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Influence Networks compared with Reaction
Networks: Semantics, Expressivity and

Attractors
François Fages, Thierry Martinez, David A. Rosenblueth and Sylvain Soliman

Abstract—Biochemical reaction networks are one of the most widely used formalisms in systems biology to describe the molecular
mechanisms of high-level cell processes. However, modellers also reason with influence diagrams to represent the positive and
negative influences between molecular species and may find an influence network useful in the process of building a reaction network.
In this paper, we introduce a formalism of influence networks with forces, and equip it with a hierarchy of Boolean, Petri net, stochastic
and differential semantics, similarly to reaction networks with rates. We show that the expressive power of influence networks is the
same as that of reaction networks under the differential semantics, but weaker under the discrete semantics. Furthermore, this leads
us to consider a positive Boolean semantics that cannot test the absence of a species and compare it with the (negative) Boolean
semantics with test for absence in gene regulatory networks à la Thomas. We study the monotonicity properties of the positive
semantics and derive from them an algorithm to compute attractors in both the positive and negative Boolean semantics. We illustrate
our results on models of the literature about the p53/Mdm2 DNA damage repair system, the circadian clock, and the influence of MAPK
signaling on cell-fate decision in urinary bladder cancer.

Index Terms—Reaction networks, Influence networks, Differential Equations, Stochastic semantics, Petri nets, Boolean semantics,
Galois connections, Attractors.

F

1 INTRODUCTION

B IOCHEMICAL REACTION NETWORKS are one of the most
widely used formalisms in systems biology to describe

the molecular mechanisms of high-level cell processes. This
approach is promoted by exchange formats for reaction
models such as SBML [1] which provides a syntax without
fixing the interpretation of a reaction network by either
differential equations, continuous-time Markov chains, Petri
nets, or Boolean transition systems [2]. One clear success of
this approach has been the creation of large model reposi-
tories such as BioModels [3] and its thousands of reaction
networks of biological processes which can be analyzed in
different formalisms and reused in various contexts.

Modelers can also work, however, with a simpler for-
malism of influence networks to merely describe the positive
and negative influences between molecular species, without
fixing their implementation by biochemical reactions. In par-
ticular, Boolean influence networks have been popularized
in the 70’s by Glass, Kauffman [4] and Thomas [5], [6] to
reason about gene regulatory networks, represented by ordi-
nary graphs between genes, given with a Boolean transition
table which defines their Boolean transition semantics, be it
synchronous or asynchronous. QualSBML is an SBML pack-
age dedicated to this kind of network. Necessary conditions
for multi-stability (cell differentiation) and oscillations have
been given in terms of positive or negative circuits in the
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influence graph [7], [8]. Several tools such as GINsim [9],
[10], GNA [11] or Griffin [12], use these properties and
powerful graph-theoretic and model-checking techniques
to automate reasoning about the Boolean state transition
graph, compute attractors and verify various reachability
and path properties. The representation of Boolean influence
networks by Petri nets was described in [13] but leads to
complicated encodings. It is also worth mentioning that in-
fluence networks with spatial information have been nicely
developed in [14] as a formalism particularly suitable for
describing natural algorithms in life sciences and social
dynamics. Modelers may also find an influence network
useful to consider and maintain in the process of building
a reaction network, for example to reduce a reaction model
while preserving the influence circuits [15]. Another reason
is that it is easier to visualize influence graphs rather than
reaction hypergraphs for which sophisticated graphical con-
ventions such as SBGN [16] have been developed. While
it is clear that the influence graph is an abstraction of the
reaction hypergraph [2] (and perhaps more surprisingly that
the influence network defined by the signs of the Jacobian
matrix of the differential semantics of a reaction network is
essentially independent of the rate functions [17]), influence
networks are mostly used for their graphical representation
and their Boolean semantics, but more rarely as a modeling
paradigm for Systems Biology with quantitative semantics
using differential equations or stochastic processes.

Our contributions in this paper are twofold. First, we in-
troduce a formalism of influence networks with forces, and
equip it with a hierarchy of Boolean, Petri net, stochastic and
differential semantics, similarly to [2] for reaction networks
but extended here to semantics with negation, using the
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framework of abstract interpretation originally introduced
for reasoning about programs [18]. This approach provides
an influence model with a hierarchy of possible interpre-
tations related by precise abstraction relationships, so that,
for instance, if a behavior is impossible in the Boolean se-
mantics, it is surely not possible in the stochastic semantics
whatever the influence forces are. Then we study the relative
expressive power of influence and reaction networks. We
show that they have the same expressive power under the
differential semantics, but not in the stochastic, Petri net and
Boolean interpretations, since influence networks can only
express one change at a time, i.e. unitary transition systems.

Second, the relationships between the different seman-
tics lead us to consider a positive Boolean semantics,
i.e. without negation and no capability of testing the absence
of a molecular species, which we compare to the (negative)
Boolean semantics, with test for absence, of gene regulatory
networks à la Thomas. We study the monotonicity properties
of the positive Boolean semantics and derive from them an
algorithm to compute attractors in both the positive and
negative Boolean semantics. These concepts are illustrated,
and the attractor computation algorithm evaluated, on mod-
els of the p53/Mdm2 DNA damage repair system [19],
[20], [21], of the circadian clock [22], and on a challenging
53 variable model of the influence of MAPK signaling on
cell-fate decision in urinary bladder cancer [23], for which
tools based on the construction of the transition graph, like
GINsim [9], [10], fail to enumerate the attractors.

This article is an extended version of our CMSB con-
ference paper [24] 1. For the sake of reproducibility, all the
examples presented in this paper can be run in BIOCHAM
v4 2 with a notebook available online 3.

2 PRELIMINARIES ON REACTION NETWORKS

2.1 Notations

Unless explicitly noted, we will denote sets and multisets by
capital letters (e.g. S, we shall also use calligraphic letters for
some sets), tuples of values by vectors (e.g., ~x), and elements
of those sets or vectors (e.g. real numbers, functions) by
small Roman or Greek letters. For a multiset M : S → N,
M(x) denotes the multiplicity of element x in M (usually
the stoichiometry). By abuse of notation, ≥ will denote the
integer or Boolean pointwise order for vectors, multisets
and sets (i.e. set inclusion), and +, − the corresponding
operations for adding or removing elements. With these

1. The new material included in this extended version concerns
several aspects. The formal semantics have been extended to include
semantics with negation for testing the absence of a molecule in the
Boolean, multi-level (Petri net) and stochastic semantics. This necessi-
tated to make some subtle technical modifications in the definitions of
reaction inhibitors and influences sources as multisets instead of sets
(Def. 1 and 5). We have added examples along the text, in particular to
illustrate the use of inhibitors in reactions and of negative sources in
(positive as well as negative) influences. The hierarchy of semantics
with negation is detailed both for reaction and influence networks,
with new theoretical results provided (Thm. 2, 3). The algorithm for
computing attractors (Alg. 2) is fully described including the use of
model checking and SAT solving. The evaluation section provides a
more complete description of the examples and of our computation
results.

2. http://lifeware.inria.fr/biocham4
3. http://lifeware.inria.fr/wiki/software/#TCBB17

unifying notations, set inclusion may thus be noted S ≤ S′

and set difference S − S′.

