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Training Deep Neural Networks for Visual Servoing

Quentin Bateux', Eric Marchand', Jiirgen Leitner?, Frangois Chaumette?, Peter Corke?

Abstract— We present a deep neural network-based method
to perform high-precision, robust and real-time 6 DOF position-
ing tasks by visual servoing. A convolutional neural network is
fine-tuned to estimate the relative pose between the current and
desired images and a pose-based visual servoing control law is
considered to reach the desired pose. The paper describes how
to efficiently and automatically create a dataset used to train
the network. We show that this enables the robust handling
of various perturbations (occlusions and lighting variations).
We then propose the training of a scene-agnostic network by
feeding in both the desired and current images into a deep
network. The method is validated on a 6 DOF robot.

I. INTRODUCTION

The goal of visual servoing (VS) techniques is to control
a dynamic system, such as a robot, by using the data
provided by one or multiple cameras [13], [6]. Classical
approaches rely on the extraction, tracking and matching
of a set of visual features. These features, generally points,
lines, or moments, are used as inputs to a control law
that allows a robust positioning of the robot. While there
has been progress in extracting and tracking the relevant
features, a new approach called direct visual servoing (DVS,
eg, [10], [7], [16]) was introduced recently to consider the
image as a whole, which does not require anymore feature
extraction nor tracking. The main drawback of DVS is its
small convergence domain compared to classical techniques,
which is due to the high non-linearities of the cost function
to be minimized.

Various schemes have been proposed in order to improve
the robustness of DVS by considering various descriptors
(image intensity, gradient, color, etc.) or cost functions
(mutual information [9], histogram distances [4], mixture
of Gaussians [8]). To increase the convergence domain,
combining DVS with other approaches has been proposed
recently, such as using photometric moments to retain ge-
ometric information [2] or particle filtering in the control
scheme [3]. To alleviate these issues we herein propose to
bypass the modeling step thanks to a trained deep neural
network.

Although learning techniques (eg, [14]) and classical neu-
ral networks [20], [29] have been occasionally investigated
in VS, machine learning did not receive much interest in the
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Overview of the proposed CNN-based VS control system

past. Over the last years, deep neural networks, especially
Convolutional Neural Networks (CNN), have improved the
state-of-the-art in a number of computer vision tasks: im-
age classification and object recognition [19], depth map
inference from a single image [12], motion estimation [11],
pose estimation [25], camera relocalization [18]. This di-
versification of applications of CNNs was fueled in part by
the possibility to build on already-trained networks through
common deep learning libraries such as Caffe [15] (used
to implement the proposed method), and by using fine
tuning techniques [17]. Meanwhile, deep learning has also
started to become more prominent in robotics. For example,
CNNSs have been trained for predicting grasp locations [24],
and for learning to achieve complex positioning tasks in
joint space from raw pixel data by applying reinforcement
learning techniques [22], [30]. Recently, there has been a
renewed interest in applying CNNs for VS, such as [21] that
demonstrated that it is possible to use features embedded
in a deep neural network for learning predictive dynamic
models. This work has been validated in simulation for a 4
DOF visual target following task. In [27], the authors train a
CNN to perform 6 DOF end-to-end VS positioning task by
training a network on an available navigation dataset.

In this paper, we propose to generate synthetic datasets on-
demand, allowing for more control on the dataset character-
istics (perturbations, number and variability of examples...),
fitting it closely to the target task. A method is proposed
to perform eye-in-hand VS from a CNN that estimates the
relative pose between two images. This relative pose is
then fed into a classical control scheme. More precisely, the
following contributions are described herein:

o a pre-trained CNN is re-purposed to perform relative
pose estimation. We also show that the proposed ap-
proach is efficient considering two different pre-trained
networks with different architectures: Alexnet [19] and



VGG [28]. Thus it could benefit from improvement in
future network architecture.

« an extension of the approach toward a scene-agnostic
scheme is also proposed.

« anovel training process is introduced, based on a single
image (acquired at a reference pose), which includes
the fast creation of a dataset using a simulator allowing
for quick fine-tuning of the network for the considered
scene. It also enables simulation of lighting variations
and occlusions to ensure robustness within the learning
phase.

e precise positioning is achieved (sub-millimeter accu-
racy) on a 6 DOF robotic setup on both planar and
3D scenes.

