
HAL Id: hal-01744956
https://hal.inria.fr/hal-01744956

Submitted on 27 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Enumerative Instantiation
Andrew Reynolds, Haniel Barbosa, Pascal Fontaine

To cite this version:
Andrew Reynolds, Haniel Barbosa, Pascal Fontaine. Revisiting Enumerative Instantiation. [Research
Report] University of Iowa; Inria. 2018. �hal-01744956�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157533502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01744956
https://hal.archives-ouvertes.fr

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Revisiting Enumerative Instantiation

Andrew Reynolds,1 Haniel Barbosa1,2 and Pascal Fontaine2

1 University of Iowa, Iowa City, USA
2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

andrew.j.reynolds@gmail.com, {haniel.barbosa, pascal.fontaine}@inria.fr

Abstract. Formal methods applications often rely on SMT solvers to automati-
cally discharge proof obligations. SMT solvers handle quantified formulas using
incomplete heuristic techniques like E-matching, and often resort to model-based
quantifier instantiation (MBQI) when these techniques fail. This paper revisits
enumerative instantiation, a technique that considers instantiations based on ex-
haustive enumeration of ground terms. Although simple, we argue that enumer-
ative instantiation can supplement other instantiation techniques and be a viable
alternative to MBQI for valid proof obligations. We first present a stronger Her-
brand Theorem, better suited as a basis for the instantiation loop used in SMT
solvers; it furthermore requires considering less instances than classical Herbrand
instantiation. Based on this result, we present different strategies for combining
enumerative instantiation with other instantiation techniques in an effective way.
The experimental evaluation shows that the implementation of these new tech-
niques in the SMT solver CVC4 leads to significant improvements in several
benchmark libraries, including many stemming from verification efforts.

1 Introduction

In many formal methods applications, such as verification, it is common to represent
proof obligations in terms of the Satisfiability Modulo Theories (SMT) problem. SMT
solvers have thus become popular backends for such applications. They have been pri-
marily designed to be decision procedures for quantifier-free problems, on which they
are highly efficient and capable of handling large formulas over background theories.
Quantified formulas are generally handled with instantiation techniques that are often
incomplete, even on decidable or semi-decidable fragments. Heavily relying on incom-
plete heuristics however leads to instability and unpredictability on the solver’s behav-
ior, which is undesirable for the tools relying on them. To address these issues some sys-
tems use model-based instantiation (MBQI) [19], a complete technique for first-order
logic with equality and for several restricted fragments containing theories, which can
be used as a fallback strategy to the incomplete techniques.

In this paper we introduce a novel enumerative instantiation technique which can
serve as a simpler alternative to model-based instantiation. Similar to MBQI, our tech-
nique can be used as a secondary strategy when incomplete techniques fail. Our exper-

iments show that a careful implementation of this technique in the state-of-the-art SMT
solver CVC4 leads to noticeable gains in performance on unsatisfiable problems.

Background Some of the earliest tools for theorem proving in first-order logic come
from the work by Skolem and Herbrand. The Herbrand Theorem states that if a closed
formula in Skolem normal form, i.e. a prenex formula without existential quantifiers, is
unsatisfiable, then there is an unsatisfiable finite conjunction of Herbrand instances of
the formula, that is, instances on terms from the Herbrand universe, i.e. the set of all
possible well-sorted ground terms in the formula’s signature. The first theorem provers
for first-order logic to be implemented based on Herbrand’s theorem employed a com-
pletely unguided search on the Herbrand Universe (e.g. Gilmore [20] and Davis, Lo-
gemann and Loveland [11] early efforts). Such systems were only capable of dealing
with very simple formulas and were soon put aside. Techniques which would only gen-
erate Herbrand instances when needed were first introduced by Prawitz [25] and later
refined by Davis and Putnam [12], culminating in the resolution calculus introduced by
Robinson [31]. The most successful techniques for handling pure first-order logic have
been based on resolution and ordering criteria [3]. More recently, techniques based on
instantiation have shown promise for first-order logic as well [17,13,28]. Inspired by
early work on the subject, this paper revisits whether modern implementations of the
latter class of techniques can benefit from enumerative instantiation.