2.2 Syntax
We recall here definitions from [17], [25] for directed reac-
tions with inhibitors4. In this paper, we assume a finite set
S = {x1, . . . , xs} of molecular species.

Definition 1. A reaction over S is a quadruple (R, I, P, f),
whereR is a multiset of reactants in S, I a multiset of inhibitors
in S, P a multiset of products in S, and f : Rs → R is a rate
function over molecular concentrations or numbers. A reaction
network is a finite set of reactions.

It is worth noting that a molecular species in a reac-
tion can be both a reactant and a product, i.e. a catalyst,
or both a reactant and an inhibitor (e.g. Botts–Morales
enzymes [26]). Those mathematical definitions are mainly
compatible with SBML, however there are some differences.
In SBML, catalysts and inhibitors are not distinguished, both
are called reaction modifiers. Furthermore, unlike SBML, we
find it useful to consider only directed reactions (reversible
reactions being represented here by two reactions) and to
enforce the following compatibility conditions between the
rate function and the structure of a reaction:

Definition 2 ( [17], [25]). A reaction (R, I, P, f) over S is
well-formed if the following conditions hold:

1) f is a non-negative partially differentiable function,
2) xi ∈ R iff ∂f/∂xi(~x) > 0 for some value ~x ∈ Rs+,
3) xi ∈ I iff ∂f/∂xi(~x) < 0 for some value ~x ∈ Rs+,
4) xi ∈ R implies f(x1, . . . , xs) = 0 whenever xi = 0.

A reaction network is well-formed if all its reactions
are well-formed. Those conditions ensure that the reactants
contribute positively to the rate of the reaction at least in
some region of the concentration space (condition 2), that
the inhibitors indeed decrease the reaction rate (condition
3), and that the system remains positive (condition 4) [25].

Example 1. These mathematical definitions, and some more to
come in the following sections, can be concretely illustrated by
the simple birth-death process of Lotka–Volterra, viewed here as a
model of autocatalytic chemical reactions between a proliferating
prey protein A and a predator enzyme B. This leads to the
following well-formed non-linear reaction network in BIOCHAM
v4 syntax, without reaction inhibitor:

k1*A*B for A+B => 2*B.
k2*A for A => 2*A.
k3*B for B => _.

Example 2. Reaction inhibitors are often used in modeling. This
is for instance the case in the model of the DNA damage repair
system by Ciliberto et al. [27], see Fig. 1, to which we will return
in Sec. 5.1. This ODE model contains a term which represents
the phosphorylation, inhibited by the p53 protein, of the Mdm2
protein. This term can be represented by the well-formed reaction
({Mdm2}, {p53}, {Mdm2p}, k ·Mdm2/(j + p53)), written

4. One technical difference here is that we consider reactions with a
multiset of inhibitors instead of a set. The reason comes from the multi-
level semantics with negation which was not considered before, and in
which the multiplicity of the inhibitors can be interpreted as threshold
values above which a reaction does not proceed.

http://lifeware.inria.fr/biocham4
http://lifeware.inria.fr/wiki/software/#TCBB17
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Fig. 1. Reaction network of the p53/Mdm2 DNA damage repair sys-
tem [27] with one reaction inhibitor, p53tot, for the phosphorylation of
Mdm2.

k*Mdm2/(j+p53) for Mdm2 / p53 => Mdm2p.

2.3 Hierarchy of Semantics

As detailed in [2], a reaction network can be interpreted with
different formalisms that are formally related by abstraction
relationships in the framework of abstract interpretation [18]
and form a hierarchy of semantics. We simply recall here the
definitions of the different semantics of a reaction network.

The differential semantics associates an Ordinary Differ-
ential Equation (ODE) system with a reaction network R in
the usual way:

dxj
dt

=
∑

(Ri,Ii,Pi,fi)∈R

(Pi(j)−Ri(j)) · fi

It is worth noting that in this interpretation, the inhibitors
are supposed to decrease the reaction rate but do not
prevent the reaction from proceeding with effects on the
products and reactants.

In Ex. 1, the differential semantics gives the classical
Lotka–Volterra equations

dA/dt = k2 ·A− k1 ·A ·B

dB/dt = k1 ·A ·B − k3 ·B

and sustained oscillations as shown in Fig. 2.
The stochastic semantics of a reaction network is defined

by a transition relation, noted −→S , between discrete states
describing the number of each molecule, i.e. vectors ~x ∈ Ns.
A transition is enabled if there are enough reactants to fire
one reaction. Each reaction is associated with a transition of
propensity given by the rate function as follows:
∀(Ri, Ii, Pi, fi), ~x −→fi

S ~x′ with propensityfi
if ~x ≥ Ri and ~x′ = ~x−Ri + Pi

Transition probabilities between discrete states are ob-
tained through normalization of the propensities of all
enabled reactions, and the time of next reaction can be
computed from the rates à la Gillespie [28]. It is worth noting
that in this interpretation, as in the differential semantics, the
inhibitors are supposed to decrease the reaction propensity
but do not prevent the reaction from occurring. They are

Fig. 2. Sustained oscillations obtained in the differential semantics of
Ex. 1 showing very low concentrations of A periodically.

Fig. 3. Almost sure extinction of the predator obtained in the stochastic
semantics of Ex. 1 due to the periodic decrease to low numbers of
molecules.

thus ignored by the stochastic transition enabling conditions
similarly to the differential semantics.

In Ex. 1, the stochastic interpretation can exhibit some
oscillations similar to the differential interpretation, but
almost surely the extinction of the predator, i.e. a qualita-
tively different behavior illustrated in Fig. 3, due to the low
numbers of molecules which almost surely will go to zero.

The Petri net semantics is defined similarly on discrete
states with a transition relation −→D which just ignores
the rate functions and is thus a trivial abstraction of the
stochastic semantics by a forgetful functor:

∀(Ri, Ii, Pi, fi), ~x −→D ~x′ if ~x ≥ Ri, ~x′ = ~x−Ri + Pi

The Boolean semantics is similar to the Petri net one but
on Boolean vectors x of Bs, obtained by the “zero, non-
zero” abstraction of integers. With this abstraction, when
the number of a molecule is decremented, it can still remain
present, or become absent. It is thus necessary to take into
account all the possible complete consumption or not of the
reactants in order to obtain a correct Boolean abstraction
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of the Petri net and stochastic semantics [2]. The Boolean
transition system −→B is thus defined by:
∀(Ri, Ii, Pi, fi),∀S ≤ Ri, ~x −→B ~x′

if ~x ≥ Ri, ~x′ = ~x− S + Pi.
The Boolean trace semantics provides an over-

approximation of the qualitative behaviors of the stochastic
semantics. As proven in [2], the discrete (i.e. stochasic, Petri
net, Boolean) semantics are related by successive Galois
connections, which means that, for instance, if a trace is not
possible in the Boolean semantics, it is not realizable in the
Petri net semantics, whatever the stoichiometric coefficients
are, nor in the stochastic semantics, whatever the reaction
rates are.