II. CNN-BASED VS CONTROL SCHEME
A. From VS to DVS

Any VS can always be written as an optimization prob-
lem [23]. The goal of VS is that, from an initial arbitrary
pose, the robot reaches the desired pose r* that best satisfies
some properties measured in or from the images. If we note
p, the function that measures the positioning error, then the
VS task can be written as:

r = argn}inp(r,r*). (1)
where T is the pose reached at the end. VS can therefore
be considered as an optimization of the function p where
r is incrementally updated to reach an optimum of p at T.
If p is correctly chosen, the final pose T at the end of the
minimization should be equal to the desired one r*.

For example, considering a set of geometrical features
s extracted from the image, the goal is to minimize the
error between s(r) and the desired configuration s*, which
leads, by using as cost function the Euclidean norm of the
difference between s and s*, to:

T =argmin [|s(r) —s*| (2)

The visual features s can be 2D feature leading to image-
based VS (IBVS) or 3D features (such as the camera pose
r) leading to pose-based VS (PBVS). These visual features
(points, lines, moments, contours, pose, etc) have thus to be
selected and extracted from the images to control the robot
DOF. In any case, it requires the knowledge or estimation of
the interaction matrix Lg that links the temporal variation of
visual features § to the camera velocity v ($(r) = Lgv).

To avoid the classical but error-prone extraction and track-
ing of geometrical features, DVS has been introduced, as
already said in introduction. Considering the image as a
whole, the set of features s becomes the image itself [7]:
s(r) = I(r). The optimization process is then expressed as:

T =argmin [|I(r) — I¥|| 3)

where I(r) and I* are respectively the image seen at the pose
r and the desired image (both composed of N pixels). The
main issue when dealing with DVS is that the interaction
matrix Lg is ill-suited for optimization, mainly due to the

heavily non-linear nature of the cost function, resulting in a
small convergence domain.

B. From DVS to CNN-based VS

In this paper, we propose to replace the DVS approach
described above by a new scheme based on CNN. The
network is trained to estimate the relative pose between the
current and reference images. Given an image input I(r) and
the reference image I, let the output of the network be:

Arg = nety, (I(r)) ()

with Arg = (“°t.,0u) the vector representation of the
homogeneous matrix “°T. that expresses the current camera
frame with respect to the reference frame.

If one wants to reach a pose related to a desired image
I*, the CNN is first used to estimate the relative pose “°'T .«
(from nety, (I*)), and then T (from nety, (I)), from which
A*r is easily obtained using “*T, =% T_.' ©T,.

Expressing the cost function p(.) with the Euclidean norm
of the pose in Eq. (1), the minimization problem becomes

T = argmin ||A*r|| (5)
r

which is known to present excellent properties [6]. Indeed,
the corresponding control scheme belongs to PBVS, which
is globally asymptotically stable (ie. the system converges
whatever the initial and desired poses are), provided the
estimated displacement A*r is stable and correct enough.
We recall that IBVS, and thus the schemes based on Eq. (2)
and (5), can only be demonstrated as locally asymptotically
stable for 6 DOF (ie. the system converges only if the initial
pose lies in a close neighborhood of the desired pose). With
our approach, the stability and convergence issues are thus
moved from the control part to the displacement estimation
part.

From A*r provided by the CNN, it is immediate to
compute the camera velocity using a classical control law [6]

‘R b,
v ) ( . ) 6)

By computing this velocity command at each iteration, it is
then possible to servo the robot toward a desired pose solely
from visual inputs.

C. Designing and training a CNN for VS

To implement the approach described above, we need
to train a network by feeding it a significant number of
images I, for which we know the relative poses Ar with
respect to the pose ry corresponding to Ij. In order to keep
training time and the dataset size low, we present a method
using a pre-trained network. Pre-training is a very efficient
and widespread way of building on CNNs trained for a
specific task. If a new task is similar enough, fine-tuning
can be performed on the CNN so it may be employed in a
different task. Since we work on natural images in a real-
world robotic experiment, a pre-trained AlexNet [19] was
chosen as a starting point. This network was trained on
1.2 million images from the ImageNet set, with the goal



of performing object classification (1000 classes). While
we are not interested in image classification, works such
as [17] showed that it is possible to re-purpose a network
by using the learned image descriptors embedded in the
lower layers of an already trained AlexNet. This process,
commonly referred to as fine-tuning, is based on the idea
that certain parts of the network are useful to the new
task and therefore can be transferred. Particularly the lower
layers (basic image feature extractors) will perform similar
functionality in our relative pose estimation. Only the upper
layers require adaptation. Fine-tuning reduces training time
(and data requirements).

