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ABSTRACT
Pipelined Krylov solvers typically display better strong scal-
ing compared to standard Krylov methods for large lin-
ear systems. The synchronization bottleneck is mitigated
by overlapping time-consuming global communications with
computations. To achieve this hiding of communication,
pipelined methods feature additional recurrence relations on
auxiliary variables. This paper analyzes why rounding error
effects have a significantly larger impact on the accuracy of
pipelined algorithms. An algebraic model for the accumu-
lation of rounding errors in the (pipelined) CG algorithm is
derived. Furthermore, an automated residual replacement
strategy is proposed to reduce the effect of rounding errors
on the final solution. MPI parallel performance tests imple-
mented in PETSc on an Intel Xeon X5660 cluster show that
the pipelined CG method with automated residual replace-
ment is more resilient to rounding errors while maintaining
the efficient parallel performance obtained by pipelining.
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1. INTRODUCTION
Krylov subspace methods form the basis linear algebra

solvers for many contemporary high-performance comput-
ing applications. The Conjugate Gradient (CG) method
[14] can be considered as the first of these Krylov meth-
ods. Although more than 60 years old, the CG method is
still the work horse method for the solution of linear sys-
tems with symmetric positive definite (SPD) matrices due
to its numerical simplicity and easy implementation. These
SPD systems originate from a variety of applications, such as
the simulation of problems modeled by a partial differential
equation (PDE).

Due to the transition of hardware towards the exascale
computing era in the coming years, research on the scal-
ability of Krylov methods on massively parallel architec-
tures is becoming increasingly prominent. Moreover, since
the system matrix is often sparse, see e.g. the simulation of
PDE type problems, the main bottleneck for efficient paral-
lelization is typically not the sparse matrix-vector product
(spmv), but the communication overhead (bandwidth sat-
uration) caused by global reductions in the computation of
dot-products.

Significant research has recently been devoted to the re-
duction and elimination of the synchronization bottleneck
in Krylov methods. The idea of reducing the number of
global communication points in Krylov methods on paral-
lel computer architectures was first presented by Barrett et
al. in [2], and was elaborated further by the work on s-step
methods, see among others Chronopoulos and Gear [5] and
Carson et al. [4, 3]. In addition to communication avoiding
methods, research on hiding global communication by over-
lapping communication with computations was performed
by a variety of authors over the last decades, see De Sturler
et al. [7], Demmel et al. [8] and Ghysels et al. [10].

The pipelined CG (p-CG) method proposed in [11] aims
at hiding the global synchronization latency of standard pre-
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Algorithm 1 Preconditioned CG

1: function cg(A, M−1, b, x0)
2: r0 := b−Ax0; u0 := M−1r0 ; p0 = u0

3: for i = 0, . . . do
4: si := Api
5: αi := (ri, ui) / (si, pi)
6: xi+1 := xi + αipi
7: ri+1 := ri − αisi
8: ui+1 := M−1ri+1

9: βi+1 := (ri+1, ui+1) / (ri, ui)
10: pi+1 := ui+1 + βi+1pi
11: end for
12: end function

conditioned CG by reorganizing the algorithm and removing
the multiple costly global synchronization points by only
performing a single global reduction per iteration. More-
over, the global communication can be overlapped by the
sparse matrix-vector product (spmv), which requires only
local communication. In this way, idle core time is mini-
mized by performing useful computations simultaneously to
the expensive global communication phase, cf. [9].

To achieve the overlap of communication with computa-
tions in the CG algorithm, the pipelined CG method em-
ploys several additional axpy (y ← αx + y) operations to
compute auxiliary variables, cf. Algorithm 3. In exact arith-
metic the resulting pipelined CG algorithm is numerically
equivalent to standard CG. However, when switching to fi-
nite precision floating-point representation, each of the addi-
tional recurrences accumulate rounding errors, and the extra
recursions reduce the asymptotic accuracy of the solution.

In this paper we propose an analysis of the rounding er-
rors that propagate through the CG and p-CG iterations.
The rounding error model derived in this work allows to
predict the estimated rounding error at run-time level. It is
shown that the pipelined CG method is much more sensitive
to rounding error propagation compared to the classical CG
algorithm. Consequently, countermeasures are proposed in
the form of a residual replacement strategy, based on the
error model. The resulting pipelined CG algorithm with au-
tomated residual replacement (p-CG-rr) is able to achieve a
precision that is comparable to standard CG, while display-
ing the good parallel scalability of pipelined CG.

The remainder of this paper is structured as follows. In
Section 2 an analysis of the accumulation of rounding errors
in standard preconditioned CG, Chronopoulos/Gear CG,
and the pipelined CG algorithm is presented. An error
model that allows to predict the residual stagnation point for
the different methods is introduced. Furthermore, we pro-
pose the incorporation of a residual replacement strategy in
the pipelined CG method. A criterion for automated resid-
ual replacement is suggested near the end of this section.
Extensive numerical tests are reported in Section 3. These
experiments show the validity of the error model and the im-
provement in maximal attainable accuracy for the pipelined
CG method. We illustrate that the proposed residual re-
placement strategy does not affect the parallel scalability
of the p-CG method. Indeed, it is demonstrated that the
pipelined CG algorithm with automated residual replace-
ment is both accurate and computationally efficient. Finally,
conclusions are formulated in Section 4.

Figure 1: Propagation of rounding errors in Conjugate Gradi-
ents. Residual rounding error ‖ri − (b− Axi)‖ (solid black) and
estimate ‖∆r

i ‖ computed using (6) (dotted black).

