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Abstract. State-of-the-art (semi-)decision procedures for non-linear real
arithmetic address polynomial inequalities by mean of symbolic methods,
such as quantifier elimination, or numerical approaches such as interval
arithmetic. Although (some of) these methods offer nice completeness
properties, their high complexity remains a limit, despite the impressive
efficiency of modern implementations. This appears to be an obstacle to
the use of SMT solvers when verifying, for instance, functional properties
of control-command programs.

Using off-the-shelf convex optimization solvers is known to constitute an
appealing alternative. However, these solvers only deliver approximate
solutions, which means they do not readily provide the soundness expected
for applications such as software verification. We thus investigate a-
posteriori validation methods and their integration in the SMT framework.
Although our early prototype, implemented in the Alt-Ergo SMT solver,
often does not prove competitive with state of the art solvers, it already
gives some interesting results, particularly on control-command programs.

Keywords: SMT, non-linear real arithmetic, polynomial inequalities,
convex optimization

1 Introduction

Systems of non-linear polynomial constraints over the reals are known to be
solvable since Tarski proved that the first-order theory of the real numbers is de-
cidable, by providing a quantifier elimination procedure. This procedure has then
been much improved, particularly with the cylindrical algebraic decomposition.
Unfortunately, its doubly exponential complexity remains a serious limit to its
scalability. It is now integrated into SMT solvers [23]. Although it demonstrates
very good practical results, symbolic quantifier elimination seems to remain an
obstacle to scalability on some problems. In some cases, branch and bound with
interval arithmetic constitutes an interesting alternative [17].

? This work has been partially supported by the French ANR projects ANR-12-INSE-
0007 Cafein and ANR-14-CE28-0020 Soprano and the project SEFA IKKY.
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We investigate the use of numerical optimization techniques, called semi-
definite programming, as an alternative. We show in this paper how solvers based
on these techniques can be used to design a sound semi-decision procedure that
outperforms symbolic and interval-arithmetic methods on problems of practical
interest. A noticeable characteristic of the algorithms implemented in these solvers
is to only compute approximate solutions.

We explain this by making a comparison with linear programming. There are
two competitive methods to optimize a linear objective under linear constraints:
the interior point and the simplex algorithms. The interior point algorithm starts
from some initial point and performs steps towards an optimal value. These
iterations converge to the optimum but not in finitely many steps and have to be
stopped at some point, yielding an approximate answer. In contrast, the simplex
algorithm exploits the fact that the feasible set is a polyhedra and that the
optimum is achieved on one of its vertices. The number of vertices being finite,
the optimum can be exactly reached after finitely many iterations. Unfortunately,
this nice property does not hold for spectrahedra, the equivalent of polyhedra
for semi-definite programming. Thus, all semi-definite programming solvers are
based on the interior-point algorithm, or a variant thereof.

To illustrate the consequences of these approximate solutions, consider the
proof of e ≤ c with e a complicated ground expression and c a constant. e ≤ c can
be proved by exactly computing e, giving a constant c′, and checking that c′ ≤ c.
However, if e is only approximately computed: e ∈ [c′− ε, c′+ ε], this is conclusive
only when c′ + ε ≤ c. In particular, if e is equal to c, an exact computation is
required. This inability to prove inequalities that are not satisfied with some
margin is a well known property of numerical verification methods [42] which
can then be seen as a trade-off between completeness and computation cost.

The main point of this paper is that, despite their incompleteness, numerical
verification methods remain an interesting option when they enable to practically
solve problems for which other methods offer an untractable complexity. Our
contributions are:

(1) a comparison of two sound semi-decision procedures for systems of non-linear
constraints, which rely on off-the-shelf numerical optimization solvers,

(2) an integration of these procedures in the Alt-Ergo SMT solver,

(3) an experimental evaluation of our approach on a set of benchmarks coming
from various application domains.

The rest of this paper is organized as follows: Section 2 gives a practical exam-
ple of a polynomial problem, coming from control-command program verification,
better handled by numerical methods. Section 3 is dedicated to preliminaries.
It introduces basic concepts of sum of squares polynomials and semi-definite
programming. In Section 4, we compare two methods to derive sound solutions
to polynomial problems from approximate answers of semi-definite programming
solvers. Section 5 provides some implementation details and discuss experimental
results. Finally, Section 6 concludes with some related and future works.
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typedef struct { double x0, x1, x2; } state;
/*@ predicate inv(state *s) = 6.04 * s->x0 * s->x0 - 9.65 * s->x0 * s->x1

@ - 2.26 * s->x0 * s->x2 + 11.36 * s->x1 * s->x1
@ + 2.67 * s->x1 * s->x2 + 3.76 * s->x2 * s->x2 <= 1; */

/*@ requires \valid(s) && inv(s) && -1 <= in0 <= 1;
@ ensures inv(s); */

void step(state *s, double in0) {
double pre_x0 = s->x0 , pre_x1 = s->x1, pre_x2 = s->x2;
s->x0 = 0.9379 * pre_x0 - 0.0381 * pre_x1 - 0.0414 * pre_x2 + 0.0237 * in0;
s->x1 = -0.0404 * pre_x0 + 0.968 * pre_x1 - 0.0179 * pre_x2 + 0.0143 * in0;
s->x2 = 0.0142 * pre_x0 - 0.0197 * pre_x1 + 0.9823 * pre_x2 + 0.0077 * in0;

}

Fig. 1: Example of a typical control-command code in C.