Outline We first give preliminaries in Section 2. Then, we introduce a stronger Her-
brand Theorem as the basis for making enumerative instantiation practical so that it can
be used in modern systems in Section 3. We formalize the different instantiation strate-
gies used by state-of-the-art SMT solvers, discuss their strengths and weaknesses, and
present a schematization of how to combine such strategies in Section 4, with a focus
on a new strategy for enumerative instantiation. An extensive experimental evaluation
of enumerative instantiation as implemented in CVC4 is presented in Section 5.

2 Preliminaries

We work in the context of many-sorted first-order logic with equality (see e.g. [16])
and assume the reader is familiar with the notions of signature, term, (quantified and
ground) formula, atom, literal, free and bound variable, and substitution.

We consider signatures Σ containing a Bool sort and constants >,⊥ and a family of
predicate symbols (≈ : τ× τ→ Bool) interpreted as equality for each sort τ. Without
loss of generality, we assume ≈ is the only predicate in Σ. We use = for syntactic
equality. The set of all terms occurring in a formula ϕ (resp. term t) is denoted by T(ϕ)

(resp. T(t)). We write t̄ for the sequence of terms t1, . . . , tn for an unspecified n ∈ N+

that is either irrelevant or deducible from the context.
An interpretation is a triple M = (D ,I , V) in which D is a collection of non-

empty domain sets for all sorts in Σ, I interprets symbols by mapping them into

2

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Fig. 1: The SMT instantiation loop for quantified formulas

functions over domain sets according to the symbol sort, and V maps free variables
to elements of their respective domain sets. We introduce partial interpretations by al-
lowing function symbols to be mapped into partial functions. A partial interpretation
M ′ = (D ′,I ′, V ′) is a restriction of a interpretation M into elements D ′ if the do-
main sets in D ′ are contained in the domain sets in M and the function interpretations
from M ′ coincide with those of M on the domain sets in D ′. A interpretation is a com-
pletion of a partial interpretation if the domain sets are the same and they coincide when
both are defined. A partial interpretation satisfies a formula if all its completions into a
interpretation satisfy the formula. A theory is a pair T = (Σ, Ω) in which Σ is a signa-
ture and Ω is a class of interpretations denoted the models of T . The empty theory is
the theory for which the class of interpretations Ω is unrestricted, which coincides with
first-order logic with equality. Throughout this paper we assume a fixed background
theory T , which unless otherwise stated is the empty theory. A formula ϕ is satisfiable
(resp. unsatisfiable) in T if it is satisfied by some (resp. no) interpretation M ∈ Ω,
written M |=T ϕ. A formula ϕ entails in T a formula ψ, written ϕ |=T ψ, if every
interpretations in Ω satisfying ϕ also satisfies ψ. For these notions of model satisfaction
and entailment in the empty theory, we omit the subscript.

A substitution σmaps variables to terms and its domain, dom(σ), is finite. We write
ran(σ) to denote its range. Throughout the paper, conjunctions may be written as sets
or tuples, and vice-versa, whenever convenient and unambiguous. All definitions are
assumed to be lifted in the expected way from formulas into sets or tuples of formulas.

Instantiation-Based SMT Solvers

Quantifiers in formulas are generally handled by SMT solvers through instantiation-
based techniques, which capitalize on their capability to handle large ground formulas.
In this approach, an input formula ψ is given to the ground SMT solver, which will
abstract all atoms and quantified formulas and treat them as if they were propositional
variables. The solver for ground formulas will provide an assignment E∪Q, where E

is a set of ground literals and Q is a set of quantified formulas appearing in ψ, such
that E∪Q propositionally entails ψ. We assume that all quantified formulas in ψ are
of the form ∀x̄. ϕ with ϕ quantifier-free. This can be achieved by prenex form trans-