We substitute the last layer — originally outputting 1000
floats with the highest representing the correct class — by a
new layer that output 6 floats, ie. the 6 DOF pose. By replac-
ing this layer, learned weights and connections are discarded
and the new links are initialized randomly (see Figure 1). The
resulting net is trained by presenting examples of the form (I,
r), where I is a raw image, and r the corresponding relative
pose as a training label. Since our training deals with the
displacement between two poses, we choose an Euclidean
cost function for network training, replacing the commonly
used soft-max cost layer for classification, of the following
form:

loss(I) = ||00/t\c—c°tc||2+ﬁ||9/l\1—9u\|2 7

where “t, and fu are respectively the estimation of the
translation and rotation displacement relatively to the ref-
erence pose. § = 0.01 is a scale factor to harmonize the
amplitude of translation (in m) and rotation (in degrees) for
facilitating the learning process convergence.

Starting from the trained AlexNet available for use with
the Caffe library [15], the network was then fine-tuned. For
this, a new scene specific dataset of 11 000 images with a
variety of perturbations is created (as described in the next
section). Using Caffe, the network was trained with a batch
size of 50 images over 50 training epochs.

III. DESIGNING A TRAINING DATASET

The design of the training dataset is the most critical
step in a CNN since it affects the ability of the process
to converge, as well as the precision and robustness of
the end performances. As stated above we propose to fine-
tune a pre-trained network. Gathering real-world data is
often cumbersome and sometimes unsuitable depending of
the environment where the robot is expected to operate
in. Furthermore, it can be difficult to re-create all possible
conditions within real-world environments. Thousands of
training configurations should be considered, which requires
time when an actual robot has to be used. We now describe
how simulated data allow us to generate a virtually unlimited
amount of training configurations. In addition we show how
a variety of perturbations can be added, which leads to sat-
isfactory results without lengthy real-world data acquisition.

A. Creating the nominal dataset

The nominal dataset is the base of the training dataset. It
contains all the necessary information for the CNN to learn

Fig. 2. 3D plane with the projected reference image and multiple virtual
cameras to generate multiple views of the scene.

how to regress from an image input to a 6 DOF relative pose.
We will be adding various perturbations later on to ensure
robustness when confronted with real-world data.

In our design, the nominal dataset is generated from a
single real-world image Iy of the scene. This is possible by
relying on simulation, in order to create images as viewed
from a large set of virtual cameras. Figure 2 illustrates
the image Iy projected on a 3D plane from pose rg, the
varying (virtual) camera poses and the images simulated
from these poses. Since the 3D structure of the scene is
a priori unknown, we rely on an image transfer technique
based on homographies. This procedure generates datasets
of thousands of images quickly (less than half an hour
for 11k images) eliminating the time-consuming step of
gathering real-world data. In comparison, 700 robot hours
were necessary to gather 50k data points for a single task
in [24].

The procedure to create the synthetic training dataset is
then as follows (see also Figure 3):

 acquire a single image Iy at pose rg, in order to get the
camera characteristics and scene appearance

o create the elements of the training dataset, consisting
of tuples (r;,I;), through virtual camera views in sim-
ulation (as illustrated in Figure 2). The first 10,000
virtual camera poses are obtained using a Gaussian draw
around the reference pose rg, in order to have an ap-
propriate sampling of the parameters space (the 6 DOF
pose). The scene in the simulator is set up so that the
camera-plane depth at rg is equal to 20cm, and the vari-
ances for the 6DOF Gaussian draw are (1cm, 1cm, 1cm,
10°, 10°, 20°), respectively for (t;,t,,t., 15,1y, 12).

o the dataset is appended with 1,000 more elements.
These are created by a second Gaussian draw with
smaller variances (1/100 of the first draw). The finer
sampling around ry enables the sub-millimeter precision
at the end of the robot motion.

B. Adding perturbations to the dataset images

In order to obtain a more robust process, two main pertur-
bations were modeled and integrated in the dataset, namely,
lighting changes (both global and local) and occlusions. We
assume the scene to be static under nominal conditions for



Adding random lighting perturbations

Onginal Image

Adding random occlusions perturbations

Samples from the final training dataset
3D displacement + lighting + occlusions

Fig. 3.

