
HAL Id: hal-01717158
https://hal.inria.fr/hal-01717158

Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FP-TESTER: Automated Testing of Browser
Fingerprint Resilience

Antoine Vastel, Walter Rudametkin, Romain Rouvoy

To cite this version:
Antoine Vastel, Walter Rudametkin, Romain Rouvoy. FP-TESTER: Automated Testing of Browser
Fingerprint Resilience. IWPE 2018 - 4th International Workshop on Privacy Engineering, Apr 2018,
London, United Kingdom. pp.1-5. �hal-01717158�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157557816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01717158
https://hal.archives-ouvertes.fr


FP-TESTER: Automated Testing of
Browser Fingerprint Resilience

Antoine Vastel
Univ. Lille / Inria

Walter Rudametkin
Univ. Lille / Inria

Romain Rouvoy
Univ. Lille / Inria / IUF

Abstract—Despite recent regulations and growing user aware-
ness, undesired browser tracking is increasing. In addition
to cookies, browser fingerprinting is a stateless technique that
exploits a device’s configuration for tracking purposes. In partic-
ular, browser fingerprinting builds on attributes made available
from Javascript and HTTP headers to create a unique and stable
fingerprint. For example, browser plugins have been heavily
exploited by state-of-the-art browser fingerprinters as a rich
source of entropy. However, as browser vendors abandon plugins
in favor of extensions, fingerprinters will adapt.

We present FP-TESTER, an approach to automatically test
the effectiveness of browser fingerprinting countermeasure ex-
tensions. We implement a testing toolkit to be used by developers
to reduce browser fingerprintability. While countermeasures aim
to hinder tracking by changing or blocking attributes, they may
easily introduce subtle side-effects that make browsers more iden-
tifiable, rendering the extensions counterproductive. FP-TESTER
reports on the side-effects introduced by the countermeasure, as
well as how they impact tracking duration from a fingerprinter’s
point-of-view. To the best of our knowledge, FP-TESTER is the
first tool to assist developers in fighting browser fingerprinting
and reducing the exposure of end-users to such privacy leaks.

I. INTRODUCTION

Browsers are critical applications for most end-users be-
cause they represent the primary vector to access the Internet
and online web applications. However, their success encour-
ages advertisers to continuously track user sessions for profil-
ing purposes [1], [2], [3], [4]. While cookies remain the most
widespread technique for tracking, researchers have brought
to light browser fingerprinting as another, complementary
technique. Contrary to cookies that store an identifier on the
client’s device, browser fingerprinting is a stateless technique
that leverages a set of attributes accessible in the browser to
generate a unique identifier. The combination of attributes is
called a fingerprint and is mostly collected from Javascript
or HTTP headers. The more entropy in attributes, the more
accurate the fingerprints.

However, fingerprinting evolves due to the inclusion and re-
moval of attributes, such as HTML5 Canvas or the deprecation
of NPAPI plugins [5]. Recently, Starov et al. [6] showed that
browser extensions may be used as a new fingerprinting vector.
They detect the presence of extensions by observing side-
effects on the DOM and showed that among 1, 656 extensions
that introduce DOM changes, 90% can be uniquely identified.
This means that, paradoxically, even extensions implementing
fingerprinting countermeasures could be revealed and thus
exploited to track users.

In this paper, we present an approach to reduce the fin-
gerprintability of browser fingerprinting countermeasures. Al-
though we focus on countermeasure extensions, our approach
can be used to evaluate the fingerprintability of any extension.
More specifically, we propose FP-TESTER—a testing toolkit
that characterizes the fingerprintability of an extension at two
levels: a) short-term fingerprintability—i.e., at time t, how
different is the fingerprint from a browser with and without the
extension installed; b) long-term fingerprintability—i.e., how
does having the extension installed impact the ability to track
a browser. Uniqueness and stability make fingerprint tracking
feasible; the two levels we test give us insight into both.

The remainder of this paper is organized as follows. First,
we introduce the related work on browser fingerprinting, in
particular on extension fingerprintability (cf. Section II). Then,
we present FP-TESTER, our approach to evaluate browser ex-
tension fingerprintability (cf. Section III). Finally, we report on
the preliminary experiments we conducted with FP-TESTER,
before concluding (cf. Sections IV & V).

