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ABSTRACT
Distributed adaptive systems are composed of federated entities of-
fering remote inspection and reconfiguration abilities. This is often
realized using a MAPE-K loop, which constantly evaluates sys-
tem and environmental parameters and derives corrective actions
if necessary. The OpenStack Watcher project uses such a loop to
implement resource optimization services for multi-tenant clouds.
To ensure a timely reaction in the event of failures, the MAPE-K
loop is executed with a high frequency. A major drawback of such
reactivity is that many actions, e.g., the migration of containers
in the cloud, take more time to be effective and their effects to be
measurable than the MAPE-k loop execution frequency. Unfinished
actions as well as their expected effects over time are not taken into
consideration in MAPE-K loop processes, leading upcoming analy-
sis phases potentially take sub-optimal actions. In this paper, we
propose an extended context representation for MAPE-K loop that
integrates the history of planned actions as well as their expected
effects over time into the context representations. This informa-
tion can then be used during the upcoming analysis and planning
phases to compare measured and expected context metrics. We
demonstrate on a cloud elasticity manager case study that such
temporal action-aware context leads to improved reasoners while
still be highly scalable.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; • Computer systems organization → Reconfigurable com-
puting;
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1 INTRODUCTION & MOTIVATION
In response to the increasing complexity of systems and their
ever-changing environment, many approaches to design and de-
velop software able to adapt according to the current context have
emerged. Adaptive software systems are characterized by their abil-
ity to, dynamically and reactively, evaluate their context and adjust
their behavior accordingly. A systematic approach to realize adapta-
tion is by using a feedback control loop. The most commonly used
approach for adaptive systems is the MAPE-K loop, for Monitor,
Analyse, Plan and Execute over knowledge. Based on knowledge/-
context information, the MAPE-K loop continuously reasons about
the system context to take appropriate and optimal actions. System
context can be defined as the circumstance in which a computing
task takes place [10].

Fined and rich context information directly influences the ac-
curacy of the actions taken. Various techniques to represent con-
text information have been proposed; among which we find the
models@run.time [5, 13]. The models@run.time paradigm inherits
model-driven engineering concepts to extend the use of models not
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only at design time but also at runtime. This model-based repre-
sentation has proven its ability to structure complex systems and
synthesize its internal state as well as its surrounding environment.

The MAPE-K loop has been successfully incorporated into dis-
tributed software systems for numerous goals. Actions generate
during the adaptation step could take time upon completion. More-
over, the expected effects resulting from such action is reflected in
the context representation only after a certain delay. We refer to
these actions as long actions.

For instance, theOpenStackWatcher project implements aMAPE-
K loop to assist cloud administrators in their activities to tune and re-
balance their cloud resources according to some optimization goals
(e.g., CPU and network bandwidth). The same applies for the alloca-
tion of software containers to host nodes by recent Docker Swarm
and Kubernetes projects. Activities carried out by the Watcher
project include metric collection and analysis, action planning
(e.g., live resource migration), and action recommendations (advise
mode) or action execution (active mode) that satisfies the optimiza-
tion goals. Nevertheless, activities such as cloud rebalancing involve
long actions like resource migration. Due to the lack of informa-
tion about unfinished actions and their expected effects on
the system, the reasoning component may take repeated or
sub-optimal decisions while these actions are being per-
formed.

A commonly used workaround is the selection, often empiri-
cally, of an optimistic time interval between two iterations of the
MAPE-K loop such that this interval is bigger than the longest
action execution time. However, the time to execute an action is
highly influenced by system overload or failures, making such em-
pirical tuning barely reliable. We argue that by enriching context
representation with support for past and future planned actions and
their expected effects over time, we can highly enhance reasoning
processes and avoid empirical tuning. As illustrated in Figure 1
our approach uses temporal context to represent expected
action effects and enable their use in reasoning processes.
Our current approach is limited to the representation of measur-
able effects of any action. Using a cloud manager scenario, we show
the efficiency of such context representation, in order to detect
container migration delay for instance.

The paper is structured as follows. We first introduce some pre-
liminary concepts in Section 2. Later we introduce our contribution
in Section 3. Finally, Section 4 evaluates our approach using a cloud
elasticity manager case study, while Section 6 concludes the paper
and draws some future research lines.

