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Multilevel strategies for parametric shape

optimization in aerodynamics

Badr Abou El Majd Jean-Antoine Désidéri

Régis Duvigneau

1 Introduction, hierarchical approaches in anal-

ysis and design

In recent years, the achievements in Computational Fluid Dynamics (CFD)
have opened the way to optimization, mostly shape-optimization, and design
in compressible aerodynamics and coupled disciplines. Aerodynamic design is a
field at the interface between several classical disciplines and in which numerical
simulations require assembling a number of technical elements either related to
geometry (mesh and/or CAD), solvers for a detailed analysis of the physical
situations, optimizers to devise a convergent loop permitting to optimize, or
simply improve one or more performance indices, or software engineering. Thus,
a number of acute topics in numerical analysis, multi-disciplinary engineering
and software development are raised by these problems. These include non
exhaustively the following:

• multi-disciplinary-optimization (MDO) or concurrent engineering from both
technical and organizational viewpoints (design platforms);

• treatment of multi-criterion problems: identification of Pareto fronts, dy-
namic games;

• model reduction, meta-models and sensitivity analysis (response surface,
Kriging, artificial neural networks);

• cost-efficient optimizers (BFGS, SQP, etc.);

• robust optimizers for multi-modal or non-differentiable optimization prob-
lems (evolutionary computing: genetic or particle-swarm algorithms, etc.);
and hybridization with deterministic optimizers;

• software engineering: automatic-differentiation, code coupling; parallel
and asynchronous algorithms;

• CAD and parameterization in shape optimization, and interface with mesh
generation and adaptation.
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Hence the field of optimum-shape design in aerodynamics is unsurprisingly
very active, as the program of several recent courses and workshops demonstrate
[15, 28, 22].

The present contribution relates to the development of cost-efficient opti-
mization strategies relying on multilevel shape parameterization.

Our developments focus on the definition, mathematical analysis and ex-
perimentation of numerical methods for shape optimization for applications in
which the cost functional evaluation relies on the prior solution of a complex set
of partial-differential equations (PDEs), such as those governing compressible
aerodynamics (e.g. the Euler equations), or related coupled disciplines such as
structural mechanics (e.g. elasticity), or electromagnetics (e.g. the Maxwell
equations). These PDEs are very commonly solved by Finite Elements or Vol-
umes, by techniques that, although becoming increasingly standard, are still
very costly when the accuracy requirement is high.

The important development of multigrid methods in recent years has demon-
strated that such techniques not only permit to accelerate the iterative conver-
gence of solution procedures, but also have the more general merit of a better
control on grid dependency and convergence. In fact, a linear convergence rate
can be demonstrated assuming adequate iterative termination criteria are de-
vised, that is, when the grid-convergence control is enforced properly.

Thus, our efforts are mostly concentrated on improving the convergence rate
of numerical procedures both from the viewpoint of cost-efficiency and accuracy,
with the perspective of reducing the design cost, but also of mastering the
election and control of the design parameters, geometrical ones in particular, in
a more rational way, perhaps supported by error estimates.

Technically, our efforts tend to contribute to the following challenges:

• construct multilevel (multi-scale) shape-optimization algorithms;

• identify critical algorithmic ingredients (transfer operators, smoothers);

• evaluate efficiency, theorize convergence via error estimates or an appro-
priate modal analysis.

We note that prior to us, several other authors have applied multilevel prin-
ciples in shape optimization. In particular, [16, 17] has used a multigrid method
to solve both flow and continuous-adjoint equations with great success. Ta’asan
[4] introduced the concept of one-shot methods in which these equations are
solved in a simultaneous multigrid iteration. Lewis and Nash in [18, 19] have
introduced a multigrid approach to differential systems in which different ap-
proximations to the optimization problem associated with a hierarchy of meshes
are coordinated according to a multigrid strategy. Their algorithm is a nonlin-
ear programming adaptation of the multigrid construction. We also point out
the recent theoretical review of such methods by Borz̀ı [5]. A somewhat differ-
ent concept was introduced by A. Dervieux and collaborators who proposed a
technique of Hierarchical Preconditioning [7] in which the multilevel geometrical
data structure of agglomeration multigrid is exploited to define a hierarchical
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optimization algorithm. The major concepts related to this approach have also
been presented [6].

