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Notions of optimal transport theory and how to implement them on a computer

Bruno Lévy and Erica Schwindt

Inria centre Nancy Grand-Est and LORIA, France

Abstract

This article gives an introduction to optimal transport, a mathematical theory that makes it possible to measure dis-
tances between functions (or distances between more general objects), to interpolate between objects or to enforce
mass/volume conservation in certain computational physics simulations. Optimal transport is a rich scientific domain,
with active research communities, both on its theoretical aspects and on more applicative considerations, such as ge-
ometry processing and machine learning. This article aims at explaining the main principles behind the theory of
optimal transport, introduce the different involved notions, and more importantly, how they relate, to let the reader
grasp an intuition of the elegant theory that structures them. Then we will consider a specific setting, called semi-
discrete, where a continuous function is transported to a discrete sum of Dirac masses. Studying this specific setting
naturally leads to an efficient computational algorithm, that uses classical notions of computational geometry, such as
a generalization of Voronoi diagrams called Laguerre diagrams.

Keywords: Optimal transport, shape interpolation, fluid dynamics.

1. Introduction

This article presents an introduction to optimal
transport. It summarizes and complements a series
of conferences given by B. Lévy between 2014 and
2017. The presentations stays at an elementary level,
that corresponds to a computer scientist’s vision of the
problem. In the article, we stick to using standard notions
of analysis (functions, integrals) and linear algebra
(vectors, matrices), and give an intuition of the notion
of measure. The main objective of the presentation is
to understand the overall structure of the reasoning 1,
and to follow a continuous path from the theory to an
efficient algorithm that can be implemented in a computer.

Optimal transport, initially studied by Monge,
[Mon84], is a very general mathematical framework
that can be used to model a wide class of application

1Teach principles, not equations. [R. Feynman]

Figure 1: Comparing functions: one would like to say that f1 is nearer
to f2 than f3, but the classical L2 norm “does not see” that the graph of
f2 corresponds to the graph of f1 slightly shifted along the x axis.

domains. In particular, it is a natural formulation for
several fundamental questions in computer graphics
[Mém11, Mér11, BvdPPH11], because it makes it
possible to define new ways of comparing functions, of
measuring distances between functions and interpolating
between two (or more) functions :

Comparing functions. Consider the functions f1, f2 and
f3 in Figure 1. Here we have chosen a function f1 with
a wildly oscillating graph, and a function f2 obtained by
translating the graph of f1 along the x axis. The function
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Figure 2: Interpolating between two functions: linear interpolation
makes a hump disappear while the other hump appears; displacement
interpolation, stemming from optimal transport, will displace the hump
as expected.

f3 corresponds to the mean value of f1 (or f2). If one mea-
sures the relative distances between these functions using
the classical L2 norm, that is dL2 ( f , g) =

∫
( f (x)−g(x))2dx,

one will find that f1 is nearer to f3 than f2. Optimal trans-
port makes it possible to define a distance that will take
into account that the graph of f2 can be obtained from f1
through a translation (like here), or through a deformation
of the graph of f1. From the point of view of this new
distance, the function f1 will be nearer to f2 than to f3.

Interpolating between functions:. Now consider the
functions u and v in Figure 2. Here we suppose that u
corresponds to a certain physical quantity measured at
an initial time t = 0 and that v corresponds to the same
phenomenon measured at a final time t = 1. The problem
that we consider now consists in reconstructing what
happened between t = 0 and t = 1. If we use linear
interpolation (Figure 2, top-right), we will see the left
hump progressively disappearing while the right hump
progressively appears, which is not very realistic if the
functions represent for instance a propagating wave.
Optimal transport makes it possible to define another type
of interpolation (Mc. Cann’s displacement interpolation,
Figure 2, bottom-right), that will progressively displace
and morph the graph of u into the graph of v.

Optimal transport makes it possible to define a geome-
try of a space of functions2, and thus gives a definition of
distance in this space, as well as means of interpolating
between different functions, and in general, defining the
barycenter of a weighted family of functions, in a very
general context. Thus, optimal transport appears as a

2or more general objects, called probability measures, more on this
later.

Figure 3: Given two terrains defined by their height functions u and v,
symbolized here as gray levels, Monge’s problem consists in transform-
ing one terrain into the other one by moving matter through an applica-
tion T . This application needs to satisfy a mass conservation constraint.

fundamental tool in many applied domains. In computer
graphics, applications were proposed, to compare and
interpolate objects of diverse natures [BvdPPH11], to
generate lenses that can concentrate light to form caustics
in a prescribed manner [MMT17, STTP14]. Moreover,
optimal transport defines new tools that can be used to
discretize Partial Differential Equations, and define new
numerical solution mechanisms [BCMO14]. This type of
numerical solution mechanism can be used to simulate
for instance fluids [GM17], with spectacular applications
and results in computer graphics [dGWH+15].

The two sections that follow are partly inspired by
[Vil09], [San14], [Caf03] and [AG13], but stay at an ele-
mentary level. Here the main goal is to give an intuition
of the different concepts, and more importantly an idea of
the way the relate together. Finally we will see how they
can be directly used to design a computational algorithm
with very good performance, that can be used in practice
in several application domains.

2. Monge’s problem

The initial optimal transport problem was first intro-
duced and studied by Monge, right before the French rev-
olution [Mon84]. We first give an intuitive idea of the
problem, then quickly introduce the notion of measure,
that is necessary to formally state the problem in its most
general form and to analyze it.

2.1. Intuition

Monge’s initial motivation to study this problem was
very practical: supposing you have an army of workmen,
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how can you transform a terrain with an initial landscape
into a given desired target landscape, while minimizing
the total amount of work ?

Monge’s initial problem statement was as follows:

inf
T :X→X

∫
X

c(x,T (x))u(x)dx

subject to:

∀B ⊂ X,
∫

T−1(B)

u(x)dx =
∫
B

v(x)dx

where X is a subset of R2, u and v are two positive func-
tions defined on X and such that

∫
X u(x)dx =

∫
Y v(x)dx,

and c(·, ·) is a convex distance (the Euclidean distance in
Monge’s initial problem statement).

The functions u and v represent the height of the cur-
rent landscape and the height of the target landscape re-
spectively (symbolized as gray levels in Figure 3). The
problem consists in finding (if it exists) a function T from
X to X that transforms the current landscape u into the de-
sired one v, while minimizing the product of the amount
of transported earth u(x) with the distance c(x,T (x)) to
which it was transported. Clearly, the amount of earth is
conserved during transport, thus the total quantity of earth
should be the same in the source and target landscapes
(the integrals of u and v over X should coincide). This
global matter conservation constraint needs to be com-
pleted with a local one. The local matter conservation
constraint enforces that in the target landscape, the quan-
tity of earth received in any subset B of X corresponds
to what was transported here, that is the quantity of earth
initially present in the pre-image T−1(B) of B under T .
Without this constraint, one could locally create matter
in some places and annihilate matter in other places in a
counterbalancing way. A map T that satisfies the local
mass conservation constraint is called a transport map.

2.2. Monge’s problem with measures

We now suppose that instead of a “target landscape”,
we wish to transport earth (or a resource) towards a set
of points (that will be denoted by Y for now on), that
represent for instance a set of factories that exploit a re-
source, see Figure 4. Each factory wishes to receive a cer-
tain quantity of resource (depending for instance of the

Figure 4: Transport from a function (gray levels) to a discrete point-set
(blue disks).

number of potential customers around the factory). Thus,
the function v that represents the “target landscape” is re-
placed with a function on a finite set of points. However,
if a function v is zero everywhere except on a finite set
of points, then its integral over X is also zero. This is
a problem, because for instance one cannot properly ex-
press the mass conservation constraint. For this reason,
the notion of function is not rich enough for representing
this configuration. One can use instead measures (more
on this below), and associate with each factory a Dirac
mass weighted by the quantity of resource to be trans-
ported to the factory.

