Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

MODEL APPLICATIONS OF DECISION SUPPORT SYSTEMS IN MEAT HYGIENE PROGRAMS

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF VETERINARY SCIENCE AT MASSEY UNIVERSITY

PETRUS BERNARDUS VAN DER LOGT

December, 1996

ABSTRACT

Current systems to ensure safety of meat are to a large degree based on a "procedural" approach which specifies what inspection actions will be taken to protect human health. Both knowledge and disease priorities have changed substantially over recent decades, and moreover the scale of the problems created by any breakdowns in protection has escalated greatly, as food trading and consumption patterns have changed. It is now recognized that meat hygiene needs to focus primarily on ways by which the risk that product will represent a hazard to human health can be effectively reduced, rather than merely ensuring compliance with a defined set of procedures. In addition to human food safety, meat inspection has the potential to contribute information to improve animal health on a national and a local scale. This thesis examines example issues in order to identify possible approaches to the development of decision support systems which assist in protecting meat consumers and improving the health of livestock on farms. The main areas which were explored for this purpose were respiratory disease in lambs and chemical residues in slaughter animals.

A literature review of pneumonia and pleurisy in lambs showed that numerous factors have been proposed as predisposing causes for these diseases, but there was surprisingly little valid experimental or observational research evidence to support such statements. A hazard analysis was performed for the micro-organisms which have been isolated from pneumonic lungs. The major commonly detected organisms did not appear to cause a risk to healthy people. However there were a number of micro-organisms which are isolated on occasion from pneumonic and sometimes from healthy sheep lungs that might cause human disease.

A case-control study was carried out as an exploratory means to identify risk factors and to generate hypotheses about causal processes. A number of risk factors were initially identified at univariate level. At the second stage the importance of some of these risk factors was quantified in a logistic regression model. Finally a third stage analysis showed the interactions between the factors in a logistic path model, which consisted of three clusters. One cluster included characteristics of the farm and paddocks, one cluster included the yards and practices in the yards, and a third cluster included the types and number of animals on the farm.

Two intervention studies were subsequently carried out to evaluate the effect of making various management modifications on the prevalence of pneumonia and pleurisy at slaughter. One intervention study evaluated the time lambs spent in the yards after weaning and the use or oral or injectable drenches. The second intervention study evaluated the use of oral versus injectable drenches and the use of a shower dip versus a wand. The intervention studies showed an effect of time in the yards on pneumonia. There was some association between time in the yards and acute localised pleurisy but none between the other measures tested and respiratory disease. The studies showed clear temporal patterns with regard to pleurisy and pneumonia and enabled comparisons to be made between farms.

A study of inspection for pleurisy at slaughterhouses was analysed. The analysis identified the

temporal patterns of certain types of pleurisy. Comparisons were made between four participating premises. The sensitivity and specificity of meat inspection for the various types of pleurisy was analysed. The pleurisy data over an eleven year period of the entire country were analysed. Differences were shown between islands and regions.

The potential for development of components of a decision support system for pneumonia and pleurisy was illustrated with a number of examples. An important component was to determine how farmers could be assisted in improving the health of their lambs with regard to pleurisy. Ideas to improve farmer involvement were developed. The principles of a decision support system which evaluated the issue of cross-contamination due to handling of product by the inspector were developed.

Epidemiological principles of chemical residues in slaughter animals were investigated. A number of statistical quality control tests were applied to known data sets to evaluate what sample sizes would be required to detect changing trends or spatial paterns. Temporal simulations were performed to determine how well clusters in time could be detected. The Moving Average approach was used and it appeared that with the given data set sample sizes well beyond those feasible to achieve would be required. Spatial analyses with a number of different statistics were performed. In this case also, large sample sizes were required for reliable results.

It was concluded that use of a risk analysis model to define a risk-reduction strategy targeted to avoid any significant risk to the consumer offered a much more effective tool than a fixed sampling system. This model combines a range of possible risk reduction measures in various mixes, and determines whether or not each of the tested strategies achieves the goal of making it very improbable that a consumer would be exposed to sufficient levels of chemical residues in food to even constitute some minimal public health risk.