II. RELATED WORK

Browser fingerprinting consists in identifying user devices
from attributes made available by browsers. Most of these
attributes are collected using Javascript, HTTP headers, or
Flash when available. In 2010, Eckersley [7] showed that
83.6% of the fingerprints they collected were unique. This
high rate of uniqueness was in part due to the list of fonts (and
other attributes obtained through Flash) and plugins, which
had high entropy. More recently, in 2016, Laperdrix et al. [5]
confirmed Eckersley’s results by showing that 90% of desktop
fingerprints, and 81% of mobile fingerprints were unique.
Nevertheless, they also showed that the source of entropy in
fingerprints had evolved since 2010. On the one hand, the
decline of Flash and the deprecation of NPAPI plugins led to
a decrease in entropy. On the other hand, new attributes such
as HTML 5 canvas [8] provided even higher entropy.

As Javascript APIs are added and deprecated, fingerprinting
evolves accordingly, continuously identifying new sources of
entropy to maintain uniqueness. Recently, Starov et al. [6]
used the list of installed extensions as a new source of entropy.
They introduced the notion of browser extension fingerprint-
ability—i.e., how installed extensions make browsers more
vulnerable to fingerprinting. To measure the fingerprintabil-
ity of extensions, they observe changes to the DOM and



Fig. 1. Overview of FP-TESTER toolkit

extract a signature to identify the extensions. By analyz-
ing 1, 656 extensions that perform detectable DOM changes,
they showed that 90% performed a unique combination of
changes. Additionally, Acker et al. [9] showed that, for
Google Chrome, it is possible to identify extensions using
public resources. Besides methods to detect general purpose
extensions, Nikiforakis et al. [10] demonstrated that it is
possible to detect user-agent spoofer extensions—a specific
kind of browser fingerprinting countermeasure—by looking at
inconsistencies they introduce in a fingerprint. They analyzed
11 user-agent spoofing extensions and showed that they create
unexpected combinations of attributes, called inconsistencies,
making them detectable.

Based on these observations, we propose FP-TESTER, a
toolkit to assist developers in reducing the fingerprintability
of their browser extensions.

III. OVERVIEW OF FP-TESTER TOOLKIT

Figure 1 depicts an overview of FP-TESTER. We split
the short and long term fingerprintability evaluations into
two components based on the idea, expressed in previous
research [11], [12], [13], that fingerprint tracking requires fin-
gerprints to be both unique and relatively stable over time. In
particular, Section III-A evaluates the short-term fingerprint-
ability of an extension, which is related to uniqueness, while
Section III-B studies how an extension influences long-term
fingerprintability by measuring how uniqueness, randomness
and instability affect tracking duration. More details on the
architecture of FP-TESTER are given in Section III-E.

A. Short-Term Fingerprintability of Browser Extensions

Short-term fingerprintability reflects how, at a time t, the
fingerprint generated by a browser with a countermeasure
differs from a browser without it. We present 5 steps to
evaluate short-term fingerprintability.

1) DOM modifications: We reuse the approach proposed by
Starov et al. [6] to monitor DOM changes made by extensions.
For example, ad blockers may remove ads from the DOM.

2) Inconsistencies: FP-TESTER also detects fingerprint in-
consistencies. As shown by Nikiforakis et al. [10], coun-
termeasures may introduce unexpected combinations of at-
tributes, leading to inconsistencies. We propose a test suite to
evaluate if the attributes of a fingerprint are globally consistent.
These tests range from simple checks, such as verifying that
the user agent in the HTTP headers and the navigator
object are identical, to more subtle tests to verify that the
rendering of an emoji in a canvas is consistent with the claimed
OS [5]. We provide more details on these tests in Section IV.

3) HTTP headers modification: FP-TESTER scans HTTP
headers to extract non-standard headers added by extensions.

4) Overridden functions/attributes: While there are differ-
ent techniques to spoof a browser fingerprint, most extensions
rely on overriding functions or getters involved in the finger-
printing process. Thus, we test if native JavaScript functions
are overridden by looking at their toString representations.

5) Canvas fingerprinting: Finally, canvas fingerprinting has
high entropy [5] and is central to countermeasures, such
as CANVAS DEFENDER. Thus, FP-TESTER analyses canvas
pixels to detect if they have been altered.

