possibilities of crop scheduling. As shown in this review, the 

environmental and /or genetic factors that control dormancy have not been determined, 

but there is evidence that photoperiod and light intensity are not involved in its induction 

(Brooking et al., 1998; Funnell , 1993a), and that temperature can bring forward or delay its 

occurrence (Funnell, 1993b). In addition , it is known that the intensity of the process is 

highly dependent on cultivars (Halligan & Fulton, 1998). Short-term storage has been 

successfully tested as a treatment to artificially release dormancy of Zantedeschia 

(Halligan & Fulton, 1998), but there is no information on the efficacy of gibberellic acid , 

which has been used to break dormancy of numerous other crops. In addition , if the 

occurrence of dormancy could be visually determined or predicted by means of degree

days, this would greatly aid to program lifting of the crop and the application of dormancy

breaking treatments. 

Despite the advances that have been achieved in the control of growth and 

periodicity of Zantedeschia, there are several questions that have to be answered before 
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timing and scheduling can reach the level of predictability and accuracy as in other 

geophytic crops, e.g. tulips. In order to answer some of them, the following study aims to: 

- Quantify what changes in timing and duration of vegetative growth and dormancy result 

from a modification on growth season of Zantedeschia hybrids; 

- Determine differences in the occurrence of bud dormancy between two cultivars known 

to differ in their depth of dormancy; 

-Determine if dormancy duration can be modified by storage and gibberellin application 

and, 

- Test the possibility of using cessation of leaf emergence and degree-days as indicators 

of the occurrence of dormancy. 