From now on, we will use measures µ and ν to repre-
sent the “current landscape” and the “target landscape”.
These measures are supported by sets X and Y , that may
be different sets (in the present example, X is a subset of
R2 and Y is a discrete set of points). Using measures in-
stead of function not only makes it possible to study our
“transport to discrete set of factories” problem, but also it
can be used to formalize computer objects (meshes) and
directly leads to a computational algorithm. This algo-
rithm is very elegant because it is a verbatim computer
translation of the mathematical theory (see §7.6). In this
particular setting, translating from the mathematical lan-
guage to the algorithmic setting does not require to make
any approximation. This is made possible by the general-
ity of the notion of measure.

The reader who wishes to learn more on measure the-
ory may refer to the textbook [Tao11]. To keep the length
of this article reasonable, we will not give here the for-
mal definition of a measure. In our context, one can think
of a measure as a “function” that can be only queried us-
ing integrals and that can be “concentrated” on very small
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sets (points). The following table can be used to intu-
itively translate from the “language of functions” to the
“language of measures” :

Function u Measure µ∫
B u(x)dx µ(B) or

∫
B dµ∫

B f (x)u(x)dx
∫

B f (x)dµ

u(x) N/A

(Note: in contrast with functions, measures cannot be
evaluated at a point, they can be only integrated over
domains).

In its version with measures, Monge’s problem can be
stated as follows:

inf
T :X→Y

∫
X

c(x,T (x))dµ subject to ν = T]µ (M)

where X and Y are Borel sets (that is, sets that can
be measured), µ and ν are two measures on X and Y
respectively such that µ(X) = ν(Y) and c(·, ·) is a convex
distance. The constraint ν = T]µ, that reads “T pushes
µ onto ν” corresponds to the local mass conservation
constraint. Given a measure µ on X and a map T from X
to Y , the measure T]µ on Y , called “the pushforward of
µ by T”, is such that T]µ(B) = µ(T−1(B)) for all Borel
set B ⊂ Y . Thus, the local mass conservation constraint
means that µ(T−1(B)) = ν(B) for all Borel set B ⊂ Y .

The local mass conservation constraint makes the
problem very difficult: imagine now that you want to
implement a computer program that enforces it: the
constraint concerns all the subsets B of Y . Could you
imagine an algorithm that just tests whether a given
map satisfies it ? What about enforcing it ? We will see
below a series of transformations of the initial problem
into equivalent problems, where the constraint becomes
linear. We will finally end up with a simple convex
optimization problem, that can be solved numerically
using classical methods.

Before then, let us get back to examine the original
problem. The local mass conservation constraint is not
the only difficulty: the functional optimized by Monge’s

Figure 5: A classical example of the existence problem: there is no
optimal transport between a segment L1 and two parallel segments L2
and L3 (it is always possible to find a better transport by replacing h
with h/2).

problem is non-symmetric, and this causes additional
difficulties when studying the existence of solutions for
problem (M). The problem is not symmetric because T
needs to be a map, therefore the source and target land-
scape do not play the same role. Thus, it is possible to
merge earth (if T (x1) = T (x2) for two different points x1
and x2), but it is not possible to split earth (for that, we
would need a “map” T that could send the same point
x to two different points y1 and y2). The problem is il-
lustrated in Figure 5: suppose that you want to compute
the optimal transport between a segment L1 (that symbol-
izes a “wall of earth”) and two parallel segments L2 and
L3 (that symbolize two “trenches” with a depth that cor-
respond to half the height of the wall of earth). Now we
want to transport the wall of earth to the trenches, to make
the landscape flat. To do so, it is possible to decompose
L1 into segments of length h, sent alternatively towards
L2 and L3 (Figure 5 on the left). For any length h, it is al-
ways possible to find a better map T , that is a lower value
of the functional in (M), by subdividing L1 into smaller
segments (Figure 5 on the right). The best way to proceed
consists in sending from each point of L1 half the earth to
L2 and half the earth to L3, which cannot be represented
by a map. Thus, the best solution of problem (M) is not
a map. In a more general setting, this problem appears
each time the source measure µ has mass concentrated on
a manifold of dimension d − 1 [McC95] (like the segment
L1 in the present example).

3. Kantorovich’s relaxed problem

To overcome this difficulty, Kantorovich stated a prob-
lem with a larger space of solutions, that is, a relaxation of
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Figure 6: Four example of transport plans in 1D. A: a segment is translated. B: a segment is split into two segments. C: a Dirac mass is split into
two Dirac masses; D: a Dirac mass is spread along two segments. The first two examples (A and B) have the form (Id×T )]µ where T is a transport
map. The third and fourth ones (C and D) have no corresponding transport map, because each of them splits a Dirac mass.

problem (M), where mass can be both split and merged.
The idea consists in solving for the “graph of T” instead
of T . One may think of the graph of T as a function g
defined on X × Y that indicates for each couple of points
x ∈ X, y ∈ Y how much matter goes from x to y. However,
once again, we cannot use standard functions to represent
the graph of T : if you think about the graph of a univariate
function x 7→ f (x), it is defined on R2 but concentrated on
a curve. For this reason, as in our previous example with
factories, one needs to use measures. Thus, we are now
looking for a measure γ supported by the product space
X × Y . The relaxed problem is stated as follows:

inf
γ

 ∫
X×Y

c(x, y)dγ | γ ≥ 0 and γ ∈ Π(µ, ν)


where:

Π(µ, ν) = {γ ∈ P(X × Y) | (PX)]γ = µ ; (PY )]γ = ν}
(K)

where (PX) and (PY ) denote the two projections (x, y) ∈
X × Y 7→ x and (x, y) ∈ X × Y 7→ y respectively.

The two measures (PX)]γ and (PY )]γ obtained by
pushing forward γ by the two projections are called
the marginals of γ. The measures γ in the admissible
set Π(µ, ν), that is, the measures that have µ and ν as
marginals, are called optimal transport plans. Let us now
have a closer look at the two constraints on the marginals
(PX)]γ = µ and (PX)]γ that define the set of optimal trans-
port plans Π(µ, ν). Recalling the definition of the pushfor-
ward (previous subsection), these two constraints can also

be written as:

(PX)]γ = µ ⇐⇒ ∀B ⊂ X,
∫

B dµ =
∫

B×Y dγ

(PY )]γ = ν ⇐⇒ ∀B′ ⊂ Y,
∫

B′ dν =
∫

X×B′ dγ.
(1)

Intuitively, the first constraint (PX)]γ = µ means that ev-
erything that comes from a subset B of X should corre-
spond to the amount of matter (initially) contained by B
in the source landscape, and the second one (PY )]γ = ν
means that everything that goes into a subset B′ of Y
should correspond to the (prescribed) amount of matter
contained by B′ in the target landscape ν.

We now examine the relation between the relaxed prob-
lem (K) and the initial problem (M). One can easily check
that among the optimal transport plans, those with the
form (Id × T )]µ correspond to a transport map T :

Observation 1. If (Id × T )]µ is a transport plan, then T
pushes µ onto ν.

Proof. (Id × T )]µ is in Π(µ, ν), thus (PY )](Id × T )]µ = ν,
or ((PY ) ◦ (Id × T )) ]µ = ν, and finally T]µ = ν.