2. ROUNDING ERROR PROPAGATION IN
CG, CG-CG AND PIPELINED CG

The recursive residual r calculated by the Conjugate Gra-
dient algorithm typically starts to deviate from the true
residual b − Ax at some point during the iteration. This
is caused by the fact that the true residual is never explic-
itly calculated by the algorithm. Instead, the residual is
computed using a recurrence relation to avoid the additional
spmv required to compute b−Ax in each iteration. However,
in finite precision arithmetic, rounding errors occur in each
of these recurrence relations (axpys) and accumulate over
the iteration, resulting in a significant difference between
true and recursive residual near the end of the algorithm.

2.1 Resilience: CG vs. pipelined CG
We demonstrate the deviation between the true and recur-

sive residual in both the CG and pipelined CG method on a
simple 2D Poisson model problem on the domain Ω = [0, 1]2

with homogeneous Dirichlet boundary conditions. The equa-
tion is discretized using second order finite differences on a
uniform grid with n = 50 grid points per spatial dimension.
As illustrated in Fig. 1 the recursive residual computed by
the CG method, Algorithm 1, keeps decreasing, while the
true residual r = b− Ax stagnates upon reaching the lower
bound ‖A‖ψ, where ψ denotes the machine precision. In
the pipelined CG method, Algorithm 3, an additional num-
ber of auxiliary vectors defined as s := Ap, w := Ar and
z := As = A2p are computed in each iteration. These vec-
tors are again not calculated explicitly, but in turn fulfill a
recurrence relation. Each of these recurrences, however, ac-
cumulates rounding errors over the course of the algorithm,
resulting in a deviation from the true vector value. Fig. 3
shows the residuals corresponding to pipelined CG. Note
how the residuals stagnate several order of magnitude above
the CG bound. The final solution is significantly less ac-
curate compared to the standard CG solution, which is re-
flected in the norm of the true residual upon stagnation.
As reported by Ghysels et al. in [11], this loss of maximal
attainable accuracy is typical for pipelined CG.



Algorithm 2 Preconditioned Chronopoulos/Gear CG

1: function cgcg(A, M−1, b, x0)
2: r0 := b−Ax0; u0 := M−1r0; w0 := Au0

3: α0 := (r0, u0)/(w0, u0); β := 0; γ0 := (r0, u0)
4: for i = 0, . . . do
5: pi := ui + βipi−1

6: si := wi + βisi−1

7: xi+1 := xi + αipi
8: ri+1 := ri − αisi
9: ui+1 := M−1ri+1

10: wi+1 := Aui+1

11: γi+1 := (ri+1, ui+1)
12: δ := (wi+1, ui+1)
13: βi+1 := γi+1/γi
14: αi+1 := (δ/γi+1 − βi+1/αi)

−1

15: end for
16: end function

2.2 Rounding error accumulation in CG
The approach to analyzing the propagation of rounding

errors in CG and related algorithms has been discussed in
Greenbaum [12], Gutknecht et al. [13], Strakos et al. [15],
Vandervorst et al. [17] and Tong et al. [16]. In traditional
preconditioned Conjugate Gradients, Algorithm 1, the solu-
tion xi+1 and residual ri+1 are updated respectively as{

xi+1 = xi + αipi + δxi ,

ri+1 = ri − αisi + δri ,
(1)

where si := Api. Here δxi and δri denote vectors representing
the local rounding errors made in the current calculation.
Each element in these vectors is assumed to be at most of the
order of machine precision, meaning |(δxi )j | ≤ ψ|(xi+αipi)j |
and |(δri )j | ≤ ψ|(ri − αisi)j | for all j = 1, . . . , N .

We denote ∆r
i+1 as the difference between the true residual

b−Axi+1 and the residual ri+1 from the CG recurrence. It
holds that

∆r
i+1 := ri+1 − (b−Axi+1)

= ri − (b−Axi)− αi(Api) +A(αipi) +Aδxi + δri

= ∆r
i + A(αipi)− αi(Api)︸ ︷︷ ︸

non-commutativity error

+ Aδxi + δri︸ ︷︷ ︸
local rounding error

(2)

where the equation on the second line holds since si := Api
is calculated exactly in Algorithm 1. The error term that
is added by the current update consists of two components.
The first term stems from the fact that αi(Api) 6= A(αipi) in
finite precision floating point arithmetic.1 The second term
is due to the local rounding errors of the recurrence relations
(1) in the i-th iteration.

In the initial steps of the algorithm the norm of the search
direction update αipi = xi+1 − xi is typically large, since
large updates of the solution take place at this stage in
the numerical scheme. Hence, because of these large up-
dates, the non-commutativity errors, ‖A(αipi) − αi(Api)‖,
1This error is denoted as the ‘non-commutativity’ error by
the authors, since it boils down to stating that in finite
precision αiApi 6= Aαipi, and the product αiA hence ap-
pears to be non-commutative. However, more precisely,
the origin of this error is the fact that scalar associativity
αi(Api) = (αiA)pi = A(αipi) = (Api)αi does not hold in
finite precision floating point arithmetic.

Figure 2: Propagation of rounding errors in Chronopoulos/Gear
CG. Residual rounding error ‖ri − (b − Axi)‖ (solid black) and
auxiliary rounding error ‖si − Api‖ (solid green), and their esti-
mates ‖∆r

i ‖ and ‖∆s
i ‖, see (11) (dotted).

are large, and vastly dominate the local rounding errors
‖Aδxi + δri ‖. As a result the error ∆r

i grows rapidly in the
first few steps of the CG algorithm. This is clear from Fig. 1.