Besides, other types of hierarchical concepts have been introduced in the
literature to enhance the efficiency. In particular, certain very efficient optimiz-
ers have been developed to employ several models to represent with different
degrees of accuracy the same physical situation, the coarsest model having the
merit to be very economical to evaluate. In this area, let us cite the concept
of low/high-fidelity models in [3, 2]. [25, 26] has adapted a genetic algorithm
to introduce a technique of islands in the population of individuals in order to
perform a robust working-space exploration at the coarsest level combined with
an accurate exploitation at the fine level.

Here, as a sequel of [9, 12, 1, 11, 10, 8], we review the construction of mul-
tilevel algorithms, in the context of parametric shape optimization. Embedded
search spaces are defined based on a geometrical hierarchy of nested shape pa-
rameterizations of Bézier type. We first consider two-dimensional geometries
for which shapes are directly parameterized. Then, we recall the concept of
Free-Form Deformation which allows us to extend the multilevel geometrical
representation to three-dimensional cases. Then we provide some details on
how the usual optimization algorithms (simplex, steepest-descent) can be for-
mulated in the context of a multilevel shape parameterization. We then present
results of optimum-shape design in 3D aerodynamics governed by the compress-
ible Euler equations solved by a finite-volume method using unstructured grids.
We finally conclude with some perspectives.

2 Nested Bézier parameterizations for multilevel

shape representation

We begin with the simplest situation of a two-dimensional geometry for which
we employ a Bézier shape representation:

x(t) =

n
∑

k=0

Bk
n(t)xk , y(t) =

n
∑

k=0

Bk
n(t) yk (1)

in which the parameter t varies from 0 to 1, n is the degree of the parameteri-
zation,

Bk
n(t) = Ck

n tk (1− t)n−k (2)

is a Bernstein polynomial, Cn
k =

n!

k!(n− k)!
, and

Pk =

(

xk

yk

)

(k = 0, 1, ..., n) (3)

3



is the generic control point. The coordinates of these control points are split
into two vectors

X = {xk} , Y = {yk} , k = 0, 1, ..., n, (4)

and we refer to the vector X as the support of the parameterization, and the
vector Y as the design vector. Typically, we optimize the design vector for
fixed support according to some physical criterion, such as drag reduction in
aerodynamics. The somewhat unsymmetrical roles dispensed to the vectors X
and Y are chosen to reduce (to n essentially) the dimension of the search space
in the optimization phase, which is the most numerically costly and subject to
numerical stiffness.

We also use the notation:

x(t) = Bn(t)
T X , y(t) = Bn(t)

T Y , (5)

in which the vector Bn(t)
T =

(

B0
n(t), B

1
n(t), ..., B

n
n(t)

)

. In all this article, only

supports for which the sequence {xk} is monotone increasing are said to be
admissible and considered throughout. Thus, the function x(t) is monotone-
increasing and defines a one-to-one mapping of, say, [0,1] onto itself. Recall also
the simple formula for the derivative:

dx(t)

dt
= n

n−1
∑

k=0

Bk
n−1(t) (xk+1 − xk) = nBn−1(t)

T ∆X (6)

in which ∆ denotes the forward-difference operator (∆xk = xk+1 − xk) as well
as the associated n× (n+ 1) matrix.

In the prototypical case of an airfoil, we use such a parametric representation
for both the upper and lower surfaces separately. The vertical slope at the
leading edge is enforced by the conditions:

x0 = x1 = 0 , y0 = 0 (7)

for both surfaces which assures a smooth match; at the trailing edge, we simply
have:

xn = 1 , yn = 0 (8)

for a continuous match.
Our geometrical construction employs the degree-elevation process, well-

known in the Computer-Aided Design literature (see for example [14]). This
process permits to cast [1] into the following equivalent Bézier parameterization
of degree n+ 1:

x(t) =
n+1
∑

k=0

Bk
n+1(t)x

′
k , y(t) =

n+1
∑

k=0

Bk
n+1(t) y

′
k (9)
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in which the new control points P ′
k = (x′

k, y
′
k) are obtained from the former by

convex combinations:

P ′
0 = P0 , P

′
k =

k

n+ 1
Pk−1+(1−

k

n+ 1
)Pk (k = 1, 2, .., n) , P ′

n+1 = Pn (10)

obtained by multiplying [1] by (1− t) + t and grouping together the monomials
in tk(1− t)n+1−k, for each k.

