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Distributed Best Response Algorithms for Potential Games

Stéphane Durand1 Federica Garin1 Bruno Gaujal1

Abstract— In this paper we design and analyze distributed
algorithms to compute a Nash equilibrium in potential games.
Our algorithms are based on best-response dynamics, with suit-
able revision sequences (orders of play). We compute the average
complexity over all potential games of best response dynamics
under a random i.i.d. revision sequence, since it can be imple-
mented in a distributed way using Poisson clocks. We obtain a
distributed algorithm whose execution time is within a constant
factor of the optimal centralized one.
We then show how to take advantage of the structure of the
interactions between players in a network game: non-interacting
players can play simultaneously. This improves best response
algorithm, both in the centralized and in the distributed case.

I. INTRODUCTION

Potential games have been introduced in [1] and have
proven very useful ever since, especially in the context of
routing games, first mentioned in [2]. They play a major role
in transportation science as well as in computer science [3]–
[5] and in distributed optimization [6].

It is well-known that the Best Response Algorithm (BRA)
converges to a pure Nash equilibrium in potential games [7].
Here, we study the average running time of the algorithm and
its dependence on the sequence of play of the players (called
the revision sequence in the following). When one uses BRA
to compute a Nash equilibrium in potential games in practice,
one is confronted with a mixed feeling.

On one hand, BRA with a round robin revision sequence
has been proved optimal among all local search algorithms
(converges faster than any local search in the strong stochastic
sense), see [8], [9] .

On the other hand, BRA suffers from two main drawbacks
when used in a distributed context. Firstly, the impact of the
revision sequence on the performance is still unknown: If one
chooses to replace the round robin revision by another order
of play, the convergence time will grow since round robin is
optimal, but the degradation should be evaluated. This may
be critical in cases where round robin is hard to implement,
as in a distributed setup. Secondly, the convergence of BRA
requires that players play one at a time. Again, this may ham-
per performance in a distributed context because electing the
next active player may require costly coordination between
players.

In this paper we provide answers to both drawbacks. Con-
cerning the order of play, we compute the average execution
time of BRA under IID revision sequences and we show that
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it remains within a constant factor (smaller than 2) away
from the round robin complexity if we only consider the
time to hit a Nash equilibrium. As for the total execution
time, it is worse by a factor log n. Hence we propose a
variation of the algorithm with a termination test, which can
reduce the total execution time under some assumptions on
the communication structure.

In the second part of the paper, we consider the second
weakness of BRA and consider network games where the
interaction between the players is not total in the following
sense: Two players are indifferent if the order in which they
play is irrelevant (see §IV for a precise definition).

We show how to exploit these partial interactions between
players to further improve the running time of the BRA
algorithm by letting indifferent players play simultaneously.

II. POTENTIAL GAMES

A game G
def
= G(N ,A, u) will be a triplet consisting of:

• A finite set of players N = {1, . . . , n};
• A finite set A of actions (or pure strategies) ; The set of

actions profiles or states of the game is An;
• The players’ payoff functions uk : An → R, for each
k ∈ N .

The best response correspondence BRk(x) is the set of
actions maximizing the payoff for player k under state x:

BRk(x)
def
=

{
arg max
αk∈A

uk(αk;x−k)

}
.

A Nash equilibrium is a fixed point of this correspondence,
i.e., a profile x∗ such that x∗k ∈ BRk(x∗) for every player k.

A game is a (best response) potential game [10] if there is
a function F : An → R such that for any player k and action
profile x

BRk(x) =

{
arg max
αk∈A

F (αk,x−k)

}
.

To avoid ties we assume that the Best Response is unique:
BRk(x) = arg maxαk∈A uk(αk;x−k). Ties being of mea-
sure zero in the set of random games, they will not affect the
average behavior of the players.

We consider an algorithmic version of the Best Response
Dynamics parametrized by a revision sequence, called Best
Response Algorithm (BRA) in the following. A revision se-
quence is an infinite sequence of players chosen according to
some rule. We will mostly consider two relatively natural se-
quences: the round robin sequence (RR) is the cyclic sequence
1, · · · , n, 1, · · · , n, 1, · · · ; an independent and uniformly dis-
tributed sequence (IID) is a random revision sequence where



each player is chosen according to a uniform law indepen-
dently with probability 1/n at each time instant. The latter
will be useful to study the distributed version of the game.