We obtain the following rounding error propagation model
for the residual in CG:

‖∆r
i+1‖ = ‖∆r

i ‖+ ‖A(αipi)− αi(Api)‖. (3)

The norm ‖·‖ indicates the standard 2-norm throughout this
work. The error model (3) accurately predicts the round-
ing errors, and can hence be used to monitor the magni-
tude of the propagated rounding errors on run time level
while executing CG. However, the computation of the non-
commutativity error ‖A(αipi) − αi(Api)‖ would require an
additional two spmv operations in each step of the algo-
rithm, which is an unacceptable extra computationally cost.
We therefore estimate the non-commutativity error in (3)
using the following lemma.

Lemma 1. The non-commutativity error in rounding error
model (3) can be bounded from above by

‖A(αipi)− αi(Api)‖ ≤ 2(m+ 1)αi‖si‖ψ, (4)

where m is the average number of nonzero elements per row
of the matrix A.

Proof. We refer the reader to the full manuscript [6] for the
proof of this lemma.

Lemma 1 provides an absolute upper bound on the non-
commutativity error. Indeed, it bounds the largest possible
value that could be computed without incorporating error
cancellation caused by adding positive and negative num-
bers. In practice, however, rounding error cancellation does
occur, such that the factor (m+ 1) in Lemma 1 is dropped.
Hence, the worst-case upper bound (4) often largely overes-
timates the actual non-commutativity error. We propose to
use the following, more realistic estimate for the error

‖A(αipi)− αi(Api)‖ ≈ 2αi‖si‖ψ. (5)



Algorithm 3 Pipelined Chronopoulos/Gear CG

1: function p-cg(A, b, x0)
2: r0 := b−Ax0; w0 := Ar0
3: for i = 0, . . . do
4: γi := (ri, ri)
5: δ := (wi, ri)
6: qi := Awi

7: if i > 0 then
8: βi := γi/γi−1; αi := (δ/γi − βi/αi−1)−1

9: else
10: βi := 0; α := γi/δ
11: end if
12: zi := qi + βizi−1

13: si := wi + βisi−1

14: pi := ri + βipi−1

15: xi+1 := xi + αipi
16: ri+1 := ri − αisi
17: wi+1 := wi − αizi
18: end for
19: end function

Using this estimate, the non-commutativity error, and thus
the rounding error in the i-th step of the CG algorithm, can
be approximately computed as

‖∆r
i+1‖ = ‖∆r

i ‖+ 2αi‖si‖ψ. (6)

Note that the incorporation of the error estimate (6) in
the algorithm implies only very limited additional compu-
tational overhead, since only the vector norm ‖si‖ has to
be computed. This dot-product computation requires global
communication, but can be combined with the existing global
reduction required to compute αi in Algorithm 1, line 5, such
that the number of global reductions remains identical.

2.3 Rounding error accumulation in CG-CG
The Chronopoulos/Gear CG (CG-CG) Algorithm 2 is an

alternative formulation of CG proposed in [5], which reduces
the number of global synchronization points from two (Algo-
rithm 1, lines 5 and 9) to just one (Algorithm 2, lines 11-12).
This reformulation is obtained at the cost of one additional
axpy to update the auxiliary variable si = Api, which is
now also computed recursively using the exactly computed
wi := Aui. Note that in exact arithmetic, Algorithm 2 is
mathematically equivalent to Algorithm 1.

In Algorithm 2 the solution xi+1, the residual ri+1, the
search direction pi and the auxiliary variable si are updated
recursively as{

pi = ri + βipi−1,

si = wi + βisi−1,

{
xi+1 = xi + αipi,

ri+1 = ri − αisi.
(7)

The propagation of rounding errors in Chronopoulos/Gear
CG is however different from the traditional CG algorithm,
since in each step rounding errors are now introduced in
both the recursions for ri and si. The rounding error on the
residual ri+1 is

∆r
i+1 := ri+1 − (b−Axi+1)

= ri − (b−Axi)− αi(si −Api) +Aαipi − αiApi

= ∆r
i − αi∆

s
i +Aαipi − αiApi, (8)

where again the local rounding errors are neglected to sim-
plify the notation. Note that in Algorithm 2 si, defined as

Figure 3: Propagation of rounding errors in pipelined CG. Resid-
ual rounding error ‖ri − (b − Axi)‖ (solid black) and auxiliary
rounding errors ‖si − Api‖ (solid green), ‖wi − Ari‖ (solid ma-
genta), and ‖zi−Asi‖ (solid yellow). Error estimates ‖∆r

i ‖, ‖∆s
i ‖,

‖∆w
i ‖ and ‖∆z

i ‖ (dotted) are computed using (14) and (16).

Api, is also not explicitly calculated but rather derived from
a recurrence relation. Hence, like the error on the residual,
the rounding error ∆s

i = si − Api also grows in function of
i. We find in a similar way to the above

∆s
i+1 := si+1 −Api+1

= wi+1 + βi+1si −A(ri+1 + βi+1pi)

= βi+1∆s
i −Aβi+1pi + βi+1Api, (9)

where the final equation holds since wi+1 := Ari+1 is com-
puted exactly in Algorithm 2, line 10.

Combining (8) and (9) we obtain the following rounding
error propagation model for Chronopoulos/Gear CG:(
‖∆r

i+1‖
‖∆s

i+1‖

)
=

(
1 αi

0 βi+1

)(
‖∆r

i ‖
‖∆s

i‖

)
+

(
‖αiApi −Aαipi‖
‖βi+1Api −Aβi+1pi‖

)
(10)

Note that the scalars αi and βi are positive per definition.
The above error propagation model is the analog of the stan-
dard CG model (3). However, in Chronopoulos/Gear CG,
the residual rounding errors are propagated by contributions
from non-commutativity errors in both ri and si. We point
out that, similar to (3), the model (10) in fact simulates a
worst-case scenario for rounding error propagation, due to
the summation of the right-hand side norms.

