
HAL Id: hal-01725835
https://hal.archives-ouvertes.fr/hal-01725835

Submitted on 7 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Simulink Models into the Model Checker
Cosmos

Benoît Barbot, Béatrice Bérard, Yann Duplouy, Serge Haddad

To cite this version:
Benoît Barbot, Béatrice Bérard, Yann Duplouy, Serge Haddad. Integrating Simulink Models into the
Model Checker Cosmos. [Research Report] LSV, ENS Cachan, CNRS, INRIA, Université Paris-Saclay,
Cachan (France); LIP6, Sorbonne Université, CNRS, UMR 7606; LACL, Université Paris-Est. 2018.
�hal-01725835�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157550339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01725835
https://hal.archives-ouvertes.fr

Integrating Simulink Models
into the Model Checker Cosmos ?

Benôıt Barbot1, Béatrice Bérard2, Yann Duplouy3,4, and Serge Haddad4??

1 LACL, Université Paris-Est Créteil
2 Sorbonne Université, LIP6, CNRS UMR 7606, Paris, France

3 IRT SystemX, Paris-Saclay, France
4 LSV, ENS Paris-Saclay, CNRS, Inria, Université Paris-Saclay

(Tool paper - http://cosmos.lacl.fr/)

Abstract. We present an implementation for Simulink model execu-
tions in the statistical model-checker Cosmos. We take profit of this im-
plementation for an hybrid modeling combining Petri nets and Simulink
models.

Keywords: Performance Evaluation, Hybrid Systems, Statistical Model Check-
ing, Simulink

Introduction

The validation of safety properties is a crucial concern for the design of com-
puter guided systems, in particular for cyber-physical systems. For instance, in
transport systems, a classical approach consists in analyzing the interactions of
a randomized environment (roads, cross-sections, etc.) with a vehicle controller,
often derived from a SimulinkR© model. However, while largely used in practice
by industrial system designers, Simulink does not benefit from a formal seman-
tics. Thus engineers usually have to infer the behaviours of their models from
experiments which weakens the validation process. For this reason, several works
proposed formal translations from (subsets of) Simulink blocks to other models
like hybrid automata [14, 1], or languages like Lustre [15]. Other works directly
define exact semantics [9] or operational semantics [10] for Simulink. We follow
the latter approach and propose semantics for a significant fragment of Simulink.
We proceed in two steps: we first develop an exact version, and then enrich it
with effective procedures with the aim to efficiently integrate it into the statisti-
cal model checker Cosmos. With the resulting tool, we can obtain performance
indices for models combining a randomized environment described by a stochas-
tic Petri net and a controller described in Simulink, as illustrated for a double
heater system.

? This research work has been carried out in the framework of IRT SystemX, Paris-
Saclay, France, and therefore granted with public funds within the scope of the
French Program ”Investissements d’Avenir”.

?? The work of this author is supported by the project ERC EQualIS (FP7-308087).

1 The tool Cosmos

In [2], HASL an expressive temporal logic was introduced in order to analyze
stochastic and hybrid discrete event systems. Its formulas are described by a
Linear Hybrid Automaton (LHA) and an expression involving state variables
and using path and stochastic operators. This logic is supported by a tool
named Cosmos which performs statistical model checking of (ordinary or col-
ored) stochastic Petri nets with general distributions. The main algorithm of
this tool randomly simulates the net according to its stochastic semantics and
synchronizes it with the execution of the formula’s automaton. During the syn-
chronization, it evaluates the expression of the formula providing a numerical
(or boolean) value per trajectory. A statistical procedure decides when to stop
the simulation and produces a confidence interval for the HASL expression.

The tool Cosmos consists of about 22000 lines of C++ code and is freely
available at [4] under GPLv3. It relies on code generation to perform efficient
simulation. It is divided into three main parts:

1. The parsing and code generation part reads the input files and the com-
mand line to build data structures for the net and the automaton. Then opti-
mised C++ code simulating both the synchronized behaviour of the net and the
automaton is generated.

2. The simulator library implements the core algorithm for synchronization
and the generation of events using a pseudo random number generator.

3. The server part launches several copies of the simulator and aggregates
their results. According to statistical parameters, a procedure decides whether
enough trajectories have been simulated and stops all simulators when needed.
Then, HASL expressions are evaluated.