Figure 1 represents the RAE2822 airfoil and the lower and upper control
polygons of degree-16 Bézier least-squares curvefits. The RAE2822 airfoil is
a classical geometry in computational aerodynamics, known for its low-drag
performance in the transonic regime. This shape has been tabulated by the
European Project ECARP [21].
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TARGET CURVE, CURVEFIT AND CONTROL POLYGON

RAE2822
DEGREE-16 BEZIER CURVEFIT

UPPER SURF. CONTROL POLYGON
LOWER SURF. CONTROL POLYGON

Figure 1: RAE2822 airfoil, examples of degree-16 Bézier curvefits of the upper
and lower surfaces (superimposed), and corresponding control polygons

From a theoretical viewpoint, our construction guarantees rigorously nested
search spaces, and exact upward transfer operators (from low to high-degree
parameterization). This is illustrated on Figure 2 in which the supports of
three nested parameterizations of the airfoil are sketched, without reference to
the corresponding sets of ordinates.
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(i) ℓ = 1, n1 = 4 (initial data)

(ii) ℓ = 2, n2 = 8 (4 degree elevations)

(iii) ℓ = 3, n3 = 16 (8 additional degree elevations)

Figure 2: One-dimensional example of embedded parameterizations: the tri-
angles represent the supports X of three nested Bézier parameterizations of
degree 4, 8 and 16 of an RAE2822 airfoil obtained from the first by 4 and 12
successive degree elevations; the symbols pointing upward (resp. downward) are
associated with the upper (resp. lower) surface; the degree-4 support has been
optimized to regularize the control polygon associated with the degree-16 airfoil
representation
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Note that in the case of Figure 2, apart from the specified endpoints, the
abscissas of the degree-4 support X are not a subset of the abscissas of any
support of a higher degree parameterization. Nevertheless, any Bézier curve
given on the degree-4 support can be expressed exactly on any other support of
higher degree provided it results, as in this example, from the degree elevation
process. The parameterizations are nested, or embedded in one another in this
sense precisely.

3 FFD for multilevel three-dimensional shape

deformation

A critical issue in aerodynamic design is the choice of the shape parameteri-
zation. Parameterization techniques for practical 3D aerodynamic shape opti-
mization have to fulfill several criteria:

• the parameterization should be able to take into account complex geome-
tries, possibly including constraints and singularities ;

• the number of parameters should be as small as possible, since the stiffness
of the shape optimization numerical formulation increases abruptly with
the number of parameters ;

• the parameterization should allow to control the smoothness of the result-
ing shapes.

A survey of shape parameterization techniques for multi-disciplinary opti-
mization, which are analyzed according to the previous criteria, is proposed
in [23]. Following his recommendation, conclusions, the Free-Form Deforma-
tion (FFD) technique [24] is adopted in the present study, since it provides an
easy and powerful framework for the deformation of complex shapes, such as
generic or elaborate aerodynamic configurations.

The FFD technique originates from the Computer Graphics field [24]. It
allows the deformation of an object in a 2D or 3D space, regardless of the rep-
resentation of this object. Instead of manipulating the surface of the object
directly, by using classical B-Splines or Bézier parameterization of the surface,
the FFD technique defines a deformation field over the space embedded in a
lattice which is built around the object. By modifying the space coordinates
inside the lattice, the FFD technique deforms the object, regardless of its geo-
metrical description. In particular, the initial geometry, in our applications, is
usually defined by a general, Finite-Element-type unstructured simplicial grid.

More precisely, consider a three-dimensional hexaedral lattice embedding
the object to be deformed. Figure 3(a) shows an example of such a lattice
built around a typical wing. A local coordinate system (ξ, η, ζ) is defined in the
lattice, with (ξ, η, ζ) ∈ [0, 1]× [0, 1]× [0, 1]. As a result of the deformation, the
displacement ∆q of each point q inside the lattice is here defined by a third-order
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Bézier tensor product:

∆q =

ni
∑

i=0

nj
∑

j=0

nk
∑

k=0

Bi
ni
(ξq)B

j
nj
(ηq)B

k
nk
(ζq)∆Pijk. (11)

Bi
ni
, Bj

nj
and Bk

nk
are again Bernstein polynomials of order ni, nj and nk.

