

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Polymer Dynamics Studied by Dynamic Light Scattering

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Physics at Massey University

by

David Thomas CLARK

1998

Abstract

Theoretical treatments of dynamic properties of polymer solutions are reviewed. Particular emphasis is placed on the discussion of diffusion in polymer solutions. The relationship between the slow diffusion coefficient found by Dynamic Light Scattering (DLS) and the Self Diffusion Coefficient is shown.

An introduction to DLS theory is given. The experimental techniques involved in DLS measurements are discussed.

Concentration dependencies of the DLS observed slow diffusion coefficient in ternary polymer solutions of polystyrene-poly vinyl methyl ether-solvent have been measured. Solvents used were toluene, carbon tetrachloride and tetrachloroethylene and the polymer molar masses were 110 000 gmol⁻¹ for both polystyrene (PS) and poly vinyl methyl ether (PVME). Solvents were chosen to be very nearly isorefractive with PVME. Toluene is very nearly an equally good solvent for the polymer pair PS and PVME, while tetrachloroethylene is equally poor for both polymers. Carbon tetrachloride is an unequal quality solvent for this polymer pair. The results of these DLS measurements are reported.

Four sets of experiments are described. The first is the effect on the relationship between D_I (the slow mode diffusion coefficient found by DLS) and D_S (the self diffusion coefficient) of different mass fractions in the polymer solution. It is found the mass fraction, x, has little effect on the observed diffusion coefficient. Secondly the effect of the polymer-polymer interaction parameter, χ , on the relationship between D_I and D_S is investigated. It is found solutions formed with equal quality solvents have D_I nearly equal to D_S . But solutions formed with unequal quality solvents have D_I considerably less than D_S and that these solutions suffer phase separation at lower concentration. Thirdly the effect of polymer molar mass on the relationship between D_I and D_S is investigated. These are found to be in line with those expected from literature. Fourthly the considerable discrepancy between D_I and D_S which is manifest in 110 000 gmol⁻¹ PS/ 110 000 gmol⁻¹ PVME/ toluene solutions at polymer volume fractions greater than 0.4 is investigated. The diffusion coefficient found, D_I , does not fit a unique concentration power law. Two unique regions are seen with concentration exponents of -11±4 and -14.9±0.7 for the low and high concentration regions respectively. This is found to agree with results found in literature.

Acknowledgments

I wish to express my sincere gratitude to the following people for their involvement in this work:

Firstly to Jesus, the Author and Perfector of my faith, who gives people a second chance. To you goes the glory.

My supervisor Assoc. Professor Neil Pinder, for providing both theoretical and experimental "know how", and infinite patience. Your enthusiasm was greatly appreciated, as was your advice and proof reading.

The Staff and Students of the Dept. of Physics who have greatly encouraged and enthused myself for the things of physics as well as put up with me for more than a decade.

Dr Hedwig of the Dept. of Chemistry for the use of his warm room and balance.

The Mechanical Workshop Staff for construction of the high concentration transferral apparatus.

GAF for supplying the poly vinyl methyl ether used in this work free of charge. Having worked with this polymer, I now see why, it sticks everywhere.

My Mum and Dad who have provided the example and the enthusiasm to achieve anything. Thanks.

And of course Kerry Wallace, my girlfriend at the time of writing, whose unfailing love and support provides an all-win situation in everything I do. Who patiently proof-read this manuscript, and whose proofed manuscripts I always looked forward to receiving.