Cosmos includes a family of statistical methods depending on the nature of
the formula and the assumptions on the model. If the formula is boolean and
corresponds to a comparison between the probability of an event and a threshold,
it applies sequential hypothesis testing [16]. If the formula is numerical, it applies
either a sequential method based on the Chow-Robbins bounds [11] or several
static methods i.e. with a fixed number of trajectories. More precisely, when
the formula returns a probability (corresponding to a Bernoulli distribution), it
uses Clopper-Pearson bounds [12]. When the formula returns the expectation of
a bounded random variable, it uses the Chernoff-Hoeffding bounds [13]. In the
general case, it is based on the standard Gaussian approximation.

Cosmos has been successfullly applied in the context of flexible manufac-
turing systems [2] and biological networks [3, 6]. In addition, it has also been
customised in order to address the challenges raised by different projects: simu-
lation of rare events [7], cosimulation of a pacemaker software with a model of
the human heart [8], sampling uniform trajectory for timed automata [5].

2 The tool Simulink

SimulinkR©5 is a graphical programming environment for modeling and simu-
lating dynamic systems. The main interface is a graphical block diagramming
tool, with customizable libraries. It is used, for example, in the development of
embedded systems for autonomous vehicles.

2.1 Syntax

We first introduce a formal syntax for the Simulink block diagrams, that we call
SK-models. The set of types used in SK -models is denoted by Type and contains
booleans, integers and floating numbers, all of them seen (with a slight abuse)
as subsets of the set R of real numbers. The time domain, denoted by T, is an
interval [tinit, tend] of R.

A block contains a set of operators generating output signals from input
signals.

Definition 1. A signal of type Tp ∈ Type is a function s : T → Tp, right-
continuous, piece-wise C∞, admitting a left limit s(t−) at each t ∈ T. The set of
signals of type Tp defined on T is denoted by SigT(Tp).

An operator is a function op : SigT(Tp1)×. . .×SigT(Tpm)→ SigT(Tp) such
that for each t ∈ T, the value op(s1, . . . , sm)(t) only depends on the restriction
of the signals si on [tinit, t].

Blocks are classified according to three criteria:
(i) Whether they are continuously evaluated or sampled, in which case the block
is said discrete and a sampling delay must be provided;
(ii) Whether there is a latency for evaluation of inputs, and whether this latency
is infinitesimal or not. A latency is infinitesimal if it is either null (the block is
said immediate) or such that the output value at time t only depends on the
inputs on [tinit, t[(like in integration). A non infinitesimal latency is said positive.
A non null latency is a positive or infinitesimal non null latency.
(iii) Whether the output value depends on threshold crossing by an input sig-
nal, called critical input and denoted by ic. In this case, the threshold values
(vi)i∈I must be specified, as a countable increasing sequence without accumula-
tion point.

Definition 2 (Block type). A block type is a tuple BT = (n,m, (opi)1≤i≤n, bc,
bl, bi, bs,Param) where:

– n and m are the numbers of output and input signals respectively;
– (opi)1≤i≤n is a tuple of operators, one for each output signal;
– bc, bl, bi, bs are booleans indicating respectively if the block is discrete or

continuous, immediate or with a latency, whether the latency is infinitesimal
or not, and if the block is a threshold block;

5 https://fr.mathworks.com/products/simulink.html

– Param is a set of parameters, including a sampling delay δ for a discrete
block and a value r for a positive latency.

An SK -model defines an architecture where blocks are instances of block
types with specified parameters. The example of Fig. 1(a) features: Switch block

>0

B1

1

1
s

B2

init2 = 0
B3

r3 = 1

1
s

B4

init4 = 0

ẏ y ż z

(a) An example of SK -model

B3

ż
>0

B1

1

1
s

B4

z ẏ

(b) Backward graphs

Fig. 1. An example of SK -model and its backward graphs decompositions

B1 (continuous, immediate, with null latency and a single threshold) with opera-
tor: op(i1, ic, i2)(t) = if(ic(t) > 0, i1(t), i2(t)); Integrator block B2, with operator

defined by op(i)(t) =
∫ t

tinit
i(τ)dτ . This is a continuous block with infinitesimal

latency; a Transport Delay (continuous) block B3 which outputs its input signal
with a latency r = 1.

Definition 3 (SK -Model). An SK-model M = (B, L) consists of:
(1) A set B of blocks, defined by their respective type and parameter values. We
denote by 〈B, o〉 (resp. 〈i, B〉) an output o (resp. an input i) of block B.
(2) A set L of links of the form (〈B′, o〉, 〈i, B〉) satisfying: for any input 〈i, B〉,
there is exactly one output 〈B′, o〉 such that (〈B′, o〉, 〈i, B〉) ∈ L.

