
HAL Id: hal-01722157
https://hal.archives-ouvertes.fr/hal-01722157

Submitted on 3 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VARIABLE SELECTION FOR NOISY DATA
APPLIED IN PROTEOMICS

N. Dridi, A. Giremus, J.-F Giovannelli, C. Truntzer, Pascal Roy, L Gerfaut,
J.-P Charrier, P. Ducoroy, C Mercier, P Grangeat

To cite this version:
N. Dridi, A. Giremus, J.-F Giovannelli, C. Truntzer, Pascal Roy, et al.. VARIABLE SELECTION
FOR NOISY DATA APPLIED IN PROTEOMICS. IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2014, Florence, Italy. �hal-01722157�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157553534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01722157
https://hal.archives-ouvertes.fr


VARIABLE SELECTION FOR NOISY DATA APPLIED IN PROTEOMICS

N. Dridi1, A. Giremus1, J.-F. Giovannelli1, C. Truntzer2, P. Roy3, L. Gerfaut4, J.-P. Charrier5, P. Ducoroy2, C. Mercier3, P. Grangeat4

1Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence, France
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ABSTRACT

The paper proposes a variable selection method for pro-
teomics. It aims at selecting, among a set of proteins, those
(named biomarkers) which enable to discriminate between
two groups of individuals (healthy and pathological). To this
end, data is available for a cohort of individuals: the bio-
logical state and a measurement of concentrations for a list
of proteins. The proposed approach is based on a Bayesian
hierarchical model for the dependencies between biological
and instrumental variables. The optimal selection function
minimizes the Bayesian risk, that is to say the selected set
of variables maximizes the posterior probability. The two
main contributions are: (1) we do not impose ad-hoc rela-
tionships between the variables such as a logistic regression
model and (2) we account for instrumental variability through
measurement noise. We are then dealing with indirect obser-
vations of a mixture of distributions and it results in intricate
probability distributions. A closed-form expression of the
posterior distributions cannot be derived. Thus, we discuss
several approximations and study the robustness to the noise
level. Finally, the method is evaluated both on simulated and
clinical data.

Index Terms— Model and variable selection, Bayesian
approach, biological et technological variability, Gaussian
mixture, proteomics.

1. INTRODUCTION

Proteomics is an expanding discipline based on large-scale
studies of proteins present in an organism. It offers a promis-
ing alternative to genomics since it includes more information
about biological and cellular systems [1, 2]. It covers several
questions: protein identification in a biological sample, con-
centration quantification and differential analysis [4]. The lat-
ter consists in identifying a set of proteins, called biomarkers,
differently expressed according to a biological state (healthy:
H, pathological: P). These biomarkers can allow early diag-
nosis of diseases like cancer and follow-up therapy.

However, the proteins have small and variable concentra-
tions, hence reliable measurements require high-tech systems
such as LC-MS (Liquid Chromatography and Mass Spec-
trometry) or MALDI-TOF (Matrix-Assisted Laser Desorp-
tion / Ionisation through Time-Of-Fly). They produce spectra
including peaks related to the nature and the concentration of
the proteins. Biomarker discovery can be either directly based
on these spectra [5, 6] or on concentrations estimated from
these spectra. The study can be non parametric or parametric,
e.g. conducted in a Bayesian framework. Here, biomarker
selection relies on protein concentrations and is carried out in
a Bayesian scheme.

Discovery methods can be broadly classified into two cat-
egories. A first one relies on a predictive model, such as the
logistic regression, that describes the relationship between ex-
plicative (the protein concentrations) and explained (the bio-
logical state) variables. Then, variable selection is performed
by finding the protein combination that minimizes a crite-
rion which penalizes the complexity, such as the Bayesian
Information Criterion [8] or the Akaike’s Information Cri-
terion [9]. However, the computational complexity is rela-
tively high since 2P models must be compared for P explica-
tive variables. To alleviate this complexity, [10] proposes a
Gibbs sampling pre-selection of the variables. An alternative
is to compute penalized maximum likelihood estimates of the
regressors by enforcing parsimony. The most popular algo-
rithms are the LASSO or the Elastic Net method [11, 12].
The second class of methods is based on differential anal-
ysis [4] whose principle is generally to carry out univariate
tests, e.g. the Student one, for each protein. The main diffi-
culty is that, due to the multiple tests, it is necessary to control
the family wise error rate or the less conservative false discov-
ery rate [13].

