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ABSTRACT

In this paper, we propose an adaptation of the PAM algorithm
to the minimization of a nonconvex functional designed for
joint image denoising and contour detection. This new func-
tional is based on the Ambrosio–Tortorelli approximation of
the well-known Mumford–Shah functional. We motivate the
proposed approximation, offering flexibility in the choice of
the possibly non-smooth penalization, and we derive closed
form expression for the proximal steps involved in the algo-
rithm. We focus our attention on two types of penalization:
`1-norm and a proposed quadratic-`1 function. Numerical ex-
periments show that the proposed method is able to detect
sharp contours and to reconstruct piecewise smooth approxi-
mations with low computational cost and convergence guar-
antees. We also compare the results with state-of-the-art re-
laxations of the Mumford–Shah functional and a recent dis-
crete formulation of the Ambrosio–Tortorelli functional.

Index Terms— Segmentation, restoration, Ambrosio–
Tortorelli, non-smooth optimization, proximal algorithm

1. INTRODUCTION

In the last decades, the Mumford–Shah (MS) model intro-
duced in [1] was intensively studied since it allows us to
perform joint image denoising and contour detection, and
yields piecewise smooth results. Difficult to minimize, many
relaxations of the MS functional have been proposed. The
nonconvex approximation of Ambrosio and Tortorelli [2, 3]
is of particular interest since it can perform both denois-
ing and contour detection simultaneously, contrary to some
convex relaxation, such as Total Variation (TV) minimization.

Mumford–Shah and Ambrosio–Tortorelli functionals –
Let g ∈ L∞(Ω) be the grayscale, possibly degraded, input
image, defined on an open bounded domain Ω ∈ R2. In the
MS model, one wants to find u ∈ W1,2(Ω)1, a piecewise
smooth reconstruction of g, and K ⊂ Ω the set of discontinu-
ities. The pair (K,u) is an optimal solution of the following
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1W1,2(Ω) =

{
u ∈ L2(Ω) : ∂u ∈ L2(Ω)

}
where ∂ denotes the weak

derivative operator.

functional:

MS(K,u) =
1

2

∫
Ω\K
|u− g|2 dx+ β

∫
Ω\K
|∇u|2 dx+ λH1(K ∩ Ω),

(1)
where β, λ > 0, andH1 denotes the 1-dimensional Hausdorff
measure. The image u should be close to g and at the same
time smooth, except at the locations K of the strong edges,
whose total length is penalized. We can rewrite Eq. (1) as a
function of u [4]:

MS(u) =
1

2

∫
Ω

|u−g|2 dx+β

∫
Ω

|∇u|2 dx+λH1(Ju) (2)

where Ju denotes the jump set of u (see [5] for more details).
However, the problem is not simplified because the compu-
tation of H1 (Ju) is still required. Ambrosio and Tortorelli
proposed in [2, 3] to use the notion of Γ-convergence to ap-
proach the last term by smooth functions. In the discrete set-
ting, the Ambrosio–Tortorelli (AT) functional is defined for
(u, v) ∈ RN × RM by

ATε(u, v) =
1

2
‖u− g‖22 + β‖diag (1− v)Du‖22 + λR(v),

(3)
where

R(v) =

(
ε‖Dv‖22 +

1

4ε
‖v‖22

)
, (4)

D ∈ RM×N represents a discrete difference operator and g ∈
RN is the vectorized representation of the noisy image. In this
context, the contour is represented by a smooth component v,
equals to 1 on the contour and 0 otherwise. The AT functional
Γ-converges towards the MS functional (1) as ε tends to 0
[2, 3]. Since the MS or AT functionals are nonconvex and
difficult to optimize, because of either the length term or the
presence of ε, many works have focused on finding suitable
approximations of them.