Example 3. Complex Boolean behavioral properties, including
reachability of stable or just steady states (i.e. respectively from
which one cannot leave or may not leave) can be expressed in Com-
putation Tree Logic (CTL) and automatically verified by model-
checking algorithms [29]. In Ex. 1, the enumeration of true CTL
formulae of some simple patterns, reveals the possibly steady but
not stable persistence of the predator (which can always disappear
if the prey becomes extinct), the possible stable persistence of
the prey (if the predator becomes extinct), the possible extinction
of both the predator and the prey, and the absence of Boolean
oscillations:

biocham: present({A,B}).
biocham: generate_ctl_not.
reachable(stable(A))
reachable(stable(not A))
reachable(stable(not B))
reachable(steady(B))

On the other hand, the differential semantics is generally
not an abstraction of the stochastic behavior. It has been
shown in [30] that if the numbers of all molecules tend to in-
finity, the mean stochastic behavior tends to the differential
behavior. In Ex. 1, these limit conditions are obviously not
satisfied and the mean stochastic behavior is very different
from the differential behavior.

2.4 Discrete Semantics with Negation
In the different semantics of the previous section, a reaction
inhibitor acts solely on the reaction rate, its presence does
not prevent the reaction to proceed. Though not common for
reaction networks, contrarily to influence networks studied
in the next section, one can also consider discrete (stochastic,
Petri net, Boolean) semantics with negation where the set of
inhibitors of a reaction is seen as a conjunction of negative
conditions for the transition (disjunctions can be represented
with several reactions).

In order to express negative conditions on multisets, let
us denote by <0 the strict pointwise order between two
multisets restricted to the intersection of their supports. The
Boolean with negation transition system −→BN can then be
defined by:
∀(Ri, Ii, Pi, fi)∀S ≤ Ri, ~x −→BN ~x′

if ~x ≥ Ri, ~x <0 Ii, ~x
′ = ~x− S + Pi.

The stochastic and Petri net semantics with negation can be
defined similarly just by adding the condition ~x <0 Ii to
the transitions, i.e. the condition of absence of an inhibitor
is replaced by an inequality constraint on its number.

It is worth remarking that in the Petri net semantics with
negation, the test for absence of species (named inhibitor

arc) makes the formalism Turing complete and reachability
undecidable [31]. However, the negative conditions on mul-
tisets allow us to implement k-bounded Petri nets, i.e. with
a finite state transition graph, simply by adding a reaction
inhibitor of the form k · x with some level coefficient bound
k to all the reactions that produce x.

2.5 Influence Graph of a Reaction Network
Here we recall two definitions of the influence graph5 asso-
ciated with a reaction network, and their equivalence under
general assumptions [17], [25]. The first definition is based
on the Jacobian matrix J formed of the partial derivatives
Jij = ∂ẋi/∂xj , where ẋi is defined by the differential
semantics.

Definition 3. The differential influence graph (DIG) asso-
ciated with a reaction network is the graph having for vertices
the molecular species, and for edge-set the following two kinds of
edges:

{A→+ B | ∂ ˙xB/∂xA > 0 for some value ~x ∈ Rs+}
∪{A→− B | ∂ ˙xB/∂xA < 0 for some value ~x ∈ Rs+}

Definition 4. The syntactical influence graph (SIG) associated
with a reaction network M is the graph having for vertices the
molecular species, and for edges the following set of positive and
negative influences:

{A→+ B | ∃(Ri, Ii, Pi, fi) ∈M
(Ri(A) > 0 and Pi(B)−Ri(B) > 0)
or (Ii(A) > 0 and Pi(B)−Ri(B) < 0)}

∪{A→− B | ∃(Ri, Ii, Pi, fi) ∈M
(Ri(A) > 0 and Pi(B)−Ri(B) < 0)
or (Ii(A) > 0 and Pi(B)−Ri(B) > 0)}

The syntactical graph is trivial to compute, in linear time,
by browsing the syntax of the rules.

Example 4. In Ex. 1 both definitions give the same influence
graph:

B

A

Both definitions are equivalent if the syntactical influ-
ence graph contains no conflict, i.e. no pair of the form
A→+ B and A→− B between the same molecules:

Theorem 1 ( [17], [25]). For any well-formed reaction network
(resp. such that the syntactical influence graph contains no con-
flict), the differential influence graph is included in (resp. identical
to) the syntactical influence graph.

3 INFLUENCE NETWORKS WITH FORCES

In this section, we introduce influence networks with forces
and equip them with a hierarchy of differential, stochas-
tic, Petri net and Boolean semantics, similarly to reaction
networks. We then compare their expressive power with
reaction networks, and focus on different variants of their
discrete semantics to compare them with Thomas’s setting
for gene regulatory networks.

5. By a slight abuse of terminology, we call influence graph a labeled
multigraph, since there may be both a positive and a negative influence
from one vertex to another one.
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3.1 Syntax
The idea to disambiguate the semantics of the different
influences incoming on a vertex of the influence graph, is to
syntactically distinguish conjunctive from disjunctive con-
ditions in an influence network, by writing influences with
several sources for representing a conjunction of conditions,
while the different influences on a same target express a
disjunction of conditions. These syntactical conventions are
a particular case of the concept of multiplexes introduced
in [32] restricted here to disjunctive normal forms (DNFs).

Definition 5. Given S = {x1, . . . , xs} a set of species, an
influence network I is a set of quintuples (P, I, t, σ, f) called
influences, where

• P is a multiset on S, called positive sources of the
influence,

• I a multiset of negative sources,
• t ∈ S is the target,
• σ ∈ {+,−} is the sign of the influence, accordingly called

either positive or negative influence,
• and f : Rs → R is a real function called the force of the

influence.

In addition, we distinguish the positive sources from the
negative sources in an influence (positive or negative), in
order to annotate the fact that in the differential semantics,
the source increases or decreases the force of the influence,
and in the Boolean semantics with negation whether the
source or the negation of the source is a condition for a
change in the target.

In the examples below, we use the ASCII syntax of
BIOCHAM v4 for influences. Positive (resp. negative) in-
fluences are written with an arrow -> (resp. -<) which
separates the sources from the target. The positive and
negative sources are separated by a /, which can be omitted
if there is no negative source.

The concept of well-formed influence networks can be
defined similarly to Def. 2 as follows:

Definition 6. An influence (P, I, t, σ, f) over molecular species
{x1, . . . , xs} is well-formed if the following conditions hold:

1) f(x1, . . . , xs) is a partially differentiable function, non-
negative on Rs+;

2) xi ∈ P if and only if σ = + (resp.−) and ∂f/∂xi(~x) >
0 (resp. < 0) for some value ~x ∈ Rs+;

3) xi ∈ I if and only if σ = + (resp. −) and ∂f/∂xi(~x) <
0 (resp. > 0) for some value ~x ∈ Rs+;

4) t ∈ P if σ = −.

Example 5. The reaction model of Ex. 1 can also be represented
by the following well-formed influence network:

k1*A*B for A,B -< A.
k1*A*B for A,B -> B.
k2*A for A->A.
k3*B for B-<B.

composed of four well-formed influences, with positive sources
only, ({A,B}, ∅, A,−, k1 ·A ·B), ({A,B}, ∅, B,+, k1 ·A ·B),
({A}, ∅, A,+, k2 · A) and ({B}, ∅, B,−, k3 · B). These four
influences, two of which contain a conjunction of two sources, are
consistent with the six edges of the influence graph depicted in
Ex. 4. It is also worth noting that in our setting, one can model

the inhibition of the autocalysis of A by some other variable C , by
putting C as negative source in the positive influence rule for A:

k2*A/(1+C) for A/C -> A.

i.e. without using a negative influence rule.