2 BACKGROUND
This section describes the background for this work. First, we de-
scribe the original MAPE-K loop, which we aim to extend in this
paper. Then, we discuss the models@run.time paradigm, a well-
known implementation of the MAPE-K loop, on top of which we
build our proposed approach. Finally, we describe the background
related to the representation of temporal context.

2.1 The MAPE-K loop
The MAPE-K feedback loop, originally introduced by
IBM [1], is the reference model for autonomic and self-adaptive

Managed element

Sensor Actuator

Knowledge
Monitor Execute

Analyse Plan

Figure 2: Overview of the MAPE-K loop process

systems. As shown in Figure 2, it describes a continuous feedback
loop of monitoring context information through sensors, analysing
these data, planning corrective actions if necessary, and executing
these actions through actuators. The main idea of this feedback loop
is that a systemmaintains a model of itself and its environment—i.e.,
a context representation—at runtime and uses this model to reason
about itself in order to achieve the system’s goals. This model is
in the original MAPE-K feedback loop referred to as knowledge,
which is shared among the monitor, analyze, plan, and execution
phases. It is created by the monitor phase and might be updated by
the execution phase.

2.2 Models@run.time
The models@run.time paradigm [5, 13] is a well-known realization
of the MAPE-K loop to handle the challenges faced in self-adaptive
systems development. It extends model-driven engineering (MDE)
concepts by spanning the use of models from design time to runtime
(i.e., during the execution of a system). The model, as an abstraction
of a real system, can be used during runtime to reason about the
state of the actual system. A conceptual link between the model
and the real system allows modifying the actual system through
the model and vice versa. Models in MDE provide semantically rich
ways to define contexts that can be used in reasoning activities.
The models@run.time paradigm uses meta-models to define the
domain concepts of a real system together with its surrounding
environment. Consequently, the runtime model depicts an abstract
and yet rich representation of the system context that conforms to
(is an instance of) its meta-model. In this work, we seek to use the
models@run.time paradigm to represent, reason, and update the
context of a system.

2.3 Temporal context representations
Most context representations are defined as snapshots of a run-
ning system at given times. Nonetheless, the actual system keeps
changing over time. Many reasoning activities need to read past
or future states. Such time-evolving contexts can be either defined
as a costly sequence of snapshots and deltas or by the aggregation
of independent time series, resulting in the loss of relationships
between context elements. To overcome such issues for temporal
context representations, Hartmann et al., [8, 9] suggested the use
of a cross-cutting temporal dimension, by implicitly adding a time
validity to every context element. A version of a context element
is then valid from a time ti to a time te . In between, an infinite
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Figure 3: Directed acyclic graph of actions

number of versions of time tj can be inserted and the whole history
can be accessed. For this paper, we assume that the following four
temporal functions are given:

Func 1. start(id) → time, where id is a unique identifier of a
context element and time is the timestamp where the lifeline of this
element starts.

Func 2. end(id) → time, where id is a unique identifier of a
context element and time is the timestamp where the lifeline of this
element ends.

Func 3. resolve(id,time)→ {A, R}, where id is a unique identifier
of a context element, time is a timestamp, and An Rn are respectively
the set of attributes and relationships values associated to the context
element at the given time .

Func 4. time(id) → time, where id is a unique identifier of a
context element, time is the last timestamp at which the element has
been modified.

Using these functions, any structure definition, such as a meta-
model, can be turned into a temporal representation. In this paper,
we suppose that our context representation formalism satisfies this
assumption. Our context representation is a temporal struc-
ture definition following the models@run.time paradigm.

3 ACTIONS AS CONTEXT INFORMATION
In order to enhance sustainable decision-making in time evolv-
ing contexts, we strongly think that actions together with their
expected effects should be part of the context representation of
adaptive systems. In this perspective, we first describe a cluster
infrastructure management example for illustrating our approach.
Then, we show how an action plan can be represented as a directed
acyclic graph (DAG) of actions spanned over time. Then, we detail
on how we enrich this DAG with the expected effect of actions,
and later with their measured equivalences, i.e., how we link the
DAG to the context representation. Finally, we illustrate how this
information can be used by the MAPE-K loop to improve reasoning
processes through four reasoning operations.