Related works – One of the most popular but coarse relax-
ation of the MS functional is the Total Variation (TV) min-
imization [6, 7]. This approximation is convex, and allows
us to denoise while preserving the discontinuities. However,
TV minimization leads to piecewise constant results, i.e., re-
duces the contrast and produces staircasing effects, and it is
not able to perform joint denoising and contour detection. In



[8] a finite element implementation of the AT functional was
proposed, refining and realigning the meshing locally around
the discontinuities but extremely costly for large images. Li
et al. proposed in [9] a functional similar to AT functional,
where (4) is approximated with a quadratic penalization. The
convergence is proved but it does not perform contour detec-
tion. For all these methods, contour detection can be obtained
by thresholding ‖Du‖2. Recently, [10] proposed a new for-
mulation of AT functional in the discrete calculus framework,
resulting with true 1-dimensional contours with convergence
guarantees but at the price of high computational cost.

Contributions and outline – In this paper, we propose a
new variational model and a proximal algorithm with con-
vergence guarantees for joint image denoising and contour
detection based on the Ambrosio–Tortorelli approximation of
the Mumford–Shah functional. First, in Section 2 we pro-
pose a variant of the Ambrosio–Tortorelli functional indepen-
dent of parameter ε. Then in Section 3, we describe the al-
gorithm based on an alternating proximal minimization and
give closed form expressions for the steps involving proxim-
ity operators, allowing to obtain convergence guarantees. In
section 4, we display some contour detection and denoising
results, compared to some state-of-the-art methods. Finally,
we conclude in Section 5.

2. PROPOSED MODEL

In this work we focus on the following approximation of the
AT problem.

Problem 1. Let β, λ > 0, let g ∈ RN denote the noisy image
with N pixels, and let u ∈ RN . We aim to solve

minimize
(u,v)∈RN×RM

J (u, v),

with
J (u, v) =

1

2
‖u− g‖22 +β‖diag (1− v)Du‖22 +λS(v)

(5)
where D ∈RM×N and the regularization term S is a, possi-
bly non-smooth, separable function; i.e., (∀v = (vi)1≤i≤M ),
S(v)=

∑M
i=1 σi(vi), where σi :RM→(−∞; +∞], and whose

proximity operator2 has a closed form expression.

The AT functional reduces to S(v) = R(v) so that for
large values of ε, the regularization term (4) mainly penalizes
the gradient of v. Hence, the support of v is very large, i.e.,
K is very thick. As ε tends to 0, the penalization of ‖v‖22
increases and forces v to be close to 0 almost everywhere. The
set of discontinuities is then progressively narrowed to the 1-
dimensional contour when ε → 0. However, numerically, it
is not possible for ε to be arbitrarily small, because ε controls
the thickness of the contours, and it needs to be greater than
the gridstep. The main limitation of this approach is to require
an ε varying along the iterations.

2For every x ∈ RN , proxτf (x) = argminy∈RN
1
2
‖y − x‖22 + τf(y)

Fig. 1: Graphs and proximity operators of `1 (in red), S1,Q

(in blue) and 1
4ε‖.‖

2
2 (in orange). In this example, we choose

ε = 0.1 and τ = 0.2 for more readability. The choice of
these parameters is discussed in Section 4. Since v should
take values between 0 and 1 by construction of the functional
J , we focus on the behavior in [0, 1].

The model we focus on in this work is based on the ob-
servation that for small values of ε, the penalization term (4)
on v in the AT functional (3) is reduced to ‖v‖22, and forces
v to be close to 0 almost everywhere, except exactly on K.
Thus, instead of minimizing the AT functional (3) depending
on the parameter ε, one may directly consider the penalization
1
4ε‖v‖

2
2. However, a simple `2-penalization may not enforce

sparsity as well as the functional (3) does. Hence, another
possibility we explore in the work is to consider a sparse pe-
nalization over v, i.e. `0 or `1-penalization to approach R
for small ε, and to obtain a similar (limit) behavior. Finally,
in order to both reproduce the quadratic behavior of 1

4ε‖.‖
2
2

for small ε and enforce sparsity, one may also use a quadratic
`1-penalization for v defined as follows.

Definition 1. We call the quadratic `1-penalization the con-
vex function defined as

(∀v = (vi)1≤i≤M ∈ RM ) S1,Q(v) =

M∑
i=1

max

{
|vi|,

v2
i

4ε

}
.