3

formation and Skolemization. The instantiation module of the solver will then generate
new ground formulas of the form ∀x̄. ϕ⇒ ϕσ where ∀x̄. ϕ is a quantified formula in
Q and σ is a substitution from the variables in ϕ to ground terms. These instances will
be added conjunctively to the input of the ground solver, hence refining its knowledge
of the quantified formulas. The ground solver may then provide another assignment
E′∪Q′, where this is a set that entails both ϕ and the newly added instances. This new
assignment might either be the previous one, augmented by new ground literals com-
ing from the new instances, or if the previous E has been refuted by the new instances,
a completely different set. On the other hand, the process may terminate if the newly
added instances suffice to prove the unsatisfiability of the original formula. We will re-
fer to the game between the ground solver that provides assignments for the abstraction
of the formula and the instantiation module that provides instances added conjunctively
to the formula, as the instantiation loop of the SMT solver (see Figure 1).

3 Herbrand Theorem and Beyond

The Herbrand Theorem (see e.g. [16]) for pure first-order logic with equality1 provides
a refutationally complete procedure to check the satisfiability of a formula ψ, or more
specifically of a set of literals and quantifiers E∪Q. Indeed, E∪Q is satisfiable if and
only if E∪Qg is satisfiable, where Qg is the set of all (Herbrand) instances one can
build from the quantifiers in Q by instantiation with the Herbrand universe, i.e. all the
possible well-sorted terms built on the signature used in E∪Q. Based on this, an instan-
tiation module has a simple refutationally complete strategy for pure first-order logic
with equality: it suffices to enumerate Herbrand instances. The major drawback of this
strategy is that the Herbrand universe is large. For instance, as soon as there is a function
with the range sort also used as an argument, the Herbrand universe is infinite.

Fortunately, a stronger variant of the Herbrand Theorem holds. Using this variant,
the instantiation module does not need to consider all possible well-sorted terms (i.e.
the full Herbrand universe), but only the terms already available in E∪Q, and those
subsequently generated.

Theorem 1. Consider the conjunctive sets E and Q of ground literals and universally
quantified clauses respectively where T(E) contains at least one term of each sort. The
set E∪Q is unsatisfiable in pure first-order logic if and only if there exists a series Qi

of finite sets of instances of Q such that

– for some number n, the finite set of formulas E∪⋃n
i=1Qi is unsatisfiable;

– Qi+1 ⊆
{
ϕσ | ∀x̄. ϕ ∈ Q, ran(σ)⊆ T(E∪⋃i

j=1Q j)
}

.

1 The Herbrand Theorem is generally presented in pure first-order logic without equality, but it
also holds for equality: it suffices to consider the equality axioms conjunctively with formulas.

4

Proof. Assume w.l.o.g. that Qi+1 =
{
ϕσ | ∀x̄. ϕ ∈ Q, ran(σ)⊆ T(E∪⋃i

j=1Q j)
}

, for
each natural number i.

Consider the infinite set of formulas S = E∪⋃∞
i=1Qi. If S is unsatisfiable, then

so is E∪Q, since Qi is a set of instances of Q for each i. Now assume E∪⋃n
i=1Qi

is satisfiable, for any n. Thanks to the compactness theorem, S is satisfiable and has
a model M . Consider the partial interpretation M ′ which is the restriction of M to
elements M [T(S)]. It is still a model of S , since M ′ evaluates every term in T(S) as
M does. Notice that, for each formula ∀x̄. ϕ(x̄) ∈ Q and each series of elements d̄ in
the domain of M ′ of sorts corresponding to the sorts of x̄, there exist terms t̄ ∈ T(S)

such that M ′[t̄] = d̄. Also notice that ϕ(t̄) ∈ S , and M ′ |= ϕ(t̄). Thus M ′ is a model
of ∀x̄. ϕ. Hence M ′ is a (partial) model of E∪Q, and every completion of M ′ to a full
model is also a model of E∪Q. ut

The above theorem is stronger than the classical Herbrand theorem in the sense
that the set of instances considered above is smaller (or equal) than the set of instances
considered in the classical Herbrand theorem. As a trivial example, if a function f
appears only in E∪Q in ground terms, no new applications of f are considered. The
theorem does not consider all arbitrary terms from the signature, but only those that
are generated by the successive instantiations with only already available ground terms.
Note the theorem holds for pure first-order logic with equality, and in any theory that
preserves the compactness property. It is also necessary however to consider the axioms
of the theory for the generation of new terms, that might lead to other instances.

