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Abstract. Attack–defense trees are a simple but potent and efficient
way to represent and evaluate security scenarios involving a malicious
attacker and a defender – their adversary. The nodes of attack–defense
trees are labeled with goals of the two actors, and actions that they need
to execute to achieve these goals. The objective of this paper is to provide
formal guidelines on how to deal with attack–defense trees where several
nodes have the same label. After discussing typical issues related to such
trees, we define the notion of well-formed attack–defense trees and adapt
existing semantics to correctly capture the presence of repeated labels.

1 Into the Wild: Introduction

Security analysis and risk assessment are essential to any system facing potential
threats. Attack–defense trees allow the security experts to represent and assess
the system’s security, by illustrating different ways in which it can be attacked
and how such attacks could be countered. Formally speaking, attack–defense
trees are simple AND-OR trees, but their strength and expressive power relies
on intuitive labels that decorate their nodes. These labels describe what the
attacker and the defender need to do to achieve their goals, i.e., to attack and
defend the system, respectively.

To provide accurate evaluation results, an attack–defense tree must be as
precise and versatile as possible. Yet, no hard rules exist on how to label their
nodes. To be able to exploit the graphical aspects of attack–defense trees, experts
tend to prefer laconic labels which are often too short to fully express the desired
meaning. Furthermore, attack–defense trees are frequently reused from one sys-
tem to another, they may be borrowed from generic libraries of standard attack
patterns, and are usually constructed by merging subtrees devised by several ex-
perts, not necessarily communicating with each other. Due to all these reasons,
it is not rare to find identical labels on separate nodes in an attack–defense tree.

The aim of this work is to formalize attack–defense trees with repeated labels
and develop guidelines to handle them properly. We distinguish between simple
mislabeling, and cases where the nodes should indeed have the same label. For



the latter, we bring out some important differences, and propose solutions more
elaborate and less problematic than simply modifying the labels to make them
all unique in a given tree. Our specific contributions are as follows

1. Repeated labels: we classify repeated labels according to their meaning and
propose a new labeling format to properly handle trees with repetitions.

2. Well-formedness: we study frequently observed problems related to misla-
beling and introduce a notion of well-formed trees to address them.

3. Formal basis: we adapt existing formal semantics for attack–defense trees to
make sure they are in line with the new labeling scheme that we propose.

4. Quantification: we finally show how to preform quantitative analysis using
well-formed attack–defense trees.

Related Work. The attack–defense tree’s origins lie in attack trees, introduced in
1999 by Schneier to represent attack scenarios in the form of AND-OR trees [15].
Nowadays, there exist numerous variants of attack trees [9], some of which are
popular and widely used in the industry to support real-life risk assessment
processes [5,13]. Attack–defense trees extend the classical attack trees by com-
plementing them with the defensive point of view [7]. They aim to represent
interaction between the attacker and the defender, to give a more precise image
of reality.

Although, in practice, attack tree-based models often possess multiple nodes
with the same labels, not much fundamental research exists on the topic. From
the formal perspective, a semantics based on multisets has been used in [12]
and [7] to interpret an attack tree and respectively an attack–defense tree with
a set of multisets representing potential ways of attacking a system. This ap-
proach supposes that every node with the same label is a separate action to
be executed. On the contrary, other works formalize attack tree-based models
with propositional formulæ where, due to the use of the logical conjunction and
disjunction which are idempotent, all repetitions are ignored [16,10].

Repeated labels might have an impact on quantitative analysis of attack
trees. The standard, bottom-up algorithm for quantification, recalled in Sect. 2.3,
treats all repeated nodes as separate events [8]. Since quantifying trees with
repeated nodes may increase the complexity of the underlying algorithms, some
authors, e.g., Aslanyan et all in [1] restrain their considerations to linear trees,
i.e., trees with no label repetition, to gain efficiency. The authors of [14] go even
further, and provide two variants of an algorithm for the probability computation
on attack-countermeasure trees4 with and without repeated nodes. Finally, most
of the works do not consider repetitions explicitly but rather assume that all
nodes (including those with the same labels) represent independent events [2,11].

We believe that both approaches – treating all nodes as independent or ignor-
ing repetitions – are too restrictive. The objective of the formalization proposed
in this work is to accommodate both of these cases and thus allow for a more
faithful modeling of the reality.
4 Attack-countermeasure trees are yet another security model based on attack trees.
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Finally, studying the problem of labels’ repetition led us to propose the notion
of well-formedness for such trees. Previously, well-formedness of attack(–defense)
trees has been addressed in various ways. In [1], attack–defense trees are formal-
ized as typed terms over actions of the attacker and the defender, and well-formed
trees are simply identified with the well-typed ones. In [3], Audinot et al. an-
alyze the problem of well-formedness (that they call correctness) of an attack
tree with respect to the modeled system. They focus on the well-formedness of
the tree refinements by introducing four correctness properties which allow them
to express how well an AND/OR combination of the child nodes represents the
goal of the parent node. The objective of the well-formedness developed in our
work, and defined in Definition 5, is to capture the intuitive construction of a
security scenario represented as an attack–defense tree, in a formal way.

2 Know the Flora: Attack–Defense Trees

We start by briefly introducing the attack–defense tree model and summarizing
the state of the art on its existing formal foundations. We especially focus the
attention on aspects that may influence the meaning and the treatment of trees
with repeated labels. For more detailed information on attack–defense trees,
their semantics, and their quantitative analysis, we refer the reader to [7].