3.1 Example: cluster management
Throughout this section, we refer to a cluster management case
study, the Watcher project, to exemplify our approach. This frame-
work performs adaptation processes over a cloud infrastructure

in order to optimize resource usage, such as CPU, memory, and
network. To achieve this, Watcher defines primitive actions to be
performed, such as container’s creation, migration, and duplication.
Furthermore, Watcher comes with a set of metrics, either simple
or derived, for setting up optimization algorithms. For instance,
deciding whether to allocate or deallocate resources in the clus-
ter. In this paper, we confine to two metrics: container status and
container workload. Being part of the context information, these
metrics values play a crucial role in planning and executing adap-
tation processes. These values are first modified: the system will
update the container status and their workload. Moreover, these
values can be subject to changes as a result of executing the planned
actions.

A common adaptation scenario is minimizing the amount of re-
sources provided by the cluster to answer a given service workload
(WS ) that is expected a priori. The framework thus has to decide
whether to allocate or deallocate resources, and thereby, increase
or decrease the amount of the provided workload (WP ). To do so,
the framework first comparesWS toWP , then determines the most
convenient action plan. As soon as an allocation or deallocation
action is performed, the workload values are increased or decreased
and the container statuses are modified accordingly (e.g., READY,
DOWN ). Neither of these actions is effective immediately and they
can be subject to failure. As shown in [11], a virtual machine based
on Linux could take from 90 seconds to more than 200 seconds to
be ready.

3.2 Action planning
System adaptation is commonly performed as a set of actions. In
complex scenarios, these actions are often interdependent and re-
quire advanced action planning. It takes into consideration not only
dependency but also actions execution status. Furthermore, existing
simplified models,e.g., [4, 12], do not capture action execution time
and assume that they complete immediately after they are triggered.
Capturing such temporal information (e.g., (de)allocation delays)
contributes to the quality of context information and improves the
reasoning process of the MAPE-K loop.

We propose to represent action plans by means of DAGs of ac-
tions spanning over time, where each node corresponds to an action
and an edge to a precedence relationship between actions. Figure 3
shows an example of an action plan represented using an actions
DAG. Actions can be executed in parallel or sequential way. Each
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Figure 4: Principle metamodel integrating actions into context models

action has a start time, an execution duration, and a time until its
effects are measurable by the system. These properties can be repro-
duced using the three temporal functions defined in Section 2.3. The
execution duration will be the difference between the start time and
the end time values, defined by the start(id) and end(id) functions.
Expected effects resulting from the execution of an action are also
attached to actions, as highlighted in Figure 3 by a dashed arrow.
The time until action effects are measurable will correspond to the
start time, i.e., the result of the function start(id), of the context
element. We differentiate between several actions statuses, namely,
created, pending, running, failed, succeeded, or canceled. An action
is triggered when all the actions of the incoming edges succeed. In
case of actions failure or cancellation, the subsequent actions are
canceled then rescheduled for the next planning phase. We provide
more details about expected effects representation below. This DAG
is then fed to the knowledge component of the MAPE-K feedback
loop to improve the reasoning process.

We describe in the next section how we represent this DAG and
how we link it to the context presentation.

3.3 Linking action planning and context
representation

In order to enable reasoning on actions, we include two concepts in
our context representation model, the measured value and expected
value. Whilemeasured represents the value of data measured by the
system’s sensors, expected represents data reflecting the planned
effects of actions. We assume that actions are triggered by change
requests made either by a human or the system itself (e.g., the
reasoning process). Based on change requests, the reasoning process
will generate the DAG of actions with effects on metrics. For the
sake of understandability, this concept should encapsulate the intent
behind performing an action.

An excerpt of a meta-model representing these concepts is pro-
vided in Figure 4. The right-hand side of the meta-model depicts
how we model change requests, thanks to the ChangeRequest meta-
class. The name and the type are used by the reasoning process
to infer the desired state as well as the actions to reach it. The
timeLimit attribute allows to define a time-out for each individual
request.

The center part of the meta-model (with grey background) de-
picts the meta-model used to create instances of the DAG of actions.

To support the sequential and parallel execution, we define three
classes: Action, Fork Action and Join Action. While sequential ac-
tions can be modeled using the relationship next, parallel nodes can
be modeled using fork actions and join actions. The JoinAction is
simply a node with multiple incoming edges, while the ForkAction
node with multiple outgoing edges. The actions are part of the
context model thanks to the reference next associating the Action
class to the ContextModel class.