(∆Pijk)0≤i≤ni,0≤j≤nj ,0≤k≤nk
are weighting coefficients, or control points dis-

placements, which are used to monitor the deformation and are considered as
design variables during the shape optimization procedure. The critical point is
that only the shape deformation is represented, not the shape itself.

This technique is illustrated by Figure 3. A lattice is built around a wing and
a Bzier tensor product of degree ni = 4, nj = 1 and nk = 1 is defined over this
lattice. Corner control points (filled markers) are supposed to be frozen in order
to keep leading and trailing edges fixed during the deformation, whereas other
control points (empty markers) are allowed to move vertically (Figure 3(a)).
When these control points are moved, their displacements define a continuous
deformation inside the lattice according to [11], yielding a shape deformation.
The deformed lattice and shape can be seen in Figure 3(b)).

η

ζ

ξ

(a) Initial FFD lattice 4-1-1

η

ζ

ξ

(b) Deformed FFD lattice 4-1-1

Figure 3: Example of Free-Form Deformation: by moving some control points of
the lattice, a deformation field is defined continuously inside the lattice, yielding
a shape deformation

The FFD technique described above is well suited to complex shape opti-
mization, thanks to the following properties:
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η

ζ

ξ

(a) Deformed FFD lattice 4-1-1

η

ζ

ξ

(b) Deformed FFD lattice 6-1-1

η

ζ

ξ

(c) Deformed FFD lattice 8-1-1

Figure 4: Example of degree elevation process: by using the degree elevation
process in the direction ξ, the number of control points is increased while the
initial shape is not modified

• the initial shape can be exactly represented (no deformation occurs when
all weighting coefficients are zero);

• the deformation is performed whatever the complexity of the shape (this
is a free-form technique);

• geometric singularities can be taken into account (the initial shape includ-
ing its singularities is deformed);
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• the smoothness of the deformation is controlled (the deformation is ruled
by Bernstein polynomials);

• the number of design variables depends on the user’s choice (the deforma-
tion is independent of the shape itself);

This technique nicely deals with multilevel representation thanks to the
Bézier degree elevation property. To apply the degree elevation process within
the FFD framework, one should simply apply the standard degree elevation
process for each direction of the tensor product. The process is illustrated by
Figure 4. Degree elevation in the direction ξ is applied to the shape obtained
previously using a deformation of degree 4-1-1 (Figure 4(a)). Figure 4(b) shows
the result when the degree is elevated to 6-1-1 and Figure 4(c) when it is el-
evated to 8-1-1. One can notice that the shape is not modified, whereas the
lattice counts an increasing number of control points.

4 Multilevel variants of classical optimization

algorithms

With the support of the nested geometrical representations constructed in the
previous sections, we can now define precisely our algorithms which combine
standard iterations (simplex method, particle-swarm optimizer or steepest-descent)
with a multilevel geometrical treatment. To be specific, we consider for simplic-
ity the two uniform and nested parameterization supports of Figure 5 associated
with representations of shape, or shape-deformation of degree 4 and 8 of a two-
dimensional problem. Let γ denote the shape to be optimized, and J(γ) the
intrinsic cost function to be minimized. Let Bn(X,Y ) denote the Bézier curve
of degree n associated with the control points (X,Y ). Then, the parametric cost
function is taken to be

jn(Y ) := J
(

Bn(X,Y )
)

(12)

where X is fixed (and possibly subsequently adapted).
Then the classical steepest descent method can be combined with a two-

level parameterization in the following algorithm, in which E8
4 is the rectangular

matrix representing the degree-elevation process from n = 4 to 8:

1. partially solve coarse-level parametric optimization problem :

For i = 1, 2, ...,K do : Y ′i = Y ′i−1 − ρi ∇jCOARSE

(

Y ′i−1
)

(13)

Here, jCOARSE = j4 and Y ′i ∈ R
5 (but with only 3 d.o.f.’s since y0 =

y4 = 0)