2 Example: Control-Command Program Verification

Control-command programs usually iterate linear assignments periodically over
time. These assignments take into account a measure (via some sensor) of the
state of the physical system to control (called plant by control theorists) to
update an internal state and eventually output orders back to the physical system
(through some actuator). Figure 1 gives an example of such an update, in0
being the input and s the internal state. The comments beginning by @ in the
example are annotations in the ACSL language [12]. They specify that before
the execution of the function (requires) s must be a valid pointer satisfying the
predicate inv and |in0| ≤ 1 must hold. Under these hypotheses, s still satisfies
inv after executing the function (ensures).

To prove that the internal state remains bounded over any execution of
the system, a quadratic polynomial5 can be used as invariant6. Checking the
validity of these invariants then leads to arithmetic verification conditions (VCs)
involving quadratic polynomials. Such VCs can for instance be generated from the
program of Figure 1 by the Frama-C/Why3 program verification toolchain [12,16].
Unfortunately, proving the validity of these VCs seem out of reach for current
state-of-the-art SMT solvers. For instance, although Z3 [13] can solve smaller
examples with just two internal state variables in a matter of seconds, it ran
for a few days on the three internal state variable example of Figure 1 without
reaching a conclusion7. In contrast, our prototype can prove it in a fraction of
second, as well as other examples with up to a dozen variables.

Verification of control-command programs is a good candidate for numerical
methods. These systems are designed to be robust to many small errors, which
means that the verified properties are usually satisfied with some margin. Thus,
the incompleteness of numerical methods is not an issue for this kind of problems.

5 For instance, the three variables polynomial in inv in Figure 1.
6 Control theorists call these invariants sublevel sets of a quadratic Lyapunov function.

Such functions exist for linear systems if and only if they do not diverge.
7 This is the case even on a simplified version with just arithmetic constructs, i.e.,

expurgated of all the reasoning about pointers and the C memory model.
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3 Preliminaries

3.1 Emptiness of Semi-algebraic Sets

Our goal is to prove that conjunctions of polynomial inequalities are unsatisfiable,
that is, given some polynomials with real coefficients p1, . . . , pm ∈ R[x], we want
to prove that there does not exist any assignment for the n variables x1, . . . , xn ∈
Rn such that all inequalities p1(x1, . . . , xn) ≥ 0, . . . , pm(x1, . . . , xn) ≥ 0 hold
simultaneously. In the rest of this paper, the notation p ≥ 0 (resp. p > 0) means
that for all x ∈ Rn, p(x) ≥ 0 (resp. p(x) > 0).

Theorem 1. If there exist polynomials ri ∈ R[x] such that

−
∑
i

ri pi > 0 and ∀i, ri ≥ 0 (1)

then the conjunction
∧
i pi ≥ 0 is unsatisfiable8.

Proof. Assume there exist x ∈ Rn such that for all i, pi(x) ≥ 0. Then, since ri ≥ 0,
we have ri(x) pi(x) ≥ 0 hence (

∑
i ri pi) (x) ≥ 0 which contradicts −

∑
i ri pi > 0.

In fact, under some hypotheses9 on the pi, the condition (1) is not only suffi-
cient but also necessary, as stated by the Putinar’s Positivstellensatz [27, §2.5.1].
Unfortunately, no practical bound is known on the degrees of the polynomials
ri. In our prototype, we restrict the degrees of each ri to10 d − deg(pi) where
d := maxi(deg(pi)), so that

∑
i ri pi is a polynomial of degree d. This is a first

source of incompleteness, although benchmarks show that it already enables to
solve many interesting problems.

The sum of squares (SOS) technique [26,36] is an efficient way to numerically
solve polynomial problems such as (1). The next sections recall its main ideas.

3.2 Sum of Squares (SOS) Polynomials

A polynomial p ∈ R[x] is said to be SOS if there exist polynomials hi ∈ R[x] such
that for all x,

p(x) =
∑
i

h2i (x).

Although not all non negative polynomials are SOS, being SOS is a sufficient
condition to be non negative.

Example 1 (from [36]). Considering p(x1, x2) = 2x41 + 2x31x2 − x21x22 + 5x42, there
exist h1(x1, x2) = 1√

2

(
2x21 − 3x22 + x1x2

)
and h2(x1, x2) = 1√

2

(
x22 + 3x1x2

)
such

that p = h21 + h22. This proves that for all x1, x2 ∈ R, p(x1, x2) ≥ 0.

8 Or, with different words, the semi-algebraic set {x ∈ Rn | ∀i, pi(x) ≥ 0} is empty.
9 For instance, when one of the sets {x ∈ Rn | pi(x) ≥ 0} is bounded.