Table of Contents

Abstract	·			•		•	•	٠	۲	ii
Acknowledge	ements	•	•	÷	**	•	•	•	•	iv
Table of Con	itents	•		·	•	•	•	•	•	v
List of Figur	es			•	•			3 • 5		x
List of Table	S	•	•	•	•	•	·	œ.	•	xiii
Chapter 1	Introd	luction	•). * .(345		•	•		1
1.1	Polym	ers and	Dynan	nic Ligh	nt Scatte	ering	•	*	<u>8</u> .	1
1.2	Thesis	Organi	isation	1 7	3 11	.		•	·	3
Chapter 2	Polym	er and	DLS T	heory	·					4
2.1	Polym	er Outl	ine	÷.	×.			•	÷	4
	2.1.1	Polym	ers-Wh	at are th	ney?			0	*	4
	2.1.2	Polym	eric Str	ucture	а.:		a)		r	5
2.2	Proper	ties of	Polyme	rs in Sc	olution		•	ŧ	•	7
	2.2.1	Comp	atibility	of Poly	ymers	3 1 2		÷	×	7
	2.2.2	Ideal I	Polymer	r Chain	Model	•		•	÷	11
	2.2.3	Exclue	ded Vol	ume an	d the S	elf Avo	iding W	/alk		12
	2.2.4	Theta	Solutio	ns	N.	•		÷		14
	2.2.5	Flory-	Huggin	s Mean	Field 7	Theory	*	×	*	15

	2.2.6 Polymer Motion	•	20
	2.2.6a The Rouse Model	÷	20
	2.2.6b The Zimm Model		24
	2.2.6c Reptation	s.	29
	2.2.6d The Blob Model	•	33
2.3	Basic Dynamic Light Scattering Theory		34
2.4	DLS Theory-Ternary Polymer Solutions	ŧ	40
	2.4.1 Benmouna et al Mean Field RPA Theory .	÷	40
	2.4.2 Extentions to Benmouna Theory	ŝ	46
	2.4.2a Ternary systems containing		
	polymers of equal molar mass		
	and a solvent of equal quality	•	51
	2.4.2b Ternary systems containing		
	polymers of unequal molar mass		
	and a solvent of unequal quality		53
	2.4.3 Ternary solutions close to phase separation	. •	54
Chapter 3	Experimental Set-up		61
3.1	Dynamic Light Scattering .		61
	3.1.1 Historical Overview		61
	3.1.2 The Dynamic Light Scattering System .	÷	61
	3.1.3 Laser Operation		63

3.1.4	Spectrometer	and Ph	otomult	iplier	2	¥)	÷	64
	3.1.4a	Refrac	tive Inc	lex Mat	ching H	Bath		64
	3.1.4b	Spectr	ometer	Gonion	neter			
		and Pł	otomul	tiplier	ŧ.	2) 2)	÷	65
	3.1.4c	Optica	l Aligh	nment c	of the			
		Spectr	ometer	•	÷	÷	×	65
3.1.5	The Autocorr	elator			×	•	Â	68
3.1.6	Computer and	d Softw	are			÷	×	71
3.1.7	Running Sam	ples			•		÷	74
Samp	le Preparation	1960	7 8 6		×	×	×	76
3.2.1	Glassware cle	eansing	procedi	ires	•	•	÷	76
3.2.2	Polymers use	d in this	s study	ĸ	¢	×.		78
	3.2.2a	Polym	er chara	acteristi	cs	¥		78
	3.2.2b	Fractio	onation	of PVN	1E	ð.	•	80
	3.2.2c	PVME	EHandl	ing				81
3.2.3	Solvents used	l in this	study	1 1	•	8	٠	82
3.2.4	Sample filtrat	tion		8	•		*	83
3.2.5	Solution Prep	paration	•		÷			84
3.2.6	Sample delive	ery and	storage		•	•		85
3.2.7	Weighing		·	8	8	6		85

3.2

Chapter 4	Results and Conclusion	•	88
4.1	Solutions Studied and Sundry Information		88
	4.1.1 Solutions Studied	·	88
	4.1.2 Sundry information about results		93
4.2	Results and Discussion		95
	4.2.1 Investigation of the variation of D_I		
	with Mass Fraction		95
	4.2.2 Investigation of the variation of D_I with the		
	Flory Polymer-Polymer Interaction Parameter, χ		100
	4.2.3 Investigation of the variation of D_I with Molar Ma	SS	105
	4.2.4 Investigation into the discrepancy between D_I		
	and D_S at high polymer concentrations .	•	111
Chapter 5	Conclusion	•	116
5.1	Conclusion	*	116
5.2	Suggestions for Further Work	•	120
Appendices:	Publications	٠	121
Appendix 1	New Zealand Institute of Physics Conference Poster (199	2)	
	Dynamic Light Scattering from		
	Ternary Polymer Solutions	*	122