2. transfer optimum-shape design vector onto upper level

Y K = E8
4 Y

′K =⇒ Y K ∈ R
9 (14)
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SUPPORT OF FINE-LEVEL PARAMETERIZATION
n = 8 (7 d.o.f.’s)

n = 4 (3 d.o.f.’s)
COARSE LEVEL

0 8
1 2 3 4 5 6 7

0 4
1 2 3

Figure 5: Nested supports of parameterizations of degree 4 and 8; the degrees
of freedom associated with both endpoints (k = 0 or n) are fixed

3. solve fine-level parametric optimization problem:
Reset Y 0 = Y K and for i = 1, 2, ... until convergence:

Y i = Y i−1 − ρi ∇jFINE

(

Y i−1
)

(15)

Here, jFINE = j8 and Y i ∈ R
9 (but with only 7 d.o.f.’s since y0 = y8 = 0)

=⇒ final solution Y ∗ ∈ R
9.

In fact, in the above algorithm, all the evaluations are performed on the
upper level. Now, since the supports are nested (embedded),

X(8) = E8
4 X

(4) (16)

the above transfer (item 2) is exact :

B8

(

X(8), Y K
)

= B4

(

X(4), Y ′K
)

(17)

and in terms of shape, the upper-level iteration begins with the last update
coming from the previous lower-level iteration.

Similarly, the two-level “ideal V-cycle” based on steepest descent is defined
by the schematic of Table 1.

Table 1: Schematic of two-level ideal V-cycle
Upper level

For i = 1, 2, ..., K do :

Y i = Y i−1 − ρi ∇jFINE

(

Y i−1
)

=⇒ Y K ∈ R
9 V

Upper level
Reset Y 0 := Y K + E8

4
Y ′∗ and do :

Y i = Y i−1 − ρi ∇jFINE

(

Y i−1
)

(i ≤ K)

=⇒ Y K := Y 0
new

ցցց րրր
Lower level

Minimize jCOARSE (Y ′) :=

jFINE

(

Y K + E8

4
Y ′

)

=⇒ Y ′∗ ∈ R
5
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Note that above algorithm is said to be ideal if the coarse-level problem is
solved to complete convergence regardless the method (evolutionary algorithm,
simplex method, steepest-descent, (P)CG, BFGS, etc). Additionally, the it-
eration is formulated as a correction algorithm since the coarse-level problem
defined in terms of a correction vector to be applied to the unknown (upper-
level) design vector.

The V-cycle being defined, more elaborate strategies mimicking classical
multigrid iterations can be devised. Once the nested supports have been con-
structed from a coarse parameterization, all multigrid-type strategies (saw-
tooth, V or W-cycle, Full-Multi-Grid (FMG), [27]) can be implemented; at any
point in the graph, the current approximate optimum shape admits an exact
representation on the fine level.

Note that nested supports of parameterization of shape-deformation are far
simpler to construct and handle than nested grids (particularly in the unstructured-
grid finite-volume formulation). Consequently, the present multilevel parametric
shape optimization algorithms are easy to implement.

In particular, iterations involving all intermediate levels could easily all be
considered without particular implementation difficulties.

5 Application to aerodynamics design

5.1 Test-case description

The test-case considered here corresponds to the optimization of the wing shape
of a business aircraft (courtesy of Piaggio Aero Industries) in a transonic regime.
The free-stream Mach number is M∞ = 0.83 and the incidence α = 2◦. Initially,
the wing section corresponds to the NACA 0012 airfoil. An unstructured mesh,
composed of 31 124 nodes and 173 445 elements, is generated around the wing,
including a refined area in the vicinity of the shock (Figure 6). Flow fields are
obtained by solving compressible Euler equations using a finite-volume method.

The goal of the optimization is to reduce the drag coefficient CD subject to
the constraint that the lift coefficient CL should not decrease more than 0.1%.
The constraint is taken into account using a penalization approach. Then, the
resulting cost function is:

JOPT =
CD

CD0

+ 104 max(0, 0.999−
CL

CL0

). (18)

CD0 and CL0 are respectively the drag and lift coefficients corresponding to the
initial shape (NACA 0012 section).