3.2 Hierarchy of Semantics

The differential semantics of an influence network I over S,
is given by (the solutions of) the following ODE system:

dxk
dt

=
∑

(Pi,Ii,xk,+,fi)∈I

fi −
∑

(Pj ,Ij ,xk,−,fj)∈I

fj

This ODE adds up all the forces of the positive influences
on xk and subtracts all forces of negative influences on xk in
the derivative of xk over time. In Ex. 5, one can easily check
that this definition leads to the same equations as for Ex. 1.

The negative sources in a well-formed influence decrease
the force of the influence but do not disable it. Consequently,
we define the stochastic semantics of an influence network
with forces, by a transition system, noted −→S , between
discrete states, i.e. vectors ~x of Ns, such that an influence
is enabled if the positive sources are present in sufficient
number, no condition on the negative sources, the transition
propensity is defined by the force, and the target is updated
as follows (by abuse of notation the sign σ is also used in
the sequel as increment and decrement operations):
∀(Pi, Ii, ti, σi, fi), ~x −→fi

S ~x′ with propensityfi
if ~x ≥ Pi and ~x′ = ~x σi ti

As previously for reaction netowkrs, the transition prob-
abilities between discrete states are obtained through nor-
malization of the propensities of all enabled transitions, and
the time of next reaction is computed as in Gillespie’s algo-
rithm [28]. The negative sources are supposed to decrease
the influence propensity but do not prevent the influence
from proceeding.

The Petri net (PN) semantics simply ignores the forces:
∀(Pi, Ii, ti, σi, fi), ~x −→D ~x′ if ~x ≥ Pi, ~x

′ = ~x σi ti It is
worth noting here that since a target has no multiplicity
coefficient, a PN or stochastic transition always adds or
subtracts one to the level of the target, and cannot define
a self-loop in the state transition graph.

The positive Boolean semantics is defined on Boolean vec-
tors x of Bs, by the “zero, non-zero” abstraction of integers
of the Petri net semantics. Consequently, the Boolean seman-
tics associates two transitions with one negative influence:
one that inactivates the target, and one that loops with the
target active6:

∀(Pi, Ii, ti,+, fi), ~x −→B ~x′if ~x ≥ Pi, ~x′ = ~x + ti

∀(Pi, Ii, ti,−, fi), ~x −→B ~x′if ~x ≥ Pi, ~x′ = ~x or ~x′ = ~x− ti

This Boolean semantics is positive in the sense that it ignores
the negative sources of an influence and contains no nega-
tion in the enabling condition. In Ex. 5, one can check that
the Boolean transitions are the same as in Ex. 1, although in
general one can expect to get more transitions (Thm. 3.3 and
Prop. 1 below).

6. The loop condition was not mentioned in [24].
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With these definitions, we obtain as in [2] a hierarchy
of semantics related by simple Galois connections between
a concrete domain and an abstract domain [18], noted

(C,vc)
−→α

←−γ (A,vA), which will be here limited to the dis-
crete semantics domains formalized by set lattices ordered
by inclusion.

Theorem 2. For an influence network I , the stochastic seman-
tics, the Petri net semantics and the Boolean semantics are related
by Galois connections, ({~x −→fi

S ~x′}, ⊆) −→
αSD

←−γSD
({~x −→D

~x′}, ⊆) −→
αDB

←−γDB
({~x −→B ~x′}, ⊆).

Proof. Let us first remark that our transition semantics are
sets and that in powerset domains, the pointwise extension
of any function from the base set of the concrete domain
to the abstract domain forms a Galois connection [2]. Thus
we just have to define the abstraction functions pointwise to
obtain Galois connections with respect to the set inclusion
ordering.

The first abstraction of the stochastic semantics by the
Petri net semantics is a trivial abstraction by a forgetful
functor αSD, namely the erasing of the propensities in the
transitions.

The second abstraction αDB abstracts discrete states
by Boolean states. The domain of Boolean transitions is
related to the Petri net transitions semantics domain by the
zero/non-zero abstraction from the integers to the Booleans,
αNB : N → B, and its pointwise extension from discrete
states to Boolean states.

We can easily check that the Boolean transitions are
indeed the abstraction by αNB of the Petri net transitions. In
particular for a negative influence, the transition ~x′ = ~x− ti
in the integer vector domain, is abstracted in the Boolean
vector domain by the zero/non zero abstraction with the
two transitions ~x′ = ~x or ~x′ = ~x− ti.

Corollary 1. If a behavior is not possible in the positive Boolean
semantics of an influence network, it is also not possible in the
Petri net and stochastic semantics for any forces.

3.3 Expressive Power
Let us first show that an influence network can always be
simulated by a reaction network.

Theorem 3. Any (well-formed) influence network with forces can
be represented by a (well-formed) reaction network, with the same
Boolean, Petri net, stochastic and differential semantics.

Proof. Let us represent a positive influence (P, I, t,+, f) by
a catalytic synthesis reaction (P, I, P ] {t}, f). Similarly,
let us represent a negative influence (P, I, t,−, f), by an
active degradation reaction (P ] {t}, I, P, f). It is straight-
forward to verify that the Boolean, Petri net, stochastic as
well as differential semantics recalled and defined above
are the same. Furthermore, the well-formedness condition
is preserved. Indeed, this property only depends on the
forces/rate functions and on the reactants/inhibitors, which
do not change through that transformation thanks to the
condition that in well-formed influence networks, the target
of a negative influence must be a positive source t ∈ P .

Interestingly, the converse of this theorem holds for the
differential semantics with all generality:

Theorem 4. Under the differential semantics, (well-formed) in-
fluence and reaction networks have the same expressive power.

Proof. For each reaction (R, I, P, f) of a given reaction net-
work, let us add the following influences:

(R, I, xi,+, (P (i)−R(i)) · f) when P (i)−R(i) > 0

(R, I, xi,−, (R(i)− P (i)) · f) when P (i)−R(i) < 0

The associated ODE system collects all (Pi − Ri) · f ex-
actly as in the differential semantics of the original reaction
network. Furthermore, it is easy to check that these influ-
ences are well-formed since the original reaction is well-
formed and the force is only a positive integer multiplied
by the original rate function.

This theorem shows that as far as the differential se-
mantics is concerned, the influence networks have the
same expressive power as reaction networks and there is
no theoretical reason to develop a reaction model. Con-
versely, using [25] one can define some canonical reac-
tion network corresponding to an influence network by
inferring it from the differential semantics. Note however
that for instance starting from the self-negative influence
(X, ∅, X,−, kX2) one obtains Ẋ = −kX2 and therefore
the reaction ({X}, ∅, ∅, kX2) and not ({2X}, ∅, {X}, kX2).
Both have the same differential semantics, the second obeys
Mass-Action and not the first, and their discrete semantics
will differ (e.g., when there is only one X).