ACKNOWLEDGEMENTS

There have been many people contributing in a variety of ways to this thesis to whom I am very grateful. I would like to thank all of them for enabling me to carry out these studies and in particular:

Professor Roger Morris, my chief supervisor, without whose input this work would not have been possible. His foresight was indispensable. Our discussions were very stimulating and lead me to many new insights in epidemiology.

Steve Hathaway and Per Madie, my other supervisors, each with their own unique area of expertise, contributed invaluable input into this thesis. Steve Hathaway is thanked for the development and the supervision of an inspection trial regarding pleurisy in lambs.

A number of statistical issues were encountered during various projects and Dirk Pfeiffer would always be prepared to advise constructively in resolving them.

Discussions with Dave West were a great help in getting a fuller understanding of sheep diseases and farm management.

Brent Patterson, Warwick Deighton and staff on the properties who carried out the intervention studies and voluntarily put in extra time and effort.

The meat inspectors and veterinarians at the AFFCO Rangiuru plant for inspecting and recording the diseases of the lambs during the intervention studies.

AFFCO New Zealand for their cooperation with the case-control study, and the sheep farmers in the North Island who willingly completed and returned the questionnaire.

Mallinckrodt Veterinary Limited for donating the animal remedies which were used in the intervention studies.

The New Zealand Ministry of Agriculture for sponsoring me while I undertook this study.

Finally, I would like to thank my wife Rae for her support during this study.

TABLE OF CONTENTS

	Page
Abstract	i
Acknowledgements	ii
Table of Contents	iv
List of Figures	xii
List of Tables	xiv
Chapter 1: GENERAL INTRODUCTION	1
Aim of Food Safety Programmes	1
Conventional Meat Inspection Systems	1
Process Control	2
Risk Analysis	3
Animal Health Surveillance	3
Data Collection, Analysis and Feedback	3
Future Developments	4
Projects in the Thesis	4
Chapter 2: PNEUMONIA AND PLEURISY IN LAMBS	6
Literature Review of Pneumonia and Pleurisy in Sheep	6
Introduction	6
Clinical signs	6

Pathology	7
Micro-organisms	8
Micro-organisms in the upper respiratory tract	12
Risk factors	13
Vaccination and treatment	14
Post mortem inspection and processing	15
Hazard Analysis of Pneumonia and Pleurisy in Lambs with Regard to Public Health	16
Introduction	16
Materials and methods	16
Classification as a food-borne agent	16
Interpretation of the literature	18
Results	19
Discussion	27
Case-control Study of Pleurisy in Lambs	30
Introduction	30
Materials and methods	30
Collection of data	30
Statistical analysis	31
Results	31
Discussion	38
Intervention Study of Pleurisy and Pneumonia At Farm A	47
Introduction	47
Materials and methods	47

v

Weaning and first drench	48
Second drench	48
Third drench or slaughter	49
Fourth drench	49
Second draft for slaughter	49
Inspection and procedures for diseased lambs	49
Analytical methods	50
Results	50
Information collected at the slaughterhouse	50
Chi-squared tests to evaluate effect of treatments	51
Log-linear modelling to evaluate interactions between treatments and time of slaughter	52
Relationships	54
Relationship with Dictyocaulus viviparus	55
Discussion	56
Intervention Study of Pleurisy and Pneumonia At Farm B	
Introduction	58
Materials and methods	58
Treatments before trials started	58
Fourth drench	59
Fly strike treatment and fifth drench	59
Subsequent drenches	59
Inspection and procedures for diseased lambs	59