In the Bernays-Schönfinkel-Ramsey fragment of first-order logic (also know as the
EPR class) formulas do not contain non constant function symbols, therefore the Her-
brand universe of any formula is a finite set. Since the above sets of terms are a subset of
the Herbrand universe, the enumeration will always terminate, even when the formula is
satisfiable. Therefore, the resulting ground problem is decidable, and the above method
comprises a decision procedure for this fragment, just like some variant of model-based
quantifier instantiation.

Theorem 1 implies that an instantiation module only has to consider terms occurring
within assignments, and not all possible terms. To show refutational completeness (ter-
mination on unsatisfiable input) and model soundness (termination without declaring
unsatisfiability implies that the input is satisfiable), it is however necessary to account
for the successive assignments produced by the ground SMT solver and the consecutive
generation of instances. This is achieved using the following lemma.

Lemma 1. Consider the conjunctive sets E and Q of ground literals and universally
quantified clauses respectively where T(E) contains at least one term of each sort. If
there exists an infinite series of finite satisfiable sets of ground literals Ei and of finite
sets of ground instances Qi of Q such that

– Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄}∧ ran(σ)⊆ T(Ei)

}
;

– E0 = E, Ei+1 |= Ei∪Qi;

5

then E∪Q is satisfiable in the empty theory with equality.

Proof. Let us define E∞ = ∪∞
i=0Ei and notice that E∞ is also satisfiable, thanks to the

compactness theorem, since Ei+1 |= Ei and Ei is satisfiable for all i. Assume M is a
model of E∞, and consider the partial interpretation M ′ which is the restriction of M

to elements M [T(E∞)]. It is still a model of E∞, since M ′ evaluates every term in
T(E∞) as M does. Since Ei+1 |= Ei ∪Qi, M ′ is also a model of each Qi. Notice that,
for each formula ∀x̄. ϕ(x̄) ∈ Q and each series of elements d̄ in the domain of M ′ of
sorts corresponding to the sorts of x̄, there exist terms t̄ ∈ T(E∞) such that M ′[t̄] = d̄.
Also notice that ϕ(t̄) ∈ Qi for some i, and M ′ |= ϕ(t̄). Thus M ′ is a model of ∀x̄. ϕ.
Hence M ′ is a (partial) model of E∪Q, and every completion of M ′ to a full model is
also a model of E∪Q. ut
The above lemma has two direct consequences on the instantiation loop of SMT solvers,
where instances are generated from the set of available terms in the ground assignment
provided by the ground SMT solver. The following two corollaries state the model
soundness and the refutational completeness of the instantiation loop respectively.

Corollary 1. Given a formula ψ, if there exists a satisfiable set of literals E and a set
of quantified clauses Q such that E∪Q |= ψ and the instantiation module of the SMT
solver cannot generate any new instance, i.e. E already entails all instances of Q for
substitutions built with terms T(E), then ψ is satisfiable.

Proof. Consider Ei = E and

Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄}∧ ran(σ)⊆ T(E)

}
for all i. These infinite series fulfill the conditions for Lemma 1 and Ei is satisfiable for
all i. Hence E∪Q is satisfiable, and so is ψ since E∪Q |= ψ. ut
Corollary 2. Given an unsatisfiable formula, if the generation of instances is fair the
instantiation loop of the SMT solver terminates.