Algorithm 1: Best Response Algorithm (BRA) under
revision sequence R

1 Input: Game utilities (uk(·)); Initial state (x := x(0));
revision sequence R;

2 Initialize t := 0; List of satisfied customers L := ∅;
3 while size(L)6= n do
4 Pick next player k := Rt; t := t+ 1;
5 if xk 6∈ BRk(x) then
6 Update strategy for player k to xk ∈ BRk(x);
7 L := ∅;
8 L := L ∪ {k};

In this algorithm (BRA), L is the list of players that have
played since the last change of the state x, and it is reset to an
empty list every time one player changes her action. As soon
as this list reaches size n, the state x verifies the definition of
a Nash equilibrium.

The worst case complexity of finding a Nash equilibrium in
potential games is PLS complete [11], known to be between P
and NP . In the following we focus on the expected execution
time of BRA over a random potential game when the potential
is chosen uniformly.

In the algorithm BRA, we can distinguish two phases. The
first phase ends when the last change of coordinate occurs (the
last time when L becomes empty), at this point the algorithm
has reached a Nash equilibrium but does not know it yet.
The second phase is the time needed for all players to play
and check that their best response is the current state, thus
certifying the Nash equilibrium (this is the time needed for
L to grow up to its maximal size, n). We will denote by
R the duration of the first phase (reaching time), and by T
(execution time) the total time taken by both phases. We also
denote by δBR the time taken by one player (say k) to compute
her best response, BRk(x), under state x. We assume that this
time does not depend on the player nor on the current state.

III. DISTRIBUTED BEST RESPONSE ALGORITHM

A. Execution Time of BRA under IID revision sequences

Performance of Algorithm 1 under the round robin revision
sequence has been analyzed in [8]. The average time to reach
a Nash equilibrium is

E(R
(1)
RR) = δBR(eγ − 1)n+ o(n), (1)

while the average execution time is

E(T
(1)
RR) = E(R

(1)
RR) + δBRn = δBRe

γn+ o(n), (2)

with γ the Euler constant, γ ≈ 0.58 and eγ ≈ 1.78.
Furthermore, the time to reach a Nash equilibrium on ran-

dom games using BRA with a round robin revision sequence
has been shown in [8] to be stochastically lower than with
any other local search algorithm. However, this optimality of

BRA under RR does not hold any longer if one considers a
distributed version of the game. In this case, a central author-
ity (or an election protocol among the players) is needed to
enforce that the order of plays follows a round robin revision
sequence. Therefore, it is interesting to investigate other revi-
sion sequences, and in particular IID revision sequences, that
are more adapted to distributed games.

Using an approach similar to that of [8], we can analyze the
complexity of Algorithm 1 under IID revision sequences.

Theorem 1 (Execution time of BRA with IID revision)
The average execution time of Algorithm 1 with IID revision
sequences is given by

E(T
(1)
IID) =

δBRn

n− 1
+

∫ 1

0

n−1∑
i=1

δBRnu
i−1

n− i
e
∑n−1

i=1
ui

i du+O(1)

≈ δBR(n log n+ γn+ 1.22n).

The proof can be found in the long version of the paper,
available as a research report [12].

Under IID revision sequences, the second phase of Algo-
rithm 1 corresponds exactly to an instance of the coupon
collector problem with n items (each player must play at least
once to certify a NE has been reached). This takes nHn =
n log n+ γn+ o(n) iterations (Hn denotes the nth harmonic
number) on average, where each iteration corresponds to a call
of function BR, with duration δBR. This shows that the time
to reach a Nash equilibrium is linear in the number of players,
and that the costly part in the total execution time is the second
phase.

Theorem 2 (Reaching time or BRA with IID revision)
The average time to reach a Nash equilibrium using
Algorithm 1 with IID revision sequences is

E(R
(1)
IID) = E(T

(1)
IID)− δBRnHn ' 1.22 δBRn.