10 More precisely to 2
⌈
d−deg(pi)

2

⌉
as deg(ri) is necessarily even since ri ≥ 0.
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Any polynomial p of degree 2d (a non negative polynomial is necessarily of
even degree) can be written as a quadratic form in the vector of all monomials of
degree less or equal to d:

p(x) = zTQz (2)

where z =
[
1, x1, . . . , xn, x1x2, . . . , x

d
n

]T
and Q is a constant symmetric matrix.

Example 2. For p(x1, x2) = 2x41 + 2x31x2 − x21x22 + 5x42, we have11

p(x1, x2) =

 x21
x22
x1x2

T q11 q12 q13q12 q22 q23
q13 q23 q33

 x21
x22
x1x2


= q11x

4
1 + 2q13x

3
1x2 + (q33 + 2q12)x21x

2
2 + 2q23x1x

3
2 + q22x

4
2.

Thus q11 = 2, 2q13 = 2, q33 + 2q12 = −1, 2q23 = 0 and q22 = 5. Two possible
examples for the matrix Q are shown below:

Q =

2 1 1
1 5 0
1 0 −3

 , Q′ =

 2 −3 1
−3 5 0
1 0 5

 .
The polynomial p is then SOS if and only if there exists a positive semi-definite

matrix Q satisfying (2). A matrix Q is called positive semi-definite, noted Q � 0,
if, for all vector x, xTQx ≥ 0. Just as a scalar q ∈ R is non negative if and only
if q = r2 for some r ∈ R (typically r =

√
q), Q � 0 if and only if Q = RTR for

some matrix R (then, for all x, xTQx = (Rx)T (Rx) = ‖Rx‖22 ≥ 0). The vector
Rz is then a vector of polynomials hi such that p =

∑
i h

2
i .

Example 3. In the previous example, the matrix Q is not positive semi-definite
(for x = [0, 0, 1]

T
, xTQx = −3). In contrast, Q′ � 0 as Q′ = RTR with

R =
1√
2

[
2 −3 1
0 1 3

]
giving the decomposition of Example 1.

3.3 Semi-Definite Programming (SDP)

Given symmetric matrices C,A1, . . . , Am ∈ Rs×s and scalars a1, . . . , am ∈ R, the
following optimization problem is called semi-definite programming

minimize tr(CQ)

subject to tr(A1Q) = a1
...

tr(AmQ) = am
Q � 0

(3)

where the symmetric matrix Q ∈ Rs×s is the variable, tr(M) =
∑
iMi,i denotes

the trace of the matrix M and Q � 0 means Q positive semi-definite.

11 All monomials of p are of degree 4, so z does not need to contain 1, x1 and x2.
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Remark 1. Since the matrices are symmetric, tr(AQ) = tr(ATQ) =
∑
i,j Ai,jQi,j .

The constraints tr(AQ) = a are then affine constraints between the entries of Q.

As we have just seen in Section 3.2, existence of a SOS decomposition amounts
to existence of a positive semi-definite matrix satisfying a set of affine constraints,
that is a solution of a semi-definite program. Semi-definite programming is a
convex optimization problem for which there exist efficient numerical solvers [7,44],
thus enabling to solve problems involving polynomial inequalities over the reals.

3.4 Parametric Problems

Up to now, we have only seen how to check whether a given polynomial p with
fixed coefficients is SOS (which implies its non negativeness). However, according
to Section 3.1, we need to solve problems in which polynomials p have coefficients
that are not fixed but parameters. One of the great strengths of SOS programming
is its ability to solve such problems.

An unknown polynomial p ∈ R[x] of degree d with n variables can be written

p =
∑

α1+···+αn≤d

pαx
α1
1 . . . xαn

n

where the pα are scalar parameters. A constraint such as ri ≥ 0 in (1) can then
be replaced by ri is SOS, that is: ∃Q � 0, ri = zTQz, which is a set of affine
equalities between the coefficients of Q and the coefficients ri,α of ri. This can
be cast as a semi-definite programming problem 12.

Thus, problems with unknown polynomials p, as the one presented in Sec-
tion 3.1, can be numerically solved through SOS programming.

Remark 2 (Complexity). The number s of monomials in n variables of degree less
than or equal to d, i.e., the size of the vector z in the decomposition p(x) = zTQz,
is s :=

(
n+d
d

)
. This is polynomial in n for a fixed d (and vice versa). In practice,

current SDP solvers can solve problems where s is about a few hundreds. This
makes the SOS relaxation tractable for small values of n and d (n ∼ 10 and
d ∼ 3, for instance). Our benchmarks indicate this is already enough to solve
some practical problems that remain out of reach for other methods.

4 Numerical Verification of SOS

According to Section 3.1, a conjunction of polynomial constraints can be proved
unsatisfiable by exhibiting other polynomials satisfying some constraints. Sec-
tion 3.4 shows that such polynomials can be efficiently found by some numerical
optimization solvers. Unfortunately, due to the algorithms they implement, we
cannot directly trust the results of these solvers. This section details this issue and
reviews two a-posteriori validation methods, with their respective weaknesses.