The converse of Thm. 3 does not hold for the Boolean,
Petri net or stochastic semantics. Indeed, in those se-
mantics the (well-formed) reaction of mutual degradation
({A,B}, ∅, ∅, k.A.B) defines a transition from the state
(A,B) = (1, 1) to (0, 0) which is obviously not possible
in an influence network since only one variable can change
in one transition. Note that it is not obvious to associate
an influence network, even simply to simulate the reaction
network behavior. For instance, the influence network ob-
tained from our mutual degradation’s differential semantics
would consist of the two influences ({A,B}, ∅, A,−, k.A.B)
and ({A,B}, ∅, B,−, k.A.B). However from state (1, 1) it is
actually impossible to reach (0, 0). One would need to add
self-negative-loops on both A and B, which would lead to
a quite crude over-approximation.

Let us call a reaction (R, I, P, f) unitary if the support of
P −R is a singleton with a result equal to either 1 or −1.

Proposition 1. Any (well-formed) network of unitary reactions
can be represented by a (well-formed) influence network with the
same Boolean, Petri net, and stochastic semantics.

Proof. Let us associate with each unitary reaction
(R, I, P, f), with P (t) − R(t) = ±1 and P (x) = R(x) for
all x 6= t, the influence (R, I, t, σ, f) where σ is the sign of
P (t)−R(t).

The stochastic and Petri net transitions associated with
the unitary reaction (R, I, P, f) apply on discrete states
satisfying ~x ≥ R and ~x′ = ~x − R + P = ~xσt, i.e. the same
transitions as for the influence (R, I, t, σ, f).

The Boolean transitions associated with the unitary re-
action (R, I, P, f) apply on discrete states satisfying ~x ≥ R
and ~x′ = ~x− S + P for all S ≤ R.

If P (t)−R(t) = +1 then ~x′ = ~x+ t.
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If P (t)−R(t) = −1 then either ~x′ = ~x or ~x′ = ~x− t.
Therefore in both cases, the Boolean transitions associ-

ated with the reaction (R, I, P, f) are the same as those
associated with the influence (R, I, t, σ, f).

3.4 Semantics with Negation
Contrarily to reaction networks, it is usual in Boolean in-
fluence networks and regulatory networks à la Thomas,
to adopt a strict interpretation of the negative sources of
an influence, as tests for absence of those species in the
enabling condition. This choice is made at the expense of
losing the relationships to the differential semantics, and to
the (positive) stochastic and Petri net semantics (Thm. 2)
since, for instance, a positive influence like A/2B → C
can activate C with B present at level 1 in the Petri net
semantics, but not in the Boolean semantics which is thus
no longer an abstraction of the Petri net semantics.

Formally, the Boolean with negation semantics of an influ-
ence network is defined by the following transition system:
∀(Pi, Ii, ti, σi, fi), ~x −→BN ~x′

if ~x ≥ Pi, ~x <0 Ii, ~x
′ = ~x σi ti

Then, one can also define stochastic and Petri net seman-
tics with negation by adding the condition ~x <0 Ii on the
negative sources to the transition, as done in Sec. 2.4 for the
reaction networks, but with a similar loss of connection to
the differential semantics.

As already remarked for reaction networks, this strict
interpretation of the negative sources makes it possible to
express influence networks with bounded multi-level seman-
tics, simply by adding a negative source k · x to all the
positive influences on x, with some level coefficient bound
k. This is adopted in tools such as GINsim [9], [10], but is not
possible in the positive semantics of the previous section.

That interpretation of negative sources by negation in-
creases the expressive power of influence networks. Let
us call a unitary transition system, a transition system that
updates at most one variable of ~x in each transition7. An
influence network always defines such a unitary transition
system under the discrete semantics, since the target t is a
single species.

Proposition 2. Any unitary Boolean transition system can be
represented by an influence network under the Boolean semantics
with negation.

Proof. It is sufficient to notice that since a unitary Boolean
transition s −→BN s′ changes at most one species, say ti,
from s to s′, it can be represented by

• either a positive influence, (P, I, ti,+), if s′(ti) = 1,
• or a negative influence, (P, I, ti,−), if s′(ti) = 0,

with P = {x | s(x) = 1} and I = {x | s(x) = 0}.

3.5 Functional Semantics à la Thomas
The Boolean and multi-level semantics defined by René
Thomas originally for gene networks [6], is functional, in
the sense that the next state ~x′ is defined by a func-
tion φ(~x) of the previous state, not a relation. In this

7. It is worth remarking that in a unitary transition system, the state
transition graph lives on a hypercube (e.g. Fig. 7 in Sec. 5 below).

setting, the synchronous semantics is deterministic, and
the non-deterministic asynchronous semantics is obtained
by interleaving, by considering all the possible transitions
that change the value of exactly one of the genes at a
time. A truly non-deterministic influence network such as
{(A, ∅, B,+, f), (A, ∅, B,−, g)}, for which the transition
relation is not a function, cannot be represented. For this
reason Thomas’s setting excludes self-loops in the state
transition graph and all steady states are stable (i.e. terminal
states).

Proposition 3. The set of Boolean transition systems definable
by Thomas’s regulatory networks is the set of unitary Boolean
transition systems without self-loops.

Proof. A Thomas’s transition graph is necessarily unitary
and without self-loops since each transition changes the
Boolean value of exactly (not at most) one variable at a time.

The converse follows from Prop. 2 by excluding the
possibility of having self-loop transitions which change no
variable.

Corollary 2. Any Thomas’s regulatory network N can be repre-
sented by an influence network under the Boolean semantics with
negation.

Proof. From Prop. 3 N is unitary, one can therefore apply
the encoding of the proof of Prop. 2 to obtain a correspond-
ing influence network (note that in practice much smaller
influence networks can be obtained by considering the DNF
of the activation functions).

The restriction to functional transitions is even more
striking in Thomas’s multi-level setting, where the above
system can (in the discrete semantics) have transitions from
(1, 1) both to (1, 0) and to (1, 2). That would necessitate the
corresponding logical parameter for B to be at the same
time < 1 and > 1. It is worth noting that despite this subtle
restriction in the expressive power, the logical formalism of
Thomas is successfully used in a wide variety of models [23],
[33], [34], [35] in systems biology.

3.6 Influence Graph of an Influence Network

The differential influence graph of an influence network is
defined though the differential semantics, as in Def. 3. We
get a similar equivalence result with the following syntacti-
cal definition of the influence graph:

Definition 7. The syntactical influence graph (SIG) associated
with an influence network I is the graph having for vertices the
molecular species, and for edges the following set of positive and
negative influences:

{A→+ B | ∃(Pi, Ii, B, σi, fi) ∈ I
(A ∈ Pi and σi = +)
or (A ∈ Ii and σi = −)}

∪{A→− B | ∃(Pi, Ii, B, σi, fi) ∈ I
(A ∈ Pi and σi = −)
or (A ∈ Ii and σi = +)}

Proposition 4. For a well-formed influence network such that the
syntactical influence graph contains no conflict, the syntactical
and differential influence graphs are identical.