The behavior of the proposed function is compared to the
other penalization terms in Fig. 1. Note that this regular-
ization term is different from the Huber function aiming at
smoothing the `1-norm. Here we want to keep the non-
differentiability but imposing the quadratic behavior for large
value of vi.

In this paper, we focus on convex `1 and quadratic-`1 pe-
nalizations to limit the non-convexity of the problem. How-
ever, the algorithm derived in next section is adapated to sep-
arable non-convex penalization, e.g. `0-penalization.

3. ALGORITHM

PAM algorithm [11] has been designed for nonsmooth and
non-convex problems. Applied to Problem 1, it consists in up-
dating alternately uk and vk using the following iterations:

uk+1 = argmin
ũ

J (ũ, vk) +
1

2γk
∥∥ũ− uk∥∥2

2
(6)

vk+1 = argmin
ṽ

J (uk+1, ṽ) +
1

2δk
∥∥ṽ − vk∥∥2

2
(7)



where γk, δk > 0. The Proximal Alternating Linearized Min-
imization (PALM) algorithm [12] solves a linearization of it-
erations (6)-(7). In this work, we consider a hybrid algorithm,
whose formulation for Problem 1 reads:

uk+1 = proxγk‖.−g‖22

(
uk− γk∇u‖diag(1−vk)Duk‖22

)
(8)

vk+1 = argmin
ṽ

J (uk+1, ṽ) +
1

2δk
∥∥ṽ − vk∥∥2

2
(9)

We can explicitly write these iterations as follows.

Proposition 1. Let γk > 0. Iteration (8) is equivalent to

uk+1 =
uk − γkβD∗diag

(
(1− vk)2

)
Duk + γkg

γk + 1
, (10)

where D∗ denotes the adjoint of D and (1 − vk)2 stands for
the component-wise product.

Proof. Let P(u, v) = ‖diag (1− v)Du‖22 and its gradient
∇uP(u, v) = 2βD∗diag

(
(1− v)2

)
Du. The result in (10)

follows from the proximity operator of the `2-norm.

Proposition 2. Let δk > 0. Iteration (9) is equivalent to, for
all i ∈ {1, ...,M},

vk+1
i = prox λσi(.)

2β(Duk+1)2
i
+1/δk

(
β(Duk+1)2

i +
vki
2δk

β(Duk+1)2
i + 1

2δk

)
. (11)

Proof. Let i ∈ {1, . . . ,M} and di = (Duk+1)2
i . We observe

that
argmin

ṽ
β(1− ṽi)2di + λσi(ṽi) +

1

2δk
(ṽi − vki )2

= argmin
ṽ

λ

2βdi + 1
δk

σi(ṽi) +
1

2

(
ṽi −

βdi +
vki
2δk

βdi + 1
2δk

)2

.

The resulting algorithm is displayed in Algorithm 1. Un-
der similar assumptions than for PALM algorithm proposed
by Bolte et al. [12] for 0 < γk < 1/β‖D‖2 and 0 < δ− ≤
δk ≤ δ+ < +∞, the sequences (uk, vk) converge to a (local)
minimum of Problem 1.

When σi = | · |, the associated proximity operator is the
soft-thresholding, while for the quadratic `1-penalization, the
associated proximity operator is:

Proposition 3. For every η ∈ R,
prox

τ max
{
|.|, |.|

2

4ε

} (η) =

sign(η) max
{

0,min
[
|η| − τ,max

(
4ε,

|η|
τ
2ε + 1

)]}
. (12)

Proof. One must remark that the maximum function in S1,Q

changes at value x = 4ε and split cases. The result in (12)
follows from differentiation:

prox
τ max

{
|.|, .24ε

} (η) =
sign(η) max(0, |η| − τ) if |η| < 4ε+ τ,

4ε if 4ε+ τ ≤ |η| ≤ 4ε+ 2τ,

sign(η)
|η|

τ
2ε + 1

if |η| > 4ε+ 2τ.