2.1 The Model

An attack–defense tree (ADTree) is a rooted tree with labeled nodes, aiming to
describe and evaluate security scenarios involving two (sets of) competing actors:
the attacker trying to attack a particular system5 and the defender trying to
protect it against the potential attacks. Labels of the nodes represent the goals
that the actors must achieve. Each node has one of two types – attack (red circle)
or defense (green rectangle) – depending on which actor’s goal it illustrates.
The nodes of an ADTree can have any number of children of the same type.
These children represent the refinement of the parent’s goal into subgoals. The
refinement can be disjunctive (OR node) or conjunctive (AND node). To achieve the
goal represented by an OR node, it is necessary and sufficient to achieve at least
one of the subgoals represented by its children. To achieve the goal represented
by an AND node, it is necessary and sufficient to achieve all of the subgoals
represented by its children. To graphically distinguish OR from AND nodes, we
use an arc to connect the children of the AND nodes. The nodes that do not
have any children of the same type are called non-refined nodes. Their labels
represent the so called basic actions, i.e., the actual actions that the actors need
to execute to achieve their (sub)goals. Finally, each node of an ADTree can also
have at most one child of the opposite type, which represents a countermeasure,
i.e., a goal of the other actor, the achievement of which disables the goal of the
node. Graphically, countermeasures are connected to the nodes they counter by
dotted edges. A countermeasure can, in turn, be refined and/or countered.
5 The system can be an infrastructure, a computer program, an organization, etc.
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Remark 1. Note that the root node of an ADTree can be of the attack or the
defense type. The actor whose goal is represented by the label of the root node
is called the proponent, and the other one is called the opponent. In practice, the
proponent is the attacker, in most cases.

Example 1. Fig. 1 shows a simple example of an ADTree. In this scenario, the at-
tacker (proponent) is a student who wants to pass a multiple choice test examina-
tion. To be sure that she will answer all questions correctly, she needs to learn the
exam questions and get the solutions in advance, in order to memorize the cor-
rect answers. She can get a copy of the exam by accessing the teacher’s computer,
finding the file containing the questions, and storing it either by printing it or by
saving it on a USB stick. She can proceed in a similar way to get a copy of the file
with the solutions, which is located on the same computer. However, to better
protect his exam, the teacher (opponent) could archive and encrypt the solu-
tions’ file using PKZIP [6]. The student would then need to break the encryption,
for example using the CrackIt tool [17], to be able to access the solutions.

exam attack

get exam

access
laptop

find
exam

store
exam

print save on usb

get solutions

access
laptop

find
solutions

store
solutions

print save on usb encrypt

break

memorize solutions

Fig. 1: An ADTree for passing the examination

Since, in ADTrees for real-life scenarios, the number of nodes tends to grow
drastically, the graphical representation, as used in Fig. 1, is often not the most
appropriate one. To formally describe and manipulate ADTrees, we therefore
introduce an alternative, term-based notation.

Let B be the set of all basic actions. We assume that the elements of B are
typed, i.e., that B is partitioned into the basic actions of the proponent Bp and
those of the opponent Bo. The ADTrees are generated by the following grammar

T s : bs | ORs(T s, . . . , T s) | ANDs(T s, . . . , T s) | Cs(T s, T s̄), (1)
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where s ∈ {p, o}, p̄ = o, ō = p, and bs ∈ Bs. Whenever the type s of a basic
action bs is clear from the context, we omit the superscript s to simplify the pre-
sentation. Note that, as explained in [7], a term of the form Cs(T s

1 , T
s̄
2) represents

the ADTree obtained from attaching (using a dotted edge) the tree T s̄
2 to the

root of the tree T s
1 .

According to Remark 1, terms of the form T p represent ADTrees, since the
label of the root node always illustrates the proponent’s goal. In the rest of
this paper, we identify an ADTree with its corresponding term. The set of all
ADTrees is denoted by T.

Example 2. The term representation of the ADTree from Fig. 1 is the following

ANDp
(

ANDp
(

lapt, ex, ORp(pr, usb
))
,

ANDp
(

lapt, sol, Cp(ORp(pr, usb), Co(enc, break)
))
, memo

)
.

2.2 Existing Semantics for ADTrees

It is well-known that two security experts may produce two visually different
ADTrees to represent the same security scenario. The simplest (but far from
the sole) example of this situation are the two trees T = ANDp(card, pin) and
T ′ = ANDp(pin, card). Here, the objective of the proponent is to get the necessary
credentials to withdraw money from a victim’s account. The order in which the
proponent obtains the card and the corresponding pin is not relevant – the only
thing that matters is that eventually, he gets both: the card and the pin.

To formally capture the notion of equivalent ADTrees, formal semantics for
ADTrees have been introduced. Different semantics focus on different aspects
(e.g., order of actions, their multiple occurrences, or cause-consequence relation-
ships) and allow to partition the set T into equivalence classes according to these
aspects. This is achieved by assigning mathematical objects to ADTrees, for in-
stance propositional formulæ or multisets of basic actions, in such a way that
trees representing the same scenario are interpreted with the same object. It is
important to note that two trees may represent the same situation with respect
to some aspects, i.e., be equivalent in one semantics, but differ substantially
when other aspects are taken into account. Formal semantics also facilitate the
reasoning about ADTrees, because they reduce it to the analysis of the corre-
sponding mathematical objects. In general, any equivalence relation on T can be
seen as a semantics for ADTrees.