B. Long-Term Fingerprintability of Browser Extensions

This section focuses on how changes and side-effects in-
troduced by countermeasures impact the ability to track a
browser. Although being unique is required for tracking, and
an extension may increase uniqueness, this is insufficient if
the extension frequently changes the fingerprint. For example,
users of an extension against canvas fingerprinting may have
unique canvas attributes at any given time. However, if the
extension continually randomizes the canvas, it may make
tracking impossible. Although, if the extension has a very
small user-base, none of this might matter, simply detecting it
may increase fingerprintability. We present our methodology
to evaluate long-term fingerprintability.

1) Detecting variability: FP-TESTER detects the variability
introduced by an extension. For example, in the case of
a simple user agent spoofer, only the user agent attribute
varies, while a canvas extension may modify canvas pixels
and override functions, such as toDataURL. To detect the
changes an extension introduces, we collect fingerprints from
the browser with and without the extension activated. Multiple
fingerprints are needed if the extension changes or randomizes
the fingerprints between executions. This allows FP-TESTER
to learn how the extension alters the browser fingerprint.
Because extensions may be highly configurable, different
settings may influence the fingerprint. Developers can specify
a profile parameter, which allows FP-TESTER to test and learn
the variability model for each configuration.

2) Evaluating long-term tracking: Once FP-TESTER learns
the extension’s variability models, it evaluates how the exten-
sion exposes browsers to long-term tracking. Using genuine
fingerprints obtained from the AMIUNIQUE database [5], FP-
TESTER simulates the presence of the countermeasure in
browser fingerprints and quantifies the effect the counter-
measure would have on tracking algorithms. Simulating the



extension’s effects on genuine fingerprints allows testing a
wide range of configurations, without the overhead and diffi-
culty of testing thousands of individual devices and browsers.
To do so, FP-TESTER creates a population P composed
of N genuine fingerprints, without inconsistencies, chosen
randomly. This is necessary because most browsers do not
use countermeasures, thus we attempt to recreate a realistic
population to compare with. We randomly split P into 2
subpopulations, Pe and Pn, corresponding to the population
of browsers with and without the extension, with a ratio fe
and fn of N , respectively. FP-TESTER applies changes to
all fingerprints in Pe so that they appear to originate from
browsers with the countermeasure (detailed in Section III-C).
Using all fingerprints in P , FP-TESTER executes the 2 linking
algorithms from FP-STALKER [13], as well as a new algorithm
that leverages inconsistencies revealed by a browser to target
it more efficiently. This allows comparing the vulnerability
to tracking of browsers from Pn (without the extension), to
browsers from Pe (with the extension).

C. Applying Browser Extension Changes on Fingerprints

FP-TESTER simulates the effects of a countermeasure exten-
sion on genuine fingerprints. This process is complex and we
do not claim to perfectly simulate the countermeasures since
it may be difficult to recreate all their effects. However, even
with imperfections, the effects are similar from the point-of-
view of the tracking algorithms. As proposed in [13], in order
to decide if two fingerprints originate from the same browser,
the algorithms generate a feature vector that is mostly pairwise
comparisons of attributes between each fingerprint. For exam-
ple, in the case of a canvas countermeasure, FP-TESTER may
have learned that toDataURL is always overridden, and that
the canvas is randomly modified. Without generating a canvas
that reproduces the precise effects of the countermeasure, FP-
TESTER is capable of generating a fingerprint that simulates
the use of the countermeasure and, when compared to another
fingerprint, results in a feature vector that is equivalent to one
obtained if we had installed the countermeasure in the browser.
Since, the feature vector used by the algorithms tests for the
equality of the canvas attributes between two fingerprints, we
assign a random value to the canvas, as it only needs to be
different from the previous values, and we keep the fact that
toDataURL is overridden. For attributes that are split into
sub-attributes, with particular semantics, special attention is
needed to reproduce the countermeasure’s effects. It is not
sufficient to simply detect that the attribute changed since
the feature vector relies on more fine-grained details. FP-
TESTER must learn how to apply changes to these attributes.
For example, the user agent reflects the browser, its version,
and the operating system. In this case, a change may be a
random substitution from a list of known user agents, or a
more subtle change in the browser version, or something in
between. For such attributes, FP-TESTER discriminates differ-
ent types of changes to different sub-attributes and attempts to
reproduce these changes in the simulated fingerprints so that
the comparisons remain similar from the algorithm’s point-

of-view. Furthermore, the choice to apply a change or not
at a given time depends on the frequency determined during
the learning phase of the variability models. Some extensions
change attributes very frequently, while others only once.