In the sequel, we restrict the definition above to so-called correct SK -models,
by forbidding the presence of immediate cycles: An immediate cycle is a se-
quence of links (〈B1, o1〉, 〈i2, B2〉), (〈B2, o2〉, 〈i3, B3〉), . . . (〈Bn−1, on−1〉, 〈in, Bn〉)
such that Bn = B1 and for each i, 1 ≤ i ≤ n, Bi is an immediate block.

The correctness of an SK -model can be checked in linear time by a topological
sort on an associated graph restricted to immediate blocks.

2.2 Exact and approximate semantics

SimulinkR© models represent hybrid systems, combining discrete and continuous
components. The trajectory of an SK -model M, if it exists, is the vector w
of all values of output signals over T. Signal evaluation requires to split the
interval [tinit, tend] into a finite sequence of contiguous sub-intervals, on which the
trajectory is the solution of a system of differential equations. Discrete samplings
and threshold crossings are located at the boundaries of these sub-intervals.

Given the set ∆ of sampling delays of M, the set R of positive latencies, a
default sampling delay δmax, and δlat = min(δmax,min(R)), a first static value for
the next interval bound after t is defined by nexts(t) = min(δsamp(t), t+δlat, tend),

where δsamp(t) = min{pδ | δ ∈ ∆, p ∈ N, pδ > t}. The value nexts(t) may then
be decreased to take the crossings into account.

Differential equations. For an SK -modelM, we denote by Th(M) the set of
threshold blocks and by Lat(M) the set of blocks with positive latency. A mode is
the choice, for each block in Th(M), of an interval between thresholds (according
to the sequence (vi)i∈I of this block) and an environment is the choice, for each
block in Lat(M), of an output signal. Given a mode m and an environment
`, the set of differential equations is obtained by a backward exploration: For
an integrator block B, this exploration starts from the block B− for which the
output o− is the input of B. Terminal blocks are those for which the output
can directly be obtained from previous values: (i) blocks without input, (ii)
integration blocks and (iii) blocks with positive latency. For the SK -model of
Fig. 1a, some backward graphs resulting from this exploration are depicted in
Fig. 1b. This backward exploration yields a differential equation ẋ = Fm,`(x) of
which v, the sub-vector of w containing the output signals of integrator blocks
could be a solution.

For instance, in the SK -model of Fig. 1a over T = [0, 2], the initial values are

t0 = 0, y(0) = 0, and z(0) = 0, with m
(1)
0 =]−∞, 0] and ż(t) = 0 on [0, 1] where

the exponent (j) denotes block Bj . Choosing t1 = 1, the differential equations
are ẏ = 1 and ż = 0, which yields z(t) = 0 and y(t) = t over [0, 1[with mode

specified by m
(1)
0 =]−∞, 0] and latency `

(3)
0 (t) = 0.

Existence of a trajectory. The vector w is a trajectory of the model M
over T = [tinit, tend] if there exists (i) a sequence (ti)i∈J0,NK with t0 = tinit and
tN = tend, (ii) a minimal sampling delay εT > 0, which will be a lower bound on
the length of sub-intervals, and (iii) a sequence (mi, `i)i∈J0,N−1K of modes and
environments, such that:

0. The initial mode m0 and environment `0 are those of the initial values of
the model. Moreover, for 0 < i < N , `i on [ti, ti+1[agrees with w on [t0, ti[.

1. For all i < N , ẋ = Fmi,`i(x) admits a solution on the interval [ti, ti+1+εT]
which coincides with v on [ti, ti+1[and is consistent with mi on]ti, ti+1[. The
vector w agrees with the operations of the remaining blocks.

2. For all 0 ≤ i < N − 1, w(ti+1) corresponds to the application to w(t−i+1)
of the operators of active discrete blocks (i.e. such that ti+1 is a sampling time).
The solution of ẋ = Fmi,`i+1

(x) on [ti+1, ti+1 + εT] is consistent with mi+1.

Returning to the example of Fig. 1, the environment is `
(3)
1 (t) = y(t−1) = t−1

on [1, 2], and the mode m
(1)
1 =]0,+∞[must agree with the value of z at time

1 + εT. Hence with t2 = 2, the differential equations are ż(t) = t− 1 and ẏ = z,
which yields z(t) = (t− 1)2/2 and y(t) = (t− 1)3/6 + 1.