The left-hand side deals with the sub-model that supports ex-
pected effects. A value of a metric can be of any type. We represent
it in the metamodel through the generic type parameter T. Metrics
with measured values are directly connected to the context model.
This corresponds to the usual semantics of context models. In the
Figure 4, this is shown by the Metric class. ExpectedMetric are used
to represent the expected values. Thanks to the timeDephasing and
the precision attributes we are able to handle time expressions with
a high level of precision. Conceptual links between an action and
its corresponding expected metrics are established using the rela-
tionship effects (depicted in bold red). Using this representation,
we enable the analysis using expected values, measured values,
actions, and their effects. As we will show in the next section, this
representation improves significantly the analysis and planning
phases of traditional MAPE-K loops.

Coming back to our case study, Figure 5 depicts a model in-
stance of our proposed example. The meta-model contains four
metrics: container status (contStatus1 and contStatus2) and con-
tainer workloads (containerWorkload1 and containerWorkload2). All
these metrics are affected by two actions: action1, an action to
switch a container on, or action2, an action to migrate a container
to another host. As a scale up request has been created, the rea-
soning process decides to create an action plan: first switching a
container on and then migrating another container.

3.4 Enabled reasoning
By associating the action model to the context model, we aim at
enhancing adaptation process with new abilities to reason. In this
section, we list four kinds of reasoning that is possible thanks to our
approach: (i) answering change requests (ii) immediate supervision,
(iii) future supervision, (iv) meta supervision. We also present the
necessary code to extract information during the reasoning phase.
We use a dot notation for navigating inside our context model, i.e.,
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- name: “ScaleUp”
- type: “Scaling”
- timeLimit: 1506681154376
- status: “PENDING”

scaleUp: ChangeRequest

model: ContextModel- name: “startContainer”
- status: “PENDING”

action1: Action

- name: “migrateContainer”
- status: “PENDING”

action2: Action - name: “contWorkload”
- status: 187.3

contWorkload1: Metric

- name: “contWorkload”
- value: 0

contWorkload2: Metric
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- timeDephasing: 1min
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contExpectedWorkload: 
ExpectedMetric

- value: 94.7
- timeDephasing: 1min
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d1: ExpectedMetric
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contStatus2: Metric

- value: “ON”
- timeDephasing: 10 min
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ExpectedMetric
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Figure 5: Instance model of the cluster management use cases.

model . changeReques t s
. s e l e c t ( ChangeRequest c r −> c r . s t a t u s == "PENDING" )
. s e l e c t ( ChangeRequest c r −> c r . t imeL im i t <= NOW} )
. f o rEach ( ChangeRequest c r −> c r e a t eA c t i o n s ( c r ) )

/ / R i s e an e r r o r f o r u n s a t i s f i e d r e q u e s t s
model . changeReques t s

. s e l e c t ( ChangeRequest c r −> c r . s t a t u s == "PENDING" )

. s e l e c t ( ChangeRequest c r −> c r . t imeL im i t > NOW)

. f o rEach ( ChangeRequest c r −> r i s e E r r o r ( c r ) )

Listing 1: Generation of the DAG of actions from the change
requested

for accessing the properties (attributes and relationships). Moreover,
we consider the elements as stream, i.e., each context elements are
contained in a stream of elements. For example, the metrics are
contained in a stream of context elements. In addition, context
elements define the same operation as the ones of the Stream Java
interface1. The execution semantics also remains similar. When the
operations are executed, they are executed at a precise time, i.e.,
the current timestamp. When operations need to access a context
element, they apply the resolve(id,time) functions as described in
Section 2. For readability purpose, we do not show the call to this
function. Listed codes have been made using the context model
presented in Figure 5.

Answering change requests. Thanks to change requests present
in the context representation, the reasoning will create a DAG
of actions to reach a desired state. It thus needs to extract the
change requests that have not been processed and on which the
time limit has not been reached. If the time limit has been reached
or overtaken, the reasoning process could throw errors. We present
the code to extract the change requests from our model in Listing 1.