vi

	Analytical methods	60
Results		60
	Observations of diseased stock	60
	Information collected at the slaughterhouse	60
	Effects of treatment	61
	Log-linear modelling to evaluate interactions between treatments and time of slaughter	63
	Temporal analysis of pleurisy and pneumonia	63
	Relationships	64
	Comparison between Farm A and Farm B	65
	Discussion	65
Analy	sis of Lamb Pleurisy Inspection Trials	67
	Introduction	67
	Materials and methods	67
	Results of analysis of prevalence	68
	Discussion of analysis of prevalence	70
	Materials and methods for sensitivity and specificity	74
	Results of sensitivity and specificity analysis	75
	Discussion of sensitivity and specificity analysis	76
Analy	sis of Pleurisy Data of the MAF Disease and Defect Database	78
	Introduction	78
	Materials and methods	78
	Results	80
	Comparison between islands	80

vii

Comparison between regions	80
Comparison between premises and their regions	81
Predictions of the prevalence of pleurisy based on values of other premises	81
Effect of month and year	82
Discussion	84
Decision Support Systems to Evaluate Pleurisy in Slaughter Lambs	86
Introduction	86
DSS for pleurisy of any degree of severity	87
Comparison of point prevalence and cumulative prevalence	88
Comparison of cumulative prevalence including consideration of stock slaughter pattern	90
Performance of a farm over time	92
DSS to evaluate the probability of developing severe problems	94
The development of a feedback system	94
DSS for food safety	95
Discussion	98
CHAPTER 3: CHEMICAL RESIDUES IN SLAUGHTER ANIMALS	100
Introduction	100
Objectives and priorities of sampling for residues	100
Non-compliances	101
Maximum Residue Levels (MRLs)	101

viii

Reaction to non-complying levels	102
Categories of chemicals that leave residues	102
Animal remedies	102
Environmental contaminants	103
Chemicals that occur naturally in the environment	103
Chemical compounds discussed in the thesis	103
Analytical Methods	104
Baselines	104
Livestock classes	105
Random sampling	107
Temporal analysis	
Plotting	109
ANOVA and chi-squared tests	109
Quality control charts and statistics	109
Sequential sampling	110
Regression techniques	111
Spatial Analysis	111
Display of geographical patterns	112
ANOVA and chi-squared tests	112
Spatial statistics	112
Time-space analysis	115
Evaluation of Current Sampling Plans	116
Introduction	116

ix

Methods and materials of sampling plans	117
Comparison between levels	117
Random and stratified sampling	117
Sequential sampling	118
Results of sampling plans	118
Sample sizes for normal distribution with copper	118
Sample sizes for binomial distribution with ivermectin/milbemycin	120
Sequential sampling with copper and ivermectin/milbemycin	120
Discussion of sampling plans	120
Materials and methods of temporal simulations	124
Results of temporal simulations	125
Discussion of temporal simulations	128
Materials and methods of spatial simulations	129
Results of spatial simulations	132
Simulation of a normal situation	133
Simulation of clustering at two locations at a low level (L2)	135
Simulation of clustering at two locations at a high level (H2)	137
Simulation of clustering at six locations at a low level (L6)	139
Simulation of clustering at six locations at a high level (H6)	142
Simulation of clustering at 16 locations at a low level (L16)	144
Simulation of clustering at 16 locations at a high level (H16)	147
Discussion of spatial simulations	149
Risk-based Control System of Chemical Residues	151

х

Intro	oduction		151
Mod	el		152
	Stage 1	Good handling practice	152
	Comments	on stage 1	153
	Stage 2	Targeted high risk animals	155
	Stage 3	Targeted high risk farms	155
	Stage 4	Reduction by targeted sampling	156
	Stage 5	Farm certification programme	157
Disc	cussion		157
CHAPTER 4:	GENERA	L DISCUSSION	167
APPENDICES			170
REFERENCES			204

LIST OF FIGURES

.

