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Abstract—Preserving privacy of private communication
against an attacker is a fundamental concern of computer science
security. Unconditional encryption considers the case where an
attacker has unlimited computational power, hence no complexity
result can be relied upon for encryption. Optimality criteria are
defined for the best possible encryption over a general collection
of entropy measures. This paper introduces Apollonian cell
encoders, a class of shared-key cryptosystems that are proven to
be universally optimal. In addition to the highest possible security
for the message, Apollonian cell encoders prove to have perfect
secrecy on their key allowing unlimited key reuse. Conditions
for the existence of Apollonian cell encoders are presented, as
well as a constructive proof. Further, a compact representation
of Apollonian cell encoders is presented, allowing for practical
implementation.

I. INTRODUCTION

Preserving privacy of private communication with encryp-
tion is a fundamental concern of computer science. Such ef-
forts can be divided into two categories, according to whether
they assume that the adversary trying to break the encryption
has or does not have access to unlimited computational power.

Computational encryption schemes assume that the at-
tacker’s computational power is bounded, usually meaning that
the attacker cannot solve problems with an superpolynomial
complexity, e.g. integer factorization, subset sum, etc. Note
however that such complexity results are currently unproven,
and may be weakened by technological progress. For instance,
Shor’s algorithm and quantum computing are effective for
integer factorization [1], Grover’s algorithm and quantum
computing can be used against AES [2], and memcomputing
has been proved to be effective to solve subset sum [3].

Unconditional encryption is instead based upon
information-theoretic reasoning and proven independently
of computational hardness. Thus unconditional encryption
results have an elegant mathematical proof of robustness
that does not rely on complexity results. However, typically
unconditional encryption has much stricter requirements to
obtain than computational security [4], [5], [6], [7], [8]. This
paper explores only unconditional encryption, focusing on
results that are not conditioned upon any hardness results and
so are robust against technological progress.

Fundamental to unconditional encryption is the information
measure used to quantify the security of the system being
considered, as it is correlated with the attacks against which
the cryptosystem is resistant [9]. The first formal results on

unconditional encryption were published by Shannon [4] using
results from the formal theory of communication [10]. These
results exploit Shannon entropy (here denoted as S) as the
measure of information, and also introduce perfect secrecy as
the highest level of security that can be achieved. However,
Shannon also proves that perfect secrecy on the message is
achievable only by using a key as large as the message, and the
key has to be discarded after every use. Work on homophonic
substitution [11], [12], [13] has shown that properly adding
randomization to the message space can improve secrecy for
non-uniform message distributions.

Recent work by Khouzani and Malacaria [8] has introduced
Khouzani-Malacaria (KM-) entropy, a very general definition
of entropy that generalizes Rényi entropy [14], and thus
in turn most common and popular entropy measures. This
includes generalizing Shannon entropy and min-entropy [5]
(here denoted as H∞). The results in this work exploit KM-
entropy to yield the greatest generality. In [15] Khouzani
and Malacaria also recently explored the relation with convex
optimization problems and other security scenarios.

Recent work has considered the unconditional encryption
of shared-key cryptosystems and presented max-equivocation
that generalizes Shannon’s perfect secrecy and is a measure
of the best possible unconditional encryption that is always
achievable [6], [7]. An encoder achieving max-equivocation
does not guarantee that no information is leaked, but does
guarantee that the amount leaked is the minimum possible.
Max-equivocation corresponds to perfect secrecy when perfect
secrecy is achievable, i.e. it is possible to leak no information.

The scenario considered in this paper is when a sender
sends a message m encoded with a key k to a ciphertext
c via an encoder enc to a receiver. The receiver uses the
same key k and a decoder dec to obtain the message from
the ciphertext c. An adversary is able to observe c and, using
unlimited computational power, attempts to gain information
about m and k using only c and knowledge of enc and dec.
Equivocation measures the amount of secrecy of the message
or key after the adversary has observed the ciphertext, hence
quantifying the difficulty for the adversary to deduce the exact
message or key used to produce the ciphertext.

This scenario can be generalized from a specific message,
key, and ciphertext to measure the equivocation of the message
(and key) based upon the prior distribution of the messages
and keys, and the properties of the encoder enc. The prior



uncertainty of the adversary on the messages is represented
as H(M) and for the key as H(K), where H is a KM-
entropy. The equivocation, quantifying the uncertainty of the
adversary about the message after observing a ciphertext, can
be represented by H(M |C) and similarly H(K|C) for the
key.

Biondi et al. [6], [7] show that the upper bound on
the message equivocation H(M |C) and key equivoca-
tion H(K|C) is the minimum of the prior distributions,
i.e min(H(M), H(K)). Intuitively, the adversary can exploit
their greater prior knowledge on either the message or key
to learn more information about the other. For example, if
the adversary knows that the key is k1 (i.e. H(K) = 0)
then after seeing a ciphertext c the adversary can use the
key k1 to obtain the message m by dec(c, k1) = m. Since
only one message m corresponds to dec(c, k1) = m then
H(M |C) = 0 = H(K), showing that no message equivo-
cation can be preserved against an adversary that possesses
the encryption/decryption key.

These results prove that the upper bound is
min(H(M), H(K)) which translates to H(K) under
the (typical) assumption that the message has more entropy
than the key (i.e. H(M) > H(K)). The best theoretically
possible cryptosystem would achieve max-equivocation on
the message (H(M |C) = H(K)) and perfect secrecy on the
key(H(K|C) = H(K)). Since such cryptosystem does not
lose any information on the key, it also allows the key to be
reused indefinitely, contrarily to the case studied by Shannon
in which the key can be used only once and then has to
be discarded to preserve perfect secrecy on the message.
However, these results were only proved for Shannon entropy
and min-entropy, and indicate the theoretical bound without
providing a constructive way to build an encoder that achieves
them.

The first contribution of this paper is to generalize these
results to KM-entropy. This shows that the same results
hold when H is any KM-entropy. From this it is possible
to define message (resp. key) optimality for a cryptosystem:
when the cryptosystem achieves message (resp. key) max-
equivocation for a given KM-entropy. This is the best result
that can be obtained by a cryptosystem, meaning that no
other cryptosystem can be more effective at protecting the
secrecy of the message (resp. key) from the adversary. This
is generalized to universal message (resp. key) optimality of a
cryptosystem is message optimal for all KM-entropy measures.
Lastly, define universal optimality if a cryptosystem is both
universally message optimal and universally key optimal for
all KM-entropy measures. Note that universal optimality is
also discusses in [8], however only on the message and only
if the sender is allowed to choose the key distribution, while
here universal key optimality is also obtained and a uniform
prior distribution on the key is sufficient.

The second contribution of the paper is the development
of cell encoders. Cell encoders generalize the encoders of
Biondi et al [7] by allowing an encoder function to map
to a distribution over the ciphertext space instead of only a

single ciphertext. In particular cell encoders map a message
and key uniformly to a subset of the ciphertext space, where
each ciphertext in the subset has the same probability of being
chosen. To maintain the desirable decodability behaviour, cell
encoders require unique decodability; that given a ciphertext c
and key k, the ciphertext can be uniquely decoded to a single
message m.

The third contribution is to define Apollonian cell encoders
and prove that they are universally optimal when the key
distribution is uniform. Apollonian cell encoders exploit the
mapping of a message-key pair to multiple ciphertexts to
obtain a uniform distribution over the ciphertext space. Since
both the key and the ciphertext distributions are uniform,
this yields a uniform distribution for the messages given
the ciphertext, and thus achieves max-equivocation for the
message, and perfect secrecy for the key.

The fourth contribution is to prove that Apollonian cell
encoders can support unlimited key reuse. Since no informa-
tion about the key is leaked to the adversary, this means the
same key can be used an unlimited number of times without
reducing the message or key equivocation. In practice this
means that the same key can be reused infinitely and will
yield a set of sequences of messages, where each sequence is
equally likely to hold from the adversary’s perspective.