D. Sharing Fingerprintability Reports with Developers

For each of FP-TESTER’s components, we deliver some
actionable feedback to extension developers. Regarding short-
term fingerprintability, we indicate: 1) the modifications ap-
plied to the DOM, 2) the list of inconsistencies, 3) the
functions overridden and how to hide them, and 4) if FP-
TESTER detected a canvas manipulation.

Regarding long-term fingerprintability, we provide projec-
tions of how tracking algorithms would perform on the normal
population versus the population that emulates browsers with
the countermeasure. We also test if differences exist in terms
of tracking duration depending on the extension profile.

E. Implementation of FP-TESTER

We describe FP-TESTER’s architecture, which is split into
4 components to make it modular and reusable.

a) Fingerprinter component: FP-TESTER provides a fin-
gerprinting script that allows to easily include new attributes.

b) Short-term component: is composed of sub-
components that all return ShortTermResult objects.
This standardizes the sub-component test results and contains
information such as name, description, category (e.g.,
overridden, inconsistency), as well as whether the test
succeeded and a message to explain what it implies. The
modular architecture enables adding sub-components. The
outputs are automatically integrated into the short-term
fingerprintability report. One such sub-component is for
emoji verification and uses supervised machine learning to
verify that a rendered emoji is consistent with the OS. We do
not directly map the raw values of an image with an emoji
to a specific OS as, even for different devices on the same
OS and browser, the size of the emoji and its position on the
image differs. Moreover, raw image values would not work
with canvas countermeasures. Regarding machine learning, a
natural solution is to render an emoji in a canvas, extract the
image, and train a classifier on top of it. However, we do not
have enough emoji data to train a robust classifier. Instead,
we trained our model on a subpart of the canvas included
in the AMIUNIQUE dataset, which contains an emoji. Since
the dataset contains more than 3 years of data, it is suitable
to train a robust classifier. The classifier is based on a
convolutional neural network given as an example to classify
images from the CIFAR10 dataset, which we retrained on
our dataset. Concerning inconsistencies, since they play a
central role in our approach, we provide a mechanism to
add new consistency rules. We define a consistency rule as
tuple of 3 attributes (att1, att2, link) where att1
and att2 are the two attributes which have a consistency
link, and link is a function that takes the two attributes
as parameters, and returns true if they are consistent.
As an example, the user agent can be obtained from the



navigator object and the HTTP headers, the tuple is
defined as (uaHttp, uaNavigator, eq) where eq is
the function that determines if the attributes are equal.

c) Long-term component: is composed of sub-
components responsible for tasks such as the detection
of the variability introduced by a countermeasure. Contrary
to the short-term component, we do not support adding new
sub-components to it. Nevertheless, it is still possible to
extend it by adding new tracking algorithms.

d) Report component: is responsible for the generation
of developer reports. Since values returned by short and long-
term components are standardized, they can automatically be
integrated into the report. Moreover, this component can be
extended to add new visualizations.

IV. EXPERIMENTATION & PRELIMINARY RESULTS

We evaluate the short-term fingerprintability component. We
focus on the RANDOM AGENT SPOOFER (RAS) for Firefox
and detail the actionable feedback from FP-TESTER. RAS is
an extension that aims at protecting against browser finger-
printing. Although it is not available as a web extension—
i.e., not available on Firefox versions > 57—we use it as
an example since it modifies many attributes commonly used
in fingerprinting algorithms. RAS changes the values of at-
tributes, such as the user agent, the platform, the list
of languages, and screen resolution. To introduce
fewer inconsistencies, RAS relies on a system of profiles—
i.e., combinations of attributes extracted from real browsers.
It also allows disabling specific APIs used by fingerprinting,
such as WebGL or WebRTC.

A. Collecting Browser Fingerprints

The first step of our evaluation is to collect fingerprints from
browsers with RAS installed. To do so, we created a webpage
that collects a fingerprint and stores it in a database. We put
ourselves in the developer’s place and collect fingerprints from
a single computer used for development. In total, we collected
72 fingerprints, half from Linux, and the other half from two
Windows virtual machines on the same computer. At each
visit, we change the profile used by RAS.