Figure 2.1	Null hypothesis of cluster "Yards"	41
Figure 2.2	Final cluster "Yards"	42
Figure 2.3	Null hypothesis of cluster "Farm"	43
Figure 2.4	Final cluster "Farm"	44
Figure 2.5	Null hypothesis of cluster "Livestock"	45
Figure 2.6	Final cluster "Livestock"	46
Figure 2.7	Percentage prevalence of Major pleurisy at four slaughterhouses	71
Figure 2.8	Percentage prevalence of Minor pleurisy at four slaughterhouses	71
Figure 2.9	The Ration of Major pleurisy/Minor pleurisy at four slaughterhouses	72
Figure 2.10	Percentage prevalence of Acute pleurisy at four slaughterhouses	72
Figure 2.11	Percentage prevalence of Septicaemia at four slaughterhouses	73
Figure 2.12	Example of a component of a DSS to evaluate the existence of pleurisy problems regardless of slaughter pattern	90
Figure 2.13	Example of a component of a DSS to evaluate the existence of pleurisy problems with consideration of the slaughter pattern	91
Figure 2.14	Graphical assistance for farmer to evaluate his performance with regard to pleurisy and slaughter of his lambs	92
Figure 2.15	Component of a DSS to evaluate the probability of a farm developing problems	94
Figure 3.1	Illustration of the concept of providing assurances over a moving time frame	119
Figure 3.2	Sequential sampling plan for copper in sheep	123

Figure 3.3	Sequential sampling plan for ivermectin/milbemycin	123
Figure 3.4	Explanation of difference of non-complying days and runs	125
Figure 3.5	Histogram distribution of cadmium	129
Figure 3.6	Histogram distribution if original cadmium values are multiplied by 1.10	130
Figure 3.7	Histogram distribution if original cadmium values are multiplied by 1.25	130
Figure 3.8	Screen - Risk reduction strategy	160
Figure 3.9	Screen - Good handling practice (1)	160
Figure 3.10	Screen - Good handling practice (2)	161
Figure 3.11	Screen - Good handling practice (3)	161
Figure 3.12	Screen - Targeted high risk animal programme (1)	162
Figure 3.13	Screen - Targeted high risk animal programme (2)	162
Figure 3.14	Screen - Targeted high risk farms (1)	163
Figure 3.15	Screen - Targeted high risk farms (2)	163
Figure 3.16	Screen - Targeted sampling (1)	164
Figure 3.17	Screen - Targeted sampling (2)	164
Figure 3.18	Screen - Targeted sampling (3)	165
Figure 3.19	Screen - Farm certification programme (1)	165 ·
Figure 3.20	Screen - Farm certification programme (2)	166

LIST OF TABLES

Table 2.1	Micro-organisms reported to have been isolated from the ovine lower respiratory tract in New Zealand and overseas with their references	10
Table 2.2	Criteria for including micro-organisms in or excluding from food safety programmes	18
Table 2.3	Codes and descriptions used in the multivariate analysis	33
Table 2.4	Chi-squared values, p-values, and numbers of missing values of statistically significant variables at univariate level	34
Table 2.5	Beta coefficients, Standard errors (SE), Odds ratios (OR) and the 90% confidence intervals of variables included in the logistic regression model at the second stage	35
Table 2.6	Associations, Beta coefficients, Standard errors (SE), Odds ratios (OR) and 90% confidence limits of significant paths in the variable cluster "Yards"	36
Table 2.7	Associations, Beta coefficients, Standard errors (SE), Odds ratios (OR) and 90% confidence limits of significant paths in the variable cluster "Farms"	37
Table 2.8	Associations, Beta coefficients, Standard errors (SE), Odds ratios (OR) and 90% confidence limits of significant paths in the variable cluster "Livestock"	38
Table 2.9	Number of lambs that were slaughtered and respiratory pathology that was recorded at Farm A	51
Table 2.10	Chi-squared tests comparing the effects of treatments by using cumulative prevalences of respiratory pathology on 1/3/95	53
Table 2.11	Log-linear model which evaluates the interactions between treatment and the time of slaughter for Farm A	54
Table 2.12	Combinations of pathology of lungs and pleura at Farm A	55
Table 2.13	Relationship of pleurisy and pneumonia with Dictyocaulus viviparus	56