The fifth contribution of this paper is to prove the necessary
and sufficient conditions for an Apollonian cell encoder to
exist. The conditions are quite reasonable: (1) that the high-
est probability message has lower probability than any key,
i.e. H∞(M) ≥ H∞(K); and (2) that the probabilities of
the messages can all be expressed as rational numbers. Under
these conditions it is always possible to define an Apollonian
cell encoder that is universally optimal.

The sixth contribution is a compact and practical represen-
tation of an Apollonian cell encoder. A universally-optimal
Apollonian cell encoder can be represented as a simple com-
bination of the sum, multiplication, and modulo operations
over the integers, making it very simple and convenient to
implement in practice.

The rest of this paper develops the above in careful detail.

The structure of the paper is as follows. Related work is
discussed below. Section II introduces notation and concepts
for understanding the paper. Section III defines optimality
for KM-entropy. Section IV proves optimality of Apollonian
cell encoders. Section V proves existence and construction of
Apollonian cell encoders. Section VI discusses concerns and
limitations with the work here. Section VII draws conclusions.

A. Related Work

This paper recreates and extends the ideas of Massey [11],
Günther [12], and Jendal et al. [13] on homophonic substi-
tution, i.e. in techniques to encode a message space with
non-uniform distribution into a larger message space with
uniform distribution while keeping the unique decodability
property of encoders over such message spaces. Here these
ideas are directly integrated into the encoder itself, and the



resulting Apollonian encoder is proven to be optimal against
a much larger class of entropy measures than considered by
the authors cited above. Additionally, this work proves that
Apollonian encoders attain perfect secrecy on the key, allowing
for unlimited key reuse, and leveraging on the work of Biondi
et al. [7] proves that no encoder achieving better information
leakage in the same scenario can exist.

This paper considers a similar scenario than the work of
Russell and Wang [16] and Dodis and Smith [17] on the
encryption of messages with a key smaller than the message.
However, instead of limiting the results to guessing and min-
entropy, this paper presents an encoder scheme obtaining
optimal results for a much more general class of entropy
measures. The results of this paper complements the work of
the authors cited above, including the bounds on key length.

II. BACKGROUND

This section recalls notation, definitions, and concepts used
throughout this work. After recalling notation, Khouzani-
Malacaria entropy is detailed, followed by shared-key cryp-
tosystems, and finally modeling shared-key cryptosystems
with Khouzani-Malacria entropy.

The size of a set S is denoted as |S|. P(X ) denotes the
powerset of set X . A function f : A → B is injective iff
∀a1, a2 ∈ A. f(a1) = f(a2)⇒ a1 = a2.

Basic concepts from probability and information theory can
be found in the literature [18], including the definitions of
support set X , probability P (E) of an event E ⊆ X , random
variable X on X , entropy H(X) of a random variable X ,
conditional entropy H(X|Y ) of a random variable X given
another random variable Y , and so on. In this paper ρX (X)
denotes a probability distribution on the random variable X
on the support set X = Supp(ρX (X)), abbreviated to ρ(X)
when the support set is unambiguous, and ℘(X ) denotes the
space of all probability distributions on X .

A. Khouzani-Malacaria Entropy

This section recalls the concept of Khouzani-Malacaria
(KM-) entropy from [8]. KM-entropy generalizes most
commonly-used entropy measures, including all Renyi entropy
measures, thus results showing optimality of any KM-entropy
hold for these commonly used entropy measures. An important
property of KM-entropy is that any KM-entropy is maximized
on a uniform distribution, as will be recalled in Lemma 1.
The rest of this section recalls KM-entropy in detail, including
definitions of equivocation and leakage for KM-entropy.

Let a random variable θ represent a secret from a discrete
finite set of secrets Θ = {θ1, . . . , θn} of size n. Consider a
defender trying to hide the secret, and an adversary trying to
guess it. Let the secret be generated by a probability distribu-
tion ρ(θ) which is known to both defender and adversary.

The defender is provided with the realization θ of the secret,
and must then choose a cloak1 W ∈ P(Θ). The adversary is
given the cloak W chosen by the defender and has to try

1The cloak is referred to as M in [8], here W is used to avoid confusion
with the message M . Also note that here it is not required that θ ∈W .

and guess θ. Note that if the defender always chooses the
same cloak W for every secret then the adversary gains no
information to guess θ by observing W ; this corresponds to
Shannon’s definition of perfect secrecy [4].

For each secret θ the defender uses a (randomized) cloaking
strategy δ to assign the cloak W with a given probability. The
probability that cloak W is assigned to secret θ by strategy δ
is denoted as δ(W ; θ). A cloaking strategy δ defines a set of
feasible cloaks W+ as W+ = {W ∈ P(Θ) | ∃θ. δ(W ; θ) >
0}. The adversary knows the cloaking strategy δ.

Entropy is a commonly used measure of the uncertainty
of a system represented by a probability distribution. Entropy
can conveniently represent the information that the adversary
has about the secret message before and after an attack.
Consequently entropy can be used to quantify the information
gained by the adversary due to the attack [19], [20], [21], [5],
[22], [23]. The entropy of a probability distribution ρ over
a support set X = {x1, . . . , xn} is denoted as H(ρ(X)),
or simply by H(ρ) when the support set is obvious from
the context. For the application of entropy to security, many
different entropy measures have been proposed, modeling
different adversaries and security scenarios. These include
Shannon entropy S(ρ(X)) = −

∑
x∈X ρ(x) log ρ(x) [4] and

min-entropy H∞(ρ(X)) = − log maxx∈X ρ(x) [5]. A gen-
eralization of many of these entropy measures (including
Shannon and min-entropy) has been proposed by Renyi [14],
and more recently Khouzani and Malacaria [8] proposed a
definition of entropy that generalizes Renyi entropy. This
Khouzani-Malacaria (KM-) entropy is defined as follows:

Definition 1 (Khouzani-Malacaria (KM-) Entropy). A function
H(ρ) from a probability distribution ρ to a real number is a
KM-entropy measure if it satisfies the following.
• Symmetry. H(ρ) is invariant under permutation of ele-

ments of ρ (i.e. depends on the probabilities but not on
their order or labeling).

• Expansibility. Adding elements with probability zero to ρ
does not change H(ρ).

• Core-Concavity. H(ρ) can be written as η(F (ρ)) where
η : R → R is a non-constant function on real numbers,
F is a scalar function on probability distributions, and it
holds that either:

1) η is increasing and F is concave in ρ, or
2) η is decreasing and F is convex in ρ.

Given a KM-entropy measure H , the prior entropy of the
secret is H(ρ(θ)). The prior entropy quantifies the uncertainty
of the adversary on secret θ before observing any cloak.

As remarked by Khouzani and Malacaria [8], any KM-
entropy is maximal on a uniform distribution as a consequence
of the symmetry and core-concavity properties:

Lemma 1. Given a KM-entropy measure H and a support set
X , then the probability distribution ρ maximizing H(ρ(X )) is
the uniform distribution ∀x ∈ X . ρ(x) = 1

|X | .

Let W be the random variable on the support set W+ asso-
ciated with the observation of the cloak W . KM-equivocation



(or conditional KM-entropy) is used to quantify the uncertainty
of the adversary on secret θ after observing a cloak W , and
is defined as H(ρ(θ)|W ).

Definition 2 (KM-Equivocation). The KM-equivocation
H(ρ(θ)|W) for a KM-entropy H(ρ(θ)) = η(F (ρ(θ))) is

H(ρ(θ)|W) = η

( ∑
W∈W+

P (W )F (P (ρ(θ)|W ))

)
where P (W ) =

∑
θ∈Θ ρ(θ)δ(W ; θ) is the probability of

observing the cloak W and P (ρ(θ)|W ) is the distribution
on the secret ρ(θ) normalized on the cloak W .