Definitions 1 and 2 recall two major semantics for ADTrees – the proposi-
tional and the multiset semantics. Full details can be found in [7].

Definition 1. The propositional semantics for ADTrees is a function P that
assigns to each ADTree a propositional formula, in a recursive way, as follows

P(b) = xb, P(ORs(T s
1 , . . . , T

s
k)) = P(T s

1) ∨ · · · ∨ P(T s
k),

P(Cs(T s
1 , T

s̄
2)) = P(T s

1) ∧ ¬P(T s̄
2), P(ANDs(T s

1 , . . . , T
s
k)) = P(T s

1) ∧ · · · ∧ P(T s
k).
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where xb, for b ∈ B, is a propositional variable. Two ADTrees are equivalent wrt
P if their interpretations are equivalent propositional formulæ.

The recursive construction from Definition 1 starts by assigning a proposi-
tional variable to each basic action b ∈ B. This means that if a tree contains
two nodes having the same label, these nodes will be interpreted with the same
propositional variable. In addition, the logical disjunction (∨) and conjunction
(∧) used to interpret the refined nodes are idempotent. This implies that the
propositional semantics P is unable to take the multiplicity of actions into ac-
count, as illustrated in Example 3.

Example 3. Consider the student/teacher scenario from Example 1. In order to
access the teacher’s laptop, the student would need to access the teacher’s office.
To do so, she needs to access the building – either by breaking-in through the
window or by picking the lock – and then access the office by picking its lock,
as illustrated in Fig. 2. When the propositional semantics is used, this tree is
equivalent to its simplified form composed of a single node lock-picking. This
is due to the absorption law which implies that f1 = (window∨pick)∧pick and
f2 = pick are equivalent formulæ. We discuss the link between the two trees in
more detail in Remark 2.

access office

access building

break window lock-picking

lock-picking

Fig. 2: ADTree for accessing office

Example 3 shows how the proposi-
tional semantics models that the execu-
tion of one of the repeated actions in the
tree activates all other occurrences of this
action in the considered scenario. In con-
trast, the multiset semantics, that we de-
note with M and briefly present below,
treats each repeated action as a separate
event. The multiset semantics has first
been introduced in [12] to formalize at-
tack trees and has then been extended to
ADTrees in [7]. This semantics interprets an ADTree with a set of pairs of the
form (P,O) of multisets6 describing how the proponent can reach the goal repre-
sented by the tree: the first multiset P consists of basic actions from Bp that the
proponent has to do, and the second multiset O contains basic actions from Bo

that the proponent must stop the opponent from performing. The construction
of M uses the distributive product ⊗ defined for two sets of pairs7 as:

S ⊗ Z = {(PS ] PZ , OS ]OZ)|(PS , OS) ∈ S, (PZ , OZ) ∈ Z},

where ] is the multiset union. Definition 2 formalizes the construction of M.

6 A multiset is a collection that allows multiple occurrences of an element.
7 ⊗ can be generalized on any finite number of set of pairs, in a natural way.
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Definition 2. The multiset semantics for ADTrees is a functionM that assigns
to each ADTree a set of pairs of multisets, as follows

M(bp) = {({|b|}, ∅)}, M(bo) = {(∅, {|b|})},

M
(
ORp(T p

1 , . . . , T
p
k )
)

=
k⋃
i=1
M(T p

i ), M
(
ORo(T o

1 , . . . , T
o
k )
)

=
k⊗
i=1
M(T o

i ),

M
(
ANDp(T p

1 , . . . , T
p
k )
)

=
k⊗
i=1
M(T p

i ), M
(
ANDo(T o

1 , . . . , T
o
k )
)

=
k⋃
i=1
M(T o

i ),

M
(
Cp(T p

1 , T
o
2 )
)

=M(T p
1 )⊗M(T o

2 ), M
(
Co(T o

1 , T
p
2 )
)

=M(T o
1 ) ∪M(T p

2 ).

Two ADTrees are equivalent wrt M if they are interpreted with the same set of
pairs of multisets.

Due to the use of multisets, the multiset semantics models that the execution
of one of the repeated actions has no effect on other occurrences of this action
in the considered scenario. In particular, the two trees considered in Example 3
are not equivalent when the multiset semantics is used. Indeed, the tree from
Fig. 2 is interpreted with the set {({|window, pick|}, ∅), ({|pick, pick|}, ∅)} and
the tree composed of a single node lock-picking with the set {({|pick|}, ∅)}.

Remark 2. The scenario considered in Example 3 shows that both semantics —
P and M — are useful. When the modeler is interested only in what skills are
necessary to perform the access office attack, then the propositional semantics
is sufficient. Here, we assume that the attacker who has lock-picking skills will
be able to use them at any time. However, if the goal of the security expert is to
enumerate and analyze the actual ways of attacking, then the multiset semantics
is the correct one to be used.