12 By encoding the ri,α ∈ R as r+i,α − r−i,α with r+i,α, r
−
i,α ≥ 0 and putting the new

variables in a block diagonal matrix variable Q′ := diag(Q, . . . , r+i,α, r
−
i,α, . . .).
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4.1 Approximate Solutions from SDP Solvers

In practice, the matrix Q returned by SDP solvers upon solving an SDP prob-
lem (3) does not precisely satisfy the equality constraints, due both to the
algorithms used and their implementation with floating-point arithmetic. There-
fore, although the SDP solver returns a positive answer for a SOS program, this
does not constitute a valid proof that a given polynomial is SOS.

Most SDP solvers start from some Q � 0 not satisfying the equality constraints
(for instance the identity matrix) and iteratively modify it in order to reduce
the distance between tr(AiQ) and ai while keeping Q positive semi-definite. This
process is stopped when the distance is deemed small enough. This final distance ε
is called the primal infeasibility, and is one of the result quality measures displayed
by SDP solvers13. Therefore, we do not obtain a Q satisfying tr(AiQ) = ai but
rather tr(AiQ) = ai + εi for some small εi such that |εi| ≤ ε.

4.2 Proving Existence of a Nearby Solution

This primal infeasibility has a simple translation in terms of our original SOS
problem. The polynomial equality p = zTQz is encoded as one scalar constraint
tr(AiQ) = ai for each coefficient ai of the polynomial p (c.f., Examples 2).
coefficients of the polynomials p and zTQz differ by some εi and, since |εi| ≤ ε,
there exists a matrix E ∈ Rs×s such that, for all i, j, |Ei,j | ≤ ε and

p = zT (Q+ E) z. (4)

Proving that Q+ E � 0 is now enough to prove that the polynomial p is SOS,
hence non negative. A sufficient condition is to check14 Q− sεI � 0.

As seen in Section 3.2, checking that a matrix M is positive semi-definite
amounts to exhibiting a matrix R such that M = RTR. The Cholesky decompo-
sition algorithm [45, §1.4] computes such a matrix R. Given a matrix M ∈ Rs×s,
it attempts to compute R such that M = RTR and when M is not positive
semi-definite, it fails by attempting to take the square root of a negative value or
perform a division by zero.

Due to rounding errors, a simple floating-point Cholesky decomposition would
produce a matrix R not exactly satisfying the equality M = RTR, hence not
proving M � 0. However, these rounding errors can be bounded by a matrix
B so that, when the floating-point Cholesky decomposition of M −B succeeds,
then M � 0 is guaranteed to hold. Moreover, B can be easily computed from
the matrix M and the characteristics of the floating-point format used [41].

To sum up, the following verification procedure can prove that a given
polynomial p is SOS15.

13 Typically, ε ∼ 10−8.
14 In order to get good likelihood for this to hold, we ask the SDP solver for Q−2sεI � 0

rather than Q � 0, as solvers often return matrices Q slightly not positive definite.
15 It is worth noting that the value reported by the solver for ε, being just computed with

floating-point arithmetic, cannot be formally trusted. It must then be recomputed.
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Let Q ∈ Rs×s be the approximate solution returned by an SDP
solver for the problem p = zTQz ∧ Q � 0. Then,

1. Compute a bound ε on the coefficients of p− zTQz.
2. Check that Q− sεI � 0.

Complexity Note that step 1 can be achieved using floating-point interval
arithmetic in Θ(s2) operations while the Cholesky decomposition in step 2
requires Θ(s3) floating-point operations. Thus, the whole verification method
takes Θ(s3) floating-point operations which, in practice, constitutes a very small
overhead compared to the time required by the SDP solver to compute Q.

Soundness It is interesting to notice that the soundness of the method does not
rely on the SDP solver. Thanks to this pessimistic method, the trusted code-base
remains small, and efficient off-the-shelf solvers can be used as untrusted oracles.
The method was even verified [31,38] within the Coq proof assistant.

Incompleteness Numerical verification methods can only prove inequalities
satisfied with some margin. Here, if the polynomial p to prove SOS (hence p ≥ 0)
reaches the value 0, this usually means that the feasible set of the SDP problem{
Q
∣∣ p = zTQz,Q � 0

}
has an empty relative interior (i.e., there is no point Q

in this set such that a small ball centered on Q is included in {M |M � 0}) and
the method does not work, as illustrated on Figure 2. This is a second source
of incompleteness of our approach, that adds to the limitation of degrees of
polynomials searched for, as presented in Section 3.1.

{M |M � 0}

{Q+ E }Q

{
M
∣∣ p = zTM z

}

Fig. 2: When the feasible set has an empty interior, the subspace{
M
∣∣ p = zTM z

}
is tangent to {M |M � 0}. Thus the ball {Q+ E } inter-

secting the subspace almost never lies in {M |M � 0}, making the proof fail.

Remark 3. The floating-point Cholesky decomposition is theoretically a third
source of incompleteness. However, it is negligible as the entries of the bound
matrix B are, in practice, orders of magnitude smallers than the accuracy ε of
the SDP solvers [40].