One can notice that the time to reach a NE is larger with IID
revision than with RR one. This was expected by optimality
of BRA under RR. Nonetheless, the gap for the reaching time
is rather small (1.22n instead of 0.78n). The gap only grows
when one compares the total execution times T (1)

RR and T (1)
IID,

because of the time taken for all players to play once under
IID revisions.

Experimental executions of BRA under IID revisions, over
a large set of potential games with uniformly generated poten-
tials, show that the convergence time distribution is actually
well concentrated around the average value, as displayed in
Figure 1. The figure shows the empirical mean and 95%
confidence intervals of Algorithm 1 under IID revision se-
quences, run over a large number of potential games (5000),
with potentials generated uniformly, and a number of players
ranging from 2 to 250.

B. Distributed Algorithm with Termination Test

Here, we consider the case where players play in a
distributed way without any central authority able to dictate
the order of play. We suppose that each player acts according
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Fig. 1: Reaching time for Algorithm 1 with IID revision.
The error bars show the empirical mean and 95% confidence
intervals over 5000 runs for each number of players, ranging
from 2 to 250. The black line has slope 1.22.

to an individual Poisson clock, all with the same rate λ
n .

We suppose that the product λδBR (the global rate times
the duration of the function BR) is small enough so that
collisions are sufficiently rare to be neglected (more of this
is discussed in §IV). In this framework the order of play is
the same as under an IID revision sequence, with λ players
activated per time unit, on average.

We will now introduce a distributed algorithm using a
convergence test. In this algorithm, each player has the
probability, when activated, to also initiate a game-wide
communication to make a termination test. Let us consider
the communication procedures named Termination Test
Sender and Termination Test Receiver in Algorithm 2: At
every tick of her clock, each player has a probability p of
broadcasting a message to every other player. Upon reception
of such a message, the receivers interrupt their clock and
send an acknowledgement (ack). Once the initial sender gets
all the acks, she sends a second message. Upon reception of
this second message, each player tests if she needs to change
her best response (a player is stable if no change is needed)
and sends back her stable/unstable status before restarting her
clock. The initial sender receives n confirmations of stability
only if the current state is a Nash equilibrium.

This global communication operation interrupts the
Poisson clock of most players during two broadcasts and the
clock of one (random) player for four broadcasts. We denote
the average interruption time by δcom.

Theorem 3 When δBR � 1/λ and using the best value for p,

namely p∗ =

√
δBR/(λδcomE[R

(1)
IID]) ≈

√
1/(1.22λδcomn),

the execution time of Algorithm 2, is

E[T (2)] =
1

δBRλ
E[R

(1)
IID] + 2

√
1

δBRλ
E[R

(1)
IID]δcom + δcom

≈ 1.22
n

λ
+ 2

√
1.22

n

λ
δcom + δcom .

Algorithm 2: Distributed BRA with termination test

1 Function MAIN ALGORITHM
2 Input: Game utilities (uk(·)); Initial state

(x := x(0));
3 Local clock, ticking w.r.t. a Poisson process with rate

λ/n;
4 repeat
5 On each tick of the Poisson clock
6 if xi 6∈ BRi(x) then
7 Update strategy to xi ∈ BRi(x);

8 With probability p:
9 Call Termination Test Sender;

10 On Reception of Stop
11 Call Termination Test Receiver;

12 until End sent or received;

13 Function TERMINATION TEST, SENDER
14 Stop Clock;
15 Send(Stop) to all players;
16 wait until n acks received;
17 Send(Test) to all players;
18 wait until n messages received;
19 if n ‘Stable’ messages received then Send End;
20 Else Restart Clock;

21 Function TERMINATION TEST, RECEIVER
22 Stop Clock;
23 Send(Ack) to Sender;
24 wait until Test received;
25 If BR(x) = xi Send(Stable) to Sender;
26 else Send(Unstable) to Sender;
27 Restart Clock;

Proof: The execution time of Algorithm 2, T (2), satisfies
T (2) = Q1 + · · · + Qk + kδcom, where Qi’s are the times
elapsed between two consecutive termination tests, and the
random number k is the number of termination tests sent
before a Nash equilibrium is reached. By construction of the
algorithm, the random variables Qi’s are independent and
identically distributed, according to an exponential law of
parameter pλn . Since Qi is independent of the event {k > i},
Wald’s identity can be used to compute the expectation of
T (2):

E[T (2)] = E[k]E[Q1] + E[k]δcom. (3)

On the other hand, this time is also the end of the first test
after the reaching time. The waiting time Q from R(2) has the
same exponential distribution as Qi’s. Hence we have T (2) =
R(2) +Q+ δcom.