We can now observe that if a transport plan γ has the
form γ = (Id × T )]µ, then problem (K) becomes:

min


∫

X×Y

c(x, y)d
(
(Id × T )]µ

) = min


∫
X

c(x,T (x))dµ


(one retrieves the initial Monge problem).
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Figure 7: A discrete version of Kantorovich’s problem.

To further help grasping an intuition of this notion of
transport plan, we show four 1D examples in Figure 6
(the transport plan is then 1D× 1D = 2D). Intuitively, the
transport plan γ may be thought of as a “table” indexed
by x and y that indicates the quantity of matter transported
from x to y. More exactly3, the measure γ is non-zero on
subsets of X × Y that contain points (x, y) such that some
matter is transported from x to y. Whenever γ derives
from a transport map T , that is if γ has the form (Id×T )]µ,
then we can consider γ as the “graph of T” like in the first
two examples of Figure 6 (A) and (B)4 in Figure 6.

The transport plans of the two other examples (C) and
(D) have no associated transport map, because they split
Dirac masses. The transport plan associated with Figure
5 has the same nature (but this time in 2D × 2D = 4D).
It cannot be written with the form (Id × T )]µ because it
splits the mass concentrated in L1 into L2 and L3.

Now the theoretical questions are:

• when does an optimal transport plan exist ?

• when does it admit an associated optimal transport
map ?

A standard approach to tackle this type of existence
problem is to find a certain regularity both in the func-
tional and in the space of the admissible transport plans,

3We recall that one cannot evaluate a measure γ at a point (x, y), we
can just compute integrals with γ.

4Note that the measure µ is supposed to be absolutely continuous
with respect to the Lebesgue measure. This is required, because for
instance in example (B) of Figure 6, the transport map T is undefined at
the center of the segment. The absolute continuity requirement allows
one to remove from X any subset with zero measure.

that is, proving that the functional is sufficiently “smooth”
and finding a compact set of admissible transport plans.
Since the set of admissible transport plans contains at least
the product measure µ ⊗ ν, it is non-empty, and existence
can be proven thanks to a topological argument that ex-
ploits the regularity of the functional and the compact-
ness of the set. Once the existence of a transport plan
is established, the other question concerns the existence
of an associated transport map. Unfortunately, problem
(K) does not directly show the structure required by this
reasoning path. However, one can observe that (K) is a
linear optimization problem subject to linear constraints.
This suggests using certain tools, such as the dual formu-
lation, that was also developed by Kantorovich. With this
dual formulation, it is possible to exhibit an interesting
structure of the problem, that can be used to answer both
questions (existence of a transport plan, and existence of
an associated transport map).

4. Kantorovich’s dual problem

Kantorovich’s duality applies to problem (K), in its
most general form (with measures). To facilitate under-
standing, we will consider instead a discrete version of
problem (K), where the involved entities are vectors and
matrices (instead of measures and operators). This makes
it easy to better discern the structure of (K), that is the lin-
ear nature of both the functional and the constraints. This
also makes it easier for the reader to understand how to
construct the dual by manipulating simpler objects (ma-
trices and vectors), however the structure of the reasoning
is the same in the general case.
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4.1. The discrete Kantorovich problem
In Figure 7, we show a discrete version of the 1D trans-

port between two segments of Figure 6. The measures
µ and ν are replaced with vectors U = (ui)i=1...m and
V = (v j)i=1...n. The transport plan γ becomes a set of co-
efficients γi j. Each coefficient γi j indicates the quantity of
matter that will be transported from ui to v j. The discrete
Kantorovich problem can be written as follows:

min
γ

< C, γ > subject to


Pxγ = U
Pyγ = V
γi, j ≥ 0 ∀i, j

(2)

where γ is the vector of Rm×n with all coefficients γi j (that
is, the matrix γi j “unrolled” into a vector), and C the vec-
tor of Rm×n with the coefficients ci j indicating the trans-
port cost between point i and point j (for instance, the
Euclidean cost). The objective function is simply the dot
product, denoted by < C, γ >, of the cost vector C and the
vector γ. The objective function is linear in γ. The con-
straints on the marginals (1) impose in this discrete ver-
sion that the sums of the γi j coefficients over the columns
correspond to the ui coefficients (Figure 7-B) and the sums
over the rows correspond to the v j coefficients (Figure 7-
C). Intuitively, everything that leaves point i should corre-
spond to ui, that is the quantity of matter initially present
in i in the source landscape, and everything that arrives
at a point j should correspond to v j, that is the quantity
of matter desired at j in the target landscape. As one can
easily notice, in this form, both constraints are linear in
γ. They can be written with two matrices Px and Py, of
dimensions m × mn and n × mn respectively.

4.2. Constructing the Kantorovich dual in the discrete
setting

We introduce, arbitrarily for now, the following func-
tion L defined by:

L(ϕ, ψ) =< C, γ > − < ϕ,Pxγ − U > − < ψ,Pyγ − V >

that takes as arguments two vectors, ϕ in Rm and ψ in Rn.
The function L is constructed from the objective function
< C, γ > from which we subtracted the dot products of
ϕ and ψ with the vectors that correspond to the degree of
violation of the constraints. One can observe that:

sup
ϕ,ψ

[L(ϕ, ψ)] = < C, γ > if Pxγ = U and Pyγ = V

= +∞ otherwise.

Indeed, if for instance a component i of Pxγ is non-zero,
one can make L arbitrarily large by suitably choosing the
associated coefficient ϕi.

Now we consider:

inf
γ≥0

[
sup
ϕ,ψ

[L(ϕ, ψ)]
]

= inf
γ ≥ 0
Pxγ = U
Pyγ = V

[
< C, γ >

]
.

There is equality, because to minimize sup[L(ϕ, ψ)], γ
has no other choice than satisfying the constraints (see
the previous observation). Thus, we obtain a new expres-
sion (left-hand side) of the discrete Kantorovich problem
(right-hand side). We now further examine it, and replace
L by its expression:

inf
γ≥0

[
sup
ϕ,ψ

(
< C, γ > − < ϕ,Pxγ − U >

− < ψ,Pyγ − V >

)]
(3)

= sup
ϕ,ψ

[
inf
γ≥0

(
< C, γ > − < ϕ,Pxγ − U >

− < ψ,Pyγ − V >

)]
(4)

= sup
ϕ,ψ

[
inf
γ≥0

(
< γ,C − Px

tϕ − Py
tψ > +

< ϕ,U > + < ψ,V >

)]
(5)

= sup
ϕ, ψ

Px tϕ + Py tψ ≤ C

[
< ϕ,U > + < ψ,V >

]
. (6)

The first step (4) consists in exchanging the “inf” and
“sup”. Then we rearrange the terms (5). By reinterpret-
ing this equation as a constrained optimization problem
(similarly to what we did in the previous paragraph), we
finally obtain the constrained optimization problem in (6).
In the constraint Px

tϕ + Py
tψ ≤ C, the inequality is to be

considered componentwise. Finally, the problem (6) can
be rewritten as:

sup
ϕ,ψ

[
< ϕ,U > + < ψ,V >

]
subject to ϕi + ψ j ≤ ci j, ∀i, j.

(7)

As compared to the primal problem (2) that depends on
m×n variables (all the coefficients γi j of the optimal trans-
port plan for all couples of points (i, j)), this dual problem
depends on m + n variables (the components ϕi and ψ j at-
tached to the source points and target points). We will see
later how to further reduce the number of variables, but
before then, we go back to the general continuous setting
(that is, with functions, measures and operators).
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4.3. The Kantorovich dual in the continuous setting
The same reasoning path can be applied to the contin-

uous Kantorovich problem (K), leading to the following
problem (DK):

(DK) sup
ϕ,ψ

∫
X
ϕdµ +

∫
Y
ψdν


subject to:
ϕ(x) + ψ(y) ≤ c(x, y) ∀(x, y) ∈ X × Y,

(8)

where ϕ and ψ are now functions defined on X and Y5.