4.3 Rounding to an Exact Rational Solution

The most common solution to verify results of SOS programming is to round the
output of the SDP solver to an exact rational solution [19,24,33].
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To sum up, the matrix Q returned by the SDP solver is first projected to the
subspace

{
M
∣∣ p = zTM z

}
then all its entries are rounded to rationals with small

denominators (first integers, then multiples of 1
2 ,

1
3 , . . .)

16. For each rounding,
positive semi-definiteness of the resulting matrix Q is tested using a complete
check, based on a LDLT decomposition17 [19]. The rationale behind this choice
is that problems involving only simple rational coefficients can reasonably be
expected to admit simple rational solutions18.

Using exact solutions potentially enables to verify SDP problems with empty
relative interiors. This means the ability to prove inequalities without margin, to
distinguish strict and non-strict inequalities and even to handle (dis)equalities.
All of this nevertheless requires a different relaxation scheme than (1).

Example 4. To prove x1 ≥ 0 ∧ x2 ≥ 0 ∧ q1 = 0 ∧ q2 = 0 ∧ p > 0 unsatisfiable,
with q1 := x21 + x22 − x23 − x24 − 2, q2 := x1x3 + x2x4 and p := x3x4 − x1x2,
one can look for polynomials l1, l2 and SOS polynomials s1, . . . , s8 such that
l1q1 + l2q2 + s1 + s2p+ s3x1 + s4x1p+ s5x2 + s6x2p+ s7x1x2 + s8x1x2p+ p = 0.

Rounding the result of an SDP solver yields l1 = − 1
2 (x1x2 − x3x4), l2 =

− 1
2 (x2x3 + x1x4), s2 = 1

2

(
x23 + x24

)
, s7 = 1

2

(
x21 + x22 + x23 + x24

)
and s1 = s3 =

s4 = s5 = s6 = s8 = 0. This problem has no margin, since when replacing p > 0
by p ≥ 0, (x1, x2, x3, x4) = (0,

√
2, 0, 0) becomes a solution.

Under some hypotheses, this relaxation scheme is complete, as stated by
a theorem from Stengle [27, Th. 2.11]. However, similarly to Section 3.1, no
practical bound is known on the degrees of the relaxation polynomials.

Complexity The relaxation scheme involves products of all polynomials ap-
pearing in the original problem constraints. The number of such products, being
exponential in the number of constraints, limits the scalability of the approach.

Moreover, to actually enjoy the benefits of exact solutions, the floating-point
Cholesky decomposition introduced in Section 4.2 cannot be used and has to
be replaced by an exact rational decomposition19. Computing decompositions
of large matrices can then become particularly costly as the size of the involved
rationals can blow up exponentially during the computation.

Soundness The exact solutions make for an easy verification. The method is
thus implemented in the HOL Light [19] and Coq [4] proof assistants.

16 In practice, to ensure that the rounded matrix Q still satisfy the equality p = zTQz,
a dual SDP encoding is used, that differs from the encoding introduced in Section 3.
This dual encoding is also called image representation [36, §6.1].

17 The LDLT decomposition expresses a positive semi-definite matrix M as M = LDLT

with L a lower triangular matrix and D a diagonal matrix.
18 However, there exist rational SDP problems that do not admit any rational solution.
19 The Cholesky decomposition, involving square roots, cannot be computed in rational

arithmetic, however its LDLT variant can.
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Incompleteness Although this verification method can work for some SDP
problems with an empty relative interior, the rounding heuristic is not guaranteed
to provide a solution. In practice, it tends to fail on large problems or problems
whose coefficients are not rationals with small numerators and denominators.

5 Experimental Results

5.1 The OSDP Library

The SOS to SDP translation described in Section 3, as well as the validation
methods described in Section 4 have been implemented in our OCaml library
OSDP. This library offers a common interface to the SDP solvers20 Csdp [6],
Mosek [2] and SDPA [46], giving simple access to SOS programming in contexts
where soundness matters, such as SMT solvers or program static analyzers. It is
composed of 5 kloc of OCaml and 1 kloc of C (interfaces with SDP solvers) and
is available under LGPL license at https://cavale.enseeiht.fr/osdp/.

5.2 Integration of OSDP in Alt-Ergo

Alt-Ergo [5] is a very effective SMT solver for proving formulas generated by
program verification frameworks. It is used as a back-end of different tools and
in various settings, in particular via the Why3 [16] platform. For instance, the
Frama-C [12] suite relies on it to prove formulas generated from C code, and the
SPARK [21] toolset uses it to check formulas produced from Ada programs. It is
also used by EasyCrypt [3] to prove formulas issued from cryptographic protocols
verification, from the Cubicle [10] model-checker, and from Atelier-B [1].

Alt-Ergo’s native input language is a polymorphic first-order logic à la ML
modulo theories, a very suitable language for expressing formulas generated in
the context of program verification. Its reasoning engine is built on top of a
SAT solver that interacts with a combination of decision procedures to look for
a model for the input formula. Universally quantified formulas, that naturally
arise in program verification, are handled via E-matching techniques. Currently,
Alt-Ergo implements decision procedures for the free theory of equality with
uninterpreted symbols, linear arithmetic over integers and rationals, fragments
of non-linear arithmetic, enumerated and records datatypes, and the theory of
associative and commutative function symbols (hereafter AC).