Proof. We prove that, if the instantiation loop of the SMT solver iterates infinitely, then
the input formula ψ is satisfiable.

First let us consider infinite sub-series of Ei,Qi,Gi, such that the set of quantified
formulas Qi is invariant. Such infinite series exist, since there are only finitely many
subsets of quantified formulas in ψ and every Qi should be such a subset. We then
assume that in the series Ei,Qi,Gi, the set of quantified formulas Qi is invariant and is
Q.

Now, for every set of atoms S , there is an infinite sub-series E f (i) of Ei such that all
E f (i) are indistinguishable with respect to atoms in S : that is, for each a ∈ S , either all
E f (i) contain a positively, or they all contain a negatively, or a is not referred to in any
of the E f (i). For a series E, we denote ES an infinite sub-series of E indistinguishable
with respect to atoms in S , and ES (S) the set of literals on atoms in S .

Then we define:

6

c(E, ∀x̄. ϕ): 1. Either return {σ} where E,ϕσ |=⊥, or return /0.

e(E, ∀x̄. ϕ): 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ.
2. For each i = 1, . . . ,n, select a set of substitutions S i such that

for each σ ∈ S i, E |= t̄iσ≈ ḡi for some tuple ḡi ∈ T(E).
3. Return

⋃n
i=1 S i.

m(E, ∀x̄. ϕ): 1. Construct a model M for E.
2. Return {{x̄ 7→ t̄}} where t̄ ∈ T(E) and M 6|= ϕ{x̄ 7→ t̄}, or /0 if none exists.

u(E, ∀x̄. ϕ): 1. Choose an ordering � on tuples of quantifier-free terms.
2. Return {{x̄ 7→ t̄}} where t̄ is a minimal tuple of terms w.r.t � such that

t̄ ∈ T(E) and E 6|= ϕ{x̄ 7→ t̄}, or /0 if none exist.

Fig. 2: Quantifier Instantiation strategies: Conflict-based Instantiation (c), E-matching
instantiation (e), Model-based Instantiation (m) and Enumerative Instantiation (u).

– E0
i = Ei;

– E′0 is E0(S ψ), where S ψ is the set of atoms in ψ;
– Q′i =

{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄}∧ ran(σ)⊆ T(E′i)

}
;

– Ei+1 = Ei
E′i

– E′i+1 = Ei+1(S i) where S i is the set of atoms in E′i∪Q′i;

Thanks to the fact that the generation of instances is fair, for each i there exists j such
that Q′i ⊆ ∪k< jGk. Hence, E′i+1 |= Q′i, and all conditions of Lemma 1 are satisfied. ut

4 Quantifier Instantiation in CDCL(T)

This section overviews recent techniques used by SMT solvers for quantifier instan-
tiation, and comments on their relative strengths and weaknesses. We will focus on
enumerative quantifier instantiation, a technique which has received little attention in
recent work, but has several compelling advantages with respect to current techniques.

Definition 1 (Instantiation Strategy). An instantiation strategy takes as input:

1. A T -satisfiable set of ground literals E, and
2. A quantified formula ∀x̄. ϕ.

It outputs a set of substitutions {σ1, . . . ,σn} where dom(σi) = x̄ for each i = 1, . . . ,n.

Figure 2 gives four instantiation strategies used by modern SMT solvers, each that
have the interface given in Definition 1. The first three have been described in detail in
previous works (see [26] for a recent overview). We briefly review these techniques in
this section. The fourth, enumerative quantifier instantiation, is the subject of this paper.

7

Conflict-based instantiation (c) was introduced in [28] as a technique for improving
the performance of SMT solvers for unsatisfiable problems. In this strategy, we return
a substitution σ such that ϕσ together with E is unsatisfiable, We refer to ϕσ as a
conflicting instance (for E). Typical implementations of this strategy do not insist that
a conflicting instance be returned if one exists, and hence the strategy may choose to
return the empty set of substitutions. Recent work [5,4] gives a strategy for conflict-
based instantiation that has refutational completeness guarantees for the empty theory
with equality, that is, when a conflict instance exists for a quantified formula in this
theory, the strategy is guaranteed to return it.