Since the distributed algorithm uses Poisson clocks, the
order of play is exactly as in Algorithm 1 using IID revision
sequences. Therefore, E[R(2)] = (k−1)δcom+ 1

δBRλ
E[R

(1)
IID].



This yields

E[T (2)] =
1

δBRλ
E[R

(1)
IID] + E[Q] + E[k]δcom. (4)

By subtracting (4) from (3), and using E[Q] = E[Q1] =
1
pλ , one gets E[k] = p

δBR
E[R

(1)
IID] + 1.

Equation (4) becomes

E[T (2)] =
1

δBRλ
E[R

(1)
IID] +

1

pλ
+

p

δBR
E[R

(1)
IID]δcom + δcom.

The best value for p minimizes 1
pλ + p

δBR
E[R

(1)
IID]δcom. The

argmin is p∗ =
√

δBR
λδcomE[R(1)

IID]
. Finally,

E[T (2)] =
1

δBRλ
E[R

(1)
IID] + 2

√
1

δBRλ
E[R

(1)
IID]δcom + δcom.

One can use Theorem 2 to end the proof.
Provided that 1/(λδBR) = o(log n), Algorithm 2 beats

Algorithm 1 (i.e., E[T (2)] < E[T
(1)
IID] for large n) as soon as

the average communication time is δcom < C1
√
n log n, for

some constant C1. In particular, if one uses a classical model
for global synchronization on a distributed algorithm (as in
[13]), the duration of our two-steps broadcast is of the form
δcom = C2 log(n). In this case, the execution time is

E[T (2)] ≈ 1.22
n

λ
+ 2.21

√
C2

λ

√
n log n+ C2 log n.

IV. BEST RESPONSE ALGORITHM FOR NETWORK GAMES

A. Network Games

In this section, we consider that players may not all interact
with each other, and we want to take advantage of this to
design new algorithms to compute NE.

Let us define ∆k(x), the profile obtained after player k has
played her best response under profile x:

∆k(x)
def
= (x0, . . . ,BRk(x), . . . , xn−1) = (BRk(x),x−k).

Using this notation, we give a definition of indifferent
players more general than what is usually adopted in the
literature (see for example [14]).

Definition 1 (Indifferent Players, Interaction Graph)
Player i is indifferent to player j if, for any state x,

∆i(∆j(x)) = ∆j(∆i(x)). (5)

Otherwise, we say that i and j are neighbors. The interaction
graph G is the undirected graph linking neighbors.

In particular, Condition (5) is satisfied when the payoff
function for player j, uj(x), does not depend on xi. This
stronger criterion is used in [14] to define independence of
two players. Actually all the results stated in this section
will remain valid if the interaction graph G is replaced by
any graph that contains G as a sub-graph. In particular if
indifference is replaced by the stronger notion used in [14],
the resulting graph will contain G as a subgraph.

A

B

C

D

E

Fig. 2: Illustration of the proof of Lemma 1

When several players (say i and j) play simultaneously, the
corresponding simultaneous best response operator is

BR{i,j}(x)
def
= arg max

(αi,βj)∈A2

F (αi, βj ;x−i−j).

The corresponding state is

∆{i,j}(x)
def
= (x0, . . . , αi, . . . , βj , . . . , xn−1),

where αi and βj are the argmax in the previous equation.

Lemma 1 If two players i and j are indifferent, then
∆i(∆j(x)) = ∆j(∆i(x)) = ∆{i,j}(x).

Proof: Let us consider the potential matrix restricted to
two independent players as illustrated by Figure 2. Player 1
acts on the first coordinate (lines), and player 2 chooses the
second coordinate (columns). By definition of indifference,
starting from any state A and letting Player 1 play before
Player 2 or Player 2 play before Player 1 leads to the same
state B in the figure.