Figure 3 shows the simplified architecture of arithmetic reasoning framework
in Alt-Ergo, and the OSDP extension. The first component in the figure is a
completion-like algorithm AC(LA) that reasons modulo associativity and com-
mutativity properties of non-linear multiplication, as well as its distributivity
over addition21. AC(LA) is a modular extension of ground AC completion with a
decision procedure for reasoning modulo equalities of linear integer and rational

20 Csdp is used for the following benchmarks as it provides the best results.
21 Addition and multiplication by a constant is directly handled by the LA module.

https://cavale.enseeiht.fr/osdp/
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Fig. 3: Alt-Ergo’s arithmetic reasoning framework with OSDP integration.

arithmetic [9]. It builds and maintains a convergent term-rewriting system mod-
ulo arithmetic equalities and the AC properties of the non-linear multiplication
symbol. The rewriting system is used to update a union-find data-structure.

The second component is an Interval Calculus algorithm that computes
bounds of (non-linear) terms: the initial non-linear problem is first relaxed by
abstracting non-linear parts, and a Fourier-Motzkin extension22 is used to infer
bounds on the abstracted linear problem. In a second step, axioms of non-linear
arithmetic are internally applied by intervals propagation. These two steps allow
to maintain a map associating the terms of the problems (that are normalized
w.r.t. the union-find) to unions of intervals.

Finally, the last part is the SAT solver that dispatches equalities and in-
equalities to the right component and performs case-split analysis over finite
domains. Of course, this presentation is very simplified and the exact architecture
of Alt-Ergo is much more complicated.

The integration of OSDP in Alt-Ergo is achieved via the extension of the
Interval Calculus component of the solver, as shown in Figure 3: terms that
are polynomials, and their corresponding interval bounds, form the problem (1)
which is given to OSDP. OSDP attempts to verify its result with the method of
Section 4.2. When it succeeds, the original conjunction of constraints is proved
unsat. Otherwise, (dis)equalities are added and OSDP attempts a new proof by
the method of Section 4.3. In case of success, unsat is proved, otherwise satisfia-
bility or unsatisfiability cannot be deduced. Outlines of the first algorithm are
given in Figure 4 whereas the second one follows the original implementation [19].

Our modified version of Alt-Ergo is available under CeCILL-C license at
https://cavale.enseeiht.fr/osdp/aesdp/.

Incrementality In the SMT context, our theory solver is often succesively called
with the same problem with a few additional constraints each time. It would then
be interesting to avoid doing the whole computation again when a constraint is
added, as is usually done with the simplex algorithm for linear arithmetic.

Some SDP solvers do offer to provide an initial point. Our experiments
however indicated that this significantly speeds up the computation only when

22 We can also use a simplex-based algorithm [8] for bounds inference.

https://cavale.enseeiht.fr/osdp/aesdp/
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p′1 := (p1 − a1)(b1 − p1), . . ., p′k := (pk − ak)(bk − pk)
// or p′i := pi − ai when bi = +∞ or p′i := bi − pi when ai = −∞
d := max

i
{deg(p′i) }

encode −
k∑
i=1

rip
′
i is SOS, r1 is SOS, . . . r′k is SOS

as an SDP problem −
∑
rip
′
i = zT0 Q0 z0, r1 = zT1 Q1 z1, . . ., rk = zTk Qk zk

with deg(ri) := 2
⌈
d−deg(p′i)

2

⌉
call an SDP solver and retrieve r1, rk and Q0, Q1, . . ., Qk

overapproximate εi := max
α

{
|cα|

∣∣∣∣∣ ri − zTi Q1 zi =
∑
α

cαx
α

}
if 1 ∈ z0 ∧Q0 −#|z0|ε0I � 0 ∧Q1 −#|z1|ε1I � 0 ∧ . . . ∧Qk −#|zk|εkI � 0 then

return Unsat
else

return Unknown
end if

Fig. 4: Semi-decision procedure to prove

k∧
i=1

pi ∈ [ai, bi] unsat. #|z| is the size of

the vector z and � 0 is tested with a floating-point Cholesky decomposition [41].

the provided point is extremely close to the solution. A bad initial point could
even slow down the computation or, worse, make it fail. This is due to the very
different nature of the interior point algorithms, compared to the simplex, and
their convergence properties [7, Part III]. Thus, speed ups could only be obtained
when the previous set of constraints was already unsatisfiable, ı.e. a useless case.

Small Conflict Sets When a set of constraints is unsatisfiable, some of them
may not play any role in this unsatisfiability. Returning a small subset of unsat-
isfiable constraints can help the underlying SAT solver. Such useless constraints
can easily be identified in (1) when the relaxation polynomial ri is 0. A common
heuristic to maximize their number is to ask the SDP solver to minimize (the
sum of) the traces of the matrices Qi.