Table 2.14	Number of lambs that were slaughtered and respiratory pathology that was recorded at Farm B	
Table 2.15	Log-linear model which evaluates the interactions between treatment and the time of slaughter at Farm B	63
Table 2.16	Combinations of pathology of lungs and pleura at Farm B	64
Table 2.17	Comparison of pathology between two farms early in March 1995	65
Table 2.18	Prevalence of pleural lesions and the ratio of Minor pleurisy / Major pleurisy	69
Table 2.19	Codes used for determining meat inspection performance characteristics	74
Table 2.20	Meat inspection performance characteristics of pleurisy	75
Table 2.21	Meat inspection performance characteristics of Minor pleurisy	75
Table 2.22	Meat inspection performance characteristics of Major pleurisy	76
Table 2.23	Meat inspection performance characteristics of Acute pleurisy	76
Table 2.24	Premises of which pleurisy data were compared	79
Table 2.25	Number of slaughtered lambs and percentage prevalence by island	80
Table 2.26	Number of slaughtered lambs and percentage prevalence by region	81
Table 2.27	Percentage prevalence by slaughterhouse and neighbouring area	82
Table 2.28	P-values and R-squared values of linear regressions to evaluate the month and year factor	83
Table 2.29	Kruskal-Wallis one-way non-parametric ANOVA to analyse year effects	83
Table 2.30	Fictitious data of pleurisy and slaughtered lambs of Farm A and Area X	89
Table 2.31	Evaluation of farm performance over time	93
Table 3.1	Required sample size for testing copper in sheep based on historical data	119
Table 3.2	Required sample size for testing ivermectin/milbemycin in bulls based on historical data	120

.

xv

Table 3.3	Expected sample size for sequential sampling of copper in sheep	121
Table 3.4	Expected sample size for sequential sampling of ivermectin/milbemycin in bulls	121
Table 3.5	Upper Control Limit used for temporal simulation of levamisole non-compliances in lambs	124
Table 3.6	Number of violative days per time period	126
Table 3.7	Number of violative runs per time period	127
Table 3.8	Frequency distribution of cadmium values in hoggets for a normal situation	129
Table 3.9	Frequency distribution of cadmium values which were 1.1 * normal situation	130
Table 3.10	Frequency distribution of cadmium values which were 1.25 * normal situation	131
Table 3.11	I and c, p-values for simulation of normal situation	133
Table 3.12	G (d), p-values for simulation of normal situation	133
Table 3.13	G _i (d), clustered locations for normal situation	134
Table 3.14	I and c, p-values for simulated clustering at L2 level	135
Table 3.15	G (d), p-values for simulated clustering at L2 level	135
Table 3.16	G _i (d), clustered locations for simulation at L2 level	136
Table 3.17	I and c, p- values for simulated clustering at H2 level	137
Table 3.18	G (d), p-values for simulated clustering at H2 level	138
Table 3.19	G _i (d), p-values for simulated clustering at H2 level	138
Table 3.20	I and c, p- values for simulated clustering at L6 level	140
Table 3.21	G (d), p-values for simulated clustering at L6 level	140
Table 3.22	G _i (d), clustered locations for simulation at L6 level	141

xvi

Table 3.23	I and c, p-values for for simulated clustering at H6	142
Table 3.24	G (d), p-values for simulated clustering at H6 level	143
Table 2.25	G _i (d), clustered locations for simulation at H6 level	143
Table 3.26	I and c, p- values for simulated clustering at L16 level	145
Table 3.27	G (d), p-values for simulated clustering at L16 level	145
Table 3.28	$G_i(d)$, clustered locations for simulation at L16 level	146
Table 3.29	I and c, p- values for simulated clustering at H16 level	147
Table 3.30	G (d), p-values for simulated clustering at H16 level	148
Table 3.31	G _i (d), clustered locations for simualtion at H16 level	148
Table 3.32	Fictitious weighted risk factors	154

CHAPTER 1

INTRODUCTION

Aim of Food Safety Programs

The aim of food safety programmes is to provide food which has a minimal risk of producing diseases or other adverse effects on the consumer, at a reasonable price.

This definition conveys the concept that the safety of food should be seen in the context of product price, ie additional safety can be bought at the cost of an increased price for the product. There should be an appreciation that there is a balance between the desire to eat various foods and the risk that is inherently taken in the process of eating each type of food. The definition is intended to express the idea that few human activities are risk-free, and that actions taken to reduce or eliminate risks must balance the additional benefit from safety programmes against the additional costs.