Compared to the above-cited work, we propose to relax
the hypothesis of a logistic regression model which may be
quite restrictive. The problem is modelled within a hierarchi-
cal Bayesian framework. Based on the risk (mean loss), an
optimal decision-maker is designed for variable selection that
leads to select the most probable set of biomarkers a posteri-



ori. Moreover, compared to our previous work [7], the pro-
posed modelling takes into account the technological variabil-
ity. Thus, the true concentrations of the proteins are unknown
and the selection is based on measured noisy concentrations.
Furthermore, the noise precision is also unknown which in-
troduces extra parameter in the model. It is then difficult to
evaluate the posterior probability since it requires integration
w.r.t. both the unknown parameters and the true concentra-
tions. Here, we discuss several approximations and study the
robustness to the noise level. The performance of the method
is evaluated both on simulated and clinical data.

The rest of the paper is organized as follows. Section 2
describes the considered observation model. Section 3 is ded-
icated to the variable selection method, and numerical results
are provided in section 4. Finally conclusions and perspec-
tives are given in section 5.

2. MODEL FOR THE OBSERVATIONS

A set of measured protein concentrations for a cohort of N
individuals is available.The proposed biomarker selection
method is univariate, hence the decision whether a protein is
discriminant or not is made protein per protein. In the sequel,
we denote bn ∈ {H,P}, xn ∈ R and yn ∈ R the biological
state, the true and the measured concentrations of the protein
of interest for the individual n, respectively. Practically, xn
is unknown and we only have access to bn and yn. The latter
includes technological variability as an additive noise εn:

yn = xn + εn . (1)

It is one of the contribution of this paper with respect to our
previous work [7] that was based on noiseless concentrations.
In the sequel, the variables associated to the N individuals
are stacked in vectors denoted y,x and b. IP and IH are the
subsets of indices for the pathological and the healthy samples
and we denote IC = IP ∪ IH.

The noise εn is described by a zero-mean normal prob-
ability density function (pdf) with precision γε, therefore
yn|xn is given by a normal pdf with mean and precision
(xn, γε). As for the state bn, it is classically described by a
Bernoulli variable with parameter p. In a Bayesian frame-
work, the unknown variables are assigned prior probabilities.
Regarding the protein concentration, its pdf depends whether
it is discriminant or not. In the case non discriminant, xn
satisfies a Gaussian pdf with parameters (mC , γC). As an
alternative, if the protein is discriminant, xn is distributed
according to a mixture of two Gaussian pdf of parameters
(mH, γH) and (mP , γP) with respective weights p and 1−p.
Furthermore, we consider conjugate pdf for the hyperpa-
rameters. This choice directly impacts the feasibility of the
posterior distribution calculations. Thus, the precision γε
follows a Gamma pdf G with parameters (αpri

ε , β
pri
ε ) and the

couples (m×, γ×), with × ∈ {P,H, C}, are Normal-Gamma
(NG) distributed with parameters (µpri

× , η
pri
× , α

pri
× , β

pri
× ).

Finally, the concentrations of the different individuals are
assumed independent. Regarding the unknown parameters,
we define θ = [mP , γP ,mH, γH,mC , γC , γε, p]. Note that
all the parameters are scalar. The problem at hand is to de-
cide between two models denoted ∆ = + if the protein is
discriminant and ∆ = − otherwise.

3. VARIABLE SELECTION

3.1. Optimal decider

To build an optimal decision-maker, a binary loss function is
considered: it assigns a null loss to any correct decision and
a unitary loss to any wrong decision. The risk is then defined
as a mean loss and an important point is that the mean is over
the two models, the data (the observed concentrations and the
states), the true concentrations and the unknown parameters.
The optimal decision-maker is defined as the risk minimizer
and it is known that it selects the most probable model i.e. the
Maximum A Posteriori.

3.2. Analytical calculation of the posteriori probability

The posterior probability of the model δ ∈ {+,−} is:

P∆|Y,B(δ|y,b) ∝ fY,B|∆(y,b|δ)P(∆ = δ) (2)

based on the likelihood fY,B|∆(y,b|δ) also referred to as the
evidence. Since the individuals are independent, the complete
likelihood can be factorized and yields Eq. (3).

First, integration is performed w.r.t. θ and the result is
written as a pdf for x, then the integral on x is calculated.
Each integral in Eq. (3) can be calculated separately.

For Iγε , the following expression is obtained:

Iγε = (2π)−N/2Kpst
G /K

pri
G (4)

where KG = Γ(α)/βα is the normalization constant of
the Gamma pdf with parameters α and β. The superscripts
{pst, pri} stand for prior and posterior pdf of the precision pa-
rameter. It should be noted that, by the conjugation principle,
the posterior pdf of γε is also Gamma with parameters:

αpst
ε = αpri

ε +N/2

βpst
ε = βpri

ε +
1

2

N∑
n=1

(yn − xn)2.