When using the exact method of Section 4.3, the appropriate ri are exactly
0. Things are not so clear when using the approximate method of Section 4.2
since the ri are only close to 0. A simple solution is to rank the ri by decreasing
trace of Qi before performing a dichotomy search for the smallest prefix of this
sequence proved unsatisfiable. Thus, for n constraints, log(n) SDPs are solved.

5.3 Experimental Results

We compared our modified version of Alt-Ergo (v. 1.30) to the SMT solvers ran
in both the QF NIA and QF NRA sections of the last SMT-COMP. We ran
the solvers on two sets of benchmarks. The first set comes from the QF NIA
and QF NRA benchmarks for the last SMT-COMP. The second set contains
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four subsets. The C problems are generated by Frama-C/Why3 [12,16] from
control-command C programs such as the one from Section 2, with up to a
dozen variables [11,39]. To distinguish difficulties coming from the handling of
the memory model of C, for which Alt-Ergo was particularly designed, and from
the actual non-linear arithmetic problem, the quadratic benchmarks contain
simplified versions of the C problems with a purely arithmetic goal. To demonstrate
that the interest of our approach is not limited to this initial target application,
the flyspeck benchmarks come from the benchmark sets of dReal23 [18] and
global-opt are global optimization benchmarks [34]. All these benchmarks are
available at https://cavale.enseeiht.fr/osdp/aesdp/. Since our solver only
targets unsat proofs, benchmarks known sat were removed from both sets.

Table 1: Experimental results on benchmarks from QF NIA.

AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3

AProVE (746)
unsat 103 319 359 318 586 185 709 252
time 7387 23968 7664 22701 10821 3879 1982 5156

calypto (97)
unsat 92 88 88 89 87 89 97 95
time 357 679 489 816 7 754 409 613

LassoRanker (102)
unsat 57 62 64 63 72 20 84 84
time 9 959 274 878 27 12 595 2538

LCTES (2)
unsat 0 0 0 0 1 0 0 0
time 0 0 0 0 0 0 0 0

leipzig (5)
unsat 0 0 0 0 0 0 1 0
time 0 0 0 0 0 0 0 0

mcm (161)
unsat 0 0 0 0 4 0 0 4
time 0 0 0 0 2489 0 0 2527

UltimateAutom (7)
unsat 1 7 7 7 6 1 7 7
time 0.35 0.73 0.62 0.69 0.03 7.22 0.04 0.31

UltimateLasso (26)
unsat 26 26 26 26 4 26 26 26
time 118 212 126 215 66 177 6 21

total (1146)
unsat 279 502 544 503 780 321 924 468
time 7872 25818 8553 24611 13411 4829 2993 10855

All experiments were conducted on an Intel Xeon 2.30 GHz processor, with
individual runs limited to 2GB of memory and 900 seconds. The results are
presented in Tables 1, 2 and 3. For each subset of problems, the first column
indicates the number of problems that each solver managed to prove unsat and
the second presents the cumulative time (in seconds) for these problems.AE is
the original Alt-Ergo, AESDP our new version, AESDPap the same but using
only the approximate method of Section 4.2 and AESDPex using only the exact
method of Section 4.3. All solvers were run with default options, except CVC4
which was run with all its --nl-ext* options.

23 Removing problems containing functions sin and cos, not handled by our tool.

https://cavale.enseeiht.fr/osdp/aesdp/
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Table 2: Experimental results on benchmarks from QF NRA.

AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3

Sturm-MBO (300)
unsat 155 155 155 155 285 285 2 47
time 12950 13075 13053 12973 1403 620 0 21

Sturm-MGC (7)
unsat 0 0 0 0 1 1 0 7
time 0 0 0 0 7 0 0 0

Heizmann (68)
unsat 0 0 0 0 1 1 11 3
time 0 0 0 0 16 0 2083 41

hong (20)
unsat 1 20 20 20 20 20 8 9
time 0 28 24 27 1 0 240 6

hycomp (2494)
unsat 1285 1266 1271 1265 2184 1588 2182 2201
time 15351 15857 16080 14909 208 13784 1241 4498

keymaera (320)
unsat 261 291 278 291 249 307 270 318
time 36 356 97 360 4 13 359 2

LassoRanker (627)
unsat 0 0 0 0 441 0 236 119
time 0 0 0 0 32786 0 30835 1733

meti-tarski (2615)
unsat 1882 2273 2267 2241 1643 2520 2578 2611
time 10 91 65 73 804 3345 2027 337

UltimateAutom (13)
unsat 0 0 0 0 5 0 12 13
time 0 0 0 0 0.52 0 57.19 19.23

zankl (85)
unsat 14 24 24 24 24 19 32 27
time 1.00 15.46 16.09 15.67 9.40 13.47 7.22 0.43

total (6549)
unsat 3571 4029 4015 3996 4853 4740 5331 5355
time 28348 29423 29334 28357 35239 17775 36849 6658

As seen in Table 1 and 2, despite an improvement over Alt-Ergo alone, our
development is not competitive with state-of-the-art solvers on the QF NIA and
QF NRA benchmarks. In fact, the set of problems solved by any of our Alt-Ergo
versions is strictly included in the set of problems solved by at least one of the
other solvers. The most commonly observed source of failure for AESDPap here
comes from SDPs with empty relative interior. Although AESDPex can handle
such problems, it is impaired by its much higher complexity.