Overall process to create a training set from the original input image: (a) examples after applying local illumination changes; (b) examples after

adding super-pixels from random images as occlusions; (c) examples from the final dataset after applying all perturbations.

Fig. 4. Synthetic occlusion generation: on an arbitrary images in the Label-
Me dataset (left) segmentation is performed. A segmented cluster is selected
at random. It provides a coherent “occlusion” patch, which is merged with
one of the dataset image (last image) and finally added to the training
dataset.

each experiment (ie. no deformations or temporal changes in
the structure).

1) Modeling illumination variations with 2D Gaussian
functions: Lighting conditions are a common problem when
dealing with real-world images. These are of global and local
nature. In order to model the global lighting variations, one
can simply alter the pixel intensities by considering affine
variation. Local lighting changes are more challenging and
time-consuming rendering algorithms are required to obtain
realistic synthetic images. We alleviate this issue by working
with planes in 3D space only, allowing to model lights as
local 2D light sources and get realistic results. For each
image chosen to be altered, the following mixture of 2D
Gaussians is applied at each pixel (z,y):

Niights
L(z,y)= > Lx,y)filz,y) ®)
=1
Each 2D Gaussian in turn can be modelled as

(x—zg) , (¥y—yo)
+ 205 )

fiz,y) = Ae_( )

where (z9, o) (in pixel units) corresponds to the projection
of the center of the simulated directional light source, gain A
to its intensity, and (o, o) to the spread along each axis. An
example of the resulting images can be seen in Figure 3(a).
We purposely let out the modeling of specularities since the
material and reflection properties are unknown. Our method
will handle them as a sub-class of occlusions (see next
paragraph).

2) Modeling occlusions by superimposing coherent pixel
clusters from other image datasets: Dealing with occlusions

is challenging due to the potential variety in size, shape
and appearance that can appear in a real environment.
Additionally, when training a CNN, one has to be careful
to create the training set with a variety of perturbations
included. This is to prevent the network from over-fitting on
the presented examples and thus being unable to handle real
world occlusions. We present here a procedure to provide the
network with a realistic set of occlusions with an adequate
range in size, shape and appearance.

Clusters of pixels — representing a coherent part of an im-
age — from other datasets are superimposed on the previously
generated images. To create somewhat realistic conditions,
real world images were preferred over synthetic occlusion
images. These images provide a variety of scenes that
represent interesting and varied occlusions, rather than those
generated from geometrical or statistical methods. Herein the
Label-Me dataset [26] containing thousands of outdoor scene
images was chosen. The scenes contain a variety of objects
in a wide range of lighting conditions. We then applied the
following work-flow (illustrated in Figure 4) to each of the
images in our simulated dataset that we want to alter:

« select randomly one image from the Label-Me dataset;

« perform a rough segmentation of the image by applying
the SLIC super-pixel [1] segmentation algorithm creat-
ing coherent pixel groups (implementation available in
OpenCV)

e select a random cluster from the previous step, and
insert it into the image to alter at a random position.

This method allows us to get a training dataset with
randomly varied occlusions such as illustrated in Figure 3(b).
By stacking the two described perturbations on our initial
nominal dataset, we are able to generate a final training
dataset with all the desired characteristics, as shown in
Figure 3(c).

IV. GOING FURTHER: TOWARDS SCENE-AGNOSTIC
CNN-BASED VISUAL SERVOING

In this section we propose an extension of the previous
method in order to obtain a network that can perform VS on
scenes never seen during the training step.



A. Task definition

To operate within scenes never seen before, we use a
similar network architecture as in the previous case, but train
it for a new task that consists in computing the relative pose
corresponding to two viewpoints of the same scene. This is
made possible by training the network to associate a couple
of correlated images of the same scene to a given camera
displacement. Although the scale of the motion cannot be
estimated without depth measurements, the direction of the
displacement vector will be accurate and usable within a
closed-loop control scheme.

The cost function for the network becomes:

loss(L,I*) = ||¢"t. — ““t¢||2 + B]|0u — Ou]|2

(10)

where (¢ t.,0u) " is the relative position between the camera
that acquires I* and the camera that acquires I. The important
addition from (7) is that the optimization process now
depends on two image inputs. The only correlation between
these two images is that they both need to be a viewpoint of
the same static scene.