Immediate Supervision. When a reasoning process plans adap-
tation actions, it also sets the expected effect on the metric of the
1https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html, Last visited:
28 September 2017

context model. We refer to this operation as immediate supervi-
sion. However, the measured value could diverge from the expected
one for different reasons: error in actions, context that has not
changed as expected, or wrong effect extrapolation. The reasoning
process needs to detect this divergence for taking counteractions.
In other words, the reasoning process needs to analyse the dif-
ference between the expected value and the measured one. We
present the code to achieve the extraction of the expected and the
measured value of a metric in Listing 2. As shown in the code,
the checking should consider both the precision of the expected
value and the possible temporal dephasing between the measured
value and the expected effects. We check if the value is in the fol-
lowing range: [e f f ectvalue − precision; e f f ectvalue + precision]
and the time of the measured value is the following range: [time −
timedephasinд; time + timedephasinд].

model . me t r i c s
. s e l e c t ( Me t r i c m −> m. name == " contWorkload " )
. f o rEach ( Me t r i c m −> {

Expec t edMe t r i c e = m. expec t ed ;
i f (m. va l u e < e . v a l u e − e . p r e c i s i o n | |

m. va l u e > e . v a l u e + e . p r e c i s i o n ) {
i f ( t ime (m. i d ) < s t a r t ( e . i d ) − e . t imeDephas ing | |

t ime (m. i d ) > s t a r t ( e . i d ) + e . t imeDephas ing ) {
c r e a t e C o r r e c t i v eA c t i o n s (m) ; }

}
} )

Listing 2: Detection of difference between measured and ex-
pected values

Future supervision. Actions are taken for adapting the system
to the current context. However, they are not immediately and
successfully executed and their effects are measurable with delay.
As discussed in Section 1, the reasoning frequency could be inferior
to this delay. It results on a reasoning process that will be executed
on a similar context as the last execution. It will thus take the
same action(s) whereas the context will be adapted soon. To tackle
this problem, using our approach, the reasoning process can also
consider the future expected metrics. By analysing the current
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context for detecting any miss adaptation and the future expected
one for detecting any future correction, the adaptation process will
avoid repetition of actions. The code below show how to extract
the current container workload and the future expected one. The
code remains similar to the previous one (Listing 2) except that we
resolve the expected value at another time, here 5 min after the
current time (NOW ).
model . me t r i c s

. s e l e c t ( Me t r i c m −> m. name == " contWorkload " )

. f o rEach ( Me t r i c m −> {
Expec t edMe t r i c f u t u r eE = r e s o l v e (m. expec ted ,NOW + 5min )
/ / s i m i l a r t o t h e c od e p r e s e n t e d i n L i s t i n g 1

} )

Listing 3: Extraction of expected and measured value of a
metric with a delta time

Meta supervision. Supervision allows to verify that the reasoning
has been successfully executed, i.e., that the expected effect really
happened on the system. As explained in the previous paragraph,
the system will also diverge from this desired state for different
reasons. The meta supervision aims at finding extra information.
For example, we will detect if a desired state is not reachable, or
that an action often creates this divergence. The code presented in
Listing 4 allows to detect actions that did not achieve the expected
effect. For this purpose, we check if an action did not surpass the
expected percentage THRESHOLD of miss expectations.

Map<Act ion , Integer > e r r o r = new HashMap ( ) ;
in t sum = 0 ;

model . t imeRange (NOW − 2H, NOW)
. me t r i c s
. f o rEach ( Me t r i c m −> {

[ . . . ] / / c o d e o f p r e v i o u s l i s t i n g
i f ( . . . ) { / / i f p r e s e n t e d i n t h e p r e v i o u s l i s t i n g

Act ion a = m. expec t ed . o r i g i n ;
in t count = e r r o r . g e t ( a ) + 1 ;
e r r o r . put ( a , count ) ;
sum++;

}
} ) ;

e r r o r . f o rEach ( ( key , v a l u e ) −> {
i f ( v a l u e / sum > THRESHOLD) {

t a k eAc t i on s ( ) ;
}

} ) ;

Listing 4: Extraction of expected and measured value of a
metric with a delta time

4 VALIDATION & EVALUATION
In this paper, we argue that by adding action information directly
within context representations the reasoning phase (i.e., the Analyse
and Plan of the MAPE-k loop) is improved. We validate the proposal
using our case study example, the cloud management scenario. We
demonstrate the scalability of our approach could by applying it to
large-scale adaptive systems.