However good results are obtained on the more numerical24 second set of
benchmarks. In particular, control-command programs with up to a dozen vari-
ables are verified while other solvers remain limited to two variables. Playing a key
point in this result, the inequalities in these benchmarks are satisfied with some
margin. For control command programs, this comes from the fact that they are
designed to be robust to many small errors. This opens new perspectives for the
verification of functional properties of control-command programs, particularly
in the aerospace domain, our main application field at ONERA25.

Although solvers such as dReal, based on branch and bound with interval
arithmetic could be expected to perform well on these numerical benchmarks,

24 Involving polynomials with a few dozen monomials or more and whose coefficients
are not integers or rationals with small numerators and denominators.

25 French public agency for aerospace research.
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Table 3: Experimental results on benchmarks from [11,18,34,39].

AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3 dReal

C (67)
unsat 11 63 63 13 0 0 0 0 0
time 0.05 39.78 40.01 1.18 0 0 0 0 0

quadratic (67)
unsat 13 67 67 15 14 18 25 25 13
time 0.06 14.68 15.44 0.08 2.46 1.26 357.20 257.39 23.36

flyspeck (20)
unsat 1 19 19 3 6 9 10 9 16
time 0.00 26.35 26.62 0.01 695.59 36.54 0.05 0.05 11.77

global-opt (14)
unsat 2 14 14 5 5 12 12 13 9
time 0.01 8.72 8.83 0.20 0.12 41.18 0.16 683.45 0.05

total (168)
unsat 27 163 163 36 25 39 47 47 38
time 0.12 89.53 90.90 1.47 698.17 78.98 357.41 940.89 35.18

dReal solves less benchmarks than most other solvers. Geometrically speaking,
the C benchmarks require to prove that an ellipsoid is included in a slightly larger
one, i.e., the borders of both ellipsoids are close from one another. This requires
to subdivide the space between the two borders in many small boxes so that none
of them intersects both the interior of the first ellipsoid and the exterior of the
second one. Whereas this can remain tractable for small dimensional ellipsoids,
the number of required boxes grows exponentially with the dimension, which
explains the poor results of dReal. This issue is unfortunately shared, to a large
extent, by any linear relaxation, including more elaborate ones [30].

6 Related Work and Conclusion

Related work. Monniaux and Corbineau [33] improved the rounding heuristic
of Harrison [19]. This has unfortunately no impact on the complexity of
the relaxation scheme. Platzer et al. [37] compared their early versions with
the symbolic methods based on quantifier elimination and Gröbner basis. An
intermediate solution is offered by Magron et al. [29] but only handling a
restricted class of parametric problems.

Branch-and-bound and interval arithmetic constitute another numerical ap-
proach to non-linear arithmetic, as implemented in the SMT solver dReal by
Gao et al. [17,18]. These methods easily handle non-linear functions such as
the trigonometric functions sin or cos, not yet considered in our prototype26. In
the case of polynomial inequalities Muñoz and Narkawicz [34] offer Bernstein
polynomials as an improvement to simple interval arithmetic.

Finally, VSDP [20,22] is a wrapper to SDP solvers offering a similar method
to the one of Section 4.2. Moreover, an implementation is also offered by
Löfberg [28] in the popular Matlab interface Yalmip but remains unsound,
since all computations are performed with floating-point arithmetic, ignoring
rounding errors.

26 Polynomial approximations such as Taylor expansions should be investigated.
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Using convex optimization into an SMT solver was already proposed by
Nuzzo et al. [35,43]. However, they intentionally made their solver unsound in
order to lean toward completeness. While this can make sense in a bounded
model checking context, soundness is required for many applications, such as
program verification. Moreover, this proposal was limited to convex formulas.
Although this enables to provide models for satisfiable formulas, while only unsat
formulas are considered in this paper, and whereas this seems a perfect choice
for bounded model checking applications, non convex formulas are pervasive in
applications such as program verification27.

The use of numerical off-the-shelf solvers in SMT tools has also been studied in
the framework of linear arithmetic [15,32]. Some comparison with state-of-the-art
exact simplex procedures show mitigated results [14] but better results can be
obtained by combining both approaches [25].

Conclusion. We presented a semi-decision procedure for non-linear polynomial
constraints over the reals, based on numerical optimization solvers. Since these
solvers only compute approximate solutions, a-posteriori soundness checks were
investigated. Our first prototype implemented in the Alt-Ergo SMT solver shows
that, although the new numerical method does not strictly outperform state-of-
the-art symbolic methods, it enables to solve practical problems that are out of
reach for other methods. In particular, this is demonstrated on the verification
of functional properties of control-command programs. Such properties are of
significant importance for critical cyber-physical systems.

It could thus be worth studying the combination of symbolic and numerical
methods in the hope to benefit from the best of both worlds.

Data Availability Statement and Acknowledgements. The source code, benchmarks
and instructions to replicate the results of Section 5 are available in the figshare
repository: https://doi.org/10.6084/m9.figshare.5900260
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