In Eq. (4), only one term depends on x and it can be rewritten:

(βpst
ε )−α

pst
ε =

(
βpri
ε +

1

2
(y − x)(y − x)t

)−αpst
ε

= KS(βpri
ε )−α

pst
ε S(x; y,

αpri
ε

βpri
ε

IN , 2α
pri
ε )



fY,B|∆(y,b|δ) =

∫ (∫ ∏
IC

N (yn|xn, γε)G(γε)dγε

)
︸ ︷︷ ︸

Iγε

(∫ ∏
IH

N (x+
n ;mH, γH)NG(mH, γH)d(mH, γH)

)(δ,+)

︸ ︷︷ ︸
IH(∫ ∏

IP

N (x+
n ;mP , γP)NG(mP , γP)d(mP , γp)

)(δ,+)

︸ ︷︷ ︸
IP

(∫ ∏
IC

N (x−n ;mC , γC)NG(mC , γC)d(mC , γC)

)(δ,−)

︸ ︷︷ ︸
IC

dx (3)

where KS is the normalization constant of the multivariate
Student distribution S with parameters y,αpri

ε /β
pri
ε IN , 2αpri

ε

(see Appendix).

Let us now consider the factors I× with × ∈ {H,P, C}.
It should be noted that they involve the same distributions.
Using again the conjugation, the posterior pdf of (m×, γ×) is
also Normal-Gamma with parameters:

µpst
P =

N×x̄× + ηpri
× µ

pri
×

ηpri
× +N×

ηpst
× = ηpri

× +N×

αpst
× = αpri

× +N×/2

βpst
× = βpri

× +NR̄x
×/2 +

ηpri
×N×

2(ηpri
× +N×)

(
x̄× − µpri

×

)2

where x̄× / R̄x× are respectively the empirical mean / variance
of the true concentrations. By integration w.r.t. (m×, γ×):

I× = (2π)−N×/2Kpst
NG(×)/Kpri

NG(×) (5)

where K?
NG = Γ(α?)

√
2π/(β?)α

?√
η?, for ? ∈ {pst, pri},

is the normalization constant of the Normal-Gamma pdf with
parameters (µ?, η?, α?, β?). At this step, the calculation can-
not be completed exactly. Different approximations can be
considered. A first solution is to resort to Monte Carlo in-
tegration techniques such as importance sampling [3]. An
alternative is to consider analytical approximations. For in-
stance, either x̄× or both x̄× and R̄x× could be replaced by
their empirical estimates ȳ× and R̄y×, computed from the ob-
served concentrations. In the first case, the integrand (5) can
be expressed, up to a proportionality constant, as a multivari-
ate Student distribution of argument x. Then, using the well-
known result that Student distributions can be approximated
by Gaussian distributions provided the degree of freedom is
high enough, analytical computation of Eq. (3) becomes pos-
sible. In the second case, the I× no longer depend on x and
need not be integrated. Eq. (4) and (5) are replaced in Eq. (3)

and yields:

fY,B|δ(y,b|+) = K
Kpst
NG(P)

Kpri
NG(P)

Kpst
NG(H)

Kpri
NG(H)

(6)

fY,B|δ(y,b|−) = K
Kpst
NG(C)

Kpri
NG(C)

(7)

with K = KS(βpri
ε )−α

pst
ε . It should be noted that in this very

case the corresponding posterior probabilities (2) are identical
to the ones derived by neglecting the noise in [7].

3.3. Hyperparameter choice

The probabilities (6)-(7) depend on hyperparameters that are
the parameters of the Normal-Gamma pdf (µ×, η×, α×, β×)
for × ∈ {P,H, C}. In a non-informative case, they tend to
0 and the proportionality coefficients take an undeterminated
form. To tune these parameters, we resort to poorly informa-
tive prior based on expert-knowledge of orders of magnitudes
for the involved variables. To this end, we use the relation-
ship between the expected values and the covariance matrices
of (µ× γ×) and the parameters of a Normal-Gamma pdf given
by:

E(γ×) = α×β
−1
× , E(m×) = µ×

V (m×) =
β×

η×(α× − 1)
, V (γ×) = αβ−2

×

Therefore, when information about the range of m× and γ×
is available, (µ×, η×, α×, β×) can be calculated.