Proof. We have
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˙xB =
∑

(Pi,Ii,xB ,+,fi)∈I

fi −
∑

(Pj ,Ij ,xB ,−,fj)∈I

fj

∂ ˙xB
∂xA

=
∑

(Pi,Ii,xB ,+,fi)∈I

∂fi
∂xA

−
∑

(Pj ,Ij ,xB ,−,fj)∈I

∂fj
∂xA

Since the SIG does not have any conflict, A →+ B is in
the SIG if and only if

∂ ˙xB
∂xA

=
∑

(Pi,Ii,xB ,+,fi)∈I,A∈Pi,A 6∈Ii

∂fi
∂xA

−
∑

(Pj ,Ij ,xB ,−,fj)∈I,A6∈Pj ,A∈Ij

∂fj
∂xA

and a similar reasoning can be made for A→− B.
Now, since the influence network is well-formed, all

terms of the left-hand sum are non-negative (A 6∈ Ii) and
strictly positive for some points ~xi.

Similarly, all terms of the right-hand sum are non-
positive (A 6∈ Pj) and strictly negative for some ~xj .

We have thatA→+ B in the SIG iff the above sum has at
least one term, that is equivalent to the existence of some ~x
in the state space where one of the terms above is non-null,

in which case
∂ ˙xB
∂xA

> 0, i.e., A→+ B is in the DIG.

Furthermore, one can easily check that in the representa-
tion of an influence network by a reaction network (Thm. 3),
the influence graphs associated with them are the same.

4 PROPERTIES OF THE POSITIVE SEMANTICS AND
COMPUTATION OF BOOLEAN ATTRACTORS

In this section, we focus on the positive Boolean semantics
of influence networks and study its properties. In partic-
ular, we show that the Boolean attractors of the positive
semantics contain the attractors of the functional semantics
with negation à la Thomas and provide an efficient pruning
algorithm for computing them. Let us recall that ≤ denotes
the pointwise order on {0, 1} coordinates of vectors repre-
senting states.

Proposition 5 (Monotonicity). The positive Boolean semantics
of influence networks is monotonic: let I be an influence network
over S = {x1, . . . , xs} and v1, v2 be two Boolean states, i.e.,
vectors of Bs

if v1 ≤ v2 then ∀v′1, v1 −→ v′1,∃v′2, v′1 ≤ v′2 and v2 −→ v′2

v1

v2

v′1

v′2

≤ ≤

Proof. One can simply notice that since there are no nega-
tions in the enabling conditions, any influence that is en-
abled in v1 is also enabled in v2.

It is worth noticing that this monotonicity property for
transitions is fundamentally different from that of monotone
dynamical systems [36] which are deterministic, and there-
fore impose the monotonicity property on the unique image
of v1 and v2. In our setting, Prop. 5 states that there exists
some v′2 ≥ v′1, but the existence of negative influences in the

network permits that some other images of v2 might not be
greater than v′1. Nevertheless, we have

Proposition 6 (Greatest element). Let C be a Terminal
Strongly Connected Component (TSCC) of the state transition
graph of a positive influence network, then C has a greatest
element: ∃v0 ∈ C, ∀v ∈ C, v ≤ v0
Proof. Let us prove this proposition by contradiction: as-
sume that there are two incomparable maximal elements
v1 and v2 in C .

Since C is strongly connected there is a path from v1 to
v2 and along that path a state v3 and its successor in the
path v4 such that v3 ≤ v1 and v4 6≤ v1, as v2 6≤ v1.

Now, using Prop. 5 we get that v1 −→ v′1 with v4 ≤ v′1
and v′1 ∈ C since C is terminal.

However, v′1 is either greater or less than v1 since it is the
result of applying a single influence.

If v1 < v′1 we have a contradiction as we supposed v1
maximal.

If v′1 ≤ v1 we get v4 ≤ v1 by transitivity and that is also
contradictory.

Corollary 3. To enumerate the attractors, i.e., TSCCs, of a
positive influence network, it is enough to check the strongly
connected components (SCCs) of states that have no strictly
increasing transition.

Proof. This is an immediate consequence of Prop. 6 as each
TSCC can be represented by its greatest element which has
no strictly increasing transition.

Notice that stable states are a particular case with no
strictly decreasing transition either. Moreover, any strictly
decreasing transition should be “reversible” for the SCC
to be a TSCC. This allows us to rule out potential TSCC
candidates without exploring their whole SCC in Alg. 1 and
Alg. 2 (implementation available in BIOCHAM v4).

Note that in Alg. 2 two temporal logic formulae are used:
the first one checks that from any state reachable by C , C
remains always (AG) reachable (EF (C)), the second one is
the previous one about reachability to ensure that no stable
state S is reachable (¬EF (S)) from C .

Proposition 7. Let I be an influence network, there is at least
one TSCC of its state transition graph in each TSCC of its positive
semantics’ state transition graph.

Proof. The positive semantics only adds transitions by
enabling more influences, it can therefore only merge
TSCCs.

This result suggests finding complex attractors of non-
positive networks, such as logical models à la Thomas [7], [8]
that are particular cases of influence networks (see Cor. 2),
by enumerating the greatest elements of the TSCCs of their
positive Boolean semantics, and then looking for attractors
of the original network. This approach provides an over-
approximation of the attractors and is complementary to
recent works which provide lower-bounds on their num-
ber [37].

One might note however that the reversibility constraint
on decreasing transitions can easily be stated as a constraint
of our Constraint Satisfaction Problem (CSP). Now, check-
ing that an SCC is terminal can be done through model
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Algorithm 1 TSCC maximal elements candidates enumera-
tion algorithm

procedure LIST_TSCC_CANDIDATES
Constraints← {P ∧ ¬I =⇒ t | (P, I,+, t, f) ∈ I}
. Enabled positive influences must not change the state
Candidates←ENUMERATESOLUTIONS(Constraints)
for C ∈ Candidates do

if C has no strictly decreasing transition then
C is a stable steady state

else if C has a non-reversible strictly decreasing
transition then

C is not in a TSCC
else

C’s SCC must be explored to check if it is a
TSCC

end if
end for

end procedure
function ENUMERATESOLUTIONS(Constraints)

Iteratively solve by SAT/CP the Constraint Satisfac-
tion Problem (CSP) defined by Constraints

return The set of solutions
end function

checking, and verifying if there is a singular TSCC inside a
positive TSCC is also a reachability problem. Putting all this
together we reach a refined version, Alg. 2 of our original
algorithm, Alg. 1 that now guarantees that an SCC it finds
is terminal, and also checks for inclusion of stable states.
Alg. 2 therefore provides a lower bound on the number of
complex attractors, and an over-approximation of those.

5 EXAMPLES AND EVALUATION

The following examples from the literature illustrate the
links between reaction and influence networks (mostly
Thm. 4), the encoding of Thomas’s networks as influence
networks (Cor. 2), and the use of the positive semantics
and Alg. 2 to efficiently enumerate the complex attractors
of an influence network. In particular in the third example,
our algorithm enumerates the attractors in 106s, whereas
the algorithms based on the construction of the transition
graph, such as implemented in GINsim [9], [10], fail by out
of memory.

The CPU times are given in seconds and have been
obtained on a Macbook Pro, as all the CPU times given in
this paper.