The classical image that gives an intuitive meaning
to this dual problem is to consider that instead of trans-
porting earth by ourselves, we are now hiring a company
that will do the work on our behalf. The company has a
special way of determining the price: the function ϕ(x)
corresponds to what they charge for loading earth at x,
and ψ(y) corresponds to what they charge for unloading
earth at y. The company aims at maximizing its profit
(this is why the dual problem is a “sup” rather than an
“inf)”, but it cannot charge more than what it would cost
us if we were doing the work by ourselves (hence the
constraint).

The existence of solutions for (DK) remains difficult
to study, because the set of functions ϕ, ψ that satisfy the
constraint is not compact. However, it is possible to reveal
more structure of the problem, by introducing the notion
of c-transform, that makes it possible to exhibit a set of
admissible functions with sufficient regularity:

Definition 1. • For f any function on Y with values
in R ∪ {−∞} and not identically −∞, we define its
c-transform by

f c(x) = inf
y∈Y

[
c(x, y) − f (y)

]
, x ∈ X.

• If a function ϕ is such that there exists a function f
such that ϕ = f c, then ϕ is said to be c-concave;

5The functions ϕ and ψ need to be taken in L1(µ) and L1(ν). The
proof of the equivalence with problem (K) requires more precautions
than in the discrete case, in particular step (4) (exchanging sup and inf),
that uses a result of convex analysis (due to Rockafellar), see [Vil09]
chapter 5.

• Ψc(X) denotes the set of c-concave functions on X.

We now show two properties of (DK) that will allow us
to restrict the problem to the class of c-concave functions
to search for ϕ and ψ:

Observation 2. If the pair (ϕ, ψ) is admissible for (DK),
then the pair (ψc, ψ) is admissible as well.

Proof. ∀(x, y) ∈ X × Y, ϕ(x) + ψ(y) ≤ c(x, y)
ψc(x) = inf

y∈Y

[
c(x, y) − ψ(y)

]
ψc(x) + ψ(y) = inf

y′∈Y

[
c(x, y′) − ψ(y′)

]
+ ψ(y)

≤ (c(x, y) − ψ(y)) + ψ(y)
≤ c(x, y).

Observation 3. If the pair (ϕ, ψ) is admissible for (DK),
then one obtains a better pair by replacing ϕ with ψc:

Proof.

ψc(x) = inf
y∈Y

[
c(x, y) − ψ(y)

]
∀y ∈ Y, ϕ(x) ≤ c(x, y) − ψ(y)

⇒ ψc(x) ≤ ϕ(x).

In terms of the previous intuitive image, this means that
by replacing ϕ with ψc, the company can charge more
while the price remains acceptable for the client (that is,
the constraint is satisfied). Thus, we have:

inf(K) = sup
ϕ∈Ψc(X)

∫
X
ϕ dµ +

∫
Y
ϕc dν

= sup
ψ∈Ψc(Y)

∫
X
ψc dµ +

∫
Y
ψ dν

We do not give here the detailed proof for existence.
The reader is referred to [Vil09], Chapter 4. The idea is
that we are now in a much better situation, since the set
of admissible functions Ψc(X) is compact6.

6Provided that the value of ψ is fixed at a point of Y in order to
suppress invariance with respect to adding a constant to ψ.
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The optimal value gives an interesting information, that
is the minimum cost of transforming µ into ν. This can be
used to define a distance between distributions, and also
gives a way to compare different distributions, which is of
practical interest for some applications.

5. From the Kantorovich dual to the optimal trans-
port map

5.1. The c-superdifferential
Suppose now that in addition to the optimal cost you

want to know the associated way to transform µ into ν,
in other words, when it exists, the map T from X to Y
which associated transport plan (Id × T )]µ minimizes the
functional of the Monge problem. A result characterizes
the support of γ, that is the subset ∂cϕ ⊂ X×Y of the pairs
of points (x, y) connected by the transport plan:

Theorem 1. Let ϕ a c-concave function. For all (x, y) ∈
∂cϕ, we have

∇ϕ(x) − ∇xc(x, y) = 0,

where ∂cϕ = {(x, y) | ϕ(z) ≤ ϕ(x) + (c(z, y) − c(x, y)),∀z ∈
X}7 denotes the so-called c-superdifferential of ϕ.

Proof. See [Vil09] chapters 9 and 10.

In order to give an idea of the relation between the c-
superdifferential and the associated transport map T , we
present below a heuristic argument: consider a point (x, y)
in the c-superdifferential ∂cϕ, then for all z ∈ X we have

c(x, y) − ϕ(x) ≤ c(z, y) − ϕ(z). (9)

Now, by using (9), we can compute the derivative at x
with respect to an arbitrary direction w

lim
t→0+

ϕ(x + tw) − ϕ(x)
t

≤ lim
t→0+

c(x + tw, y) − c(x, y)
t

and we obtain ∇ϕ(x) · w ≤ ∇xc(x, y) · w. We can do the
same derivation along direction −w instead of w, and then
we get ∇ϕ(x) · w = ∇xc(x, y) · w, ∀w ∈ X.

7By definition of the c-transform, if (x, y) ∈ ∂cϕ, then ϕc(y) =

c(x, y) − ϕ(x). Then, the c-superdifferential can be characterized by the
set of all points (x, y) ∈ X × Y such that ϕ(x) + ϕc(y) = c(x, y).

Figure 8: The upper envelope of a family of affine functions is a convex
function.

In the particular case of the L2 cost, that is with c(x, y) =

1/2‖x − y‖2, this relation becomes ∀(x, y) ∈ ∂cϕ,∇ϕ(x) +

y − x = 0, thus, when the optimal transport map T exists,
it is given by

T (x) = x − ∇ϕ(x) = ∇(‖x‖2/2 − ϕ(x)).

Not only this gives an expression of T in function of ϕ,
which is of high interest to us if we want to compute the
transport explicitly. In addition, this makes it possible to
characterize T as the gradient of a convex function (see
also Brenier’s polar factorization theorem [Bre91]). This
convexity property is interesting, because it means that
two “transported particles” x1 7→ T (x1) et x2 7→ T (x2)
will never collide. We now see how to prove these two
assertions (T gradient of a convex function and absence
of collision) in the case of the L2 transport (with (c(x, y) =

1/2‖x − y‖2).

Observation 4. If c(x, y) = 1/2‖x − y‖2 and ϕ ∈ Ψc(X),
then ϕ̄ : x 7→ ϕ̄(x) = ‖x‖2/2− ϕ(x) is a convex function (it
is an equivalence if X = Y = Rd, see [San15]).

Proof.

ϕ(x) =ψc(x)

= inf
y

[
‖x − y‖2

2
− ψ(y)

]
= inf

y

[
‖x‖2

2
− x · y +

‖y‖2

2
− ψ(y)

]
.

9



Figure 9: Different types of transport, with continuous and discrete measures µ and ν.

Then,

−ϕ̄(x) =ϕ(x) −
‖x‖2

2
= inf

y

[
−x · y +

(
‖y‖2

2
− ψ(y)

)]
.

Or equivalently,

ϕ̄(x) = sup
y

[
x · y −

(
‖y‖2

2
− ψ(y)

)]
.