2.3 Quantitative Evaluation of ADTrees

To complete the overview of formal foundations for ADTrees, we briefly recall the
bottom-up procedure for their quantitative evaluation. The simple tree structure
of ADTrees can be exploited to easily quantify security scenarios. The security
expert’s objective might be to find out which way of attacking is the cheapest or
the fastest one, whether the proponent’s goal can be reached even in the presence
of some countermeasures deployed by the opponent, to estimate the probability
that the root goal will be achieved, etc. The idea is to assign values to the non-re-
fined nodes and then propagate them all the way up to the root, using functions
that depend on the refinement and the type of the node. This process is called
bottom-up attribute’s evaluation, and it is formalized in Definition 3. We refer
the reader to [8] for a detailed classification of existing attributes, and to [4] for
practical guidelines regarding the attributes’ evaluation on ADTrees.

Definition 3. Let Dα be a set of values. An attribute α is composed of
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– a basic assignment βα : B → Dα which assigns a value from Dα to every
basic action, and

– an attribute domain Aα = (Dα, ORp
α, ANDp

α, ORo
α, ANDo

α, C
p
α, C

o
α), where for

OPS ∈ {ORS, ANDS, CS}, OPS
α : Dk

α → Dα is an internal operation on Dα of
the same arity as OPS.

The bottom-up algorithm for α assigns values from Dα to ADTrees as follows

α(b) = βα(b), α
(
OPs(T s

1 , . . . , T
s
k)
)

= OPs
α

(
α(T s

1), . . . , α(T s
k)
)
.

Example 4 illustrates the evaluation of the minimal time attribute on the
ADTree from Fig. 1.

Example 4. Here, we are interested in the minimal time required for the stu-
dent to perform the exam attack illustrated in Fig. 1. First, we build the basic
assignment function βα which assigns a value (in minutes) to each basic action.8

goal βα
access laptop 45

find exam 5

goal βα
print 6

save on usb 1

goal βα
find solutions 5

memorize 90

goal βα
break 18

encrypt +∞

Table 1: Basic assignment for the minimal time attribute in the student attack

To propagate the values of minimal attack time up to the root node, the
following attribute domain is used Atime = (N ∪ {+∞},min,+,+,min,+,min).
The corresponding bottom-up computation is given in Fig. 3, and shows that
the student’s attack will take at least 210 minutes.

3 The Root of the Problem: Common Issues

Although constructing an ADTree seems to be a simple and intuitive task, this
process may suffer from several issues. They are related to the completeness or
correctness of the models. One of the important sources of modeling problems is
a presence of multiple nodes having the same label. In this section, we illustrate
the most common mistakes made while creating ADTrees and provide hints to
avoid them. This is the first step towards the notion of well-formed ADTrees
formalized in Sect. 5.

3.1 Incomplete Refinement

As we have explained in Sect. 2, the children of a refined node represent subgoals
that need to be achieved so that the goal of the node is achieved. Fig. 4a shows
an example of a tree where in order to access the teacher’s computer, the student
needs to get their username and password. This example presents a problem of
8 The +∞ value assigned to the basic actions of the defender signifies that the attacker

cannot successfully perform these actions, see [8] for a detailed explanation.
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exam attack
210

get exam
51

access
laptop

45

find
exam

5

store
exam

1

print
6

save on usb
1

get solutions
69

access
laptop

45

find
solutions

5

store
solutions

19

print
6

save on usb
1

encrypt
+∞

break
18

memorize solutions
90

Fig. 3: Minimal time for the student to perform the exam attack

incomplete refinement, as getting the username and the password is not sufficient
to access the computer – the action of actually accessing the machine is also
necessary. The corrected tree is given in Fig. 4b.

The aim of this example is to illustrate that the label of a refined node
cannot represent any additional action to be executed along those already rep-
resented by its children. This label is just a short description replacing but not
complementing the refinement of the node. Note that this is due to the way in
which the formal semantics for ADTrees work: the meaning of a refined node is
fully expressed as the combination of its children. Similarly, in the case of the
bottom-up quantification of ADTrees, the value of a refined node is computed
as the combination of the values of its children.

access laptop

username password

(a) Incomplete refinement

access laptop

username password access

(b) Complete refinement

Fig. 4: Well-formedness and refinements

Hint 1: One can easily check whether all nodes of an ADTree are fully refined
by hiding the labels of the refined nodes and judging whether the corresponding
goal is achieved, or if additional children nodes need to be added.
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3.2 Misplaced Counter

A second frequent mistake is to misplace a counter node. Consider the tree from
Fig. 5a, where in order to get the teacher’s password, the student can find a
post-it where the password has been written, or perform a brute force attack.
In order to prevent the first attack, a security training could be offered to the
teachers to advise them against writing down their passwords. The student could
in turn overcome the security training by social engineering the teacher to reveal
the password. Note, however, that by social engineering the teacher, the student
would already achieve the get password goal. In the case of this tree, the social
engineering node is not a counterattack to security training. It is actually yet
another option to get the teacher’s password. The correct tree should therefore
look like the one in Fig. 5b. A simple analysis of the two trees from Fig. 5
shows that they are not equivalent in any semantics. Similarly, the bottom-up
algorithm would give different quantitative results on these two trees.

get password

post-it

security training

soc. engineering

brute force

(a) Incorrect counterattack

get password

post-it

security training

brute force soc. engineering

(b) Correct tree

Fig. 5: Well-formedness and counter placement

Hint 2: A countermeasure node of type s is correctly placed if its achievement
disables the goal of the node of type s̄ it is supposed to counter.