5.1 Influence Model of the p53/Mdm2 DNA Damage Re-
pair System [20]
The p53/Mdm2 DNA damage repair system is an inter-
esting oscillatory system which has been modeled by dif-
ferential equations by Ciliberto et al. in [27]. Fig. 1 shows
the reaction network. Note that this model contains explicit
transport reactions of Mdm2 between the cytoplasm and the
nucleus, and that p53 is an inhibitor of the phosphorylation
reaction of Mdm2 in the cytoplasm (Ex. 2). Fig. 4 shows the
influence graph of this reaction model, as given by Def. 4).

In [20], a simplified regulatory model à la Thomas was
manually derived from the reaction model of [27], and

Algorithm 2 Refined TSCC search algorithm
procedure LIST_TSCC_CANDIDATES

Stable← ENUMERATESTABLE()
Constraints← {P ∧ ¬I =⇒ t | (P, I,+, t, f) ∈ I}
. Enabled positive influences must not change the state
Constraints ← Constraints ∪ {P ∧ ¬I =⇒ t ∨∨

i Pi ∧ ¬Ii | (P, I,−, t, f), (Pi, Ii,+, t, fi) ∈ I, t 6∈ Pi}
. Enabled negative influences must be reversible

Candidates←ENUMERATESOLUTIONS(Constraints)
for C ∈ Candidates do

if C ∈ Stable then
C is a stable steady state

else if C 6|= AG(EF (C)) (positive semantics) then
C is not in a TSCC

else
C is in a positive TSCC
if ∀S ∈ Stable, C |= ¬EF (S) (negative se-

mantics) then
there is at least one negative non-trivial

TSCC (a complex attractor) in C’s TSCC
end if

end if
end for

end procedure
function ENUMERATESTABLE

Iteratively solve by SAT/CP the CSP corresponding to
the absence of state-changing enabled influence

return The set of solutions
end function
function ENUMERATESOLUTIONS(Constraints)

Iteratively solve by SAT/CP the CSP defined by
Constraints

return The set of solutions
end function

analyzed with logical semantics. Fig. 5 shows the influence
graph of their model. Here, we first give a formal derivation
of this influence graph using the definitions of this paper,
and then illustrate the search for TSCCs in the correspond-
ing Boolean influence network.

When comparing the influence graphs of the reaction
model of [27] (Fig. 4) with the simplified influence model of
[20] (Fig. 5), one can remark that the simplified graph can
be essentially obtained by

• merging p53 and p53u in P,
• deleting p53uu,
• merging Mdm2pc and Mdm2n in N,
• and renaming Mdm2c in C and DNAdam in D.

Such operations correspond to the notion of subgraph epi-
morphism (SEPI) and SEPI-reduced models studied in [38].
Fig. 6 shows the influence graph (Def. 4) of the SEPI-
reduction of the original reaction model obtained with the
operations above. The only differences with Fig. 5 are the
absence of the negative self-loops, and of the positive influ-
ence from N to C corresponding to the transport of Mdm2
from the nucleus to the cytoplasm, which were neglected
in [20].

In addition to the influences represented by this influ-
ence graph, the logical model of [20] considers the tran-
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p53

p53u

DNAdam Mdm2c

Mdm2pc

Mdm2n

p53uu

Fig. 4. Influence graph (Def. 4) of the reaction model of [27] (Fig. 1).

C N

P D

Fig. 5. Simplified influence graph displayed in Fig. 4 of [20], without the
activation multi-levels.

sitions to basal states, i.e. attractive states in absence of
other influences, for the activation of p53 (_ -> P) and
DNA-damage (_ -> D), and the degradation of cytoplas-
mic Mdm2 (C -< C). This leads to the following influence
networks and computation of attractors, without and with
the basal influences.

biocham: P -> C. C -> N. N -< P. P -< N.
P -< D. D -< N.

biocham: list_tscc_candidates.
[C-0,D-0,N-0,P-0] stable
[C-0,D-0,N-1,P-0] stable
[C-0,D-1,N-0,P-0] stable
[C-1,D-0,N-1,P-0] stable
[C-1,D-1,N-1,P-0] terminal (positive)

P D

C N

Fig. 6. Influence graph (Def. 4) of a SEPI reduction [38] of the reaction
model of [27].

contains a complex attractor
Candidates from constraints: 1
Complex TSCCs computed: 1
Time: 0.026
biocham: _ -> P. _ -> D. C -< C.
biocham: list_tscc_candidates.
[C-1,D-1,N-1,P-1] terminal (positive)
contains a complex attractor
Candidates from constraints: 1
Complex TSCCs computed: 1
Time: 0.015

Alg. 2 shows that even with a Boolean model, where P
acts simultaneously on C in a negative cycle, and N in a
positive cycle, there is a single complex attractor, similarly
to the results of the complete analysis of [20] using a multi-
level model. The algorithm also finds four stable steady
states in absence of the basal influences.

Furthermore, the extension of that model with differen-
tial and stochastic dynamics studied in [21] could be directly
represented by influence forces in this setting.

5.2 Influence Model of the Mammalian Circadian
Clock [22]
Another nice example of the use of logical models à la
Thomas is the article by Comet et al. [22] studying different
variants of small models of the circadian rhythms in mam-
mals. They derive a small influence network à la Thomas,
from the following 4-variable ODE model, which is itself a
simplified version of the 16-variable model from [39]:

dPC

dt
=

Kn

Kn + PCn
N

v1 − k3PCCC + k4PCC − kd1PC

dCC

dt
=

Kn

Kn + PCn
N

v2 − k3PCCC + k4PCC − kd2CC

dPCC

dt
= k3PCCC − k4PCC − k1PCC + k2PCN − kd3PCC

dPCN

dt
= k1PCC − k2PCN − kd4PCN
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The reaction network corresponding to those ODEs [25] is:

kd1*PC for PC => _.
kd2*CC for CC => _.
kd3*PCC for PCC => _.
kd4*PCN for PCN => _.
k1*PCC for PCC => PCN.
k2*PCN for PCN => PCC.
k3*PC*CC for PC + CC => PCC.
k4*PCC for PCC => PC + CC.
K^n*v1/(K^n + PCN^n) for _ / PCN => PC.
K^n*v2/(K^n + PCN^n) for _ / PCN => CC.

As per Thm. 4, one obtains an influence network with
the same differential semantics. In the small logical model
of [22], the authors further simplify the Per and Cry proteins
(PC is their complex, G their genes) and introduce light
(L) in order to study light entrainment. The obtained model
though very small remains quite useful, since it provides a
causal explanation of the robustness of the circadian clock
to variations of day length.

A direct import in BIOCHAM v4 of their logical
model without delays (cf. Section 5 of [22]) gives the
following influence network with negative sources,
shown below with the corresponding influence graph:

_ / L -> L.
L -< L.

_ / G, PC -> G.
G, PC -< G.

G / PC, L -> PC.
PC / G -< PC.
PC, L -< PC.

L

PC

G

Fig. 7 shows that the positive semantics of this network
is close to the original Boolean semantics with negation à la
Thomas of the model. Only a few state transitions become
reversible in the positive Boolean semantics, while they are
irreversible in the original Boolean semantics with negation
à la Thomas of the model.