In analogy to (6) and by applying Lemma 1 the propaga-
tion of rounding errors in CG-CG can now be estimated by
approximating the non-commutativity errors in (10) as(
‖∆r

i+1‖
‖∆s

i+1‖

)
=

(
1 αi

0 βi+1

)(
‖∆r

i ‖
‖∆s

i‖

)
+

(
2αi‖si‖ψ

2βi+1‖si‖ψ

)
. (11)

The effective and estimated rounding errors for the CG-CG
method are illustrated in Fig. 2.

2.4 Rounding error accumulation in p-CG
A similar rounding error analysis can be performed for

pipelined Krylov algorithms. We discuss the pipelined CG
(p-CG) method shown in Algorithm 3. In addition to the



solution xi and the residual ri = b− Axi, Algorithm 3 uses
three auxiliary vectors, defined as si := Api, wi := Ari
and zi := Asi = A2pi. This implies the following recursive
updates are computed in each step of the algorithm:

zi = qi + βizi−1,

si = wi + βisi−1,

pi = ri + βipi−1,


xi+1 = xi + αipi,

ri+1 = ri − αisi,

wi+1 = wi − αizi.

(12)

Lemma 2. Let ri, si, wi, zi, pi and xi as defined above,
be the vectors generated by the pipelined Chronopoulos/Gear
CG Algorithm 3, and let the respective rounding errors ∆r

i ,
∆s

i , ∆w
i and ∆z

i be defined as follows
∆r

i := ri − (b−Axi),
∆s

i := si −Api,
∆w

i := wi −Ari,
∆z

i := zi −Asi.

(13)

Then the rounding errors between the true and recursive val-
ues satisfy the relation
‖∆r

i+1‖
‖∆s

i+1‖
‖∆w

i+1‖
‖∆z

i+1‖

 =


1 αi 0 0
0 βi+1 1 αi

0 0 1 αi

0 0 0 βi+1



‖∆r

i ‖
‖∆s

i‖
‖∆w

i ‖
‖∆z

i ‖

+


eri
esi
ewi
ezi

 ,

(14)
where the non-commutativity errors eri , esi , ewi and ezi are
defined as

eri
esi
ewi
ezi

 :=


‖αiApi −Aαipi‖

‖βi+1Api −Aβi+1pi‖+ ‖αiAsi −Aαisi‖
‖αiAsi −Aαisi‖
‖βi+1Asi −Aβi+1si‖

 .

(15)

Proof. For the difference between the true residual and the
recursive residual we find the recurrence relation:

∆r
i+1 := ri+1 − (b−Axi+1)

= ri − αisi − b+A(xi + αipi)

= ∆r
i − αi∆

s
i +Aαipi − αiApi.

Note that si is not explicitly calculated but rather derived
recursively. The error ∆s

i is given by

∆s
i+1 := si+1 −Api+1

= wi+1 + βi+1si −A(ri+1 + βi+1pi)

= βi+1∆s
i + ∆w

i+1 −Aβi+1pi + βi+1Api.

Similarly, the auxiliary variable wi is not explicitly calcu-
lated and thus diverges from its exact value Ari. We com-
pute the error ∆w

i+1 as

∆w
i+1 := wi+1 −Ari+1

= wi − αizi −A(ri − αisi)

= ∆w
i − αi∆

z
i +Aαisi − αiAsi.

Finally, the auxiliary variable zi is derived recursively, such
that its recursive and true values diverge. Thus

∆z
i+1 := zi+1 −Asi+1

= qi+1 + βi+1zi −A(wi+1 + βi+1si)

= βi+1∆z
i −Aβi+1si + βi+1Asi,

where the final equation holds since qi+1 := Awi+1 is com-
puted exactly in Algorithm 3, line 6.

Figure 4: Propagation of rounding errors for pipelined CG with
residual replacement. Residual rounding error ‖ri − (b − Axi)‖
(solid black) and auxiliary rounding errors ‖si − Api‖ (solid
green), ‖wi − Ari‖ (solid magenta), and ‖zi − Asi‖ (solid yel-
low). Error estimates ‖∆r

i ‖, ‖∆s
i ‖, ‖∆w

i ‖ and ‖∆z
i ‖ (dotted) are

computed using (14) and (16).

To incorporate the rounding error model into the pipelined
CG Algorithm 3, we again propose to estimate the non-
commutativity errors, (15), as follows

eri
esi
ewi
ezi

 ≈


2αi‖si‖ψ
2βi+1‖si‖ψ + 2αi‖zi‖ψ

2αi‖zi‖ψ
2βi+1‖zi‖ψ

 , (16)

which only requires the vector norms ‖si‖ and ‖zi‖ to be
computed. These computations are computationally inex-
pensive but require additional global communication. How-
ever, they can be combined with the existing global reduc-
tion in Algorithm 3, line 4-5, and hence do not reduce the
overall efficiency of the algorithm. Fig. 3 shows the prop-
agated rounding errors for pipelined CG. The estimated
rounding errors are computed by substituting (16) into the
model (14). The error prediction model (14) allows for an
accurate prediction of the stagnation point. The additional
rounding errors by the recursions for the three auxiliary vari-
ables si, wi and zi cause the pipelined residual to stagnate
several orders of magnitude above the standard CG residual.