E-matching instantiation (e) is the most commonly used strategy for quantifier in-
stantiation in modern SMT solvers [15,13,18]. In this strategy, we first heuristically
choose a set of triggers for a quantified formula ∀x̄.ϕ, where a trigger is a tuple of terms
whose free variables are x̄. In practice, triggers can be selected using user-provided an-
notations, or selected automatically by the SMT solver. For each trigger t̄i, we select
a set of substitutions S i such that for each σ in this set, E entails that t̄iσ is equal to
a tuple of ground terms gi in E. We return the union of these sets S i for each selected
trigger. E-matching instantiation is generally incomplete, but works well in practice for
unsatisfiable problems, and hence is a key component of most SMT solvers that support
quantified formulas.

Model-based quantifier instantiation (m) was introduced in [19], and has also been
used for improving the performance of finite model finding [30]. In this strategy, we
first construct a model M for the quantifier-free portion of our input E, where typically
the interpretations of functions for values not constrained by E are chosen heuristically.
Notice that M does not necessarily satisfy the quantified formula ∀x̄. ϕ. If it does not,
we return a single substitution σ for which M does not satisfy ϕσ, where typically σ
maps variables from x̄ to terms that occur in T(E). With respect to conflict-based and
E-matching instantiation, model-based quantifier instantiation has the advantage that it
is model sound: when it returns /0, then E∪{∀x̄. ϕ} is satisfiable.

This paper revisits enumerative quantifier instantiation (u) as a viable alternative
to model-based quantifier instantiation. In this strategy, we assume an ordering � on
quantifier-free terms. This ordering is not related to the usual term ordering one gener-
ally uses for saturation theorem proving, but rather determines which instance will be
generated first. The strategy returns the substitution {x̄ 7→ t̄}, where t̄ is the minimal
tuple of terms with respect to � from T(E) such that ϕ{x̄ 7→ t̄} is not entailed by E.
We refer to this strategy as enumerative instantiation since in the worst case it generates
instantiations by enumerating tuples of all terms of the proper sort from E, according
to the ordering �. In practice, the number of instantiations produced by this strategy is
kept small by interleaving it with other strategies like c or e, or due to the fact that a
small number of instances may already allow the SMT solver to conclude the input is
unsatisfiable. Moreover, thanks to the results in Section 3, this strategy is refutationally
complete and model sound for quantified formulas in the empty theory with equality.

8

Example 1. Consider the set of ground literals E = {¬P(a),¬P(b),P(c),¬R(b)}. For
the input (E,∀x.P(x)∨R(x)), the strategies in this section will do the following.

1. Conflict based: Since E, P(b)∨R(b) |=⊥, this strategy will return {{x 7→ b}}.
2. E-matching: This strategy may choose the singleton set of triggers {(P(x))}. Based

on this trigger, since E |= P(x){x 7→ t} ≈ P(t) where P(t)∈T(E) for t = a,b,c, this
strategy may return {{x 7→ a}, {x 7→ b}, {x 7→ c}}.

3. Model-based: This strategy will construct a model M for E, where assume that
PM = λx. ite(x≈ c,>,⊥) and RM = λx.⊥. Since M does not satisfy P(a)∨R(a),
this strategy may return {{x 7→ a}}.

4. Enumerative instantiation: This strategy chooses an ordering on tuples of terms,
say the lexicographic extension of � where a ≺ b ≺ c. Since E does not entail
P(a)∨R(a), this strategy returns {{x 7→ a}}. ut
In the previous example, clearly {x 7→ b} is the most useful substitution, since it

leads to an instance P(b)∨R(b) which together with E is unsatisfiable. The substitution
{x 7→ c} is definitely not a useful substitution, since it is already entailed by P(c) ∈ E.
The substitution {x 7→ a} is potentially useful since it forces the solver to satisfy P(a)∨
R(a). Here, we point out that the effect of enumerative instantiation and model-based
instantiation is essentially the same, as both return an instance that is not entailed by E.
However, the substitutions produced by enumerative instantiation often have advantages
with respect to model-based instantiation on unsatisfiable problems.