Given the prior entropy of the secret H(ρ(θ)) and the
equivocation H(ρ(θ)|W) after the adversary has observed the
cloak chosen by the defender according to strategy δ, it is
possible to define the secret’s leakage. That is, the expected
amount of information gained by the adversary on the secret
by observing the chosen cloak according to δ, as the difference
between the secret’s prior entropy and equivocation.

Definition 3 (Leakage). The leakage L (θ) for a given KM-
entropy measure H on a secret θ is L (θ) = H(ρ(θ)) −
H(ρ(θ)|W).

As remarked by Khouzani and Malacaria [8], leakage is
always non-negative, even when H is not defined positive.

B. Shared-Key Cryptosystems
This section recalls the definition of a shared-key cryptosys-

tem, components, and typical use as the basis for the results
and scenarios in this paper. Importantly, this paper does not
address public-key cryptography in any way. Also, this paper
considers only attacks that can be performed by an attacker
observing the ciphertexts that are transmitted between sender
and receiver. This does not include errors in implementation,
side channels, etc.

A shared-key cryptosystem can be defined by the following
components (adapted from [7]).

Definition 4 (Cryptosystem). A (shared-key) cryptosystem is
a 4-tuple (M,K, C, enc) where:
• the message spaceM is a finite set of possible messages;
• the key space K is a finite set of possible keys;
• the ciphertext space C is a finite set of possible cipher-

texts;
• the encoder enc is a function M×K → ℘(C) from mes-

sage space and key space to all probability distributions
over C.

Note that in [7] C is inductively defined by enc since enc
is defined as a function M×K → C; however here a more
general, probabilistic encoder is considered. Also, in [7] it
is required that ∀k ∈ K. enc(·, k) is injective; here this is
replaced by the Unique Decodability assumption below.

A given encoder enc here maps each message-key pair
(m, k) to a probability distribution over C. The probability
that a given element of c is chosen is denoted as P (c|m, k),
and respects 0 ≤ P (c|m, k) ≤ 1 and

∑
c∈C P (c|m, k) = 1.

The cloak W (c) of a ciphertext c ∈ C is the set of all
message-key pairs that have a positive probability of producing
c via the encoder enc, i.e. W (c) = {(m ∈ M, k ∈
K) | P (c|m, k) > 0}. The projection of W (c) on the message
(resp. key) space is denoted as Wm(c) (resp. Wk(c)). The
following is assumed in the rest of the paper and guarantees
that a ciphertext c can be uniquely decoded by the receiver
using the shared key k.

Assumption 1 (Unique Decodability). A cryptosystem
(M,K, C, enc) is uniquely decodable iff for each key k ∈ K
and ciphertext c ∈ C, a pair (·, k) appears at most once in
each cloak W (c).

A uniquely decodable cryptosystem guarantees the existence
of a decoder function dec : C × K → M. such that if c ∈
Supp(enc(m, k)) then dec(c, k) = m.

The channel model of a cryptosystem was introduced by
Shannon [4]. In this model, the sender wants to send a
message m ∈ M to the receiver on a public channel that is
eavesdropped by an attacker. Initially, the sender and receiver
share a secret key k ∈ K.

The sender encodes the message m with key k into a ci-
phertext c by choosing such c with probability P (c|m, k). The
sender then sends this c to the receiver via a public channel,
where c is also eavesdropped by the attacker. Knowing the key
k, the receiver decodes the message m = dec(c, k) using the
decoder function. Not knowing the key k, the attacker tries to
infer m and k from c. The computational power available to
the sender, receiver, and attacker is assumed to be unlimited,
and the attacker is assumed to know M, K, C, enc, and ρ.

The attacker’s knowledge about the realizations of the
message, key, and ciphertext is modeled by random variables.
Let M (resp. K, C) be a random variable on the support set
M (resp. K, C) representing the value of the message m (resp.
key k, ciphertext c) according to the attacker.

C. Information-theoretical Cryptosystem Modeling

To use the information-theoretical model from Section II-A
to model a cryptosystem from Section II-B, consider that in-
stead of having a defender and an adversary, there is a sender, a
receiver, and an attacker. The secret is a pair (m, k) of message
and key, where the attacker tries to guess m (and k), and k
is pre-shared between the sender and the receiver. The prior
probability distribution on the message-key pairs is ρ(M,K),
and its projections on the message and the key spaces are
ρ(M) and ρ(K), respectively. Entropy allows reasoning about
the information that the attacker has both on the message and
on the key. The entropy of the key is also important since each
ciphertext c is uniquely decodable to a given message m given
the key k. Hence Definition 1 can be applied separately to
the message and the key obtaining the prior message entropy
H(ρ(M)) and the prior key entropy H(ρ(K)), respectively,
where the distribution ρ will be omitted when it is obvious
from the context.

The transmission of a ciphertext is a convenient way for
the sender to inform the receiver about which cloak has



been chosen. Both the receiver and the attacker are assumed
to have unlimited computational power and access to the
encoder, hence they are immediately able to map a ciphertext
c ∈ Supp(enc(m, k)) to its cloak W (c).

The cloaking strategy δ(W, θ) is modeled by the choice of
the encoder enc. As remarked above, (1) the secret θ is a
pair of message and key (m, k), (2) choosing a ciphertext c is
equivalent to choosing its cloak W (c), and (3) the ciphertext
is a function of the message m, key k, and encoder enc
via c ∈ Supp(enc(m, k)). Hence the probability δ(W, θ) of
choosing cloak W for secret θ becomes P (c|m, k), i.e. the
probability that ciphertext c is chosen for message-key pair
(m, k) according to encoder enc. This allows the rewriting
of Definition 2 to quantify the message equivocation and key
equivocation for a given KM-entropy H .

Definition 5 (Message Equivocation). Given a cryptosystem
(M,K, C, enc), a probability distribution ρ on M×K, and a
KM-entropy measure H = η(F (ρ)), the message equivocation
H(M |C) of the cryptosystem according to H is

H(M |C) = η

(∑
c∈C

P (c)F (P (M |c))

)
where P (c) =

∑
(m,k)∈M×K ρ(m, k)P (c|m, k) is the proba-

bility of observing ciphertext c and P (M |c) is the distribution
on the message ρ(M) normalized on Wm(c).

Definition 6 (Key Equivocation). Given a cryptosystem
(M,K, C, enc), a probability distribution ρ on M×K, and
a KM-entropy measure H = η(F (ρ)), the key equivocation
H(K|C) of the cryptosystem according to H is

H(K|C) = η

(∑
c∈C

P (c)F (P (K|c))

)
where P (c) =

∑
(m,k)∈M×K ρ(m, k)P (c|m, k) is the proba-

bility of observing ciphertext c and P (K|c) is the distribution
on the key ρ(K) normalized on Wk(c).

Following Definition 3, the message leakage and key leak-
age for a given KM-entropy H can also be defined.

Definition 7 (Message Leakage). Given a cryptosystem
(M,K, C, enc), a probability distribution ρ on M×K, and a
KM-entropy measure H , the message leakage L (M) is

L (M) = H(M)−H(M |C) .

Definition 8 (Key Leakage). Given a cryptosystem
(M,K, C, enc), a probability distribution ρ on M × K,
and a KM-entropy measure H , the key leakage L (K) is

L (K) = H(K)−H(K|C) .

III. UNIVERSAL OPTIMALITY

This section explores definitions of optimal for a cryp-
tosystem with respect to KM-entropy measures. In particu-
lar, the definition of being optimal for message equivoca-
tion, key equivocation, and universally optimal. These results

build upon and generalize the work of Biondi et al. [7] on
max-equivocation, and Khouzani and Malacaria [8] for KM-
entropy.

Importantly, in this paper the following assumptions also
hold:

Assumption 2 (Key Uniformity). The key distribution ρ(K)
is assumed to be uniform, i.e. ∀k ∈ K. ρ(k) = 1

|K| .