Appendix 2	Studies of Ternary Polymer Solutions by											
	Dynamic Light Scattering and Pulsed Field Gradient											
	Nuc	elear Ma	agnetic l	Resona	ince							
	Mad	Macromolecular Reports, A31 (SUPPLS, 6 & 7),										
	111	9-1126	(1994)	22	r.	¥	÷	÷	÷	135		
References								÷		144		

List of Figures

Chapter 2 Polymer and DLS Theory

Figure 2.2.1	Free Energy of Mixing for Binary mixture versus	
	their composition	8
Figure 2.2.2	Phase diagram of a binary system showing the	
	Upper Critical Point	9
Figure 2.2.3	Phase diagram of a binary system showing the	
	Lower Critical Point	9
Figure 2.2.4	Temperature-concentration diagram for a polymer	
	solution far from LCP according to Daoud	
	and Jannick	10
Figure 2.2.5	A Representation of the Rouse Model beads	
	and spring	20
Figure 2.2.6	A single polymer entangled in the polymeric matrix	
	of other polymers	29
Figure 2.2.7	Reptation-The Rouse Chain in a Tube	31
Figure 2.3.1	Typical scattering geometry in a Dynamic Light	
	Scattering Experiment	34
Chapter 3 Expe	rimental Set-up	
Figure 3.1.1	Dynamic Light Scattering Equipment	62
Figure 3.1.2	The Diffusion coefficient of 0.091µm polystyrene	
	latex solution at various angles of scatter .	67

Figure 3.1.3	The first cumulant of a 0.091µm polystyrene	
	solution vs q^2	67
Figure 3.2.1	Apparatus for cleaning glassware	77
Figure 3.2.2	The structure of polystyrene	79
Figure 3.2.3	The structure of poly (vinyl methyl ether)	79
Figure 3.2.4	An exploded view of the filtering apparatus .	83
Figure 3.2.5	Apparatus for transferring high concentration	
	solutions	85
Chapter 4 Resul	ts and Discussion	
Figure 4.2.1	The concentration dependence of the diffusion	
	coefficient of PS-PVME-toluene solutions of	
	various mass fractions	96
Figure 4.2.2	The concentration dependence of the diffusion	
	coefficient of PS-PVME-tetrachloroethylene	
	solutions of various mass fractions	98
Figure 4.2.3	The concentration dependence of the diffusion	
	coefficient of PS-PVME-carbon tetrachloride	
	solutions of various mass fractions	99
Figure 4.2.4	The concentration dependence of the diffusion	
	coefficient found by DLS in the PS-PVME system	
	with the solvents toluene, tetrachloroethylene and	
	carbon tetrachloride at a polymer mass fraction	
	of 0.05	103

Figure 4.2.5	The concentration dependence of the diffusion							
	coefficient found by DLS in the PS-PVME system							
	with the solvents toluene and tetrachloroethylene at a							
	polymer mass fraction of 0.12	104						
Figure 4.2.6	The concentration dependence of the diffusion							
а. С	coefficient found by DLS in the PS-PVME system							
	with the solvents toluene and carbon tetrachloride							
	at a polymer mass fraction of 0.29	105						
Figure 4.2.7	The concentration dependence of the diffusion							
	coefficient obtained by DLS for the PS-PVME system							
	with the solvent toluene at various polymer							
	mass fractions and molar masses	107						
Figure 4.2.8	The concentration dependence of the diffusion							
	coefficient obtained by DLS for the PS-PVME system							
	with the solvent carbon tetrachloride at various polymer							
	mass fractions and molar masses	108						
Figure 4.2.9	The concentration dependence of the diffusion							
	coefficient obtained by DLS for the PS-PVME system							
	for carbon tetrachloride and toluene at various							
	polymer mass fractions and molar masses	110						
Figure 4.2.10	High concentration extension of Daivis's							
	110 000 gmol ⁻¹ PS/ 110 000 gmol ⁻¹							
	PVME in toluene	113						