The FFD lattice is built around the wing with ξ, η and ζ in the chord-wise,
span-wise and thickness directions respectively. The lattice is chosen in order to
fit the planform of the wing. Then, the leading and trailing edges are kept fixed
during the optimization by freezing the control points that correspond to i = 0
and i = ni. Moreover, control points are only moved vertically. Results are
presented for three parameterizations. The coarsest one corresponds to ni = 3,
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Figure 6: Initial wing shape and mesh in the symmetry plane

nj = 1 and nk = 1. Therefore, (4− 2)× 2× 2 = 8 degrees of freedom are taken
into account in the optimization. The medium parameterization corresponds to
ni = 6, nj = 1 and nk = 1 and counts (7− 2)× 2× 2 = 20 degrees of freedom.
Finally, the finest parameterization corresponds to ni = 9, nj = 1 and nk = 1
and counts (10− 2)× 2× 2 = 32 degrees of freedom. In this study, the Nelder-
Mead simplex method [20] is used as optimization algorithm. Three strategies
corresponding to different ways of handling the geometrical parameterization
are compared:

• basic method (test A): single parameterization until full convergence;

• progressive degree elevation (test B): 3 levels (coarse, medium and fine)
are considered successively using the degree elevation transfer;

• FMOSA (test C): using the same 3 levels of parameterization as the ones
of test B in a strategy including a FMG-like approach defined in Table 2.

5.2 Aerodynamic coefficients

The aerodynamic coefficients obtained for each method are compared in Ta-
ble 3. The lift coefficient is approximately maintained or slightly increased by
the shape optimization process. Important reductions of the drag coefficient
are reported. As observed, the multilevel strategies improve significantly the
aerodynamic performance.

5.3 Convergence history plots

Figure 7 depicts the convergence history of the basic method (single parameter-
ization) for three different parameterizations. With a coarse parameterization,
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Table 2: V-cycle fully multilevel algorithm; the parameterization-support adap-
tions (→) are possible at fixed degree prior to degree-elevation+relaxation ր
but have not been made in the present tests; again ց indicates the formula-
tion of a correction problem over the embedded support inherited from the last
adaption; the degrees refer to the parameterization in the vertical direction; the
indicated figures 10 and 70 correspond to iteration counts

Fine 10 10
(degree 9) ր ց ր
Medium 10 10 → 0 10 10
(degree 6) ր ց ր ց ր
Coarse 70 → 0 70 70
(degree 3)

Table 3: Comparison of aerodynamic coefficients and cost function values
Method CL CD Cost

Reference 0.31920 0.02635 1.
Test A Single fine param. 0.31978 0.1703 0.64539
Test B Degree elev. 0.31888 0.01629 0.61823
Test C FMOSA 0.31890 0.01581 0.60027

a very fast convergence is observed, but the value of the cost function at conver-
gence is not satisfactory (poor accuracy). Increasing the number of geometrical
parameters results in an improved aerodynamic performance, but a larger num-
ber of iterations is required. However, one can notice that the optimization using
the fine parameterization has not converged yet after 1 100 iterations, yielding a
performance worse than previously obtained with the medium parameterization.

Figure 8 shows a comparison of the convergence for the three strategies under
consideration. The method based on a progressive degree elevation is signifi-
cantly better than the classical single parameterization approach. FMOSA is
still more efficient, yielding a shape of better fitness using a smaller computa-
tional effort.

5.4 Flows

A comparison of the flowfields for the final shapes obtained with the different
strategies is presented in Figures 9 to 12. The Mach number field on the wing
surface and Mach number contours in the symmetry plane are represented. Vis-
ibly, this drag reduction exercise results in a strong reduction of the shock wave.
Using a single fine parameterization, the shock reduction is not as important,
whereas in the multilevel approaches, the shock at the root section disappears.
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6 Conclusions and perspectives

We have shown in this study that multilevel strategies are better equipped to
alleviate the numerical stiffness in numerical shape optimization, which in the
parametric formulation increases very rapidly with the number of degrees of
freedom [8].

Besides, adequate parameterization adaption techniques have been devised
and tested in model problems [10] as well as in three-dimensional flow prob-
lems [13]. These procedures which readjust the parameterization support to
regularize the shape representation, were also found to be very effective in ac-
celerating the convergence process. From a theoretical point of view, we have
also proposed [8, 11] a shape reconstruction or inverse problem as a simple
model to analyze the convergence mechanism of our parametric shape opti-
mization method. There, we have identified a pertinent eigensystem associated
with a linear iteration. This analysis comforts us in the analogy with multigrid
methods supporting our algorithms, but at the same time, raises a number of
differences and theoretical questions requiring further investigation, currently
being carried out.