To implement our approach and build this experimentation we
used the GreyCat framework2. It is a models@run.time framework
with time as a built-in concept[7]. The code for this experimentation
is open source and publicly accessible3.
2http://greycat.ai/, Last visited: 21 September 2017
3https://bitbucket.org/ludovicpapers/sac-eval

4.1 Validation
In our experimentation, we simulate a cluster that executes a unique
service on several containers. The adaptation process allocates or
deallocates resources in/from the cluster infrastructure by relying
on themeasured workload of resource usage. The objective function
is to minimize the number of used resources while reducing the
difference betweenWS andWP . The targeted state isWS =WP .

We use the fastStorage4 dataset[15] to simulate the service work-
loadWS . To reproduce a service workload, we sum up the CPU
usage in the dataset. Then, the workload of the containers WC
is computed by dividingWS by the number of available contain-
ers NC . A maximum of 8,6005 is set up to represent the allocated
CPU of containers. Due to this maximum constraint, the sum of
the container workloads (WP =

∑NC
i=0 <=WS ), also referred to as

the provided workload of the serviceWP , could be inferior to the
workload of the service. In addition, the maximum value of the
provided workloadWPmax is equal to the sum of the maximum of
the container:WPmax = NC ∗ 8600.

We compare the output results of similar adaptation processes
but different sets of rules. The first set uses a traditional rule-based
decision-making process [2, 3] while the second one replicates the
rules and takes into consideration the expected effects of actions.

We identify two rules:
• Rule 1 ifWP <WS then start as many containers as needed
• Rule 2 ifWPmax > WS then stop as many containers as
needed

The equivalent rules in a temporal-aware context are depicted
below:
• Rule 1 if WP (now ) < WS (now ) and WE (now + 3min) <
WS (now ) then start (WS (now ) −WE (now + 3min)/8600 con-
tainers
• Rule 2 ifWPmax (now ) >WS (now ) andWPmax (now+3min) >
WS (now ) then stop (WPmax (now + 3min) −WS (now ))/8600
containers

WE (t ) represents the expected workload of a service at a time t,
which is also the sum of the expected workload (WCE (t )) of all the
containers at the time t. We formalize it as:WE (t ) =

∑NC
i=0WCEi (t ).

The adaptation process is executed every 1 minute, for 100 times,
in order to simulate the reactivity of the clusters. We show that
rules that ignore the expected effects of actions perform poorly.
We compute the number of start actions and the number of stop
actions against the two sets of rules. Using the first set of rules,
we reach a total of 433 start actions and 515 stop actions whereas
using our approach 168 start actions and 235 stop actions. Thus,
the second set of rules reduces the number of start and stop actions
by a factor of ∼2.6 and ∼2.2 respectively. The difference between
the provided workload and the service workload remains similar
in the two usages.

4.2 Evaluation of reasoning latency
In this section, we evaluate the efficiency of our context representa-
tion for enhancing a reasoner implementing the previously defined
rules (2nd set of rules). All the experimentations have been executed

4http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains, Last visited: 22 September 2017
5Average of allocated CPUs in MHz in the dataset
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Figure 6: Latency to detect faults within temporal contexts
given different sizes of cloud clusters

in a MacBook Pro with an Intel Core i7 processor (2.8GHz, 4 cores,
16GB main memory (RAM), macOS Sierra version 10.12.4) using
Oracle JDK 1.8.0_65. Our proposed temporal context representation
introduces inescapably an overhead compared to a simple vector
of metrics, as it is commonly used in cloud management implemen-
tations. Using an experimental evaluation, we answer this question
by varying the size of the context model in order to simulate var-
ious sizes of clusters. Then, we evaluate during this experiment
the latency of our cloud model-based reasoner to trigger corrective
actions. The results are presented in Figure 6. The depicted results
have been obtained by computing the average execution time over
ten (10) runs.

Experimentally, we obtained a very good latency (less than 200ms,
which is comparable to a single Remote Procedure Call [14]) for a
cloud cluster with fewer than 1000 containers. For larger clusters,
the latency remains acceptable (less than 1s) until reaching 85,000
elements. Finally, we evaluated a very large-scale cluster (1,200,000
containers), where we obtained a latency of less than 12s. In the
later case, we obtained a throughput of 100,000 rules/second. The
performance of our approach can be considered as very good as
cloud clusters rarely go beyond few thousands of elements [15].