There are several cases where a trajectory does not exist: for instance if
some differential equation (like ẏ = 2y) cannot be solved on the interval, or if
the solution violates the mode constraints related to some threshold block. With
suitable hypotheses on the operators, we prove that if a trajectory exists, it is
unique. Unfortunately, as is often the case for hybrid systems, the existence of
a trajectory is an undecidable problem.

Approximate semantics. Since the resolution of differential equations and the
determination of threshold crossings are not effective operations, an approximate
version of the semantics above is needed for implementation in the tool Cosmos.

The search for a trajectory relies on an iterative construction of a partition
into sub-intervals [tinit, tend] =

⋃N−1
i=0 [ti, ti+1]. We emphasize three main features:

(1) The signal values are only stored at times (ti)0≤i≤N : For each output signal
o of a block B, an array WB,o[i] of its values is kept for each time ti. This implies
interpolation operations to compute signal values at intermediate times.
(2) When t0, . . . , ti are built, the static next step value nexts(ti) must be refined
to take into account variable integration steps, as done in the Runge-Kutta-
Fehlberg (or ODE45) method used here. Here, we omit the adaptation details
of these classical procedures, performed with the constant mode of ti, which
produce the new evaluating time ti+1 and the associated values.
(3) In addition to εT, we introduce εV , the minimal discerning capacity of the
’controller’ (i.e. |x| < εV ⇒ x ' 0), to handle the termination tests in the
adaptative integration method (like ODE45).

Besides the implementation objective, the main purpose of this approximate
semantics is to find suitable hypotheses ensuring that if a trajectory exist w.r.t.
exact semantics, then there exists a close approximate one: for any ε > 0 there
exist εT and εV such that for each output o of block B and for all times ti,
|WB,o[i]− wB,o(ti)| < ε.

3 Integrating Simulink into Cosmos

In order to generate trajectories, Cosmos maintains a queue of activated events
(transition firings in the net or state changes in the HASL automaton) selecting
the earliest one. The integration of an SK -model is managed through the spec-
ification of a new event, called SK -event, corresponding to the next sampling
time of the SK -model. This requires to specify how the models interact, imply-
ing transformation of discrete values (like the number of tokens in places) into
continuous ones (like signal values), and vice-versa. We have chosen to perform
these operations via special transitions called interface transitions.

Interface transitions. There are two kinds of interface transitions: SK -in tran-
sitions, directed from the net to the SK -model and SK -out transitions in the
other direction.

The input arcs of a SK -in transition (see Fig. 2a) are test arcs (explained
with the firing) connected to places of the net. Any output arc is connected
to the input of a Simulink block. An SK -in is enabled when the content of at
least one of its input place is modified. The firing of such a transition proceeds
as follows: a function is associated with each output arc, taking as parameters
the contents of the input places. When the firing takes place, the function is
evaluated. This function can be specified by a multiset of tokens as illustrated,
or by a C code associated with the arcs.

The input arcs of an SK -out transition (see Fig. 2b) are output signals of
an SK -model and the output arcs are overwriting arcs connected to places that

can only be connected to ordinary transitions of the net by read arcs. Similarly
to SK -in transitions, the output arcs are labelled by functions of the incoming
signals. Such a transition is activated at every sampling time of the SK -model.
Upon firing, it rewrites the contents of the output places according to the eval-
uation of the function.

p

q

3p + q

(a) An SK -in transition

x

y

bxyc

(b) An SK -out transition

Fig. 2. Petri net/Simulink Interface transitions

Simulation loop. We now describe in more details the simulation loop, which
enhances the standard Cosmos simulation loop. All enabled transitions are stored
into an event queue implemented as a binary heap, with their time of occurrence,
their priority and weight. The next Simulink step is added as a possible event. At
each simulation step, the earliest event is chosen. Among simultaneous events,
the (decreasing) priority order is the following: 1. SK -out firings, 2. ordinary
transition firings, 3. SK -in firings, 4. SK -event. In case of equal priorities, the
choice is randomized according to the weights. Once an event is selected:

– If it is an ordinary transition firing, the marking is updated, the associated
C code is executed; transitions that are newly enabled trigger new events
while events corresponding to disabled transitions are removed.

– If it is an SK -in firing, the Simulink signals are updated and the time of the
Simulink event is set to the current time.

– if it is the SK -event, all output signals are updated and the time of the
Simulink event is updated as presented in section 2.2. Finally, the SK -out
transitions are added to the event queue with the current time.

– if it is a SK -out firing, the contents of output places are updated.