The Key Uniformity assumption is very reasonable in a
practical setting, since producing valuable uniform random-
ness is a well-understood problem in cryptography. In general
this is not required for all results, in particular for cryptosys-
tems the rôle of message and key can be reversed and this
assumption applied to the message distribution instead. For a
detailed exploration of this refer to Biondi et al. [7].

Assumption 3 (Message-Key Independence). The message
distribution ρ(M) and the key distribution ρ(K) are assumed
to be independent, i.e. ∀m ∈M, k ∈ K. ρ(m, k) = ρ(m)ρ(k).

The Message-Key Independence assumption is also reason-
able, since the choice of the key should never depend on
the choice of the message, otherwise it would likely leak
information about the message.

Biondi et al. [7] derived maximum message equivocation
bounds for Shannon entropy:

Lemma 2 (from Theorem 2 of [7]). Given a cryptosystem
(M,K, C, enc) and a probability distribution ρ on M× K,
then S(M |C) ≤ S(K).

Note that Lemma 2 also holds for min-entropy by replacing
S with H∞. In fact, this result can be extended to any KM-
entropy measure as proved below.

Theorem 1. Given a cryptosystem (M,K, C, enc), a proba-
bility distribution ρ on M× K, and a KM-entropy measure
H , then H(M |C) ≤ H(K).

Proof. If H(M) ≤ H(K) this is trivial since H(M |C) ≤
H(M) by non-negativity of leakage, so let H(M) > H(K).
Since each key appears at most once in the cloak of each
ciphertext by unique decodability (Assumption 1), no cloak is
larger than the key space: ∀c. |W (c)| ≤ |K|. Since the key
is uniformly distributed over K, this is sufficient to show that
∀c. H(M |c) ≤ H(K) by Lemma 1. Finish by Definition 5.

It follows that the message equivocation is bounded from
above by min(H(M), H(K)). Biondi et al. [7] call an encoder
achieving such upper bound as satisfying max-equivocation:
H(M |C) = min(H(M), H(K)).

More generally, given a probability distribution ρ on M×
K and KM-entropy measure H , it is possible to derive the
message (resp. key) max-equivocation that any cryptosystem
(M,K, C, enc) can preserve.

Definition 9 (Message and Key Max-Equivocation). A
cryptosystem (M,K, C, enc) satisfies message (resp. key)
max-equivocation for a given probability distribution ρ on



M × K and KM-entropy measure H when H(M |C) =
min(H(M), H(K)) (resp. H(K|C) = min(H(M), H(K))).

Observe that when the message (resp. key) entropy is lesser,
then this corresponds to Shannon’s perfect secrecy [4] on the
message (resp. key) since H(M |C) = min(H(M), H(K)) =
H(M) (resp. H(K|C) = min(H(M), H(K)) = HK)). This
property of max-equivocation corresponding to perfect secrecy
holds by design of Biondi et al. since max-equivocation
generalizes perfect secrecy [7].

Once a KM-entropy measure and probability distribution
(on messages and keys) is fixed, it is possible to define the
properties of an optimal cryptosystem through message and
key max-equivocation.

Definition 10 (Message and Key Optimality). Given a KM-
entropy measure H and probability distribution ρ on M×K,
a cryptosystem (M,K, C, enc) is message-optimal (resp. key-
optimal) for H iff (M,K, C, enc) achieves message (resp. key)
max-equivocation.

Observe that in practice such a cryptosystem must achieve
perfect secrecy on the message or key since it must achieve
both H(M |C) = min(H(M), H(K)) and H(K|C) =
min(H(M), H(K)). In the case where H(M) = H(K) then
such a cryptosystem achieves perfect secrecy on both the
message and key.

When perfect secrecy is achieved on the key then this allows
the key to be reused indefinitely, since the system does not leak
any information about the key. In practice this yields sequences
of messages that correspond to each possible key, however
from the attacker’s perspective all such sequences of messages
are equally likely. (Note that each position in the sequences
will correspond to one message being sent, and collectively
will have H(M |C) equivocation.)

This definition of optimality can be generalised to account
for all KM-entropy measures as follows.

Definition 11 (Universal Message and Key Optimality). Given
a probability distribution ρ on M × K, a cryptosystem
(M,K, C, enc) is universally message-optimal (resp. univer-
sally key-optimal) iff it is message-optimal (resp. key-optimal)
for any KM-entropy measure H .

Recall from Lemma 1 that any KM-entropy is maximal on
a uniform distribution, and that leakage is minimized when
equivocation is maximized; then, an encoder such that the
posterior distribution of the message (resp. key) given each
ciphertext is always uniform on a space of size min(|M|, |K|)
is universally message-optimal (resp. universally key-optimal).

Combining both universal message and key optimality pro-
vides a definition for universal optimality.

Definition 12 (Universal Optimality). Given a probability
distribution ρ on M× K, a cryptosystem (M,K, C, enc) is
universally optimal if it is both universally message-optimal
and universally key-optimal.

In Section IV an encoder with universal optimality is

presented, i.e. the best possible cryptosystem theoretically
achievable for any KM-entropy.

A. Unlimited Key Reuse

The following theorem details under which condition a
cryptosystem does not leak any information about the key
over multiple transmissions, hence allowing for unlimited key
reuse.

Theorem 2. Given a KM-entropy measure H , a probability
distribution ρ on M × K, a cryptosystem (M,K, C, enc),
a vector −→m of n messages chosen independently from M
according to ρ(M) and represented by the random variable−→
M , and a vector −→c of n ciphertexts obtained by encoding
each message m ∈

−→
M with the same key k ∈ K such that

∀1 ≤ i ≤ n. ci = enc(mi, k) and is represented by the
random variable

−→
C .

Assume that the ciphertext vector is independent from the
key, i.e. it holds that H(

−→
C ,K) = H(

−→
C ) +H(K).

Under this assumption, the transmission of the ciphertext
vector via the cryptosystem preserves perfect secrecy on the
key, i.e.

H(K|
−→
C ) = H(K)

allowing for unlimited key reuse without leaking any informa-
tion on the key.

Proof.

H(K|
−→
C ) = H(

−→
C |K) +H(K)−H(

−→
C )

(by Bayes’theorem)

= H(
−→
C ,K)−H(K) +H(K)−H(

−→
C )

(by definition of conditional entropy)

= H(
−→
C )−H(K) + 2H(K)−H(

−→
C )

(by assumption)
= H(K)

Section IV shows that Apollonian cell encoders respect the
assumption of Theorem 2, hence allowing for unlimited key
reuse.

IV. APOLLONIAN CELL ENCODERS ARE UNIVERSALLY
OPTIMAL

This section presents cell encoders and Apollonian cell
encoders, concluding with proofs that Apollonian cell encoders
are universally optimal. The rest of this section assumes a
message space M, key space K, and ciphertext space C.

A. Cell encoders

This section presents cell encoders that may map a single
message m and key k to a set of possible ciphertexts. Con-
ceptually this is a mapping from a message and key to a cell
that contains this set of ciphertexts.

Define a cell function CELL(m, k) that given a message
m ∈M and key k ∈ K returns a non-empty subset of C. The
cell function is exploited to define a cell encoder as follows.



Definition 13 (Cell Encoder). A cell encoder enc is a function
M× K → ℘(C) that maps a message m and a key k to a
probability distribution uniform on CELL(m, k) and zero on
C \ CELL(m, k).

Observe that prior definitions of encoders [6], [7] can also be
considered cell encoders by assuming that the CELL function
always returns a set of size 1. Thus, the rest of this paper shall
assume all encoders are cell encoders and the CELL function
is defined implicitly and not shown in the notation.

Let ∆(c ∈ CELL(m, k)) be the Dirac delta function for
the statement c ∈ CELL(m, k), i.e.

∆(c ∈ CELL(m, k)) =

{
1 if c ∈ CELL(m, k)

0 otherwise
.