3.3 Repeated Labels

Due to the fact that ADTrees are often reused to model similar situations and
that libraries of standard attacks might be used to ease the creation of an
ADTree, it is not rare to see trees that contain several nodes having the same
label. In this case, the modeler needs to ensure that the same labels really rep-
resent the same goals to be achieved. As a consequence, subtrees rooted in the
nodes having the same label need to have the same refining subtrees. More pre-
cisely, the subtrees rooted in these nodes, and obtained by removing all nodes of
the other type, should be equivalent with respect to the semantics that is used.
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Hint 3: If two nodes in an ADTree have the same labels but their refining
subtrees are not equivalent with respect to the considered semantics, then
– If the subgoals represented by the refinement of each of these nodes actually

apply to the other one as well, then the refining nodes present in only one
of the subtrees should be added to the other one and the labels of the two
nodes stay unchanged.

– If at least one subgoal does not apply to both nodes, the corresponding goals
are not identical, and at least one of the labels should be modified. Note that
it does not, however, mean that these goals cannot have common subgoals.

3.4 Repeated Basic Actions

Finally, we need to ensure that nodes labeled with the same basic action represent
the same actions to be executed. This implies that, if two non-refined nodes have
the same label, then there must not exist any attribute for which they have a
different value. If there is at least one attribute that differentiates them, then the
basic actions they represent are not identical, and should therefore be modeled
with different labels. For instance, if we assume that the exam considered in the
tree from Fig. 1 is a multiple choice test composed of five pages of questions,
the two print nodes should not have the same label, because printing the exam
would take more time than printing just the solutions that fit on one page.

Hint 4: To decide whether the non-refined nodes are correctly labeled, the mod-
eler should ensure that, for every attribute α that will be considered, all nodes
with the same label are indeed getting the same value by the assignment βα.

4 Poisonous or Edible: ADTrees with Repeated Labels

As we have seen in Sect. 3, ADTrees may contain several nodes with identical
labels. In this section, we propose a methodology to handle such trees properly.
We first discuss different origins of repeated labels, and then propose solutions
to avoid an incorrect labeling that could lead to miscalculations.

4.1 Meaning of Repeated Labels

While analyzing ADTrees for real-life scenarios, one can observe that there are
two kinds of nodes with repeated labels. We call them cloned nodes and twin
nodes. We explain the difference between them below. To clarify the explanation,
we say that the node has been activated if the goal represented by its label is
achieved by the corresponding actor. When the goal of a node has been countered
by the other actor, we say that the node has been deactivated.

Cloned nodes – when activating one node means activating another one hav-
ing the same label, we say that the two nodes are cloned. This means that
cloned nodes represent exactly the same instance of an action, so deactivat-
ing one of the cloned nodes deactivates all its clones.

11



Twin nodes – when activating one node does not activate another one having
the same label, we say that the two nodes are twins. This means that each
individual twin node represents a separated instance of the same action, thus
all twin nodes having the same label need to be deactivated separately.

Example 5. Consider the scenario from Example 1 illustrated in Fig. 1. The
two access laptop nodes are cloned: since the exam and the solution files are
stored on the same laptop, accessing the laptop needs to be done only once. In
contrast, the two save on usb nodes are twins: obviously, saving the exam file
on a usb stick does not result in saving the solution file, and vice versa. Note
that one could dispute the fact that the two save on usb nodes have the same
label, but according to Hint 4, this is correct. Even though the solution and the
exam are two different files, they have roughly the same size and will therefore
take the same time to be copied to the usb stick. Every other attribute gives
unquestionably the same value.

Existing semantics for ADTree have a rather restrictive view on ADTrees
with repeated labels. The propositional semantics acts as if all nodes having
the same labels were cloned: the labels of non-refined nodes are interpreted
as propositional variables and idempotent logical operators (∨,∧) are used to
interpret the refinements. In contrast, the multiset semantics assumes that all
nodes with repeated labels are twins: due to the use of the multisets, where
the multiplicity of elements in the collection is relevant, each node is viewed as
representing a separate instance of an action. In practice, however, the same
scenario may contain both cloned and twin nodes, as illustrated in Example 5.
To overcome this issue and accommodate cloned and twin nodes, we propose a
more precise labeling scheme, that we present in Sect. 4.2.

4.2 Extended Labeling for ADTrees with Repetitions

A naive solution would be to relabel all twin nodes to remove repetitions. This
would make the use of the propositional semantics possible, but this solution is
not preferred due to the following issues

– It would prohibit the re-use of models created for similar scenarios, and make
the use of libraries of standard attacks more complex.

– Since the number of possible labels, i.e., the size of B, would increase, the
effort of defining βα would be (unnecessary but inevitably) greater. E.g., in-
stead of providing one single value to quantify the complexity of brute forcing
a 15 char password, one would need to define two values: for brute force
a 15 char pwd for a laptop and for brute force a 15 char pwd for
a smartphone. However, these two values would obviously be the same.

– Relabeling could result in peculiar, non-intuitive labels, which could have
a disadvantageous influence on the tree analysis, especially regarding the
estimation of the values for basic actions, i.e., definition of βα.

– Finally, the cloned nodes would still be considered multiple times when the
multiset semantics would be used.
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To bypass the above issues, we propose a solution which relies on labels being
pairs in G × Γ , where G is a typed set of goals containing B and Γ is a finite
set of indices. Instead of label g, a pair (g, γ) is used. Its first component g ∈ G
describes the goal to be achieved and the second component γ ∈ Γ is an index
which allows us to distinguish between cloned and twin nodes.