The function x 7→ x · y −
(
‖y‖2

2 − ψ(y)
)

is affine in x, there-
fore the graph of ϕ̄ is the upper envelope of a family of
hyperplanes, therefore ϕ̄ is a convex function (see Figure
8).

Observation 5. We now consider the trajectories of two
particles parameterized by t ∈ [0, 1], t 7→ (1−t)x1+tT (x1)
and t 7→ (1 − t)x2 + tT (x2). If x1 , x2 and 0 < t < 1 then
there is no collision between the two particles.

Proof. By contradiction, suppose there is a collision, that
is there exists t ∈ (0, 1) and x1 , x2 such that

(1 − t)x1 + tT (x1) = (1 − t)x2 + tT (x2).

Since T = ∇ϕ̄, we can rewrite the last equality as

(1 − t)(x1 − x2) + t(∇ϕ̄(x1) − ∇ϕ̄(x2)) = 0.

Therefore,

(1 − t)‖x1 − x2‖
2 + t(∇ϕ̄(x1) − ∇ϕ̄(x2)) · (x1 − x2) = 0.

The last step leads to a contradiction, between the left-
hand side is the sum of two strictly positive numbers
(recalling the definition of the convexity of ϕ̄: ∀x1 ,
x2, (x1 − x2) · (∇ϕ̄(x1) − ∇ϕ̄(x2)) > 0 )8

8Note that even if there is no collision, the trajectories can cross,
that is (1 − t)x1 + tT (x1) = (1 − t′)x2 + t′T (x2) for some t , t′ (see
example in [Vil09]). If the cost is the Euclidean distance (instead of
squared Euclidean distance), the non-intersection property is stronger
and trajectories cannot cross. This comes at the expense of losing the
uniqueness of the optimal transport plan[Vil09].

6. Continuous, discrete and semi-discrete transport

The properties that we have presented in the previous
sections are true for any couple of source and target mea-
sures µ and ν, that can derive from continuous functions
or that can be discrete empirical measures (sum of Dirac
masses). Figure 9 presents three configurations that are
interesting to study. These configurations have specific
properties, that lead to different algorithms for computing
the transport. We give here some indications and refer-
ences concerning the continuous → continuous and dis-
crete→ discrete cases. Then we will develop the continu-
ous→ discrete case with more details in the next section.

6.1. The continuous → continuous case and Monge-
Ampère equation

We recall that when the optimal transport map exists,
in the case of the L2 cost (that is, c(x, y) = 1/2‖x − y‖2), it
can be deduced from the function ϕ by using the relation
T (x) = ∇ϕ̄ = x − ∇ϕ. The change of variable formula for
integration over a subset B of X can be written as:

∀B ⊂ X,
∫

B
1dµ = µ(B) = ν(T (B)) =

∫
B
|det JT (x)| dµ

(10)
where JT denotes the Jacobian matrix of T and det de-
notes the determinant.

If µ and ν have densities u and v respectively, that is
∀B, µ(B) =

∫
B u(x)dx and ν(B) =

∫
B v(x)dx, then one can

(formally) consider (10) pointwise in X:

∀x ∈ X, u(x) = |det JT (x)| v(T (x)). (11)

By injecting T = ∇ϕ̄ and JT = Hϕ̄ into (11), one obtains:

∀x ∈ X, u(x) = |det Hϕ̄(x)| v(∇ϕ̄(x)), (12)

where Hϕ̄ denotes the Hessian matrix of ϕ̄. Equation
(12) is known ad the Monge-Ampère equation. It is a
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highly non-linear equation, and its solutions when they
exist often present singularities9. Note that the derivation
above is purely formal, and that studying the solutions of
the Monge-Ampère equation require using more sophis-
ticated tools. In particular, it is possible to define several
types of weak solutions (viscosity solutions, solution in
the sense of Brenier, solutions in the sense of Alexandrov
. . . ). Several algorithms to compute numerical solutions
of the Monge-Ampère equations were proposed. As such,
see for instance the Benamou-Brenier algorithm [BB00],
that uses a dynamic formulation inspired by fluid dynam-
ics (incompressible Euler equation with specific boundary
conditions). See also [PPO14].

6.2. The discrete→ discrete case

If µ is the sum of m Dirac masses and ν the sum of n
Dirac masses, then the problem boils down to finding the
m × n coefficients γi j that give for each pair of points i
of the source space and j of the target space the quantity
of matter transported from i to j. This corresponds to the
transport plan in the discrete Kantorovich problem that we
have seen previously §4. This type of problem (referred
to as an assignment problem) can be solved by different
methods of linear programming [BDM09]. These method
can be dramatically accelerated by adding a regulariza-
tion term, that can be interpreted as the entropy of the
transport plan [Leo13]. This regularized version of opti-
mal transport can be solved by highly efficient numerical
algorithms [Cut13].

6.3. The continuous→ discrete case

This configuration, also called semi-discrete, corre-
sponds to a continuous function transported to a sum of
Dirac masses (see the examples of c-concave functions in
[GM96]). This correspond to our example with factories
that consume a resource, in §2.2. Semi-discrete transport
has interesting connections with some notions of compu-
tational geometry and some specific sets of convex poly-
hedra that were studied by Alexandrov [Ale05] and later
by Aurenhammer, Hoffman and Aranov [AHA92]. The
next section is devoted to this configuration.

9 This is similar to the eikonal equation, which solution corresponds
to the distance field, that has a singularity on the medial axis.

Figure 10: Semi-discrete transport: gray levels symbolize the quantity
of a resource that will be transported to 4 factories. Each factory will be
allocated a part of the terrain in function of the quantity of resource that
it should collect.

7. Semi-discrete transport

We now suppose that the source measure µ is con-
tinuous, and that the target measure ν is a sum of Dirac
masses. A practical example of this type of configuration
corresponds to a resource which available quantity is
represented by a function u. The resource is collected by
a set of n factories, as shown in Figure 10. Each factory
is supposed to collect a certain prescribed quantity
of resource ν j. Clearly, the sum of all prescriptions
corresponds to the total quantity of available resource
(
∑n

j=1 ν j =
∫

X u(x)dx).

7.1. Semi-discrete Monge problem

In this specific configuration, the Monge problem be-
comes:

inf
T :X→Y

∫
X

c(x,T (x))u(x)dx, subject to
∫

T−1(y j)

u(x)dx = ν j,∀ j.

A transport map T associates with each point x of X
one of the points y j. Thus, it is possible to partition X,
by associating to each y j the region T−1(y j) that contains
all the points transported towards y j by T . The constraint
imposes that the quantity of collected resource over each
region T−1(y j) corresponds to the prescribed quantity ν j.