Then the probability of each ciphertext c can be defined as:

ρ(c) =
∑
m∈M

∑
k∈K

∆(c ∈ CELL(m, k))
ρ(m, k)

|CELL(m, k)|
(1)

and the conditional probability of each ciphertext c given a
message m or a key k as

ρ(c|m) =
∑
k∈K

∆(c ∈ CELL(m, k))
ρ(k)

|CELL(m, k)|
(2)

and

ρ(c|k) =
∑
m∈M

∆(c ∈ CELL(m, k))
ρ(m)

|CELL(m, k)|
(3)

respectively by Assumption 3.
A cell encoder is semi-injective on the message if ∀k ∈

K. enc(·, k) is injective, i.e. for all messages mi and mj

and all keys k then mi 6= mj implies CELL(mi, k) ∩
CELL(mj , k) = ∅. Note that this is enforced by Assump-
tion 1.

A cell encoder is semi-injective on the key if ∀m ∈
M. enc(m, ·) is injective, i.e. for all keys ki and kj and
all messages m then ki 6= kj implies CELL(m, ki) ∩
CELL(m, kj) = ∅.

B. On Building a Universally Optimal Encoder

This section provides intuition useful to understand how to
build an encoder with universal optimality properties. Recall
that in this paper cryptosystems are assumed to be uniquely
decodable (Assumption 1), the probability distribution on
the key is assumed to be uniform (Assumption 2), and the
probability distributions of message and key are assumed to
be independent (Assumption 3).

Consider the simple case of uniformly-distributed message
and key spaces with three elements each:M = {m0,m1,m2}
and K = {k0, k1, k1} and ρ(m0) = ρ(m1) = ρ(m2) =
ρ(k0) = ρ(k1) = ρ(k2) = 1/3. Lemma 1 states that any KM-
entropy measure is maximal on a uniform distribution and
Definition 7 remarks that message leakage is minimal when
message equivocation is maximal and prior message entropy
does not depend on the encoder. Hence, it is simple to see that
an encoder that produces a uniform conditional distribution

TABLE I: An encoder for |M| = |K| = 3.

Key
k0 k1 k2

M
es

sa
ge m0 c0 c1 c2

m1 c1 c2 c0

m2 c2 c0 c1

on the message space for any ciphertext maximizes message
equivocation and thus minimizes message leakage on any KM-
entropy measure, making such encoder universally optimal.
(The same holds with message replaced by key.)

Now consider the encoder depicted in Table I on the
ciphertext space C = {c0, c1, c2}. It is easy to see that each
ciphertext appears in each row of the encoder. This means
that the cloak of the encoder on the message is the whole
message space, hence the attacker is not able to immediately
exclude any message from being the one used by the sender
just by observing a ciphertext. If the cloak of a ciphertext on
the message space did not include all of the messages, then
the attacker would gain information about the message sent by
observing that ciphertext, and this would cause message leak-
age. As before, the same holds for the key by considering each
column of the encoder. Note that having a ciphertext appearing
more than once in the same row would be acceptable, while
having a ciphertext appearing more than once in the same
column would violate unique decodability (Assumption 1).

Consider the transmission of multiple ciphertexts again
using the encoder in Table I. Since the message is redrawn
from the message distribution every time, even sequences of
ciphertexts will not reveal any information about the key,
even though the key is never changed. However, the attacker
will be able to map each possible key to a sequence of
messages. For instance, if the attacker observes the sequence
of ciphertexts (c0, c2, c0) then they can infer that the message
sequence is (m0,m2,m0) if the key is k0, (m2,m1,m2) if
the key is k1, and (m1,m0,m1) if the key is k2. Since these
sequences are equally probable this still does not provide any
information about the key to the attacker, so key leakage is
zero. However, the attacker will know to exclude 24 out of the
27 possible three-message sequences. Since this is implicitly
considering sequences of three messages as the message space,
this is unavoidable by Theorem 1 showing that no message
(or sequence thereof) can have more equivocation than the
entropy of the key used to transmit the sequence. Hence, no
better equivocation can be obtained without sharing a new key
between the sender and the receiver.

For the case of Table I it is very easy to construct an
optimal encoder because (1) the message and key space have
the same size, and (2) the message distribution is uniform.
However, both these properties are very uncommon in practical
cryptography: in general it is preferable to use a key space
smaller than the message space, and some messages (e.g. “Hi”)
will have a very different probability of being transmitted than
some others (e.g. “In a right-angle triangle, the sum of the
squares of the smaller two sides is equivalent to the square



TABLE II: An encoder for |M| = 4, |K| = 3.

Key
k0 k1 k2

M
es

sa
ge

m0 c0 c1 c2

m1 c1 c2 c3

m2 c2 c3 c0

m3 c3 c0 c1

of the hypotenuse”). Note that the assumption of uniform
key distribution (Assumption 2) is instead quite reasonable,
since the key can be produced using high-quality randomness
and does not have to carry actual information or meaning
like the message do. The rest of this section demonstrates
what happens to optimal and universal encoding when relaxing
some of these properties.

Now consider the encoder depicted in Table II, where the
message and ciphertext spaces have been extended by one
element and the probability of each message is uniform at
1/4. Each ciphertext still appears in each column, so key
leakage is still zero. However, not every ciphertext appears in
every row, hence the cloak of each ciphertext on the message
is not the whole message space, causing message leakage.
For example, if the attacker observes ciphertext c2 they can
immediately infer that the message is not m3, while gaining
no information on the key (even on repeated transmissions, as
explained above).

Note that in this case H(M) > H(K) for any KM-entropy
measure H , hence again by Theorem 1 it is not possible
to have an encoder with zero message leakage even on a
single transmission, while it is possible to have an encoder
with zero key leakage like the one depicted in Table II. In
this case the best possible result is for the cryptosystem to
have universal message optimality and universal key optimality
(both Definition 11). To have such properties each ciphertext
must have a uniformly-distributed cloak of size three on both
the message and the key. It can be verified that the encoder in
Figure II achieves this, and hence has both universal message
optimality and universal key optimality, making it the best
possible encoder for uniformly-distributed message and key
spaces of sizes 4 and 3 respectively. Observe that in this
case for all KM-entropy measures, the encoder achieves max-
equivocation on the message, and perfect secrecy on the key.

Now consider again the case of Table I but with the
following non-uniform message distribution: ρ(m0) = 0.98,
and ρ(m1) = ρ(m2) = 0.01. In this case the message to be
transmitted is m0 with 98% probability and m1 or m2 with
1% probability each, and recall that the attacker knows both
the encoder and the message and key distributions. Fix a pre-
shared transmission key, for example assume the key is k1.
This means that the attacker will observe ciphertext c2 98% of
the time, which combined with the knowledge of the encoder
and message distribution can be used to infer that the key is
k1 with very high probability, causing drastic message and key
leakage after the observation of a small number of ciphertexts.
In theory an encoder could be constructed that could account

TABLE III: A cell encoder for |M| = 4, |K| = 3.

Key
k0 k1 k2

M
es

sa
ge

m0 c0, c1, c2 c3, c4, c5 c6, c7, c8

m1 c3, c4, c5 c6, c7, c8 c9, c0, c1

m2 c6, c7 c9, c0 c2, c3

m3 c8, c9 c1, c2 c4, c5

for such an uneven message distribution. This turns out to be
solvable using cell encoders.

The introduction of cell encoders allows evening the prob-
ability of the ciphertexts when the message distribution is
non-uniform, allowing for universally optimal encoding. Con-
sider message and key spaces of size 4 and 3 respectively:
M = {m0,m1,m2,m3} and K = {k0, k1, k1}. Let ρ(m0) =
ρ(m1) = 0.3 and ρ(m2) = ρ(m3) = 0.2, and let the key
distribution be uniform. The probability of the message being
m0 or m1 is hence one and a half times the probability of
the message m2 or m3, and as explained above this can
cause key and message leakage due to ciphertexts having
different probabilities and non-uniformly-distributed cloaks.
However, if the messages with higher probability had a lower
probability of producing some of the ciphertexts compared
to the messages with lower probability, this would even out
ciphertext and cloak distributions allowing for a universally
optimal encoding.