Let us suppose that state B (best-response state after 1 and
2 have played) does not have the global optimum potential
over the whole matrix, the state with optimal potential being
state C. Now, if C and B have distinct second coordinates, let
us start the game from another state, D with first coordinate
and second coordinate in common with A and C respectively.
If we let Player 2 act first, followed by Player 1, we should
end again in B. By indifference, the same state B is reached
when Player 1 plays before the Player 2. The intermediate
state (E) is thus the best response of Player 1 in D. It has a
larger potential than any state on the same column, including
C. This implies that C cannot be the global optimum.

B. Example: Routing Games

One of the main classes of potential games are routing
games. Let (V,E) be a communications network over a set V
of nodes and a set E of bi-directional communication links,
over which we consider the following multi-commodity flow
problem. A set of flows of packets must be routed over the
network. Each flow (considered as a player) is characterized
by a source-node, a destination-node and a nominal arrival
rate of packets. Also, each flow is assigned a set of paths in
the network from its source to its destination. Configuration
are choices of one path per flow. For each flow (player), the
payoff (or cost here) is the delay on its chosen route.

This corresponding game is an atomic non-splittable rout-
ing game. It is a potential game if the delay on each link only



Fig. 3: A routing game made of one central (horizontal) flow
with two possible routes (up or down) against n−1 transversal
(vertical) flows, each with two routes (left or right). The routes
of the central flow share two hops with each transversal flow,
but the routes of transversal flows do not intersect each other.

Fig. 4: Interaction graph of the routing game displayed in
Figure 3, with a minimal coloring (red for the central player
and black for all other players).

depends on the number of players using it. In such a game,
two players whose paths do not intersect are independent,
according to our definition. Furthermore, two players are also
independent if any path with common nodes is less efficient
in all configurations than another path for both players. For
illustration purposes, we will consider a specific routing game,
where n − 1 players choose between a left path and a right
path, with no intersections, and one additional player, called
central player, chooses between two paths, each intersecting
all paths of the other players, as seen in Figure 3. The
interaction graph of this game is shown in Figure 4.

C. Parallel Best Response using Coloring

One can exploit the commutativity of independent players
by making them play simultaneously. For that, one can pre-
compute a covering of the interaction graphG by independent
sets1 and in the algorithm BRA one can activate players in
groups (one group being a set of the covering). This version
of BRA will converge at least as fast as a game without
indifference but with only as many players as there are sets in
the covering. One can use a coloring of the interaction graph
with a minimal number of colors to get the smallest number
of groups of players.

Theorem 4 Under minimal coloring of the interaction graph
G, the reaching and execution times of Algorithm 3 satisfy

E[R
(3)
RR] = δBR(eγ − 1)χ(G) + o(χ(G))

E[T
(3)
RR] = δBRe

γχ(G) + o(χ(G))

where χ(G) is the chromatic number of the interaction graph
G and δBR is, as before, the complexity of one call to the
function BR.

1in a graph, an independent set is a set of nodes not inter-connected by any
edge

Algorithm 3: Parallel Best Response Algorithm with
simultaneous plays

1 Input: Game utilities (uk(·)); Initial state (x := x(0));
2 Construct a coloring of G and fix a round robin sequence

of colors;
3 repeat
4 Pick next color c
5 foreach player in c in parallel do
6 choose the action that maximizes payoff

7 until convergence;

Proof: A direct consequence of the definition of indiffer-
ence and of Lemma 1 is that when several indifferent players
act simultaneously, they reach the state of maximal potential
among them, as if they had played one after the other in any
order.

This shows that if the interaction graph is colored and if BR
is used by all players with the same color simultaneously, the
behaviour is the same as in a new game where players are the
colored sets (called super-players in the following). The call
of best response for these super-players is merely the parallel
call to best response for each player of the set, and hence it still
costs only δBR. This allows us to use Equations (1) and (2) on
the new game to assess its complexity.
If the minimal coloring is replaced by a smallest cover with
maximal independent sets, the performance is further im-
proved.