B. Short-Term Fingerprintability Report

After the collect phase, FP-TESTER looks for DOM manipu-
lations, inconsistencies, overridden functions, and manipulated
canvas pixels. Figure 2 presents how FP-TESTER reports to the
developer on the results of the analysis. Each node represents
an attribute. A red edge between two nodes means that an
inconsistency is detected between them. If a node’s border
is dashed, it means that FP-TESTER detects that the attribute
has been overridden. In the case of RAS, FP-TESTER did not
detect any DOM or canvas pixel manipulations, nor any non-
standard HTTP headers, hence they are not in the image.

1) Inconsistencies: Although RAS uses a system of pro-
files, FP-TESTER detected inconsistent combinations of at-
tributes. Indeed, while attributes included in the profiles are
consistent among themselves, it is not necessarily the case of

OS

Browser

Device

Fonts

User agent

moz-os-version

Plugins

Renderer WebGL

Vendor WebGL

Emoji rendering

Errors

Etsl

productSub

Accelerometer

Touch support

screen.width

screen.height

navigator.vendor

toDataURL

Fig. 2. Short-term fingerprintability report provided by FP-TESTER

other attributes, such as Javascript errors. For each collected
fingerprint, FP-TESTER extracts the browser, the OS and the
device contained in the user agent, and uses them as references
to detect inconsistencies. Thus, FP-TESTER’s report is divided
into three groups corresponding to the browser, OS, and
device-related attributes. For each group, we describe one of
the tests that failed.

a) OS inconsistencies: FP-TESTER identified 6 tests that
reveal OS inconsistencies. One corresponds to the way emojis
are rendered, which depends on the OS [5]. FP-TESTER uses a
neural network trained on the AMIUNIQUE dataset to predict
from which OS the rendered emoji originates. Because RAS
can change the OS in the user agent, it may fail this test.

b) Browser inconsistencies: RAS failed 3 tests
to detect browser inconsistencies. We focus on etsl,
which stands for eval.toString().length. Indeed,
eval.toString() returns a string whose length depends
on the browser. While Safari and Firefox display the same
string with a length of 37 characters, the length is 33 on
Chrome and 39 on Internet Explorer. FP-TESTER was capable
of detecting that the browser displayed in the user agent was
sometimes modified.

c) Device inconsistencies: RAS failed 2 tests that reveal
that it lied about the real nature of the device. In particular,
some fingerprints claimed to be mobile devices or tablets,
but they did not support mobile-specific events, such as
touchSupport or sensors like the accelerometer.

2) Overridden Functions: FP-TESTER analyzed the
navigator and screen prototypes and detected that the
getters of navigator.vendor and screen.width/
height were overridden. It also detected that toDataURL,
which is used to obtain a canvas value, was also overridden.

C. Other Countermeasures

We also evaluate the short-term fingerprintability of four
more countermeasures: two canvas countermeasures, CANVAS
DEFENDER and CANVAS FINGERPRINT BLOCK, as well as
two user agent spoofers, ULTIMATE USER AGENT SWITCHER



(UUAS) and USER-AGENT SWITCHER (UAS). FP-TESTER
detected inconsistencies introduced by all four extensions.
Regarding canvas countermeasures, it spotted inconsistencies
at different levels: overridden functions (toDataURL), as
well as the canvas pixels. Concerning the user agent spoofers,
UUAS is detected because it alters the user agent sent in the
HTTP requests, but doesn’t alter the one in the navigator
object. Although UAS changes both user agents, it does not
modify other attributes, such as navigator. platform,
which should be consistent with the OS.

D. Identification of countermeasures

Beyond detecting the existence of a countermeasure, iden-
tifying the countermeasure could increase entropy. Of the five
countermeasures we tested, we were able to identify RAS,
as well as the two canvas extensions. We failed to reliably
identify the two user agent spoofers solely by looking at the
fingerprint or the side effects they introduce—i.e., without
using the technique presented in the related work that relies
on Chrome public resources [9]. Concerning the two canvas
countermeasures, they can be identified by looking at the
string representation of toDataURL since, in both cases, it
leaks the code used by the extension to modify the native
behavior. For RAS, no single attribute can be used to identify
the extension. Instead, we test for the presence of side-
effects introduced by RAS which, when combined, can reveal
a signature of its presence. For example, in Figure 2, one
can observe that RAS overrides screen.width/height,
navigator.vendor and toDataURL. Thus, while we do
not have a single attribute to identify RAS, we can still use
the combination of multiple attributes as a signature.