Note that a very similar error analysis can be performed
for the preconditioned pipelined CG method, which has been
omitted here for brevity, cf. the full manuscript [6],

2.5 Pipelined CG with residual replacements
In this section we suggest a residual replacement strategy

for pipelined CG methods to improve the maximal attain-
able accuracy of Algorithm 3 as a countermeasure to reduce
the propagation of rounding errors. The main idea in us-
ing residual replacement for pipelined CG is to replace the
vectors r, s, w and z, which are computed using recurrence
relations, see Algorithm 3, line 12-13 and 16-17, and are,
hence, contaminated by rounding errors in each step of the
algorithm, by their definition values at a given iteration i in



the algorithm, i.e. 
si = Api,

zi = Asi,

ri+1 = b−Axi+1,

wi+1 = Ari+1.

(17)

Note how the current solution guess xi+1 and the search
direction pi are not replaced, since the exact values of these
vectors are unknown.

One could inquire if such a drastic replacement strategy
does not destroy the established Krylov convergence. A key
result from [16] states that if ri satisfies the typical per-
turbed Lanczos relation, then

‖ri+1‖ ≤ Ci min
p∈Pi,p(0)=1

‖p(A+ ∆Ai)r1‖, (18)

where Ci > 0 is an iteration-dependent constant and ∆Ai =
−FiZ

+
i . This implies that even if the perturbation Fi is

significantly larger than ψ, which is the case after residual
replacement in step i, the norm of the residual ‖ri+1‖ is
not significantly affected, and convergence remains stable.
Based on the bound (18), Van der Vorst et al. [17] propose
to update the residuals and other vectors to their true values
only when the residual vector norm ‖ri‖ is sufficiently large
compared to the rounding error ‖∆r

i ‖. Convergence is then
expected to resume in a similar fashion after the replace-
ment step. Performing replacements when ‖ri‖ is small is
generally not recommended.

A second, related question concerns the iteration in which
replacements should take place. Since each residual replace-
ment step comes at the cost of computing additional spmvs,
an accurate criterion to determine the need for residual re-
placement that does not overestimate the total number of
replacements is essential. As the iteration proceeds, ‖∆r

i ‖
typically increases, while the residual norm ‖ri‖ is expected
to decrease, see Fig. 3. Residual replacement should be car-
ried out before ‖∆r

i ‖ becomes too large relative to ‖ri‖.
Hence, in analogy to [17], we use a threshold τ , typically
chosen as τ =

√
ψ, and introduce a residual replacement in

step i of the pipelined CG Algorithm 3 if

‖∆r
i−1‖ ≤ τ‖ri−1‖ and ‖∆r

i ‖ > τ‖ri‖. (19)

The above criterion ensures that convergence is maintained
when residual replacement takes places, since replacements
are only allowed when ‖ri‖ is sufficiently large. Furthermore,
it ensures that no excess replacement steps are performed,
keeping the total cost of the algorithm as low as possible.
The rounding error model (14) allows for a direct implemen-
tation of the replacement criterion (19) in Algorithm 3.

Fig. 4 is the analog of Fig. 3 with the incorporation of the
above residual replacement strategy in the pipelined CG Al-
gorithm 4 The replacement criterion (19) is implemented
using the estimated rounding errors given by (14). Proper
convergence of the computed residuals is maintained after
a residual replacement event. Indeed, up to the stagnation
point, the residuals shown in Fig. 4 are nearly indistinguish-
able from the residuals of standard pipelined CG in Fig. 3.
The p-CG-rr Algorithm 4 displays a stagnation of the true
residual around iteration i = 115, at which point the resid-
ual norm is comparable to the final residual norm of the
standard CG and Chronopoulos/Gear CG algorithms.

Figure 5: Convergence history for the CG methods applied to
different SPD test matrices (see also Table 1). Solid lines: true
residual norm ‖b−Axi‖; dotted lines: residual error ‖∆r

i ‖; dashed
lines: recursive residual norm ‖ri‖. The p-CG method (green)
suffers from rounding error accumulation. The residual replace-
ment strategy applied in the p-CG-rr method (magenta) reduces
the accumulation of rounding errors.

3. NUMERICAL RESULTS
Numerical results on a wide range of matrices are pre-

sented to compare the residual history of the different CG
methods and show the improvement in attainable accuracy
by using the residual replacement strategy. The parallel per-
formance measurements in this section result from a PETSc
implementation of pipelined CG with automated residual
replacements on a distributed memory machine using the
message passing paradigm (MPI). The MPI library used for
these experiments is MPICH-3.1.32.

3.1 Attainable accuracy
We present numerical results on a range of different lin-

ear systems to show the robustness of the proposed resid-
ual replacement strategy. Table 1 lists a broad selection of
square, real and symmetric positive definite matrices from

2http://www.mpich.org/

http://www.mpich.org/


Matrix Prec κ(A) N #nnz ||r0|| CG CG-CG p-CG p-CG-rr
iter res iter res iter res iter res rr