Let us now examine the form of the dual Kantorovich
problem. In terms of measure, the source measure µ has
a density u, and the target measure ν is a sum of Dirac
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masses ν =
∑n

j=1 ν jδy j , supported by the set of points

Y =
{
y j

}
. We recall that in its general form, the dual Kan-

torovich problem is written as follows:

sup
ψ∈Ψc(Y)

[∫
X
ψc(x)dµ +

∫
Y
ψ(y)dν

]
. (13)

In our semi-discrete case, the functional becomes a
function of n variables, with the following form:

F(ψ) = F(ψ1, ψ2, . . . ψn) (14)

=

∫
X

ψc(x)u(x)dx +

n∑
j=1

ψ jν j (15)

=

∫
X

inf
y j∈Y

[
c(x, y j) − ψ j

]
u(x)dx +

n∑
j=1

ψ jν j (16)

=

n∑
j=1

∫
Lagc

ψ(y j)

(
c(x, y j) − ψ j

)
u(x)dx +

n∑
j=1

ψ jν j.(17)

The first step (15) takes into account the nature of the
measures µ and ν. In particular, one can notice that the
measure ν is completely defined by the scalars ν j associ-
ated with the points y j, and the function ψ is defined by the
scalars ψ j that correspond to its value at each point y j. The
integral

∫
Y ψ(y)dν becomes the dot product

∑
j ψ jν j. Thus,

the functional that corresponds to the dual Kantorovich
problem becomes a function F that depends on n vari-
ables (the ψ j). Let us now replace the c-conjugate ψc with
its expression, which gives (16). The integral in the left
term can be reorganized, by grouping the points of X for
which the same point y j minimizes c(x, y j) − ψ j, which
gives (17), where the Laguerre cell Lagc

ψ(y j) is defined
by:

Lagc
ψ(y j) =

{
x ∈ X | c(x, y j) − ψ j ≤ c(x, yk) − ψk, ∀k , j

}
.

The Laguerre diagram, formed by the union of the La-
guerre cells, is a classical structure in computational ge-
ometry. In the case of the L2 cost c(x, y) = 1/2‖x − y‖2,
it corresponds to the power diagram, that was studied by
Aurenhammer at the end of the 80’s [Aur87]. One of its
particularities is that the boundaries of the cells are recti-
linear, making it reasonably easy to design computational
algorithms to construct them.

7.2. Concavity of F
The objective function F is a particular case of the Kan-

torovich dual, and naturally inherits its properties, such as
its concavity (that we did not discuss yet). This prop-
erty is interesting both from a theoretical point of view,
to study the existence and uniqueness of solutions, and
from a practical point of view, to design efficient numer-
ical solution mechanisms. In the semi-discrete case, the
concavity of F is easier to prove than in the general case.
We summarize here the proof by Aurenhammer et. al
[AHA92], that leads to an efficient algorithm [Mér11],
[Lév15], [KMT16].

Theorem 2. The objective function F of the semi-discrete
Kantorovich dual problem (13) is concave.

Proof. Consider the function G defined by:

G(A,
[
ψ1, . . . ψn

]
) =

∫
X

(
c(x, yA(x)) − ψA(x)

)
u(x)dx, (18)

and parameterized by an assignment A : X → [1 . . . n],
that is, a function that associates with each point x of X
the index j of one of the points y j. If we denote A−1( j) =

{x|A(x) = j}, then G can be also written as:

G(A, ψ) =
∑

j

∫
A−1( j)

(
c(x, y j) − ψ j

)
u(x)dx

=
∑

j

∫
A−1( j)

c(x, y j)u(x)dx −
∑

j
ψ j

∫
A−1( j)

u(x)dx.

(19)
The first term does not depend on the ψ j, and the second
one is a linear combination of the ψ j coefficients, thus, for
a given fixed assignment A, ψ 7→ G(A, ψ) is an affine func-
tion of ψ. Figure 11 depicts the appearance of the graph
of G for different assignment. The horizontal axis sym-
bolizes the components of the vector ψ (of dimension n)
and the vertical axis the value of G(A, ψ). For a given as-
signment A, the graph of G is an hyperplane (symbolized
here by a straight line).

Among all the possible assignments A, we distinguish
Aψ that associates with a point x the index j of the La-
guerre cell x belongs to 10, that is:

Aψ(x) = arg min
j

[
c(x, y j) − ψ j

]
.

10A is undefined on the set of Laguerre cell boundaries, this does not
cause any difficulty because this set has zero measure.
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Figure 11: The objective function of the dual Kantorovich problem is concave, because its graph is the lower envelope of a family of affine
functions.

For a fixed vector ψ = ψ0, among all the possible
assignments A, the assignment Aψ0

minimizes the value
G(A, ψ0), because it minimizes the integrand pointwise
(see Figure 11 on the left. Thus, since G is affine with
respect to ψ, the graph of the function ψ → G(Aψ, ψ)
is the lower envelope of a family of hyperplanes (sym-
bolized as straight lines in Figure 11 on the right), hence
ψ → G(Aψ, ψ) is a concave function. Finally, the objec-
tive function F of the dual Kantorovich problem can be
written as F(ψ) = G(Aψ, ψ) +

∑
j ν jψ j, that is, the sum of

a concave function and a linear function, hence it is also a
concave function.

7.3. The semi-discrete optimal transport map
Let us now examine the c-superdifferential ∂cψ, that

is, the set of points (x ∈ X, y ∈ Y) connected
by the optimal transport map. We recall that the c-
superdifferential ∂cψ can be defined alternatively as ∂cψ ={
(x, y j) | ψc(x) + ψ j = c(x, y j)

}
. Consider a point x of

X that belongs to the Laguerre cell Lagc
ψ(y j). The c-

superdifferential [∂cψ](x) at x is defined by:

[∂cψ](x) = {yk | ψ
c(x) + ψk = c(x, yk)} (20)

=

{
yk | inf

yl

[
c(x, yl) − ψl

]
+ ψk = c(x, yk)

}
(21)

=
{
yk | c(x, y j) − ψ j + ψk = c(x, yk)

}
(22)

=
{
yk | c(x, y j) − ψ j = c(x, yk) − ψk

}
(23)

=
{
y j

}
. (24)

In the first step (21), we replace ψc by its definition,
then we use the fact that x belongs to the Laguerre cell of
y j (22), and finally, the only point of Y that satisfies (23)
is y j because we have supposed x inside the Laguerre cell
of y j.

To summarize, the optimal transport map T moves
each point x to the point y j associated with the Laguerre
cell Lagc

ψ(y j) that contains x. The vector ψ1, . . . ψn is
the unique vector that maximizes the discrete dual Kan-
torovich function F such that ψ is c-concave. It is possible
to show that ψ is c-concave if and only if no Laguerre cell
is empty of matter, that is the integral of u is non-zero on
each Laguerre cell. Indeed, we have the following results:

Theorem 3. Let Y = {y1, . . . , yn} be a set of n points. Let
ψ be any function defined on Y such that Lagc

ψ(yi) are not
empty sets. Then ψ is a c-concave function.

Proof. By definition, for i = 1, 2, . . . , k

(ψc)c(yi) = inf
x∈X

[
c(x, yi) − ψc(x)

]
= inf

x∈X

[
c(x, yi) −

(
inf
y j∈Y

[
c(x, y j) − ψ(y j)

])]

= inf
x∈X


ψ(yi), if x ∈ Lagc

ψ(yi)

c(x, yi) − (

<(c(x,yi)−ψ(yi))︷            ︸︸            ︷
c(x, y j) − ψ(y j)), if x ∈ Lagc

ψ(y j) ( j , i)

= ψ(yi).

13



This allows to conclude that ψ is a c-convex function (see
[San15, Proposition 1.34]).

Moreover, the converse of the theorem is also true:

Theorem 4. Let Y = {y1, . . . , yn} be a set of n points. Let
ψ be a c-concave function defined on Y. Then the sets
Lagc

ψ(yi) are not empty for all i = 1, . . . , n,.

Proof. Reasoning by contradiction, we suppose that ψ is
a c-concave function and there exist i0 ∈ {1, . . . , n} such
that Lagc

ψ(yi0 ) = ∅. Then, from definition

∀x ∈ X, ∃ j ∈ {1, . . . , n} with j , i0, and ε j > 0 such that
c(x, yi0 ) − ψ(yi0 ) ≥ c(x, y j) − ψ(y j) + ε j.