Consider the cell encoder depicted in Table III. Recall that
each ciphertext can appear at mostly once in each column,
otherwise Assumption 1 would be violated. Observe that each
cell for messages m0 and m1 has one and a half times the
ciphertexts of each cell for messages m2 and m3. This means
that while m0 has one and a half times the probability of
being chosen compared to m2, the probability that m2 will
produce a particular ciphertext, e.g. c2, is one and a half
times the probability that m0 will produce the same ciphertext
c2. This evens out the probabilities for the ciphertexts being
produced. It can in fact be verified that all the ciphertexts in
C = {c0, . . . , c9} have the same probability of being produced:
the ciphertext distribution ρ(C) is uniform.

Showing that the cloak on the key of each ciphertext is
of size three and uniformly distributed is trivial, since each
ciphertext appears in each column exactly once and the key
distribution is uniform. More importantly, the cloak on the
message of each ciphertext also has size three and uniform
distribution.

For example, consider again ciphertext c2. Note that c2 does
not appear in the row of m1, hence the probability that the
message is m1 if c2 is observed is zero. If c2 is observed then
the message is m0 iff the key is k0, m2 iff the key is k2, and
m3 iff the key is k1. Hence from the uniform distribution of the
key we obtain that ρ(m0|c2) = ρ(m2|c2) = ρ(m3|c2) = 1/3,
showing that the probability distribution of the cloak of c2
on the message is also uniform on three elements. This holds
for any ciphertext, showing that the cell encoder in Table III
also has both universal message optimality and universally key



optimality for any KM-entropy measure, making it the best
possible encoder for the message and key spaces and distri-
butions considered, i.e. universal optimality (Definition 12).

The main intuition for the construction of such an encoder
is that the number of ciphertexts for each message has to coun-
terbalance the relative probability of that message compared
to the others. This intuition is formalized in the Apollonian
property described in the next section.

C. Apollonian Cell Encoders

This section introduces Apollonian cell encoders and their
properties. The section concludes by proving that Apollonian
cell encoders have universal optimality for all KM-entropy
measures.

Assume that given a probability distribution ρ on M×K
each message probability is rational, i.e. ∀mi ∈ M. ρ(mi) ∈
Q and (with no loss of generality) is irreducible. Then each
message probability ρ(mi) can be written as the quotient of
a numerator ni and a denominator di: ρ(mi) = ni

di
such

that GCD(ni, di) = 1. Let µ be the least common multiple
of these denominators: µ = LCM(d1, d2, . . . , d|M|) and so
define n′i = niµ

di
.

By finding a common multiple of all the denominators it
is possible to express all the message probabilities with a
common denominator. In turn this allows choosing ciphertexts
in a cell encoder that can even out the probabilities of the
messages.

A cell encoder is Apollonian if it is semi-injective on both
the key and message, and |C| = µ and each cell corresponding
to message mi has size n′i.

Definition 14 (Apollonian Cell Encoder). Let ρ be a probabil-
ity distribution overM×K such that for every mi ∈M then
ρ(mi) ∈ Q. Let each ρ(mi) = ni

di
(where ni

di
is irreducible)

and µ = LCM(d1, d2, . . . , d|M|) and so define n′i = niµ
di

.
Then a cell encoder enc is Apollonian iff

1) ∀k ∈ K. enc(·, k) is injective and
2) ∀m ∈M. enc(m, ·) is injective and
3) |C| = µ and
4) ∀mi ∈M, kj ∈ K. |CELL(mi, kj)| = n′i.

The semi-injectivity properties of Apollonian cell encoders
are used to ensure that no ciphertext can map to the same
message with two different keys (or the same key with two
different messages). This ensures that the cloak of any given
ciphertext on the messages always has size |K| (and similarly
that the cloak of any given ciphertext on the key has size |K|).
Lastly, the restriction on the size of the cells n′i matching
the numerator (for µ as the denominator) ensures that the
probabilities are correctly evened out.

Optimality of Apollonian cell encoders.

This section proves optimality of Apollonian cell encoders.
The proofs here rely on: the assumption that the key is uni-
formly distributed (Assumption 2), and also that H∞(M) ≥
H∞(K) (this is proved necessary in Section V-A, Theorem 5).

If these assumptions hold, then an Apollonian cell encoder for
the message and key space always exists and achieves univer-
sal optimality (Definition 12). See Section V for necessary
and sufficient conditions for the existence of Apollonian cell
encoders.

The following lemmata hold for Apollonian cell encoders
and are used to prove universal optimality.

The following lemma proves that in an Apollonian cell
encoder, each ciphertext c appears exactly once in the cells
corresponding to each key kj .

Lemma 3. ∀kj ∈ K,∀c ∈ C.
∑
mi∈M∆(c ∈

CELL(mi, kj)) = 1.

Proof. By conditions 1 and 3 of Definition 14.

The following lemma proves that in an Apollonian cell
encoder, each ciphertext c appears exactly once in the cells
corresponding to each message mi if and only if mi is in the
cloak of c on the message.

Lemma 4. ∀mi ∈ M,∀c ∈ C.
∑
kj∈K∆(c ∈

CELL(mi, kj)) = ∆(m ∈Wm(c)).

Proof. By conditions 2 and 3 of Definition 14.

The following lemma proves that in an Apollonian cell
encoder, each ciphertext c appears a number of time equal
to the size of the key space.

Lemma 5. ∀c ∈ C.
∑
mi∈M

∑
kj∈K∆(c ∈

CELL(mi, kj)) = |K|.

Proof. By conditions 1 and 3 of Definition 14.

The following lemma proves that in an Apollonian cell
encoder, given each key k, each ciphertext c has the same
probability of appearing, and that probability corresponds to
1 divided by µ.

Lemma 6. ∀k ∈ K, c ∈ C. ρ(c|k) = 1
µ .



Proof.

ρ(c|kj) =
∑

mi∈M
∆(c ∈ CELL(mi, kj))

ρ(mi)

|CELL(mi, kj)|
(by Equation (3))

=
∑

mi∈M
∆(c ∈ CELL(mi, kj))

ρ(mi)

n′i

(by condition 4 of Definition 14)

=
∑

mi∈M
∆(c ∈ CELL(mi, kj))

(
n′
i

µ )

n′i

(by definition of n′i)

=
∑

mi∈M
∆(c ∈ CELL(mi, kj))

1

µ

=
1

µ

∑
mi∈M

∆(c ∈ CELL(mi, kj))

(since µ is a constant)

=
1

µ
. (by Lemma 3)

The following lemma proves that in an Apollonian cell en-
coder, each ciphertext c has the same probability of appearing,
and that probability corresponds to 1 divided by µ.

Lemma 7. ∀c ∈ C. ρ(c) = 1
µ .

Proof. Trivial from Lemma 6.

The following lemma proves that in an Apollonian cell
encoder, given a message mi, each ciphertext c such that mi is
in the cloak Wm(c) of c has the same probability of appearing,
and that probability corresponds to 1 divided by n′i times the
size of the key space.

Lemma 8. ∀c ∈ C,mi ∈Wm(c). ρ(c|mi) = 1
n′
i|K|

.

Proof.

ρ(c|mi) =
∑
kj∈K

∆(c ∈ CELL(mi, kj))
ρ(kj)

|CELL(mi, kj)|
(by Equation 2)

=
∑
kj∈K

∆(c ∈ CELL(mi, kj))
ρ(kj)

n′i

(by condition 4 of Definition 14)

=
∑
kj∈K

∆(c ∈ CELL(mi, kj))
1

n′i|K|
(by Assumption 2)

=
1

n′i|K|
∑
kj∈K

∆(c ∈ CELL(mi, kj))

(since n′i is a constant for a given mi and |K| is a constant)

=
1

n′i|K|
. (by Lemma 4 since mi ∈Wm(c))

The following lemma proves that in an Apollonian cell
encoder, given a ciphertext c, the probability that the ciphertext
was produced by a message m in the cloak Wm(c) of c always
corresponds to 1 divided by the size of the key space.