The critical components which should form the basis for designing meat safety programmes are explained below. They consist of process control, data collection, analysis/feedback, and risk assessment. In contrast, conventional food safety programmes rely on inspection of the carcasses of individual animals and are commonly called meat inspection systems.

Conventional Meat Inspection Systems

As an established concept 'meat inspection' has been central to efforts aimed at guaranteeing protection of the consumer. This term may have become counterproductive, because it emphasises what should be a component only of a more comprehensive food safety programme which includes process control and protection against chemical residues.

Inspection of animals in slaughterhouses is intended to protect the public health, but current inspection procedures support past disease priorities and outdated epidemiological understanding. They do not accurately reflect current concepts of product safety, and how it should be achieved. In New Zealand the vast majority of sheep, cattle, pigs, deer, goats and horses that are slaughtered for human consumption are subjected to an ante mortem and a post mortem inspection which are clinical and pathological evaluations. Usually both evaluations are carried out rapidly. However in case of abnormalities there is scope to detain live animals or carcasses and tissues for a thorough inspection, with laboratory backup if necessary. Those animals or parts of animals which are deemed unfit for human consumption will be condemned. Although the

intention is to remove product from the food chain which presents a public health hazard, in reality only tissues which display abnormalities are condemned. Many conditions of public health significance cannot be detected by current procedures. Only some of the animal diseases that are used to determine carcass disposition at meat inspection have public health significance.

Generally meat inspection systems in the Western world are 'procedure' driven. A product is inspected at the end of the production process. The systems are very occupied with compliance with their rules rather than with their more fundamental aims. These meat inspection systems are frequently based on the systems that were developed late last century. Many of the conditions that were considered to be significant at the time are no longer considered to be important. This is to some degree because the prevalence of a number of diseases in livestock has decreased. However there is an increasing awareness that some of the conditions which cannot be detected by conventional meat inspection are of great human health importance. These conditions include the presence of pathogenic micro-organisms and residues of chemicals.

There are other important functions which meat inspection already performs to some degree and which can be strengthened in new food safety programmes. They include surveillance of animal health and production, and defects of processing and marketing importance. These components are not concerned with food safety. Where these issues are addressed successfully farmers and meat processors will benefit from them. The ability to carry out post mortem examinations of large numbers of animals is a strong point of meat inspection. The role of meat inspection regarding animal health surveillance is explored below. This type of surveillance should not be considered as a stand-alone system. There are inherent weaknesses in the collection of the data, and it is biased in various respects. However an appreciation of the scope of these deficiencies will facilitate the incorporation of slaughterhouse data with other systems, ultimately leading to an overall animal disease surveillance system that will give a sufficiently accurate 'picture' of the situation. The removal of defects such as pleurisy, arthritic joints, and abnormally pigmented meat from carcasses is a cost to meat processing. Meat inspection systems can assist in quantifying the cost of labour and discarded product thereby providing valuable feedback to both farmers and meat processors. Such feedback is essential where diseases can be prevented on the farm, while the only remedy available to meat processors is trimming.

Process Control

The main tasks facing food safety programmes in relation to infectious diseases are to exclude pathogens from the food chain to a reasonable degree and to limit the opportunities for these pathogens to multiply during processing and storage. The phrases that have been coined to describe these concepts are 'pre-harvest food safety' and HACCP (Hazard Analysis Critical Control Point). In the case of pre-harvest food safety, risk factors which contribute to the existence of pathogens in farm animals are identified. Subsequently farmers can be encouraged to raise livestock in such a manner that the prevalence of pathogens in the livestock population is reduced. The HACCP principles can be applied to both farming and the meat processing industry. In the meat processing industry it focuses on the areas where processing can go wrong, resulting in contamination of product and the multiplication of pathogens. Examples of such critical points are contact between skin, ingesta or faeces and the carcass, contact between meat and food handlers, and temperature abuse.