Furthermore, both the positive and negative Boolean
semantics have a single TSCC, namely the whole state
transition graph represented by the vector (1, 1, 1) found
as sole candidate:

biocham: list_tscc_candidates.
[G-1,L-1,PC-1] terminal (positive)
contains a complex attractor
Candidates from constraints: 1
Complex TSCCs computed: 1
Time: 0.016

The approximation introduced by the positive Boolean
semantics can also be explained by quantitative dynamics
considerations. For instance, when G is on, the transcription
leading to the PER-CRY complexes is stimulated, how-
ever [22] explains that these complexes can only migrate
to the nucleus in absence of light. This absence cannot be
checked in a positive semantics model, however the consen-
sus mechanistic process is rather thought to be a modulation
of PER transcription by light (see for instance [39] for the
mammalian case). Being purely quantitative, it is not easy
to take into account such a regulation in a Boolean model
except with the reversible activation of PC when G is on,

G

L

PC

G

L

PC

Fig. 7. State transition graphs of the model under, the Boolean se-
mantics with negation à la Thomas, similar to Fig. 7 of [22] (top), and
the positive Boolean semantics, where some state transitions have
become reversible (bottom). The bold circuit represents the classical
24h day-night cycle that is obtained as standard cycle when delays are
introduced. The other transitions correspond to recovery pathways in a
jet lag context for instance.

whether L is on or not. This is what happens in our positive
model as can be seen in the bottom panel of Fig. 7, and it is
similar to what happens for the light in the original model.

The same reasoning explains the reversible inactivation
of G when PC is active. Indeed there is a basal synthesis
of G that cannot check, in a positive setting, that PC is
inactive in order to activate the genes. Once again, the mech-
anistic process is a quantitative inhibition of the CLOCK-
BMAL1 complexes by PER-CRY and a conservative Boolean
approximation of that process is reflected by the reversible
activation of G in presence of PC.

5.3 Influence Model of MAPK Signaling Network in Uri-
nary Bladder Cancer [23]
As a more challenging example, we present here the appli-
cation of our methods on a logical model of the influence
of Mitogen Activated Protein Kinase (MAPK) signaling in
urinary bladder cancer, presented in [23]. Starting, once
again, from a “comprehensive reaction map” of 232 species,
the authors design a reduced logical model in Thomas’s
framework. This 53-variable model, also used as benchmark
in [37], describes the influence of the MAPK cascade (and of
its inputs, like EGFR over-expression and FGFR3 activating
mutation) on cell-fate decision in urinary bladder cancer. As
can be seen from Fig. 8 even the reduced model is much
bigger than previous examples.

Trying to find attractors with GINsim [9], [10] results in a
failure by out of memory after about 1h of computation since
it relies on the generation of the full state space. Alg. 2 gives
the following results, with a total runtime of 43s:
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Fig. 8. Influence graph of the regulatory network à la Thomas of MAPK signaling in urinary bladder cancer [23] as displayed by GINsim.

• 12 steady-states are found. These are the most im-
portant features of the model for its original publi-
cation (cell-fate) and are easy to find whatever the
method (Decision Diagrams in GINsim, Answer Set
Programming in [37] and SAT or CSP for us).

• there are 21 states without any strictly increasing
outgoing transition found by constraint solving;

• of those, 15 are in terminal SCCs, as proven by a
single call to a model checker;

• and of those TSCCs, only 9 contain one of the pre-
viously found steady-states, leading to at least 6
complex attractors.

It is worth noting that the potential cyclic attractors
enumerated by our algorithm are of specific interest in this
example, since a model of cell-fate decision is not supposed
to display such oscillatory behavior.

5.4 Related work
The enumeration of complex attractors in logical and multi-
level influence networks by building the state transition
graph explicitly cannot work for large networks, as illus-
trated in the previous example. There has been recent work
on using abstractions to guide the search and prune the
search space, somewhat similarly to our approach based
on the positive semantics abstraction. In [37], [40] the au-
thors describe an algorithm based on the notion of “trap
spaces” implemented in the tool PyBoolNet. Their iterative
algorithm basically computes the set of minimal trap spaces

using answer set programming (ASP), and checks by CTL
model checking (using NuSMV) whether each minimal trap
space contains exactly one attractor. The verification by
model checking can be very long; however, the computation
of minimal trap spaces by ASP is very fast and provides a
lower bound on the number of attractors. In the previous
example, PyBoolNet finds the same bound as us in less than
1s, but then takes 928s (Core 2 Duo T6670 @ 2.2 GHz, 4 GB)
to verify all trap spaces. Our computation of attractors in
the positive semantics takes 46s but they are exact and can
therefore be studied in a mechanistic view of the model.

6 CONCLUSION

In this paper, we hope to have clarified some differences
between influence networks and reaction networks, and
especially some subtle discrepancies between the precise
Boolean semantics that have been considered in the liter-
ature for both kinds of qualitative modeling formalisms. As
far as the modeling of one biological system is concerned,
a modeler can work with one formalism and one tool to
investigate his/her questions about the system. Neverthe-
less, as soon as different modeling tools are to be used,
or the model has to be communicated and reused or cou-
pled to another one for another purpose, understanding
and mastering these discrepancies in the semantics of the
interactions become crucial.

We have introduced a general formalism of influence
networks with forces, and possibly inhibitors, and devel-
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oped for it a hierarchy of differential, stochastic, multi-level
and Boolean semantics, similarly to reaction networks.

We have first shown that reaction networks and in-
fluence networks have the same expressive power under
the differential semantics. This means that, as far as the
differential equations are concerned, the details given in
the reactant-product structure of a reaction network are not
necessary, and that the same differential equations can be
derived from an influence network with forces.

On the other hand, influence networks have an expres-
sive power weaker than reaction networks in the discrete
semantics, since they can only express unitary transition
systems, i.e. with only one update at a time. Furthermore,
the differential semantics in which the inhibitors simply
decrease the force without preventing the influence from
occurring, lead us to consider positive discrete semantics
in which the inhibitors are not interpreted by a negation
for testing their absence, but are ignored in the enabling
conditions of the influences. This convention ensures that
all discrete behaviors are approximated when we go up in
the abstractions of the hierarchy of semantics, and that if a
behavior is not possible in the positive Boolean semantics
(which can be checked by model-checking methods for
instance) it is not possible in the stochastic semantics for
any forces. On the other hand, we have shown that the
Boolean semantics with negation lead to a more expressive
formalism, in which any unitary Boolean transition system
can be encoded, and for which a similar hierarchy of discrete
semantics with negation can also be developed, but with no
consistent link to the differential semantics.

Furthermore, we have shown that in the positive
Boolean semantics, the monotonicity of the transition rela-
tion allows us to enumerate complex attractors efficiently
by restricting the search to the greatest elements candidates.
The Boolean semantics with negation à la Thomas, contains
a restriction on the definition of the transition relation by a
function, as opposed to a relation, which limits the sources
of non-determinism. With the functional restriction, we have
proven that each terminal strongly connected component
of the transition graph (TSCC) in the positive semantics
contains at least one TSCC of the semantics à la Thomas,
and thus that our TSCC computation algorithm can be used
to prune the search space in this setting also. On examples
from the literature, we have shown that this pruning mecha-
nism, similarly to the trap-set approximation of [37], allows
us to enumerate attractors where algorithms based on the
construction of the transition graph fail.
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