Lemma 9. ∀c ∈ C,m ∈Wm(c). ρ(m|c) = 1
|K| .

Proof.

ρ(m|c) =
ρ(c|m)ρ(m)

ρ(c)
(by Bayes’ Theorem)

=

1
n′
i|K|

ρ(m)

ρ(c)
(by Lemma 8)

=

1
n′
i|K|

n′
i

µ

ρ(c)
(by definition of n′i)

=

1
n′
i|K|

n′
i

µ

1
µ

(by Lemma 7)

=
1

|K|
.

The following theorems prove the optimality of Apollonian
cell encoders:

Theorem 3. Given a probability distribution ρ on M × K
and a cryptosystem (M,K, C, enc) where enc is an Apollonian
cell encoder, then the cryptosystem achieves universal message
optimality (Definition 11).

Proof. To prove this result it suffices to show that ∀c ∈ C,m ∈
Wm(c) : ρ(m|c) = ρ(k) = 1

|K| . The theorem then follows
from Lemma 9.

Theorem 4. Given a probability distribution ρ onM×K and
a cryptosystem (M,K, C, enc) where enc is an Apollonian cell
encoder, then the cryptosystem achieves universal key optimal-
ity (Definition 11) with perfect key secrecy H(K|C) = H(K).

Proof. To prove this result it suffices to show that ∀c ∈ C, k ∈
K : ρ(k|c) = ρ(k). Observe that ρ(k|c) = ρ(c|k)ρ(k)

ρ(c) so it
suffices to show that ρ(c) = ρ(c|k). The theorem then follows
from Lemma 7, Lemma 6, and uniformity of ρ(K).

Observe that this does not require condition 2 of Defini-
tion 14.

Theorems 3 & 4 can be combined to show that Apollonian
cell encoders are universally optimal.

Corollary 1. Given a probability distribution ρ onM×K and
a cryptosystem (M,K, C, enc) where enc is an Apollonian cell
encoder, then the cryptosystem achieves universal optimality
(Definition 12).

Proof. By Theorems 3 & 4.

D. Unlimited Key Reuse

The following lemma shows that Apollonian cell encoders
respect the assumption of Theorem 2, hence allowing for
unlimited key reuse.



Lemma 10. Given the conditions of Theorem 2 and assuming
that enc is an Apollonian cell encoder, then it holds that

H(
−→
C ,K) = H(

−→
C ) +H(K) .

Proof.

H(
−→
C ,K) = H(

−→
C ) +H(K)

≡ ∀−→c ∈
−→
C , ∀k ∈ K. ρ(−→c , k) = ρ(−→c )ρ(k)

≡ ∀−→c ∈
−→
C , ∀k ∈ K. ρ(−→c |k)ρ(k) = ρ(−→c )ρ(k)

≡ ∀−→c ∈
−→
C , ∀k ∈ K. ρ(−→c |k) = ρ(−→c ) .

Assume for simplicity n = 2, then with the quantifications
∀c1, c2 ∈ C × C,∀k ∈ K the statement becomes

ρ(c1, c2|k) = ρ(c1, c2)

≡ ρ(c2|c1, k)ρ(c1|k) = ρ(c2|c1)ρ(c1)

≡ ρ(c2|c1, k)ρ(c1) = ρ(c2|c1)ρ(c1)
(by Lemmata 6 and 7)

≡ ρ(c2|c1, k) = ρ(c2|c1) .

Now consider a given k ∈ K and the column of the Apollonian
cell encoder corresponding to k. Knowing the column and
knowing c1 it is possible to determine m1 uniquely by As-
sumption 1. However, since c2 = enc(m2, k) and m1 and m2

are chosen independently and ρ(c1|k) = ρ(c1) by Lemmata 6
and 7, knowing c1 and k does not give any information about
the choice of either m2 or c2, and hence ρ(c2|c1, k) = 1/µ.
Since all keys k have the same probability and the above is true
for the column corresponding to any k, knowing only c1 also
does not give any information about either m2 or c2, hence
ρ(c2|c1) = 1/µ, concluding that ρ(c2|c1, k) = ρ(c1, c2) as
required. The generalization for n > 2 is straightforward.

V. EXISTENCE AND CONSTRUCTION OF APOLLONIAN
CELL ENCODERS

This section discusses the necessary and sufficient condi-
tions for an Apollonian cell encoder to exist given a probability
distribution on messages and a key space, and presents a closed
form to construct an Apollonian cell encoder when possible.
As in the previous section, assume a given message spaceM,
key space K, and ciphertext space C.

Given a distribution ρ over the message spaceM and a key
space K such that ∀m ∈ M. ρ(m) ∈ Q and ∀k ∈ K. ρ(k) =

1
|K| , this section proves that an Apollonian cell encoder exists
iff H∞(M) ≥ H∞(K).

A. Necessity

The following lemma and theorem prove the necessary
conditions for the existence of an Apollonian cell encoder.

Lemma 11. Given a probability distribution ρ on M× K,
then H∞(M) ≥ H∞(K) ≡ maxmi∈M(ρ(mi)) ≤ 1

|K|

Proof.

H∞(M) ≥ H∞(K)

≡ − log(maxmi∈M(ρ(mi))) ≥ log(|K|)
(by Assumption 2)

≡ − log(maxmi∈M(ρ(mi))) ≥ − log

(
1

|K|

)
≡ log(maxmi∈M(ρ(mi))) ≤ log

(
1

|K|

)
≡ maxmi∈M(ρ(mi)) ≤

1

|K|

Theorem 5. Given a probability distribution ρ on M × K
such that H∞(M) < H∞(K), then no Apollonian encoder
can exist for ρ.

Proof. As a trivial corollary of Lemma 11, it holds that
H∞(M) < H∞(K) ≡ maxmi∈M(ρ(mi)) > 1

|K| . Let
message mj be a message with the highest probability, so
ρ(mj) = maxmi∈M(ρ(mi)) =

n′
j

µ (where µ is defined as
in Section IV-C). Now consider all the cells of the encoder
of the form CELL(mj , ·). Observe that to define such cells
requires n′j |K| distinct ciphertexts. However, since

n′
j

µ > 1
|K|

and thus n′j |K| > µ and thus n′j |K| > |C| (by condition 4 of
Definition 14) it is impossible to define such cells without
repeating a ciphertext and so contradicting condition 2 of
Definition 14.

Thus, if ρ is such that H∞(M) < H∞(K) holds no
Apollonian cell encoder can exist for ρ.

Observe that the condition H∞(M) ≥ H∞(K) induces a
limit on the key space size based upon the message distribu-
tion. If n

d = maxm∈M ρ(m) then the size of the key space is
bounded by w where 1

w ≥
n
d >

1
w+1 holds. So for instance if

the highest message probability is 1/8 no Apollonian encoder
can exist for a key space of size larger than 8.

B. Sufficiency

This section formalises how to construct an Apollonian
encoder given ρ.

First assign to each message m a set of n′ sequential
base numbers B = b0, b1, . . . , bn′−1 such that ∀i, j. mi 6=
mj ⇒ Bi ∩ Bj = ∅. For simplicity this can be done
by ordering the messages and then assigning to m0 the
base numbers 0, 1, . . . , n′0 − 1, then to m1 the base numbers
n′0, n

′
0 +1, . . . , n′0 +n′1−1, etc. Observe that all of these base

numbers can be assigned to exactly range over 0 to µ− 1.
For simplicity let x = µ ·maxmi∈M(ρ(mi)) = max(n′i),

i.e. the numerator of the representation of ρ(mi) in the form
n′
i

µ . Now an Apollonian cell encoder enc(k,mi) can be defined
by

enc(k,mi) = (bi + kx) mod µ

where the keys are represented as their index kj = j (re-
specting 0 ≤ j ≤ |K| − 1), bi is chosen uniformly at random



from the set Bi of base numbers assigned to mi, and mod
is the modulo operation. Note that here the natural numbers
0, 1, . . . , µ− 1 are used as the ciphertexts C.