The interaction graph of our example (Figure 4) is 2-
colorable. In this case, Algorithm 3 alternates between the
central player alone, and all other players together. The av-
erage convergence time is constant, equal to 2eγδBR.

D. Distributed Best Response

We now consider indifferent players in a distributed context
(each player plays independently), under the assumption that
interacting players can communicate, namely the communi-
cation graph is equal to the interaction graph.

In our running example, we can see that the assumption that
the communication graph is equal to the interaction graph is
satisfied: Since they share a common node in the network, two
neighbors can communicate with each other by using a path
connecting them.

We also consider the case where collisions can occur in
the following sense: if one player starts to play (computes
her best response) while another player is still computing her
best response, then the output is as if the two players had
played simultaneously. If two or more indifferent players play
in collision, then the result is the same as if they were not in
collision. This implies that collisions should only be avoided
between neighbors.

At this point, one can use the fact that neighbors can
communicate to implement a lock between then to prevent
collisions. There are many possible tools to do so, that may
depend on the game and on the context. A possible method
is shown in Algorithm 4. Whenever a player wakes up, she



first sends a lock message to all neighbors to prevent them
from playing, then she calls the function BR, before finally
releasing the lock on the neighbors so that they can be active
again. This guarantees that only independent players will act
together, at the cost of communication and a portion of time
being locked.

We present Algorithm 4 without a termination test: players
reach a Nash equilibrium in finite time, and then keep run-
ning the algorithm although not changing action any more.
A termination test can be added, with the technique from
Algorithm 2, but it requires coordinated communication.

Algorithm 4: Network Distributed Best Response Algo-
rithm

1 Input: Game utilities (uk(·)); Initial state (x := x(0));
2 Variables : One local Poisson clock per player
3 foreach player k do
4 Boolean table L indexed by the neighbors (initialized

by 0).
5 foreach received message m do
6 if(m = lock i) then L[i]← 1
7 else if(m = unlock i) then L[i]← 0

8 foreach Poisson tick do
9 if ∀i, L[i] = 0 then

10 Send lock k to all neighbors
11 Choose the action that maximizes payoff:

xk := BRk(x)
12 Send unlock k to all neighbors

In our running example, the central player is the only
neighbor of every other player. When a peripheral player is
active, she will only block the central one for the duration of
her play, so a large level of parallelism is preserved.

E. Graph-Dependent Playing Rates

In Algorithm 4 we only consider homogeneous playing
rates for all players. When the interaction graph G is highly
asymmetrical (as in our running example), one might think
that it could be better to adapt the playing rate to the structure
of the game graph (e.g., to the number of neighbors). To test
the validity of this intuition, we have run Algorithm 4 over
10,000 random instances of our running example for each
value of the playing rate of the central player. The playing
rate of all players is fixed to λ1 = 1, while the playing rate
λ0 of the central player ranges from 0.1 to 9. In Figure 5
we report the empirical mean execution/reaching times (95%
confidence intervals are too small to be seen). One can see
that the performance of the algorithm is rather insensitive
to the relative speed of the players when the extreme cases
are avoided: It should be clear that when λ0 goes to 0 or to
infinity, the execution time goes to infinity (when λ0 goes to
0, the central player almost never plays and when λ0 goes
to infinity, the central player almost always puts a lock on
the other players). One can notice that the homogeneous case
(λ0 = λ1 = 1), corresponding to a relative speed ( λ0

λ0+λ1
)
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Fig. 5: Mean execution time and reaching time of Algorithm 4
over 10,000 random samples of the routing game displayed in
Figure 3, when the relative speed of the central player ( λ0

λ0+λ1
)

ranges from 0.1 to 0.9.

of the first player equal to 0.5, is almost optimal in spite of
the heterogeneity of the interaction graph. The optimal rate is
obtained when the relative speed is ≈ 0.65, i.e., λ0 ≈ 1.8.

V. CONCLUSION

We have shown that Best Response Algorithm is robust
to being distributed using Poisson clocks, if collisions are
neglibile. Future work will consider non-negligible collisions,
i.e., Poisson clocks with high rate. For network games, we
have modified BRA, exploiting the graph of interactions.
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