4. RESULTS

In a first step, we study the decision rule obtained by replac-
ing both x̄× and R̄x× by empirical estimates in Eq. (5). We
conduct extensive simulation studies to evaluate the perfor-
mance of the method and more precisely to study its robust-
ness to noise. For a given protein, we aim at deciding if it is a
biomarker (∆ = +) or not (∆ = −) by selecting the hypoth-
esis with the highest posterior probability using Eq. (2).

For each true model ∆? = + and ∆? = −, Nr = 105

realizations of the biological state and the measured pro-
teins concentrations are simulated for N individuals. For



discriminant proteins, the concentrations are distributed ei-
ther as N (xn;mH, γH) or as N (xn;mP , γP) depending
on the biological state. As for non discriminant ones, it is
given byN (xn;mC , γC). The noise is generated according to
N (ε; 0, γε). The parameters (m×, γ×) where× ∈ {P,H, C}
and γε are respectively distributed as
NG(m×, γ×;µ×, η×, α×, β×), and G(γε;αε, βε). Finally,
the hyperparameters (µ×, η×, α×, β×) are calculated as ex-
plained in Section 3.3.

4.1. Impact of γε and N

We study the impact of the noise level and the cohort size on
the error rate τ(%) = 100 ∗Nfs/Nr where Nfs is the number
of false selections (estimated and true models are different).
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Fig. 1. Error rate τ(%) of the Bayesian method as a function of the
noise precision γε, for different values of the sample number.

Figure 1 shows the error rate as a function of the noise
precision γε and for several cohort sizes . As expected, for a
given N , τ decreases when γε increases. This is explained by
the precision of the approximation of the mean and variance
of the true concentrations by the empirical ones. Indeed, the
accuracy of this approximation depends on the noise power:
the higher the noise, the larger the impact of the approxima-
tion. However, it is also related to the observation size N : for
large N , the method is more robust to noise.

4.2. Comparison with Student test

This section compares the performance of the proposed ap-
proach with a Student test. To select a biomarker, the latter
tests whether the means of the protein concentrations for the
healthy and pathological individuals are equal or not.

Bayesian method / Student test
aaaaaa

∆? ∆̂ − +

− 100.000 / 99.876 0.000 / 0.124
+ 0.0630 / 0.0140 99.937 / 99.986

Table 1. Rates τ(%) false / true and positive / negative. + /−
refers to discriminant / non discriminant protein.

Table 1 shows the four rates (false / true and positive / ne-
gative) for the proposed and the Student method. ∆? and ∆̂
respectively refers to the true and selected models. Clearly,
the proposed method always reject non discriminant vari-
ables. Regarding discriminant variables, the error is larger
with the proposed method (0.063%) than with the Student
one (0.124%). The total false selection rate is the arithmetic
mean of the false positive and false negative rates: 0.0315%
for the proposed approach and 0.069% for the Student, that is
to say more than twice higher.

4.3. Clinical data

This section is devoted to a first clinical data set1 composed of
190 samples, including 107 with state P (colorectal cancer)
and 83 with state H. For each sample, the concentrations of
34 proteins are measured. To the best of our expertise, one
of them is known to be a biomarker. As for the results, this
biomarker is correctly selected by our Bayesian method, and
a second candidate is also selected.

5. CONCLUSION AN PERSPECTIVES

Biomarker discovery is a crucial issue in proteomics, since it
may allow early detection of diseases like cancers. . . It con-
sists in selecting discriminant proteins, given concentrations
and biological states for a set of samples. In this paper, we
develop an optimal strategy in a hierarchical Bayesian frame-
work. Compared to our previous paper [7], the proposed
model includes technological variability. This introduces ad-
ditional parameters, and the main difficulty is the required in-
tegration w.r.t. unknown parameters and the unobserved pro-
tein concentration which cannot be performed analytically.
We propose several approximations to alleviate this difficulty
while ensuring a reduced computational complexity. After
studying the robustness of our approach to the noise level, we
evaluate its performance through numerical simulations and
clinical data. In both cases, a selection error lower than 0.1%
is obtained. In the future, we intend to tackle the multivariate
model P > 1.

A. APPENDIX: MULTIVARIATE STUDENT PDF

A vector x ∈ RN follows a multivariate Student pdf of pa-
rameters (µ,Λ, ν) if:

fX(x;µ,Λ, ν) = K−1
S

[
1 + (x− µ)tΛ(x− µ)/ν

]−(N+ν)/2

with KS is normalisation constant:

KS =
Γ(ν/2)

Γ((N + ν)/2)

(πν)N/2

|Λ|1/2

1provided by bioMerieux (Technology Research Department), France.
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