Definition 4. Let T be an ADTree whose nodes are labeled with the elements
of G×Γ , and consider two nodes having the same goal g, i.e., labeled with (g, ι)
and (g, γ), respectively. If ι = γ, then we say that the two nodes are cloned; if
ι 6= γ, then we say that the two nodes are twins (or twin nodes).

(access office, ι)

(access building, ι)

(break window, ι) (lock-picking, ι)

(lock-picking, γ)

Fig. 6: Extended labeling of ADTree nodes

From now on, the word
label stands for the pair of
the form (g, γ) and g is
called its goal. Note that,
since goals are typed, the set
G is partitioned into goals
of the proponent’s type (Gp)
and those of the opponent’s
type (Go). However, if this
does not lead to confusion,
we omit the superscript de-
noting the goal’s type.

Example 6. While using the extended labeling based on pairs, the tree from
Fig. 2 is relabeled as shown in Fig. 6. It is now clear that (lock-picking, ι) and
(lock-picking, γ) represent two separate instances of picking a lock, as ι 6= γ.

5 Survival Kit: Well-formed ADTrees

The purpose of ADTrees is to represent and analyze the security scenarios in a
rigorous way. In order to obtain meaningful analysis results, an ADTree must
model the reality in the most faithful way possible. To achieve this, we have de-
veloped a set of rules that guide the security expert in creating well-formed trees.
This is feasible thanks to the new labeling introduced in Sect. 4, which undoubt-
edly increases the expressive power of ADTrees. In this section, we formalize the
notion of well-formed ADTrees that overcome the typical problems illustrated in
Sect. 3. Then, we explain how to use them correctly, by adapting previously seen
formal semantics and the quantification algorithm to our pair-based labeling.

5.1 Definition of Well-formed ADTrees

To be able to address the issues presented in Sect. 3, we first extend the gram-
mar (1) so that the generated terms capture the labels of the refined nodes:

T s : (bs, γ) | ORs[(g, γ)](T s, . . . , T s) | ANDs[(g, γ)](T s, . . . , T s) | Cs(T s, T s̄), (2)
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where s, s̄ ∈ {p, o}, bs ∈ B, and g ∈ G are goals of refined nodes. The term
starting with C does not mention any label, since the goal of the root node
expressed by the term Cs(T s

1 , T
s̄
2) is contained in the label of the root node of T s

1 .
The presence of extended labels in the terms generated by grammar (2) allows

us to explain the meaning of refinement and counter, formalize the hints from
Sect. 3.1–3.3, and differentiate between the cloned and the twin nodes. This is
captured by the notion of well-formed ADTrees that we introduce in Definition 5.
Note that, identifying well-formed ADTrees with the well-typed ones, as in [1], is
not sufficient for our work, in particular because it does not capture the problems
described in Sect. 3. Indeed, all trees considered in that section are well-typed,
but we have shown that they suffer from multiple construction drawbacks that
could hinder the security analysis. We therefore believe that the definition of
well-formed ADTrees needs to take into account the labels of every node (not
only the non-refined ones), the semantics that will be used for the tree analysis,
and the attribute domains for the considered attributes.

Definition 5. Let T be an ADTree generated by grammar (2). ADTree T is
said to be well-formed if and only if the type of its root node is p (proponent)
and all of the following conditions are satisfied for all of its subtrees Y , where
gi denotes the goal of the root node of Yi.

1. The meaning of OR
Let Y = ORs[(g, γ)](Y s

1 , . . . , Y
s
k ). The goal g is achieved if and only if at least

one of the subgoals gi is achieved.
2. The meaning of AND

Let Y = ANDs[(g, γ)](Y s
1 , . . . , Y

s
k ). The goal g is achieved if and only if all of

the subgoals gi are achieved.
3. The meaning of C

Let Y = Cs(Y s
1 , Y

s̄
2 ). If g2 is achieved then g1 cannot be achieved.

4. Cloned and twin nodes
Let I be a semantics that will be used for the analysis of T and assume that
T contains two subtrees of the form Yi = OPs

i [(gi, γi)](Yi1 , . . . , Yik ), where
OPs
i ∈ {ORs, ANDs}, for i ∈ {1, 2}. Let Yi|s denote the term obtained from

Yi by recursively replacing all of its subterms of the form Cs(Ui1 , Ui2) by
Ui1 .9 If g1 = g2, then I(Y1|s) = I(Y2|s), i.e., the subtrees refining g1 and g2
are equivalent wrt I. Moreover, if (g1, γ1) = (g2, γ2), i.e., the corresponding
nodes are cloned, then I(Y1) = I(Y2).

5. Correct labeling
Let α be an attribute that will be used for the analysis of T and assume that
T contains two subtrees of the form Yi = OPs

i [(gi, γi)](Yi1 , . . . , Yik ), where
OPs
i ∈ {ORs, ANDs}, for i ∈ {1, 2}. Additionally, let Yi|s be as in the previous

item. If g1 = g2, then α(Y1|s) = α(Y2|s). Moreover, if (g1, γ1) = (g2, γ2),
i.e., the corresponding nodes are cloned, then α(Y1) = α(Y2).