E. Discussion

We showed that it is possible to detect the presence
of countermeasures, and for some of them to reveal their
identity. Nevertheless, being detected with a countermeasure,
or being unique, does not necessarily imply being tracked
more easily, hence the distinction between short and long-
term fingerprintability. We argue that the effect an extension
may have on tracking depends on different factors, such as
being able to identify the countermeasure, the number of
users of the countermeasure, the ability to recover the real
fingerprint values, and the volume of information leaked by the
countermeasure. Thus, while it might not always be possible
to provide an effective and undetectable countermeasure, it
is important for countermeasure developers to evaluate if the
anonymity gained from the countermeasure outweighs the
information the countermeasure leaks. We believe FP-TESTER
can help developers answer this question.

F. Threats to Validity

One of the limits of FP-TESTER in its current version is
its usage of rules to evaluate the short-term fingerprintability
of a countermeasure. Indeed, our ruleset is not exhaustive and
may miss some privacy leaks. It also needs to be updated to
take into account new browser features that could be used for

fingerprinting. Nevertheless, as we explain in Section III-E,
FP-TESTER aims to be modular in order to easily add new
rules. Moreover, although this paper reports on rules we
learned manually, we are currently working on automating the
inference of such rules to facilitate the maintenance of the rule-
set. Another threat lies in the way countermeasure developers
interpret the report generated by FP-TESTER. As we explain
in the discussion, being detected does not necessarily make
tracking easier. It is important to present the information in a
way that does not mislead the developer. For example, if we
consider the case of a canvas countermeasure, the entropy from
the identification of the countermeasure may be compensated
by the decrease of entropy from the removal of the canvas.

V. CONCLUSION

In this paper, we introduce FP-TESTER, our approach
to support developers in improving the resilience of their
countermeasures against fingerprinting. Our work starts from
techniques proposed by Starov et al. [6] to detect changes
made to the DOM. Besides DOM monitoring, FP-TESTER
also looks for inconsistencies, overridden native Javascript
functions, and manipulated canvas pixels. While short-term
fingerprintability—how different is the fingerprint with the
extension installed—is an important criterion for tracking, for
long-term fingerprintability, FP-TESTER also uses a strategy
that simulates the effects of countermeasures on genuine
fingerprints and tests if the browsers with the countermeasure
can be tracked more easily or not. Finally, we provide a finger-
printability report to extension developers on both short and
long-term exposure to fingerprinting, allowing them to take
appropriate actions to reduce their vulnerability to tracking.

REFERENCES

[1] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet Jones
and the Raiders of the Lost Trackers: An Archaeological Study of Web
Tracking from 1996 to 2016,” in Usenix Security, 2016.

[2] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site
Measurement and Analysis,” in CCS, 2016.

[3] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The web never forgets: Persistent tracking mechanisms in
the wild,” in CCS, 2014.

[4] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and
B. Preneel, “Fpdetective: dusting the web for fingerprinters,” in CCS,
2013.

[5] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast:
Diverting Modern Web Browsers to Build Unique Browser Fingerprints,”
in S&P, 2016.

[6] O. Starov and N. Nikiforakis, “XHOUND: Quantifying the Fingerprint-
ability of Browser Extensions,” in S&P, 2017.

[7] P. Eckersley, “How unique is your web browser?” in PETS, 2010.
[8] K. Mowery and H. Shacham, “Pixel Perfect: Fingerprinting Canvas in

HTML5,” in W2SP, 2012.
[9] S. V. Acker and A. Sabelfeld, “Discovering Browser Extensions via Web

Accessible Resources,” in CODASPY, 2017.
[10] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and

G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in S&P, 2013.

[11] P. Laperdrix, W. Rudametkin, and B. Baudry, “Mitigating Browser
Fingerprint Tracking: Multi-level Reconfiguration and Diversification,”
in SEAMS, 2015.

[12] N. Nikiforakis, W. Joosen, and B. Livshits, “PriVaricator: Deceiving
Fingerprinters with Little White Lies,” in WWW, 2015.

[13] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “FP-STALKER:
Tracking Browser Fingerprint Evolutions,” in S&P, 2018.