Example 2. Consider the set of ground literals E = {¬P(a), R(b), S (c)} and the quan-
tified clauses Q = {∀x.R(x)∨ S (x), ∀x.¬R(x)∨ P(x), ∀x.¬S (x)∨ P(x)} in a mono-
sorted signature. Notice that E∪Q is unsatisfiable: it suffices to consider the instances
of the three quantified formulas in Q with x 7→ a. On such an input, model-based instan-
tiation will first construct a model for E. Assume this model M is such that PM = λx.⊥,
RM = λx. ite(x≈ b,>,⊥), and S M = λx. ite(x≈ c,>,⊥). Assuming enumerative in-
stantiation chooses the lexicographic extension of a term ordering � where a ≺ b ≺ c.
The following table summarizes the result of running the two strategies.

ϕ x s.t. M 6|= ϕ x s.t. E 6|= ϕ m(E,∀x. ϕ) u(E,∀x. ϕ)

R(x)∨S (x) a a {{x 7→ a}} {{x 7→ a}}
¬R(x)∨P(x) b a,b,c {{x 7→ b}} {{x 7→ a}}
¬S (x)∨P(x) c a,b,c {{x 7→ c}} {{x 7→ a}}

The second and third columns show the sets of possible values of x that are considered
with model-based and enumerative instantiation respectively, and the third and fourth
columns show one possible selection. The instances corresponding to the three substitu-
tions returned by enumerative instantiation R(a)∨S (a),¬R(a)∨P(a) and¬S (a)∨P(a)

when conjoined with¬P(a) from E are unsatisfiable, whereas the instances produced by
model-based instantiation do not suffice to show that E is unsatisfiable. Hence, the latter
will consider an extension of E that satisfies the instances R(a)∨ S (a), ¬R(b)∨ P(b)

and ¬S (c)∨P(c) and guess another model for this extension. ut

9

A key observation is that useful instantiations can be obscured by guesses made
when constructing models M . Here, since we decided R(a)M = ⊥, the substitution
{x 7→ a} was not considered when applying model-based instantiation to the second
quantified formula, and since S (a)M =⊥, the substitution {x 7→ a} was not considered
when applying it to the third. In implementations of model-based instantiation, certain
values in models are chosen heuristically, leading to this behavior. This is done out
of necessity, since determining whether there exists a model that satisfies quantified
formulas, even for a fixed context, is a challenging problem.

On the other hand, the range of substitutions considered by enumerative instanti-
ation in the previous example include all terms that correspond to instances that are
not entailed by E. The substitutions it considers are “minimally diverse”, that is, in
the previous example they introduce new predicates on term a only, whereas model-
based instantiation introduces new predicates on a, b and c. Reducing the number of
new terms introduced by instantiations can have a significant positive impact on perfor-
mance in practice. Furthermore, enumerative instantiation has the advantage that a term
ordering allows fine-grained heuristics better suited for unsatisfiable problems, which
we comment on in Section 4.1.

Example 3. Consider the sets E = {a 6≈ b, b 6≈ c, a 6≈ c} and Q = {∀x. P(x)}. For the
input (E, ∀x.P(x)), model-based quantifier instantiation will first construct a model M

for E, where assume that PM = λx.>. It is easy to see M |= ϕ{x 7→ t} for a,b,c∈T(E),
and hence it returns the empty set of substitutions, indicating that E∪Q is satisfiable. On
the other hand, assume enumerative instantiation chooses the lexicographic extension
of a term ordering � where a ≺ b ≺ c. Since E 6|= P(a) and a is smaller than b and c
according to�, u(E, P(x)) returns the set containing {x 7→ a}. This subsequently forces
the solver to find an assignment that satisfies P(a). Let E1 = E∪{P(a)}. Since E1 6|=
P(b), u(E1,P(x)) returns the set containing {x 7→ b}, and we subsequently consider
E2 = E1 ∪{P(b)}. Since E2 6|= P(c), u(E2,P(x)) returns the set containing {x 7→ c},
and we subsequently consider E3 = E2∪{P(c)}. Finally, u(E3,P(x)) returns the empty
set, since E entails all substitutions that map x to quantifier-free terms in E. ut