Rules 1 and 2 guarantee the correctness and completeness of refinements.
They implement Hint 1 from Sect. 3. For instance, the tree from Fig. 4a is not
9 In other words, Yi|s is the tree Yi in which all countermeasures have been disregarded.
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well-formed, because it does not satisfy rule 2. Rule 3 is related to Hint 2. The
tree from Fig. 5a does not satisfy rule 3 because a successful social engineer-
ing attack does not counter the security training. Rule 4 formalizes Hint 3. It
makes sure that nodes with the same goals (in particular the twin nodes) have
equivalent refining subtrees and nodes with the same labels (goals and indices),
i.e., the cloned nodes, have equivalent subtrees (including countermeasures). In
particular, rule 4 forbids two cloned nodes from being placed on the same path
to the root node. Rule 5 corresponds to Hint 4. It ensures that nodes with the
same labels and non-countered nodes with the same goals always get the same
value when the bottom-up quantitative analysis is performed.

In Example 7, we modify the tree from Fig. 1 by extending its labels with the
second component, and renaming some of the goals to ensure the well-formedness
of the tree. We remark that the unique purpose of the index from Γ is to allow
the distinction between the cloned and the twin nodes having the same goal. If
two nodes have different goals, the fact that they have the same index does not
model any additional relationship between them.

Example 7. As already discussed in Example 5, the two access laptop nodes
are cloned. They therefore get the same index ι. Since printing the exam will
be substantially longer than printing the solutions, the two print nodes cannot
have the same goal. We therefore rename them to print exam and print sol.
The exam and the solutions differ in terms of the number of pages, nevertheless
the size of the corresponding pdf files is practically the same. Therefore, the two
save on usb nodes may keep the same goal, but their indices must be different,
as these nodes are twins. The updated well-formed ADTree is given in Fig 7.

5.2 Formal Semantics for Well-formed ADTrees

We now discuss the formal semantics for well-formed ADTrees labeled with pairs
from G× Γ .

Propositional semantics. We require that the propositional variables are as-
sociated with labels (i.e., pairs) and not only with goals. We therefore have
P((b, γ)) = x(b,γ), and the rest of Definition 1 stays unchanged. If the pair-based
labeling is adopted, then cloned nodes are represented with the same variable
and are only counted once in the semantics; twin nodes, in turn, correspond to
different variables, say x(b,γ) and x(b,γ′), and will thus be treated as separated
actions to be performed. The propositional semantics of a well-formed ADTree
T can be expressed as a formula in a minimized disjunctive normal form

P(T ) =
l∨
i=1

(( ni∧
j=1

x(pij ,γij)
)
∧
( mi∧
j=1
¬x(oij ,γij)

))
, (3)

where pij ∈ Bp, oij ∈ Bo, and ∀i,∀j, if j 6= j′, then (pij , γij) 6= (pij′ , γij′) and
(oij , γij) 6= (oij′ , γij′).
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Fig. 7: Well-formed ADTree for passing the examination
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Set semantics. The objective of using multisets in the semantics introduced in
Definition 2 was to be able to recall the multiplicity of the same goal. When the
labeling from G×Γ is used, the indices already take care of storing information
about which actions need to be repeated several times (twin nodes get different
indices) and which ones are only executed once (cloned nodes get the same
index). We therefore replace the multisets from Definition 2 with regular sets.
The corresponding semantics is formally defined in Definition 6, where

S � Z = {(PS ∪ PZ , OS ∪OZ)|(PS , OS) ∈ S, (PZ , OZ) ∈ Z},

for S,Z ⊆ Bp × Bo.
Definition 6. The set semantics for ADTrees labeled with pairs from G× Γ is
a function S : T → P

(
P(Bp × Γ ) × P(Bo × Γ )

)
that assigns to each ADTree a

set of pairs of sets of labels, as follows

S
(
(bp, γ)

)
=
{(
{(bp, γ)}, ∅

)}
, S

(
(bo, γ)

)
=
{(
∅, {(bo, γ)}

)}
S
(
ORp(T p

1 , . . . , T
p
k )
)

=
k⋃
i=1
S(T p

i ), S
(
ORo(T o

1 , . . . , T
o
k )
)

=
k⊙
i=1
S(T o

i )

S
(
ANDp(T p

1 , . . . , T
p
k )
)

=
k⊙
i=1
S(T p

i ), S
(
ANDo(T o

1 , . . . , T
o
k )
)

=
k⋃
i=1
S(T o

i )

S
(
Cp(T p

1 , T
o
2 )
)

= S(T p
1 )� S(T o

2 ), S
(
Co(T o

1 , T
p
2 )
)

= S(T o
1 ) ∪ S(T p

2 ).

The set semantics of a well-formed ADTree T can be expressed as follows

S(T ) =
l⋃
i=1

{( ni⋃
j=1
{(pij , γij)},

mi⋃
j=1
{(oij , γij)}

)}
. (4)

Note that expressions (3) and (4) correspond to the canonical form of an
ADTree in the respective semantics, i.e., the form that explicitly enumerates
possible ways to achieve the tree’s root goal, giving the minimum amount of in-
formation necessary to reconstruct an equivalent ADTree. Example 8 illustrates
the use of the set semantics on a well-formed ADTree.
Example 8. While interpreting the tree from Fig. 7 with the set semantics, we
obtain the following eight ways of performing the student attack:{(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (pr sol, ι)}, ∅
)
,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (usb, γ)}, ∅
)
,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (pr sol, ι)}, ∅
)
,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (usb, γ)}, ∅
)
,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (pr sol, ι)}, {enc}
)
,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (usb, γ)}, {enc}
)
,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (pr sol, ι)}, {enc}
)
,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (usb, γ)}, {enc}
)}
.
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The different attack options implement distinct ways of storing the exam and
the solution files, and depend on whether the solution file is encrypted or not.
The first four options correspond to the situation where the teacher can use
the encryption, because the student is prepared to break it. The last four cases
model that, in addition to the actions listed in the first set, the student should
also stop the teacher from encrypting the solution file.