Theorem 6. The encoder enc(k,mi) = (bi + kx) mod µ is
Apollonian.

Proof. The proof relies on proving that the encoder has the
four conditions in the definition of an Apollonian cell encoder
(Definition 14).

For condition 4, observe that each cell corresponding to the
message mi has size n′i by construction.

For condition 3 observe that the ciphertexts are the numbers
0, 1, ..., µ− 1 and so |C| = µ by construction.

For condition 1 consider the union of all the cells of the
encoder of the form CELL(·, kj) for any kj ∈ K. This union
contains exactly one instance of each ciphertext since when
kj = 0 this is exactly the numbers 0, 1, . . . , µ− 1, and this is
stable under addition-modulo for any kj · x.

The only non-trivial condition is 2: that no ciphertext is
repeated in the union of all cells of the form CELL(mi, ·)
for any mi ∈ M. Fix some message mi ∈ M and let
bα = minb∈Bi

(b) and bω = bα + n′i − 1 = maxb∈Bi
(b).

Observe that when k = 0 then the possible ciphertexts are
some numbers bα, bα + 1, . . . , bω that are sequential and
distinct. Now consider when k1 and k2 are both in the range
0, . . . , |K| − 1 inclusive and k1 < k2. Observe that the
maximum ciphertext for k1 is bω + k1x and the minimum for
k2 is bα+k2x. It is sufficient to show that bω+k1x < bα+k2x
(since we can adjust by subtracting (bω +k1x) to avoid issues
with mod µ):

bω + k1x < bα + k2x ≡ bω + k1x < bα + k1x+ nx
(for n ≥ 1 since k1 < k2)

≡ bω < bα + nx

≡ bα + n′i − 1 < bα + nx
(by definition of bω)

≡ n′i − 1 < nx

≡ n′i < nx+ 1

≡ n′i < min(n)x+ 1

≡ n′i < x+ 1
(since n ≥ 1 by definition)

≡ n′i ≤ x

which must hold since x = max(n′i). Finally, to conclude
requires showing that (bω − bα) + (|K| − 1)x < µ:

(bω − bα) + (|K| − 1)x < µ

≡ (bα + n′i − 1− bα) + (|K| − 1)x < µ
(by definition of bω)

≡ (n′i − 1) + (|K| − 1)x < µ

≡ (n′i − 1) + (|K| − 1)x < |K|x
(by definition of µ)

≡ n′i − 1 < x

≡ n′i ≤ x

which always holds since x = max(n′i) by definition.

This shows that given a probability distribution ρ on M×
K such that ∀m ∈ M. ρ(m) ∈ Q ∧ ρ(m) ≤ 1

|K| , then an
Apollonian cell encoder can be constructed.

Combining Theorems 5 and 6 yields the necessary and
sufficient conditions for the existence of an Apollonian cell
encoder given probability distribution ρ over the message
space M and key space K such that ρ(K) is uniform.

Theorem 7. Given a probability distribution ρ on M × K
such that ρ(K) is uniform, then an Apollonian cell encoder
for ρ exists iff H∞(M) ≥ H∞(K).

Proof. By Theorem 5 and Theorem 6.

VI. DISCUSSION

This section discusses the limitations of the rational valued
probabilities, and practical concerns for implementation of
Apollonian cell encoders. These include:
• approximating real-valued probabilities;
• size of the ciphertext space for practical transmission;
• compact representation of an Apollonian cell encoder for

practical use.
It is advised that the reader familiarizes them self with the

rest of the paper before reading this section.

A. Approximating Real-Valued Message Probabilities

The assumption that the message probabilities are rational
numbers in Section IV is necessary to compute their least
common multiplier µ and build an Apollonian cell encoder.
Assuming the message probabilities have to be represented in
a physical machine, this is normally not a problem.

In the theoretical sense, any irrational message probability
can be approximated to a rational number with arbitrary
precision in the usual manner. However, due to the generality
of the definition of KM-entropy, it is not possible to guarantee
in general that such an approximation will not result in
a significant increase in leakage for some KM-entropy. It
is always possible to construct a pathological KM-entropy
measure that happens to be arbitrarily steep exactly on the
values of some of the message probabilities, thus magnifying
the effect of even very small approximation on the resulting
entropy and leakage.

This prevents theoretical guarantees being made about the
effect of approximating irrational probabilities to rational ones
in general. However, such guarantees can be made if limiting
to a subset of sufficiently smooth KM-entropy measures.

However, given a suitably smooth entropy measure and
an arbitrary level of precision, a good approximation can be
made using rational values for the irrational probabilities. The
only practical concern is that this will reduce equivocation
some extremely small amount. Thus, both message and key
equivocation will be reduced, and unlimited key reuse is no
longer safe. This can be mitigated by calculating the maximal
leakage (on the key since the key is the limiting variable), and
then a safe over-approximation used to ensure a minimum



level of message or key equivocation is maintained before a
fresh key must be used.

B. Ciphertext Space Size

One practical concern is the size of the ciphertext space
of an Apollonian cell encoder. Observe that the size of the
ciphertext space is µ, and that µ is computed from the
probabilities of the messages. Thus, it is straightforward to find
(or produce) a message distribution that induces an extremely
large µ and so requires an extremely large ciphertext space C.

Fortunately it is straightforward to represent the ciphertexts
in a form that is logarithmic w.r.t. µ. In practice this is achieved
in the standard manner of representing the natural numbers
in base i and thus yielding a ciphertext representation of size
dlogi µe. For example, if µ = 31 and i = 2 then the ciphertexts
can be represented by dlog2 31e = 5 bits. (This assumes that a
consistent ciphertext size representation is desirable, otherwise
if 0 and 00 are considered distinct, the representation can be
even more compact.)

If the above approach alone still yields insufficiently small
ciphertext representation, then the probabilities in ρ can be ap-
proximated as in Section VI-A. Again, this may reduce equiv-
ocation and increase leakage for pathological KM-entropy
cases, but will hardly be a problem in practice.

C. Compact Representation

One practical challenge for encoders is a compact repre-
sentation that can be exploited to implement the encoder in a
physical device. Since in general an encoder is a |M| × |K|
matrix that maps from message and key to (a set of) cipher-
text(s), finding a more compact representation is significant.

Further to the existence of an optimal Apollonian encoder,
the constructive approach (Theorem 6) provides a highly
compact representation. This requires only a 1 × µ matrix
representation, a source of randomness, and the formula
(b + kx) mod µ where b is derived from the matrix and
randomness, and x and µ from the matrix. This allows an
optimal Apollonian cell encoder for a given message and
key space to have a compact representation. Note that for
an Apollonian cell encoder it holds that |C| = µ, hence the
reduction of the ciphertext space discussed in Section VI-B
also implies a reduction of the encoder’s representation.

VII. CONCLUSIONS

Finding a good unconditionally secure cryptosystem has
been an open problem for some time. Such a cryptosystem
must have good equivocation for the message, good equivo-
cation for the key, and a practical implementation. This paper
solves this by presenting the necessary and sufficient condi-
tions for a universally optimal unconditional cryptosystem: an
Apollonian cell encoder.

The paper presents the definition of universal optimality for
a cryptosystem; achieving message and key max-equivocation
for a very general class of entropy measures (KM-entropy).
For all such entropy measures, and under some very reasonable
assumptions, Apollonian cell encoders provide the maximum

possible security: max-equivocation for the message, and per-
fect secrecy for the key. This paper proves that Apollonian cell
encoders exist iff H∞(M) ≥ H∞(K), i.e. if the min-entropy
of the message is larger than the min-entropy of the key.
Further, the proof of existence is constructive and demonstrates
a compact representation that allows Apollonian cell encoders
to be easily implemented in practice.
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