To simulate a discrete event system, at each step, one only has to compute
what the next event will be and increase the simulation time to the time of this
event. This is how ordinary Petri net transitions are fired in Cosmos. This leads
to an efficient simulation of such system as the time to compute a simulation
depends on the number of events and not on the simulated time. Unfortunately,
this property is lost when simulating hybrid systems: the SK -event is triggered
at least at a fixed frequency (δmax). In the next section we experimentally study
the impact of integration on simulation time.

4 Benchmarks

Among the multiple systems that can be modeled within this framework, we
choose a well known toy (but still relevant) example: a device with two heaters

prone to faults and using bang-bang controllers to keep the temperature in a
room between 20◦C and 25◦C. The system is modeled by a stochastic Petri net
(Fig. 3) with randomized faults and repairs. The evolution of room temperature
and heater behaviours are hybrid and thus are modeled in Simulink (Fig. 4). The
fault transitions of the net have an exponential time distribution (with different
rates). The repairman, initially at the Idle state, randomly chooses which (faulty)
heater he will repair, then proceeds in fixed time and goes back to the Idle state.
By default, both heaters are working (places Op1 and Op2 have a token).

Idle

Active1

Start1

TR1

Fault1Op1

Done1

In1
Active2

Start2

TR2

Fault2 Op2

Done2

In2

Fig. 3. Petri net handling faults and repairs of a double heater

The Simulink model handles the differential equations for both heaters, and
for the outside temperature which is modelled by a sine wave (Text). The differen-
tial equation is : Ṫ = 1On1

c1(Th1
−T)+1On2

c2(Th2
−T)+cext(Text−T) where c1,

c2, and cext are the respective thermal conductivity coefficients, Th1
and Th2

are
the respective temperatures at which each heater functions, and On1 and On2
are the respective states of each bang-bang controller which should maintain the
temperature between Tmin = 20◦C and Tmax = 25◦C. A bang-bang controller
is a very simple hysteresis controller where the heater is switched on (Oni = 1)
when the temperature decreases to Tmin and switched off (Oni = 0) when the
temperature increases to Tmax. The inputs F1 and F2 receive respectively the
content of places Op1 and Op2.

Text -
+

cextTh1

F1

-
+

c1 ×
×
×

Heater1

Th2

F2
+
- c2

×
×
×

Heater2

+
+
+

1
s

Ṫ T

Fig. 4. A Simulink model computing differential equations for the double heater. The
model contains four parts: the two heater temperatures, the external temperature and
the block completing the differential equation

Figure 5 shows a simulation of the system. In the first period there is only
a small failure of heater 2, and we can observe the bang-bang behaviours of the
system. In the second period both heaters fail at the same time while the outside
temperature is low, thus the temperature quickly drops to 13◦C before the first
heater is repaired.

5

10

15

20

25

Text

T
Op1
Op2

On1

On2

Fig. 5. A trace of simulation: T and Text represent the inside and outside temperatures,
Opi corresponds to heater i being operational and Oni corresponds to heater i being
switched on. Gray areas highlight failure of at least one heater when Text < Tmin.

We are interested in several performance indices. The first type concerns the
reliability of the model measured by two indices: the minimal temperature ob-
served along a trajectory (I1) and the time spent in a state where the temperature
is below 20◦C (I2). The second type concerns the average behaviour: the average
temperature (I3), the average number of switched-on heaters (I4), which is cor-
related with the energy consumption of the system, and the average time during
which the repairman is idle (I5).

These indices are specified in HASL with an LHA (Fig. 6) which accepts
the trajectories after Stime time units. The LHA contains a hybrid variable tc
with derivative 1 when the temperature is below 20◦C and 0 otherwise. The
HASL expressions start with a probability operator : here AVG is used for all
indices to specify the average value over all trajectories; then a path operator
(Min, Last, Mean) which is defined along each path. Path operators take as
parameters algebraic expressions over the Petri net places and the LHA variables.
For example, I1 specifies the minimal temperature along a trajectory and then
the average value over all trajectories.

I1 : AVG(Min(T))
I2 : AVG(Last(tc))
I3 : AVG(Mean(T))
I4 : AVG(Mean(Active1 + Active2))
I5 : AVG(Mean(Idle))

(a) HASL formulas

l1 : ṫc = 0
T ≥ 20

l2 : ṫc = 1
T < 20

l3l3

#, t = Stime

#, t = Stime

All All

All

All

(b) LHA

Fig. 6. HASL specification for performance indices

The model as it is described above is referred to as M0. In order to study the
overhead of integral computations over the stochastic simulation, we build two
additional alternative models. The first one M1 is a model where the integration
block in the Simulink diagram has been replaced by a discrete time integrator.
In the model M2, the simulink part is omitted, keeping only events that are
transition firings.