Ultimately, we observe that the multilevel geometrical structure could also
be used to support a hierarchical method in which reduced models are used on
lower levels. These reduced models can be based on:

• variable physics: e.g. Euler on coarse levels, Navier-Stokes on upper;

• variable numerics: use of a hierarchy of meshes, and/or simplified state-
cost functional dependency (response surface, artificial neural networks,
etc), and/or alternate optimizer (e.g., evolutionary on coarsest level for
robustness, simplex method on intermediate level, deterministic on fine
level for accuracy; hybridization), etc.

Thus, a great number of promising algorithmic variants can be devised.
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Figure 7: Basic method: convergence history plot for three different single
parameterizations
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Figure 8: Comparison of the convergence history for the three strategies
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Figure 9: Mach number field on the wing and Mach number contours in the
symmetry plane: initial shape

Figure 10: Mach number field on the wing and Mach number contours in the
symmetry plane: single fine parameterization
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Figure 11: Mach number field on the wing and Mach number contours in the
symmetry plane: progressive degree elevation strategy

Figure 12: Mach number field on the wing and Mach number contours in the
symmetry plane: FMOSA strategy

18



References

[1] B. Abou El Majd, J.-A. Désidéri, T. T. Do, L. Fourment, A. Habbal, and
A. Janka. Multilevel Strategies and Hybrid Methods for Shape Optimiza-
tion and Applications to Aerodynamics and Metal Forming. In R. Schilling,
W. Haase, J. Périaux, H. Baier, and G. Bugeda, editors, Evolutionary and
Deterministic Methods for Design, Optimisation and Control with Applica-
tions to Industrial and Societal Problems Conference (EUROGEN 2005),
Munich, Germany, September 12-14 2005. c©FLM, Munich, 2005.

[2] N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A.
Newman. Approximation and Model Management in Aerodynamic Opti-
mization with Variable-Fidelity Models. Journal of Aircraft, 38(6):1093–
1101, 2001.

[3] W. K. Anderson, E.J. Nielsen, N.M. Alexandrov, and R.M. Lewis. First-
Order Model Management with Variable Fidelity Physics Applied to Multi-
Element Airfoil Optimization. AIAA paper 2000-4886, 2000.

[4] E. Arian and s. Ta’asan. Optimal Design and Control, J. Boggaard, J.
Burkardt, M. Gunzburger, J. Peterson Eds., chapter Shape Optimization
in One Shot. Birkhauser Boston Inc., 1995.

[5] A. Borz̀ı. Multilevel Methods for Optimization and Inverse Prob-
lems. In SIAM Annual Meeting 2006, Boston, Minisymposium, 2006.
http://www.uni-graz.at/imawww/borzi/.

[6] A. Dervieux and J.-A. Désidéri. Introduction to Optimization and Multidis-
ciplinary Design, J. Périaux and H. Deconinck Eds., chapter Hierarchical
Methods for Shape Optimization in Aerodynamics – II: Additive Methods
in Aerodynamics. Lecture Series 2006-3. Von Karman Institute for Fluid
Dynamics, Belgium, 2006.

[7] A. Dervieux, N. Marco, C. Held, and B. Koobus. Hierarchical Principles
and Preconditioning for Optimum Design and Identification. In J. Périaux
et al, editor, Innovative Tools for Scientific Computation in Aeronautical
Engineering, Handbooks on Theory and Engineering Applications of Com-
putational Methods. CIMNE, Barcelona, 2001.

[8] J.-A. Désidéri. Two-Level Ideal Algorithm for Parametric Shape Optimiza-
tion. In W. Fitzgibbon, R. Hoppe, J. Périaux, O. Pironneau, and Y. Vas-
silevski, editors, Advances in Numerical Mathematics, pages 65–85. Proc.
of two International Conferences: Moscow, Institute of Numerical Mathe-
matics, Russian Academy of Sciences, Sept. 16-17, 2006 and Houston, 2006;
in press.

[9] J.-A. Désidéri. Numerical Methods for Scientific Computing, Variational
Problems and Applications, E. Heikkola, Y. Kuznetsov, P. Neittaanmäki
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