The use of sets (instead of multisets) ensures that accessing the laptop is
performed only once. However, thanks to the use of different indices (ι and γ)
saving the exam and the solution files on a usb represent two different actions.

Quantitative analysis. If α is an attribute, the function βα is still of the form
βα : B → Dα, i.e., it does not take the indices into account, so two twin nodes
having the same goal will get the same value by βα. This way, the computational
burden of estimating values for similar basic actions is omitted. To ensure a cor-
rect handling of the cloned nodes, the value of attribute α must now be evaluated
on the semantics of the tree. Let Aα = (Dα, ORp

α, ANDp
α, ORo

α, ANDo
α, C

p
α, C

o
α) be an

attribute domain for α. If the propositional semantics (resp. the set semantics) is
used, then the evaluation of the tree whose interpretation is given by formula (3)
(resp. (4)) proceeds as follows

α(T ) = (ORp
α)li=1

(
Cp
α

(
(ANDp

α)ni
j=1βα(pij), (ORo

α)mi
j=1βα(oij)

))
. (5)

Example 9. Let us make use of the set semantics to evaluate the minimal time for
the exam attack on the well-formed tree from Fig. 7. We use the basic assignment
from Example 4, except for the two print nodes that now represent distinct basic
actions. We set βα(print exam) = 6 and βα(print sol) = 2, to model that
printing a longer document will take more time. The minimal time corresponding
to each attack option is as follows

(
{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (pr sol, ι)}, ∅

)
7→ 171,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (pr ex, ι), (usb, γ)}, ∅
)
7→ 170,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (pr sol, ι)}, ∅
)
7→ 166,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (break, ι), (usb, ι), (usb, γ)}, ∅
)
7→ 165,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (pr sol, ι)}, {enc}
)
7→ +∞,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (pr ex, ι), (usb, γ)}, {enc}
)
7→ +∞,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (pr sol, ι)}, {enc}
)
7→ +∞,(

{(lapt, ι), (ex, ι), (sol, ι), (memo, ι), (usb, ι), (usb, γ)}, {enc}
)
7→ +∞.

According to the formula from equation (5), we obtain that the time of the
shortest attack is min{171, 170, 166, 165,+∞} = 165, in contrast to 210 minutes
obtained for the non well-formed tree in Fig. 3. The reason is that the action
of accessing the laptop is now counted only once. This comparison shows that
distinguishing between different types of repeated nodes improves the accuracy
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of the attack–defense tree analysis. We finally remark that every attack option
where the second set is not empty gets value +∞. This models that these options
do not represent successful attacks, as they cannot be performed in finite time.

6 Back to Civilization: Conclusion

The goal of the work presented in this paper was to provide guidelines for prop-
erly handling attack–defense trees where several nodes have the same label. A
thorough analysis of numerous examples of such trees resulted in a classification
of the repeated nodes into two categories: cloned nodes and twin nodes. These
two kinds of nodes must be treated differently, because activating a cloned node
activates all other ones having the same label, while activating one of the re-
peated twin nodes does not have any influence on the other ones.

To formally capture the difference between the two cases, we have proposed a
new labeling scheme which complements the node’s goal with the information re-
garding which repeated nodes are cloned, and which ones are twins. Furthermore,
we have extended the classical grammar that generates ADTrees in a way that
includes the labels of the refined nodes. This enabled us to define well-formed
ADTrees, and formally specify their semantics. The definition of well-formedness
ensures that the trees are not only well-typed (with respect to the actions of the
proponent and the opponent), but also that they do not suffer from common
mistakes or omissions often made during the tree creation process.

Since attack trees are special cases of ADTrees, the solution elaborated in
this work directly applies to classical attack trees. We therefore hope that our
survival kit will be a valuable and practical help to security experts making use
of attack(–defense) trees to model and evaluate the security of their systems.

Repeated labels are just a special case of a much larger problem of dependen-
cies between nodes in ADTrees. In practice, different attacks may share some
but not all of the necessary actions, they may involve temporal or causal de-
pendencies between the actions of the two actors, etc. We are currently working
on extending the ADTree model with such dependencies in order to be able
to analyze scenarios involving sequences (instead of sets of) actions, as well as
distinguishing between preventive and reactive countermeasures.

Another aspect that we would like to study is the formulation of the goals in
ADTrees. Due to their conciseness, the labels are often imprecise or misleading.
In addition, several formulations in the natural language might correspond to
the same goal. A methodology to devise precise labels and to decide which for-
mulations are equivalent should be developed, so that the nodes with different
but equivalent labels can be treated in the same, and if possible automated, way.

Acknowledgments We would like to thank Wojciech Wide l for the very fruitful
discussions on the meaning of countermeasures in ADTrees, which allowed us to
improve the approach developed in this paper.
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