B. Training dataset generation

Using the same set of tools as before, we propose a
method to generate a dataset able to solve this new task from
simulation tools and readily available datasets. This dataset
will be used to fine tune a trained VGG network [28] (a
deeper, more recent variation of the AlexNet network).

Each element of the training set is generated as follow:

o select a random image from a set of natural images,
here from the Label-Me classification dataset used pre-
viously;

« set this image as texture of the 3D plane in the simulated
scene;

« record two distinct viewpoints (chosen randomly) of this
scene (network input);

o record the associated relative pose between these two
viewpoints (data point label).

By repeating this process, an arbitrary number of annotated
couple of viewpoints can be generated, creating an appropri-
ate dataset for this new task. Perturbations can also be added
in the same fashion as in the previous method.

Since this new task necessitates a more important re-
configuring of the trained VGG network (going from a single
image input to a two-image input), we generated a bigger
dataset compared to the previous training, going from 10k
images to 100k images for training, which ran for 50 epochs.

V. EXPERIMENTAL RESULTS

Simulated experiments were first carried out to compare
convergence area with respect to DVS methods. Real exper-
iments with a 6 DOF robot were then considered. Section
V.A and V.B concern the validation of the method introduced
in Section II. Section V.C validates the extension presented
in Section IV.

Convergence Curves
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Fig. 5. The effects of the initial positioning offset (small offset for batch
0, large one with batch 9) with three DVS methods: DVS using SSD cost
function (in red with +), a version using particle filter (green x) and our
proposed CNN-based VS (blue *).

A. Experimental Simulations and Comparison with other
DVS methods

In this section we compare the proposed method with the
original DVS scheme [7] and with DVS based on a particle
filter (PF) control law [3] that was recently introduced to
increase the convergence domain of DVS.

Each scheme was evaluated by running a positioning task
over 10 batches, each with 80 individual runs. The starting
pose for each run was randomly offset (with a Gaussian
distribution) from the desired pose r*. The magnitude of
the offset was increased linearly from batch O to batch 9.
This scene was simulated as illustrated in Figure 2, with the
desired image I and the desired pose ry. The mean depth is
25cm and the offset pose was generated using the following
variances (from batch O to batch 9): from O to 4cm for the
X and Y translations, from O to 2cm for the depth, from 0
to 20° for rotations around the X and Y axes, from O to 50°
for rotations around the Z axis.

The results of this benchmark are shown in Figure 5.
It can be seen that the proposed approach has a larger
convergence range with a significantly higher proportion of
runs converging to the desired pose than with the other
schemes for all starting poses with non-zero offsets.

B. Experimental Results on a 6 DOF Robot

1) Nominal Conditions: This section describes a set of
experiments performed on an Afma 6 DOF gantry robot
in a typical eye-in-hand configuration. At the beginning of
each experiment, the robot is moved to an arbitrary starting
pose and the task is, as usual, to position back the camera
to a pose defined by a desired image. In this first set of
experiments, the network (Alexnet here) was fine-tuned with
a learning dataset built from an image Iy of the scene. Using
the Caffe library, it trained for two hours on a K2200 GPU
(2Go memory), corresponding to 50 epochs for a 11k images
dataset.
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In terms of pose initial offset, the robot has to perform
a displacement given by Arg = (“t.,0u) with “t, =
(Iem, —24cm, —9cm), fu = (—10°, —16°, —43°) while the
distance between the camera and the planar scene is 80cm at
the desired pose r*. Figure 6(f) shows the image at the final
pose. Figure 6(h) shows the image error between the final and
desired images. The training of the network with the 11,000
images was performed offline. Figures 6(a) through 6(d)
show that our CNN-based VS converges without any noisy

Fig. 8. Images collected during experiments on our 6DOF robot. Significant
occlusions and variation in the lighting conditions can be seen.

nor oscillatory behaviours. Furthermore, the position of the
system at the end of the servo is less than one millimeter
from the desired one. No particular efforts were made to have
“perfect” lighting conditions, but also no external lighting
variations nor occlusions were added. These were introduced
in the next experiment.

2) Dealing with perturbations: Light changes and occlu-
sions: The same experiment is considered but additional
light sources and external occlusions were added to test
the robustness of our approach to perturbations. While the
robot achieves the positioning task, the lighting conditions
are modified (the intensities of three lights directed toward
the scene are changed independently and arbitrarily). This
results in global and local light changes, the apparition of
specularities, etc. In addition, during the experiment, various
objects are added, moved, and removed from the scene in
order to create partial occlusions of the scene (see attached
video).