We will write x = x j. Thus,

c(x j, yi0 ) −
(
inf
y j∈Y

[
c(x j, y j) − ψ(y j)

])
≥ c(x j, yi0 ) −

(
c(x j, yi0 ) − ψ(yi0 ) − ε j

)
= ψ(yi0 ) + ε j.

(25)

Therefore,

(ψc)c(yi0 ) = inf
x∈X

[
c(x, yi0 ) −

(
inf
y j∈Y

[
c(x, y j) − ψ(y j)

])]
= inf

j

[
c(x j, yi0 ) −

(
inf
y j∈Y

[
c(x j, y j) − ψ(y j)

])]
= inf

j

[
ψ(yi0 ) + ε j

]
> ψ(yi0 ).

This contradicts the fact that ψ is a c-concave function,
because [San15, Proposition 1.34].

We now proceed to compute the first and second order
derivatives of the objective function F. These derivatives
are useful in practice to design computational algorithms.

7.4. First-order derivatives of the objective function

Since it is concave, F admits a unique maximum ψ∗,
characterized by ∇F(ψ∗) = 0 where ∇F denotes the gra-
dient. Let us now examine the form of the gradient

∇F = ∇
(
G(Aψ, ψ) +

∑n
j=1 ψ jν j

)
. By replacing G(Aψ, ψ)

with its expression (19), one obtains:

∂G
∂ψ j

(ψ) = lim
t→0

G(ψ + te j) −G(ψ)
t

= lim
t→0

1
t

{∫
X

inf
[
c(x, y1) − ψ1, . . . , c(x, y j) − ψ j − t, . . . , c(x, yn) − ψn

]
− inf

i

[
c(x, yi) − ψi

]
u(x)dx

}
.

Let x ∈ Lagc
ψ(ym), then for t small enough we have

inf
[
c(x, y1) − ψ1, . . . , c(x, y j) − ψ j − t, . . . , c(x, yk) − ψn

]
= c(x, ym) − ψm.

Indeed, since c(x, ym) − ψm < c(x, yi) − ψi for all i , m, in
particular, if m , j: c(x, ym) − ψm < c(x, y j) − ψ j. Thus,
for t small enough

c(x, ym) − ψm ≤ c(x, y j) − ψ j − t.

In the case that m = j,

inf
[
c(x, y1) − ψ1, . . . , c(x, y j) − ψ j − t, . . . , c(x, yk) − ψk

]
= c(x, y j) − ψ j − t.

Consequently, we obtain that

∂G
∂ψ j

(ψ) = −

∫
Lagc

ψ(y j)
u(x)dx.

Recalling that the objective function F is given by F(ψ) =

G(Aψ, ψ) +
∑

j ν jψ j, we finally obtain:

∂F
∂ψ j

= ν j −

∫
Lagc

ψ(y j)

u(x)dx. (26)

Since the objective function F is concave, it admits a
unique maximum. At this maximum, all the components
of the gradient vanish, this implies that the quantity of
matter obtained at y j, that is the integral of u on the La-
guerre cell of y j, corresponds to the prescribed quantity of
matter, that is ν j.
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7.5. Second order derivatives of the objective function

The coefficients of the Hessian matrix ∂2F/∂ψi∂ψ j are
slightly more difficult to compute, since here, we cannot
invoke the envelope theorem. We cannot avoid invoking
Reynold’s formula. We do not detail the computations for
length considerations, but give the final result.

In the particular case of the L2 cost, that is c(x, y) =

1/2‖x − y‖2, the second-order derivatives are given by:

∂2G
∂ψi∂ψ j

(ψ) =

∫
Lagc

ψ(yi)∩Lagc
ψ(y j)

u(x)
‖yi − y j‖

dS (x) (i , j),

∂2G
∂ψ2

j

(ψ) = −
∑
i, j

∂2G
∂ψi∂ψ j

(ψ).

(27)

7.6. A computational algorithm for L2 semi-discrete op-
timal transport

With the definition of F(ψ), the expression of its first
order derivatives (gradient ∇F) and second order deriva-
tives (Hessian matrix ∇2F =

(
∂2F/∂ψi∂ψ j

)
i j

), we are now
equipped to design a numerical solution mechanism that
computes semi-discrete optimal transport by maximizing
F, based on a particular version [KMT16] of Newton’s
optimization method [NW06]:

Input: a mesh that supports the source density u
the points (y j)n

j=1
the prescribed quantities (ν j)n

j=1

Output: the (unique) Laguerre diagram Lagc
ψ such that:∫

Lagc
ψ(y j)

u(x)dx = ν j ∀ j

(1) ψ← [0 . . . 0]
(2) While convergence is not reached
(3) Compute ∇F and ∇2F
(4) Find p ∈ Rn such that ∇2F(ψ)p = −∇F(ψ)
(5) Find the descent parameter α
(6) ψ← ψ + αp
(7) End while

The source measure is given by its density, that is
a positive piecewise linear function u, supported by a
triangulated mesh (2D) or tetrahedral mesh (3D) of a

domain X. The target measure is discrete, and supported
by the pointset Y = (y j)n

j=1. Each target point will receive
the prescribed quantity of matter ν j. Clearly, the prescrip-
tions should be balanced with the available resource, that
is

∫
X u(x)dx =

∑
j ν j. The algorithm computes for each

point of the target measure the subset of X that is affected
to it through the optimal transport, T−1(y j) = Lagc

ψ(y j),
that corresponds to the Laguerre cell of y j. The Laguerre
diagram is completely determined by the vector ψ that
maximizes F.

Line (2) needs a criterion for convergence. The
classical convergence criterion for a Newton algorithm
uses the norm of the gradient of F. In our case, the
components of the gradient of F have a geometric
meaning, since ∂F/∂ψ j corresponds to the difference
between the prescribed quantity ν j associated with j and
the quantity of matter present in the Laguerre cell of y j

given by
∫

Lagc
ψ(y j)

u(x)dx. Thus, we can decide to stop

the algorithm as soon as the largest absolute value of a
component becomes smaller than a certain percentage
of the smallest prescription. Thus we consider that
convergence is reached if max |∇F j| < ε min j ν j, for a
user-defined ε (typically 1% in the examples below).

Line (3) computes the coefficients of the gradient
and the Hessian matrix of F, using (26) and (27).
These computations involve integrals over the La-
guerre cells and over their boundaries. For the L2 cost
c(x, y) = 1/2‖x − y‖2, the boundaries of the Laguerre
cells are rectilinear, which dramatically simplifies the
computations of the Hessian coefficients (27). In addi-
tion, it makes it possible to use efficient algorithms to
compute the Laguerre diagram [Bow81, Wat81]. Their
implementation is available in several programming
libraries, such as GEOGRAM11 et CGAL12. Then one
needs to compute the intersection between each Laguerre
cell and the mesh that supports the density u. This can be
done with specialized algorithms [Lév15], also available
in GEOGRAM.

11http://alice.loria.fr/software/geogram/doc/html/

index.html
12http://www.cgal.org
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Line (4) finds the Newton step p by solving a linear
system. We use the Conjugate Gradient algorithm
[HS52] with the Jacobi preconditioner. In our empirical
experiments below, we stopped the conjugate iterations
as soon as ‖∇2F p + ∇F‖/‖∇F‖ < 10−3.

Line (5) determines the descent parameter α. A result
due to Mérigot and Kitagawa [KMT16] ensures the
convergence of the Newton algorithm if the measure of
the smallest Laguerre cell remains larger than a certain
threshold (that is, half the smallest prescription ν j). There
is also a condition on the norm of the gradient ‖∇F‖ that
we do not repeat here (the reader is referred to Mérigot
and Kitagawa’s original article for more details). In our
implementation, starting with α = 1, we iteratively divide
α by two until both conditions are satisfied.