List of Tables

Chapter 3 Experimental Set-Up

Table 3.2.1	Polymers used in this study	٠	*	78
Table 3.2.2	Solvents used in sample preparation	•	·	82
Chapter 4 Resul	ts and Discussion			
Table 4.1.1	Sample series investigated	÷	÷	89
Table 4.1.2	Solution series mass and weight fractions	5		90
Table 4.2.1	Interaction parameter for PS and PVME			
	in various solvents	ě.	•	101

Chapter 1 Introduction

1.1 Polymers and Dynamic Light Scattering

Since the dawn of the laser, Laser Light Scattering has allowed the investigation of molecular size movements within solutions. Recently ternary polymer solutions containing two polymers and a single solvent have been investigated using Dynamic Light Scattering (DLS). The lack of suitable theory, and apparatus of sufficient quality has limited these investigations to diffusion coefficient dependence on molar mass and concentration. Generally these investigations have utilised special polymers and solvents in order to reduce the complexity of the results found.

Benmouna and Borsali et al [1] [2] [3] [4] have recently produced a theory of diffusion specifically for polymer solutions, which they have extended in ternary polymer solutions. This theory makes several predictions which are easily verifiable by experiment. Daivis [5] has briefly examined various aspects of this theory experimentally, however these results require confirmation and expansion, as well as experimental investigation into recent theoretical advances of this theory.

Daivis's work advanced understanding of diffusion in polymer solutions, however understanding was left incomplete in several areas. In his work Daivis compared diffusion in an equally good solvent for the polymer pair polystyrene (PS) and poly vinyl methyl ether (PVME) with that for the same polymer pair in an unequal quality solvent. The comparison of this diffusion data with data collected with the same polymer pair in an equally poor quality solvent would reveal much about polymer motion in solutions, yet this work was not attempted by Daivis. Daivis noted that the diffusion coefficient measured by DLS deviated from that obtained by Pulse Gradient Spin Echo Nuclear Magnetic Resonance Spectroscopy (PGSE NMR) at high polymer concentrations. This work was not pursued by Daivis. This work investigates aspects of Daivis's work which have been left incomplete or require further investigation for resolution.

1.2 Thesis Organisation

Chapter 2 summarises existing theories of diffusion in polymer solutions, and DLS theory. This chapter also explains what polymers are and gives a basic understanding of the properties of polymers critical to understanding this thesis.

Chapter 3 summarises experimental procedures for both the DLS equipment and also for solution preparation. This chapter also summarises some of the theoretical background for the DLS equipment, and the sources of polymers and solvents utilised in this work.

Chapter 4 summarises investigations into four aspects of the work previously presented by Daivis et al [5] [6] [7] [8] [9]. The first is the effect on the relationship between D_I and D_S of different mass fractions in the polymer system 110 000 Dalton PS/ 110 000 Dalton PVME/ solvent (where three different solvents were utilised:- toluene, carbon tetrachloride and tetrachloroethylene). Secondly the effect of the polymer-polymer interaction parameter, χ , on the relationship between D_I and D_S is investigated. Thirdly the effect of polymer molar mass on the relationship between D_I and D_S is investigated. Fourthly the considerable discrepancy between D_I and D_S which is manifest in 110 000 Dalton PS/ 110 000 Dalton PVME/ toluene solutions at polymer volume fractions greater than 0.4. The results presented in this chapter are also discussed and compared to results found in literature.

Chapter 5 summarises the main conclusions which can be drawn from this study.

3