Algorithm 1: Overview of the algorithm
Input g: vector of size N , (β, λ): reals ;
Var uk: vector of size N , vk: vector of size M ;
begin

uk ← g, vk ← 0;
repeat

uk+1 =
uk − 2γkβD∗diag

(
(1− vk)2

)
Duk + 2γkg

2γk + 1
;

vk+1 =prox λσi(.)

2β(Duk+1)2
i
+1/δk

β(Duk+1)2
i +

vki
2δk

β(Duk+1)2
i + 1

2δk


1≤i≤M

;

until convergence;
return (u, v) ;

4. EXPERIMENTS AND COMPARISONS

In this section, we evaluate the performance of the proposed
algorithmic scheme where the regularization S models either
a `1-norm and a quadratic `1-norm. We perform experiments
on noisy data, where the noise is an additive white Gaussian
noise with variance 0.2 for two types of images and three dif-
ferent sizes, in order to evaluate both the denoising and con-
tour detection but also the performance in terms of computa-
tional time.

As discussed in Section 2, the proposed model works only
for small values of ε in (4). Thus, in all the experiments we
arbitrarily fix ε = 10−5. Moreover, we choose γk = δk =
0.99/β‖D‖2, so that the convergence assumptions are sat-
isfied. In the experiments, we choose D = [H>, V >]> ∈
RM×N , with M=2N , where H and V are forward finite dif-
ferences in the horizontal and vertical directions, respectively.

The proposed method is compared with some state-of-the-
art methods: TV minimization, MS relaxation [13], and the
discrete formulation of the AT functional (Discrete AT) [10].
If the proposed method and Discrete AT allows us to directly
observe the contour from the estimated v, the two other meth-
ods require to threshold the gradient of u. Nonetheless, note
that all these methods depend on several parameters, which
can be chosen to perform different type of segmentation re-
sults. Here, for each method, we select the result leading
to the best, visual-Signal to Noise Ratio-Structural Similar-
ity (SNR-SSIM) compromise.

We can observe on Fig. 2 that the proposed method (for
any choice of S) leads to piecewise smooth results, with-
out the typical staircasing effect obtained using TV. More-
over, they are similar to those obtained with Discrete AT and
close to MS relaxation approach, which leads to the thinner
contours. However, this last method does not have conver-
gence guarantees (even local) and does not estimate the con-
tour directly compared to both Discrete AT and the proposed
method.

We compare in Table 1 the convergence speeds. Since
the implementation in [13] is on GPU, we do not include
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Fig. 2: Comparison of the proposed method with some state-of-the-art segmentation and denoising methods for two different
images of sizes 1282 and 2562. Left: denoising results (u) with (SNR,SSIM) values, middle: contours (extracted from a
threshold over Du for TV, and from v for the other methods), right: zoom on the contours.

this method in the comparison. The proposed model is much
faster than [10] for both choices of S, in particular with the
quadratic `1-penalization, for similar denoising and segmen-
tation performances.

Table 1: Convergence speeds for images of Figure 2 with
several resolutions (in sec.).

TV AT [10] `1 quadratic `1
dots (N = 1282) 0.4 43.6 2.2 2.1
dots (N = 2562) 2.2 231.3 6.2 5.5
dots (N = 5122) 30.8 1446.5 116.3 90.3
peppers (N = 1282) 1.1 167.7 22.3 19.9
peppers (N = 2562) 8.8 1014.4 78.6 81.3
peppers (N = 5122) 61.8 10038.6 647.5 650.8

5. CONCLUSION AND DISCUSSION

We proposed a new functional to approximate the MS model,
which gets rid of the main drawback of the Ambrosio–
Tortorelli functional; namely, the presence of a theoretical
parameter ε, for which no ideal value exists in practice.
It allows to both perform image denoising and extract 1-
dimensional contours while avoiding numerical difficulties
due to ε decreasing. Restoration and segmentation results are
comparable with recent state-of-the-art methods, with a faster
algorithm based on alternated proximal minimization, with
proved convergence to a local minimum. For future work, it
would be interesting to consider other regularizations S, in
particular nonconvex ones, and to work on real images, pos-
sibly textured images [14]. In particular, we are interested to
extend this model for texture segmentation in order to apply
it to multiphasic flow segmentation [15].
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