4.3 Evaluation of our reasoning element
In the last experimentation, we evaluate the four reasoning capaci-
ties presented in Section 3. Figure 7 depicts the average results of
this experimentation of ten (10) executions. The first three reason-
ing operations, answering change requests, immediate supervision,
and future supervision, give very good execution time. These op-
erations can be evaluated these three operations over 1 million of
elements in less than 10 seconds. As shown in Table 1, it results in a
throughput of more than 100,000 operations per second. However,
our results are less good for the meta-supervision. We can execute
more than 20,000 of operations per second. This is due to the com-
putational complexity of this supervision. Contrary to the previous
reasoning that are executed at a precise time, the meta supervision
is executed over a time range. But, the meta supervision operations
should not be used with the same frequency as the three other ones.
It could be used with less frequency as it analyses the data over
bigger time range.

5 RELATEDWORK
The challenge implied by temporal representation is also raised by
the scheduling and planning communities. In particular, reason-
ing activities that should schedule actions order is especially hard
when durations are not stable and controllable. To tackle such a

Figure 7: Execution time of the new reasoning abilities

Table 1: Reasoning operation throughput

Reasoning operation Throughput (op/s)
Answering change requests 110,702.74
Immediate Supervision 157,748.61
Future supervision 102,409.70
Meta supervision 20,345.88

challenge, Cimatti et al., [6] proposed an extension to state-space
temporal planning algorithm to consider duration uncertainty. They
discussed various heuristics to mitigate the risk of delayed planning,
ultimately, to generate a more robust action planning. Our contri-
bution tackles a different problem than the solving algorithm. We
enable the representation of temporal uncertainty and alternatives
within the context. However, such uncertainty-aware algorithm can
take advantage of our context to improve the upcoming reasoning
using for instance past executions feedback. Villegas et al., [16]
also studied the limitations of a control loop and proposed the use
of dynamic context to deal with metric evolution. This approach
improves reasoning by integrating feedback loops and context for
upcoming reasoning task. Nonetheless, this approach does not store
reasoning decisions and cannot help for long actions where effects
are still not measurable.

More recently, Yuan et al., [17] also address the challenge of
temporal scheduling within a hybrid cloud environment. There are
solutions focusing on maximizing the quality of service for task
scheduling using time-varying prices. As many other approaches
in cloud and grid computing, such approaches are limited to sched-
uling tasks that are easily moved from a worker to another. Unfor-
tunately, long actions such as container migration, cannot rely on
a high-frequency scheduling algorithm. For the best of our knowl-
edge, existing solutions do not handle the context representation
of time action associated with expected effect in order to ease data
transmission between reasoning loop cycles.

6 CONCLUSION AND FUTUREWORK
Adaptive systems continuously need to adjust their configurations
according to the current situation. A common approach to realize
such reasoning and adaptation mechanism is the MAPE-K loop.
However, this loop relies on context representations that aggregate
all instantaneously measurable values, which—in the context of
this work—we called metrics. Without considering past values and
already planned but unfinished actions, traditional context repre-
sentations lead to a weak analysis and planning phases in MAPE-K
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loop-based approaches, and therefore to suboptimal adaptations. In
this paper, we proposed an extended context representation to sup-
port the past and future actions, and more importantly, their related
expected effect over time on the measurable context. Such approach
enables reasoning questions like "what should happen?" instead of
being limited to "what happened"? and "what is measurable?". We
leverage a temporal models@run.time paradigm to define at which
time every action should start, end, and when effects are supposed
to be measurable (duration of action). We demonstrated through
a cloud management case study the suitability of such extended
context representations to enable efficient reasoning.

As future work, we plan to extend the temporal representation of
contexts to handle fuzzy and acceptance range in order to represent
reasoning under uncertain conditions. Additionally, we expect to
obtain a better result by offering the ability to precisely define the
operational semantics of actions, and therefore, be able to predict
other measures. To achieve this we plan to use "executable models".
Finally, an important characteristic of metrics in context represen-
tation is the uncertainty. As future work, we intend to extend the
expected effects with uncertainty definition.
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