bcsstk14 JAC 1.3e+10 1806 63k 2.1e+09 631 2.0e-06 630 2.1e-06 411 2.3e-02 570 4.6e-05 6
bcsstk15 JAC 8.0e+09 3948 118k 4.3e+08 758 1.7e-06 743 1.9e-06 575 8.7e-02 793 1.1e-05 8
bcsstk16 JAC 65 4884 290k 1.5e+08 288 6.3e-07 281 1.6e-06 238 6.6e-03 285 1.1e-06 4
bcsstk17 JAC 65 10,974 429k 9.0e+07 3445 1.4e-06 3317 3.6e-06 2478 5.8e+00 3237 3.8e-05 25
bcsstk18 JAC 65 11,948 149k 2.6e+09 2271 5.7e-06 2248 6.1e-06 1270 4.6e-01 2056 7.6e-05 11
bcsstk27 JAC 7.7e+04 1224 56k 1.1e+05 332 4.3e-10 322 1.0e-09 268 5.7e-06 352 8.9e-10 3
bcsstm19 - 2.3e+05 817 0.8k 3.8e+06 766 4.8e-09 800 1.1e-07 345 3.9e-01 942 6.5e-06 34
bcsstm20 - 2.6e+05 485 0.5k 4.6e+06 465 3.8e-09 484 9.9e-08 272 2.5e-01 627 4.3e-06 24
bcsstm22 - 9.4e+02 138 0.1k 3.1e-03 68 2.1e-18 67 3.8e-18 65 1.6e-14 71 7.2e-18 2
bcsstm24 - 1.8e+13 3562 3.6k 1.1e+05 - 1.0e-07 - 1.1e-05 1301 3.0e-03 2445 4.6e-04 39
bcsstm26 - 2.6e+05 1922 1.9k 2.6e-01 3615 7.6e-16 3484 2.0e-15 1720 1.8e-09 3063 4.6e-13 37
gr 30 30 - 3.8e+02 900 7.7k 1.1e+00 54 3.7e-15 53 7.9e-15 49 6.8e-13 54 6.7e-15 2
nos1 *IC 2.5e+07 237 1.0k 5.7e+07 342 8.4e-07 334 8.0e-07 270 1.9e-01 631 1.7e-06 9
nos2 *IC 6.3e+09 957 4.1k 1.8e+09 3501 1.5e-04 3683 1.9e-04 1923 1.1e+04 3867 2.3e-01 56
nos3 IC 7.3e+04 960 16k 1.0e+01 63 1.0e-13 62 1.1e-13 56 2.3e-11 68 9.2e-14 2
nos4 IC 2.7e+03 100 0.6k 5.2e-02 31 9.4e-17 30 1.2e-16 29 2.6e-15 30 1.3e-16 2
nos5 IC 2.9e+04 468 5.1k 2.8e+05 60 1.2e-10 60 1.2e-10 56 1.4e-08 59 5.4e-10 2
nos6 IC 8.0e+06 675 3.3k 8.6e+04 40 4.2e-10 34 5.7e-10 28 4.3e-06 47 5.3e-10 2
s1rmq4m1 IC 1.8e+06 5489 262k 1.5e+04 122 6.5e-11 121 7.1e-11 110 9.6e-08 142 2.9e-10 3
s1rmt3m1 IC 2.5e+06 5489 218k 1.5e+04 227 1.3e-10 225 1.4e-10 204 6.2e-07 258 3.2e-10 3
s2rmq4m1 *IC 1.8e+08 5489 263k 1.5e+03 366 1.0e-11 362 1.2e-11 309 1.2e-06 449 4.3e-10 8
s2rmt3m1 IC 2.5e+08 5489 218k 1.5e+03 273 1.3e-11 270 1.6e-11 240 2.1e-06 363 3.8e-11 6
s3dkq4m2 *IC 1.9e+11 90,449 2456k 6.8e+01 - 1.3e-06 - 1.4e-06 2658 3.6e-06 2460 9.2e-06 37
s3dkt3m2 *IC 3.6e+11 90,449 1922k 6.8e+01 - 2.0e-05 - 2.0e-05 3409 1.3e-05 3370 1.5e-05 36

Table 1: A collection of real, square and positive definite matrices from Matrix Market, listed with their respective condition number

κ(A), number of rows/columns N and total number of nonzeros #nnz. A linear system with right-hand side b = Ax̂ where x̂i = 1/
√
N

is solved with each of these matrices using Algorithms 1-4. The initial guess is all-zero x0 = 0. Jacobi (JAC) and Incomplete Cholesky
(IC) preconditioners are included where needed. Number of iterations iter required to reach the estimated rounding error on the residual
and corresponding true residual res = ||b−Axi|| are given. For the p-CG-rr method the table indicates the number of replacement steps.

Matrix Market3, with their respective condition number κ,
number of rows N and total number of nonzero elements
#nnz. A linear system with exact solution x̂j = 1/

√
N

and right-hand side b = Ax̂ is solved for each of these ma-
trices with the four presented methods, using an all-zero
initial guess x0 = 0. Jacobi diagonal preconditioning (JAC)
and Incomplete Cholesky factorization (IC) are included to
reduce the number of Krylov iterations if possible. ∗IC indi-
cates that a compensated Incomplete Cholesky factorization
is performed.

The accuracy experiments in this section were performed
on a mid-range laptop computer with Intel Core i7-2720QM
2.20GHz CPU. Since we only focus on attainable accuracy
and robustness of the methods in this section, no MPI was
used in the following experiment (single-node execution).
We refer to section 3.2 for multi-core strong scaling results.

Table 1 lists the number of iterations iter = i required
such that ‖ri‖ < ‖∆r

i ‖, as well as the final true residual
norm res for all methods. A ‘-’ entry in the table denotes
failure to meet the stopping criterion within 5,000 iterations.
Note how for all matrices the residual replacement strategy
incorporated in p-CG-rr improves the maximal attainable
accuracy of the p-CG method.

Fig. 5 illustrates the convergence history for two selected
matrices from Table 1 by showing the true residual (solid),
recursive residual (dashed) and residual rounding error (dot-
ted). Convergence of the CG and Chronopoulos/Gear CG
methods is nearly indistinguishable. The accumulation of
rounding errors in the p-CG algorithm causes the residuals
to level off sooner compared to CG and CG-CG, resulting
in a less accurate final solution. Based on the estimated
rounding errors and criterion (19), the replacement strategy

3http://math.nist.gov/MatrixMarket/

resets the rounding errors in certain iterations, leading to a
much more accurate final solution. The final accuracy on
the p-CG-rr solution is similar to that of standard CG.