Indices M0 M1

I1 [18.698 ; 18.716] [18.272 ; 18.289]
I2 [66.344 ; 67.217] [92.921 ; 93.927]
I3 [22.439 ; 22.442] [22.485 ; 22.488]
I4 [0.4999 ; 0.5006] [0.4884 ; 0.4890]
I5 [0.9239 ; 0.9242] [0.9239 ; 0.9241]

Models Build time Sim. time

M0 5.74s 6 885s
M1 5.73s 1 145s
M2 1.31s 1.810s

Table 1. Simulation results

Each model was run for 500 000 simulations of 2 000 seconds, with εV = 0.01
and δmax = 1. The sine wave frequency was 0.01 and oscillating between 5◦C
and 25◦C, and the time step of the discrete-time integrator was δmax (1 second).
We used Th1 = 55◦C, Th2 = 65◦C, c1 = 0.02, c2 = 0.013 and cext = 0.04. Results
are reported in Table 1. The left table reports the computed confidence interval
for the different indices, the right one reports simulation and building times.
Tool analysis. The build time is always less than the simulation time and be-
comes negligible when models include a Simulink part. The critical factors for
simulation time are: (i) the speed of step firing, about 10−7 sec. for net firing
compared to 10−6 sec. for Simulink steps, and (ii) the number of steps per tra-
jectory, about 40 for M2 vs. 2000 for M1. As expected, the use of a discrete-time
Integrator yields a faster simulation, albeit still far longer than the net alone,
while it affects the accuracy of the index values and more precisely triggers a
larger variation of temperature over time.
Property analysis. We focus on the most pertinent model M0, with two antag-
onist goals: minimizing the installation cost (depending on the parameters of
heaters and repairman), and maximizing the comfort of the user (depending on
the temperature evolution). With the current parameters, each heater is active
about 1/4 of the time and the repairman is idle 92% of the time. The average
temperature is about 22◦C, reaching the objective, while the minimal tempera-
ture is slightly above 18◦C.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic Translation of Simulink/Stateflow
Models to Hybrid Automata Using Graph Transformations. Electr. Notes Theor.
Comput. Sci. 109, 43–56 (2004)

2. Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: Hasl: A new ap-
proach for performance evaluation and model checking from concepts to experi-
mentation. Performance Evaluation 90(0), 53 – 77 (2015)

3. Ballarini, P., Duflot, M.: Applications of an expressive statistical model checking
approach to the analysis of genetic circuits. Theor. Comput. Sci. 599, 4–33 (2015)

4. Barbot, B., Ballarini, P., Djafri, H.: http://cosmos.lacl.fr
5. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform Sampling for

Timed Automata with Application to Language Inclusion Measurement. In: Pro-
ceedings of QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer (2016)

6. Barbot, B., Haddad, S., Heiner, M., Picaronny, C.: Rare event handling in signalling
cascades. International Journal on Advances in Systems and Measurements 8(1-2),
69–79 (Jun 2015)

7. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Proceedings of TACAS’12. pp. 331–346 (2012)

8. Barbot, B., Kwiatkowska, M., Mereacre, A., Paoletti, N.: Building Power Consump-
tion Models from Executable Timed I/O Automata Specifications. In: Proceedings
of HSCC 2016. pp. 195–204. ACM (2016)

9. Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: Non-standard semantics of
hybrid systems modelers. Journal of Computer and System Sciences 78(3), 877 –
910 (2012)

10. Bouissou, O., Chapoutot, A.: An operational semantics for simulink’s simula-
tion engine. In: Proceedings of the 13th ACM SIGPLAN/SIGBED. pp. 129–138.
LCTES ’12, ACM, New York, NY, USA (2012)

11. Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential con-
fidence intervals for the mean. The Annals of Math. Statistics pp. 457–462 (1965)

12. Clopper, C., Pearson, E.S.: The use of confidence or fiducial limits illustrated in
the case of the binomial. Biometrika pp. 404–413 (1934)

13. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American statistical association 58(301), 13–30 (1963)

14. Tiwari, A.: Formal Semantics and Analysis methods for Simulink Stateflow Models.
Tech. rep., SRI (2002)

15. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embedded Comput. Syst. 4(4), 779–818 (2005)

16. Wald, A.: Sequential tests of statistical hypotheses. The Annals of Math. Statistics
16(2), 117–186 (06 1945)