Results of this experiment are depicted on Figure 7. We
can see that despite the variety and severity of the applied
perturbations, the control scheme does not diverge. The
method instead exhibits only a loss in final precision, ranging
from 10cm (in accumulated translation errors) at the worst of
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the perturbations (images acquired during the experiment are
shown in Figure 8 and show the various perturbations that
occurred) to less than one millimeter error when back in the
nominal conditions. A slower convergence is also observed
when compared with the nominal conditions experiment.
Nevertheless, the camera reaches the desired pose once the
perturbed conditions are removed.

3) Dealing with a 3D scene: In order to demonstrate
further the robustness of the approach, we propose to con-
sider in this experiment a large 3D object (Figure 9). It is
important to note that the training of the network is still done
under a planar assumption. In such a case, it is no more
possible to keep a good match between the scene captured
throughout the motion of the robot and the training dataset.
Nevertheless, keeping the same training process, we took
a single reference image Iy from the camera. As for the
other experiments, we project this image on a 3D plane to
generate the training dataset by moving a virtual camera
around this 3D plane. Note that there is no knowledge about
the 3D structure of the scene. Due to the loss of this 3D
information, this creates a strong discrepancy between the
training set and the real images that will be captured by the
camera. The results of the experiment are given in Figure 9,
with a final precision of less than half of a millimeter.
One can note that despite the strong approximations in the
training set, the robot is still able to converge. For this
experiment, the robot had to perform a displacement given
by Arg = (“°t., fu): ©°t. = (33cm, —5cm, —1.2cm), fu =
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Fig. 10.  Scene-agnostic CNN-based VS performed on a never-seen-at-
training scene; (a) Positioning error; (b) SSD distance; (c) Translational
and rotational errors; (d) Camera velocities in m/s and rad/s; (e) Image at
initial pose Io; (f) Image at final pose I(T); (g) Image error I — I* at
initial pose; (h) Image error I(T) — I* at the final pose

(13°,—26°,—39°). The robot performs a large translational
motion in order to change significantly the viewpoint of the
scene throughout the experiment run. This way, the robot has
to deal with strong discrepancies between the visual inputs
and its training examples. Attached video shows a similar
experiment featuring also large occlusions of the scene.

C. Results for a scene-agnostic trained CNN

In order to validate the extension toward a scene-agnostic
method presented in Section IV, we performed the same
experiment, this time on a scene the network has never seen
at training step (see Fig. 10). This scene exhibits a large
panel of challenging image characteristics, from low textures
wooden areas, to soft shadows and slightly 3D and reflective
surfaces on the electronic circuits.

We can see on Fig. 10 that the proposed method succeeds
to position the robot within a few centimeters of the target
pose, performing a large displacement, in both the image
space and effector space. From this close pose (iteration
200), we switched to the classical DVS to achieve sub-
millimetric accuracy. Using jointly these two methods allows
for benefiting the best of each method: a broad convergence
radius from the CNN-based method, and a very precise
positioning around the optimum with the SSD-based method.

VI. CONCLUSION AND PERSPECTIVES

We presented in this paper a new generic approach for
robust VS using deep neural networks. We re-purpose and



fine-tune a pre-trained CNN by substituting the last layer
with a new regression layer. The output of the CNN is
then used to build a robust control law allowing precise
re-positioning tasks. We presented a method to design and
collect a synthetic learning dataset for fast fine-tuning of
the network. This method allows to be robust to local
illumination changes and occlusions. We also show that, with
minor modifications, the proposed approach can be scene-
agnostic, meaning that it can consider a scene that has never
been considered in the learning dataset.

We demonstrated the validity and efficiency of our ap-
proach with experiments on a 6 DOF robot. The proposed
method achieves positioning task within a millimeter accu-
racy. Furthermore, we have demonstrated that the proposed
approach is robust to strong perturbations, such as lighting
variations, occlusions, as well as unknown 3D geometry in
the scene.

Future works will concern extending the CNN-based
scene-agnostic visual servoing technique in order to increase
its accuracy and robustness. In particular applying novel,
more adequate network architectures, as well as investigating
the integration of reinforcement learning in order to gain
more control on the robotic motion dynamics during the
positioning process.
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