At first glance, Table 1 appears to suggest that the number
of p-CG iterations is generally lower than for the standard
CG method. However, it should be noted that the p-CG
execution is often halted at an early stage, when additional
iterations do no longer reduce the residual norm. As indi-
cated above, the p-CG method is generally unable to attain
the solution accuracy of classical CG, regardless of the it-
eration count. The p-CG-rr method, on the other hand,
typically takes at least as many iterations as standard CG
(and sometimes slightly more) to obtain a comparable ac-
curacy, see Table 1. This stems from the fact that slight
deviations of the p-CG-rr residual norms from the standard
CG residual history can occasionally be observed close to
the stagnation point, cf. Fig. 5, depending on the problem
solved. The observed deviation is an artifact from the ir-
regularities in the coefficients αi and βi near stagnation, see
[6] for a more elaborate discussion. The proposed p-CG-rr
method is hence significantly more robust than p-CG, reach-
ing the standard CG accuracy in a comparable or slightly
larger number of iterations.

3.2 Parallel performance
The pipelined CG method was presented in [11] in order

to overcome the global communication bottleneck that is
characteristic for standard CG on large parallel machines.
In this section we demonstrate that the parallel performance
of pipelined CG, Algorithm 3, is maintained by the addition
of the automated replacement strategy in Algorithm 4.

The following parallel strong scaling experiments are per-
formed on a small cluster with 12 compute nodes, consisting

http://math.nist.gov/MatrixMarket/


Figure 6: Strong scaling test on up to 12 nodes (144 cores).
Speedup as function of the number of nodes over standard CG
solver on a single node. All methods converged in 900 iterations
to a relative residual tolerance of 10−4. The p-CG-rr algorithm
performed 7 replacement steps.

of two 6-core Intel Xeon X5660 Nehalem 2.80 GHz proces-
sors each (12 cores per node), for a total of 144 cores. Nodes
are connected by 4×QDR InfiniBand technology, providing
32 Gb/s of point-to-point bandwidth for message passing
and I/O. We use PETSc [1] v.3.6.3, which includes imple-
mentations of the CG and p-CG algorithms. The p-CG-rr
Algorithm 4 was implemented as a direct extension of the
p-CG method, and will be incorporated in the next PETSc
release. The first benchmark problem used to asses parallel
performance in this section is the small-sized, ill-conditioned
s3dkq4m2 Matrix Market system (90,449 unknowns). A sim-
ple Jacobi preconditioner is applied in this experiment. The
relative tolerance for Krylov solution imposed on the stan-
dard recursive residual norm ‖ri‖2 is set to 10−4. Since each
node consists of 12 cores, we use 12 MPI processes per node
to fully exploit parallelism on the machine. The MPICH
environment variables

• MPICH_ASYNC_PROGRESS=1
• MPICH_MAX_THREAD_SAFETY=multiple
are set to ensure optimal parallelism.

Fig. 6 shows the time to solution as a function of the num-
ber of nodes for the s3dkq4m2 problem. For the given bench-
mark problem the maximum speed-up for p-CG compared
to CG on a single node is 4.40, whereas the CG method
achieves virtually no speedup on multiple nodes. Pipelined
CG attains a net speedup of 3.89 compared to standard CG
when both are executed on 12 nodes. The p-CG-rr method
shows very similar performance results compared to p-CG. A
minor discrepancy between the p-CG and p-CG-rr speedups
is observed due to the additional computational work for the
extra spmvs when replacement takes place. The maximum
speedup for p-CG-rr compared to CG on a single node is
4.18, yielding a total net speedup factor of 3.78 over stan-
dard CG on 12 nodes.

Figure 7: Accuracy test performed on 12 nodes (144 cores). True
residual as function of total time spend by the algorithm. Max-
imal number of iterations is 17,000 for all methods; the p-CG-rr
algorithm performed 147 replacement steps (max.).

Fig. 7 shows the accuracy of the solution in function of
the computational time spend by the three algorithms for
the s3dkq4m2 benchmark problem on a 12 node setup. The
initial residual is 6.8e+1. In 20.0 seconds, corresponding to
15,000 iterations (incl. 147 replacement steps), the p-CG-rr
algorithm obtains an accurate solution with a true residual
norm of 6.8e-6. Standard CG needs 80.2 s. to attain a com-
parable accuracy on the solution (true residual norm 6.5e-6),
performing 15,000 iterations on the same 12 nodes. This is
roughly four times slower than the time required by p-CG-
rr to obtain a similar precision, see also Fig. 6. The p-CG
method without residual replacement is unable to reach the
aforementioned accuracy regardless of computational effort.
Indeed, stagnation of the true residual norm around 5.2e-5
is imminent from 14,000 iterations or, equivalently, a total
time of 18.2 s. onward.

As a second test-case for parallel performance we consider
a medium-sized 2D Poisson model, available in the PETSc
distribution as example 2 in the Krylov solvers folder. The
simulation domain is discretized using a second order finite
difference stencil with 1000×1000 grid points (1 million un-
knowns). No preconditioner is applied. The relative residual
tolerance for Krylov solution is 10−6. The following strong
scaling experiments were performed on up to 20 nodes.

Fig. 8 shows the time to solution as a function of the
number of nodes for the 2D Poisson problem. The maxi-
mum speed-up for p-CG on 20 nodes compared to CG on
a single node is 7.28. Pipelined CG attains a net speedup
of 3.79 compared to standard CG on 20 nodes. The maxi-
mum speedup for p-CG-rr on 20 nodes compared to CG on
a single node is 7.06, yielding a total net speedup factor of
3.66 compared to standard CG on 20 nodes. In comparison
to the s3dkq4m2 benchmark problem, the pipelined methods
scale very well on up to 20 nodes (240 MPI threads) for the
2D Poisson benchmark due to the larger size of the problem.