Let us now make one step backwards and think about
the original definition of Monge’s problem (M). We
wish to stress that the initial constraint (local mass
conservation) that characterizes transport maps was
terribly difficult. It is remarkable that after several
rewrites (Kantorovich relaxation, duality, c-convexity),
the final problem becomes as simple as optimizing a
regular (C2) concave function, for which computing the
gradient and Hessian is easy in the semi-discrete case and
boils down to evaluating volumes and areas in a Laguerre
diagram. We wish also to stress that the computational
algorithm did not require to make any approximation or
discretization. The discrete, computer version is a par-
ticular setting of the general theory, that fully describes
not only transport between smooth objects (functions),
but also transport between less regular objects, such as
pointsets and triangulated meshes. This is made possible
by the rich mathematical vocabulary (measures) on which
optimal transport theory acts. Thus, the computational
algorithm is an elegant, direct verbatim translation of the
theory into a computer program.

We now show some computational results and list pos-
sible applications of this algorithm.

Figure 17: Top: Numerical simulation of the Taylor-Rayleigh instability
using a 3D version of the Gallouet-Mérigot scheme, with a cross-section
that reveals the internal structure of the vortices. Bottom: a closeup that
shows the interface between the two fluids, represented by the Laguerre
facets that bound two Laguerre cells of different fluid elements.
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Figure 12: A: transport between a uniform density and a random pointset; B: transport between a varying density and the same pointset; C:
intersections between meshes used to compute the coefficients; D: transport between a measure supported by a surface and a 3D pointset.

8. Results, examples and applications of L2 semi-
discrete transport

Figure 12 shows some examples of transport in 2D,
between a uniform density and a pointset (A). Each La-
guerre cell has the same area. Then we consider the same
pointset, but this time with a density u(x, y) = 10(1 +

sin(2πx) sin(2πy)) (image B). We obtain a completely dif-
ferent Laguerre diagram. Each cell of this diagram has
the same value for the integrated density u. (C): the co-
efficients of the gradient and the Hessian of F computed
in the previous section involve integrals of the density u
over the Laguerre cells and over their boundaries. The
density u is supported by a triangulated mesh, and lin-
early interpolated on the triangles. The integrals of u over
the Laguerre cells and their boundaries are evaluated in
closed form, by computing the intersections between the
Laguerre cells and the triangles of the mesh that supports
u. (D): the same algorithm can compute the optimal trans-
port between a measure supported by a 3D surface and a
pointset in 3D.

Figure 13 shows two examples of volume deformation

by optimal transport. The same algorithm is used, but this
time with 3D Laguerre diagrams, and by computing in-
tersections between the Laguerre cells and a tetrahedral
mesh that supports the source density u. The intermedi-
ary steps of the animation are generated by linear interpo-
lation of the positions (Mc. Cann’s interpolation). Figure
14 demonstrates a more challenging configuration, com-
puting transport between a sphere (surface) and a cube
(volume). The sphere is approximated with 10 million
Dirac masses. As can be seen, transport has a singular-
ity that resembles the medial axis of the cube (rightmost
figure).

Figure 15 demonstrates an application in computa-
tional fluid dynamics. A heavy incompressible fluid (in
red) is placed on top of a lighter incompressible fluid (in
blue). Both fluids tend to exchange their positions, due
to gravity, but incompressibility is an obstacle to their
movement. As a result, vortices are created, and they
become faster and faster (Taylor-Rayleigh instability).
The numerical simulation method that we used here
[GM17] directly computes the trajectories of particles
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Figure 13: Interpolation of 3D volumes using optimal transport.

Figure 14: Computing the transport between objects of different dimension, from a sphere to a cube. The sphere is sampled with 10 million points.
The cross-section reveals the formation of a singularity that has some similarities with the medial axis of the cube.
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Figure 15: An application of optimal transport to fluid simulation: numerical simulation of the Taylor-Rayleigh instability using the Gallouet-
Mérigot scheme.

Figure 16: Numerical simulation of an incompressible bi-phasic flow in a bottle.

19



(Lagrangian coordinates) while taking into account
the incompressibility constraint, which is in general
unnatural in Lagrangian coordinates. By providing
a means of controlling the volumes of the Laguerre
cells, optimal transport appears here as an easy way
of enforcing incompressibility. Using some efficient
geometric algorithms for the Laguerre diagram and its
intersections [Lév15], the Gallouet-Mérigot numerical
scheme for incompressible Euler scheme can be also
applied in 3D to simulate the behavior of non-mixing
incompressible fluids (Figure 16). The 3D version of the
Taylor-Rayleigh instability is shown in Figure 17, with
10 million Laguerre cells. More complicated vortices are
generated (shown here in cross-section).

The applications in computer animation and com-
putational physics seem to be promising, because the
semi-discrete algorithm behaves very well in practice.
It is now reasonable to design simulation algorithms
that solve a transport problem in each timestep (as our
early computational fluid dynamics of the previous
paragraph do). With our optimized implementation that
uses a multicore processor for the geometric part of the
algorithm and a GPU for solving the linear systems, the
semi-discrete algorithm takes no more than a few tens of
seconds to solve a problem with 10 millions unknown.
This opens the door to numerical solution mechanisms
for difficult problems. For instance, in astrophysics,
the Early Universe Reconstruction problem [BFH+03]
consists in going “backward in time” from observation
data on the repartition of galaxy clusters, to “play the
Big-Bang movie” backward. Our numerical experiments
tend to confirm Brenier’s point of view that he expressed
in the 2000’s, that semi-discrete optimal transport can be
an efficient way of solving this problem.

To ensure that our results are reproducible, the source-
code associated with the numerical solution mechanism
used in all these experiments is available in the EXPLOR-
AGRAM component of the GEOGRAM programming li-
brary13.

13http://alice.loria.fr/software/geogram/doc/html/

index.html

Acknowledgments

To be inserted in final version (omitted to preserve au-
thor’s anonymity).

References

[AG13] Luigi Ambrosio and Nicolas Gigli. A users
guide to optimal transport. Modelling and
Optimisation of Flows on Networks, Lec-
ture Notes in Mathematics, pages 1–155,
2013.

[AHA92] Franz Aurenhammer, Friedrich Hoffmann,
and Boris Aronov. Minkowski-type the-
orems and least-squares partitioning. In
Symposium on Computational Geometry,
pages 350–357, 1992.

[Ale05] A. D. Alexandrov. Intrinsic geometry of
convex surfaces (translation of the 1948
Russian original). CRC Press, 2005.

[Aur87] Franz Aurenhammer. Power diagrams:
Properties, algorithms and applications.
SIAM J. Comput., 16(1):78–96, 1987.

[BB00] Jean-David Benamou and Yann Brenier. A
computational fluid mechanics solution to
the monge-kantorovich mass transfer prob-
lem. Numerische Mathematik, 84(3):375–
393, 2000.

[BCMO14] Jean-David Benamou, Guillaume Car-
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[Lév15] Bruno Lévy. A numerical algorithm for
L2 semi-discrete optimal transport in 3d.
ESAIM M2AN (Mathematical Modeling
and Analysis), 2015.

[McC95] Robert J. McCann. Existence and unique-
ness of monotone measure-preserving
maps. Duke Mathematical Journal,
80(2):309–323, 1995.

[Mém11] Facundo Mémoli. Gromov-wasserstein dis-
tances and the metric approach to object
matching. Foundations of Computational
Mathematics, 11(4):417–487, 2011.
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