Risk Analysis

There is a need to develop risk analysis tools which will be able to assess the risk which pathogens, procedures and their interaction, pose to public health. This may be performed in a qualitative or a quantitative sense. There is a need to generate a greater appreciation among the general public and decision makers that with the present production and processing methods a nil-risk policy is not feasible. In fact it has never existed. The perception in the past that meat was "safe" if inspected and handled properly, was based on incomplete knowledge. New understanding which has become available over recent decades demonstrates the limitation of the inspection approach.

Risk analysis will need to be tied in with economic models. If unequivocally "safe" meat cannot be produced, then questions need to be asked about what are the economic options for producing meat of different degrees of "safety", to satisfy different market needs.

Animal Health Surveillance

Over the years the importance of disease surveillance has shifted from easily identifiable animal diseases to endemic diseases which are not clearly defined and which are strongly multifactorial. Monitoring for exotic diseases such as foot and mouth disease (FMD) through food safety programmes that are based at slaughterhouses is an important part of the overall national FMD surveillance programme. Most livestock will finally be slaughtered in a slaughterhouse. This provides an opportunity to assess the health of the national flock and individual farm flocks. The data for certain diseases can be acquired more easily and cheaply in a slaughterhouse than anywhere else. These data can then be used to assess the health status of the national herd and to monitor the effect of control or eradication campaigns. Especially in the case of endemic diseases such as pneumonia in sheep, and Johne's disease, slaughterhouse data will be invaluable to individual farmers.

Data Collection, Analysis and Feedback

The objectives of data collection have to be clearly defined before the actual data collection is started. It would need to be considered whether food safety, animal health or product quality

issues are considered. The success of process control, risk analysis and animal health surveillance depends heavily on the availability of data. These data need to be comprehensive and of good quality. Systems need to be in place to collect relevant data and to retrieve them on-line. In addition there is a need to analyse the data in a consistent, statistically sound manner. Computer hardware has reached the stage where it is able to perform the above functions in such a manner that data can be used for practical purposes. There is a need now to develop the appropriate software. Major problems still exist such as identifying geographical areas where animals have been raised before they were slaughtered. This problem may be of more importance in the cattle and sheep industry than in the pig industry.

Future Developments

There is a growing appreciation in the meat processing industry that control of the process of food production at all stages is as appropriate for them as it is for other industries. Issues such as human infections with *Salmonella* ssp., *Campylobacter* ssp., *Listeria monocytogenes*, verotoxigenic *E. coli* and *Toxoplasma gondii* in food of animal origin continue to make headlines in the media. They will not go away and the food processing industry is acutely aware of this. Bovine spongiform encephalopathy (BSE) has brought this subject even more clearly into focus at the worldwide level. Consumer rights have been clearly defined in law and are likely to be applied to instances of food poisoning more often in the future than is currently happening. In the case of *Salmonella* in eggs corrective action was taken by the poultry industry overseas. An increased awareness among farmers regarding their responsibility to supply healthy stock may seem desirable. However risk factors are usually poorly defined or not defined at all. Therefore the practices that farmers should comply with to supply animals carrying fewer pathogens are not very obvious. Improved identification systems of stock are currently being considered, especially for cattle. This will enhance systems such as AgriBase which is close to full implementation. In the near future the identification of stock may be less troublesome.

The ratification of GATT will have two major implications. Certification based on freedom of certain diseases on defined farms or in certain areas rather than in the whole of a country has become an accepted practice. Disease will be considered in relation to zones of varying size, rather than only in relation to a whole country. This will especially have an effect on the use of geographical information systems and statistical analysis. Any restrictions in trade will need to be scientifically based. This will especially have an effect on the development of risk analysis techniques.

Projects in the Thesis

This thesis takes two quite different issues as examples to explore how meat safety programs can adapt to the new priorities. First it explores how existing inspection findings could be used to provide information to producers, based on the example of pleurisy in lambs. Second, it examines the issue of chemical residue control, considering how a more effective surveillance system for preventing human health risks from such residues could be developed.