Figure 8: Strong scaling test on up to 20 nodes (240 cores).
Speedup as function of the number of nodes over standard CG
solver on a single node. All methods converged in 1474 iterations
to a relative residual tolerance of 10−6. The p-CG-rr algorithm
performed 11 replacement steps.

Fig. 9 shows the solution accuracy for the 2D Poisson
benchmark problem on a 12 node setup. In 3.17 seconds
(2500 iterations) the p-CG-rr algorithm attains a true resid-
ual norm of 2.12e-11. Standard CG needs 9.38 s. (2300 it-
erations) to attain a comparable accuracy on the same 12
nodes. The original pipelined CG true residual norm stag-
nates around 1.0e-7 from 1700 iterations (2.15 s.) onward.

4. CONCLUSIONS
The deviation of the recursive residual from the true resid-

ual around machine precision level is a well-known aspect of
the Conjugate Gradients method. Whereas the true resid-
ual stagnates due to the accumulation of rounding errors on
the solution, the recurred residual typically keeps decreas-
ing. This phenomenon is significantly more prominent in the
pipelined Chronopoulos & Gear version of CG, leading to a
stagnation of the residual norm several orders of magnitude
above the accuracy attainable by standard CG.

In this paper we analyzed the propagation of rounding
errors in pipelined CG. The p-CG algorithm features addi-
tional auxiliary variables compared to standard CG, which
are computed using extra recursions (axpys) and are hence
all prone to rounding error accumulation. A model for round-
ing errors accumulation that couples all rounding error terms
is derived from the recursion relations of the individual aux-
iliary variables. This model allows to predict the influence of
rounding errors on the residual in each step of the pipelined
algorithm.

The incorporation of the error model in the pipelined
CG method requires the calculation of two additional vec-
tor norms, requiring global communication. However, these
norm computations can easily be combined with the exist-
ing global communication phase, such that the global per-
formance of the algorithm remains intact.

Figure 9: Accuracy test performed on 12 nodes (144 cores). True
residual as function of total time spend by the algorithm. Max-
imal number of iterations is 2500 for all methods; the p-CG-rr
algorithm performed 20 replacement steps (max.).

The error propagation model is subsequently used to track
the rounding error norm at runtime level. Combining the
error propagation model with a residual replacement strat-
egy, the true residual is calculated at specific times during
the iteration when the accumulated rounding error becomes
too large. This automated replacement strategy leads to a
significantly improved solution, with a corresponding true
residual norm that stagnates very close to the original CG
residual norm.

Scaling results using an MPI-based PETSc implementa-
tion were presented to demonstrate the resilience of the novel
p-CG-rr algorithm to rounding error accumulation, while it
is illustrated that parallel performance is unaffected by in-
corporating the replacement strategy into the p-CG solver.
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[15] Z. Strakoš and P. Tichỳ. On error estimation in the
conjugate gradient method and why it works in finite
precision computations. Electronic Transactions on
Numerical Analysis, 13:56–80, 2002.

[16] C. Tong and Q. Ye. Analysis of the finite precision
Bi-Conjugate Gradient algorithm for nonsymmetric
linear systems. Mathematics of Computation,
69(232):1559–1575, 2000.

[17] H.A. Van der Vorst and Q. Ye. Residual replacement
strategies for Krylov subspace iterative methods for
the convergence of true residuals. SIAM Journal on
Scientific Computing, 22(3):835–852, 2000.

Algorithm 4 Preconditioned pipelined CG with automated
residual replacement

1: function p-cg-rr(A, M−1, b, x0)
2: r0 := b−Ax0; u0 := M−1r0 ; w0 := Au0, τ :=

√
ψ

3: set replace := false
4: for i = 0, . . . do
5: γi := (ri, ui)
6: δ := (wi, ui)
7: if i > 0 then
8: σi−1 :=

√
(si−1, si−1)

9: ζi−1 :=
√

(zi−1, zi−1)
10: end if
11: mi := M−1wi

12: ni := Ami

13: if i > 0 then
14: βi := γi/γi−1; αi := (δ/γi − βi/αi−1)−1

15: else
16: βi := 0;αi = γi/δ
17: end if
18: zi := ni + βizi−1

19: qi := mi + βiqi−1

20: si := wi + βisi−1

21: pi := ui + βipi−1

22: xi+1 := xi + αipi
23: ri+1 := ri − αisi
24: ui+1 := ui − αiqi
25: wi+1 := wi − αizi
26: if i > 0 then
27: eri−1 := 2αi−1σi−1ψ
28: esi−1 := 2βiσi−1ψ + 2αi−1ζi−1ψ
29: ewi−1 := 2αi−1ζi−1ψ
30: ezi−1 := 2βiζi−1ψ
31: if i = 1 or replace = true then
32: dri := eri−1

33: dsi := esi−1

34: dwi := ewi−1

35: dzi := ezi−1

36: set replace := false
37: else
38: dri := dri−1 + αi−1d

s
i−1 + eri−1

39: dsi := βid
s
i−1 + dwi−1 + αi−1d

z
i−1 + esi−1

40: dwi := dwi−1 + αi−1d
z
i−1 + ewi−1

41: dzi := βid
z
i−1 + ezi−1

42: end if
43: if dri−1 ≤ τ

√
γi−1 and dri > τ

√
γi then

44: si := Api
45: qi := M−1si
46: zi := Aqi
47: ri+1 := b−Axi+1

48: ui+1 := M−1ri+1

49: wi+1 := Aui+1

50: set replace := true
51: end if
52: end if
53: end for
54: end function
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