In this example, model-based instantiation was able to terminate on the first itera-
tion, since it guessed the correct interpretation for P, whereas enumerative instantiation
considered substitutions mapping x to each ground term a,b,c from E. For this reason,
model-based instantiation is typically better suited for satisfiable problems.

4.1 Implementing Enumerative Instantiation

We comment on several important details concerning the implementation of enumera-
tive quantifier instantiation in the SMT solver CVC4.

10

Term Ordering Given a term ordering �, CVC4 considers the extension to tuples of
terms such that:

(t1, . . . , tn)≺ (s1, . . . , sn) if

{
maxn

i=1 ti ≺maxn
i=1 si, or

maxn
i=1 ti = maxn

i=1 si and (t1, . . . , tn)≺lex (s1, . . . , sn)

where ≺lex is the lexicographic extension of ≺. For example, if a ≺ b ≺ c, then we
have that (a,a)≺ (a,b)≺ (b,a)≺ (b,b)≺ (a,c)≺ (c,b)≺ (c,c). By this ordering, we
consider substitutions involving c only after all combinations of substitutions involving
a and b are considered. This choice is important since it leads to instantiations that
introduce fewer terms, and are thus more likely to lead to conflicts at the ground level.

The underlying term ordering is determined dynamically based on the current set
of assertions E. At all times, we maintain a finite list of quantifier-free terms such that
we have fixed the ordering t1 ≺ . . . ≺ tn. Then, if all combinations of instantiations
for t1, . . . , tn are currently entailed by E, we choose a term t ∈ T(E) that is such that
E 6|= t ≈ ti for i = 1, . . . ,n if one exists, and append it to our ordering so that tn ≺ t.
The particular choice of t beyond this criteria is arbitrary. An experimental evaluation
of more sophisticated term orderings, such as those inspired by first-order automated
theorem proving [2] is the subject of future work.

Entailment Checks For a set of ground equalities and disequalities E, quantified formula
∀x̄. ϕ and substitution {x̄ 7→ t̄}, CVC4 implements a two-layered method for checking
whether the entailment E |= ϕ{x̄ 7→ t̄} holds. First, we maintain a cache of instantiations
that have already been returned on previous iterations. Hence if E satisfies a set of
formulas containing ϕ{x̄ 7→ s̄}, where E |= t̄ ≈ s̄, then the entailment clearly holds.

Second, we use an incomplete and fast method for inferring when an entailment
holds. We first compute from E congruence classes over T(E). For each t ∈ T(E), let [t]
be the representative of term t in this equivalence relation, where interpreted constants
such as 0,1,⊥,> are chosen as representatives whenever possible. For each function f ,
we use a term index data structure I f that stores an entry of the form ([t1], . . . , [tn])→
[f (t1, . . . , tn)] ∈I f for each uninterpreted function application f (t1, . . . , tn) ∈ T(E). To
check the entailment of E |= ` where ` is a literal, we update ` based on the iterative
process until a fixed point is reached:

1. Replace each leaf term t in ` with [t].
2. Replace each term f (t1, . . . , tn) in ` with s if (t1, . . . , tn)→ s ∈I f .
3. Replace each term f (t1, . . . , tn) in ` where f is an interpreted function with the result

of the evaluation f (t1, . . . , tn)↓.
Then, if the resultant ` is >, then the entailment holds.

Example 4. Say E= { f (2)≈ 0,a≈ 1}, and we wish to check whether E |= f (a+1)≈ 0
holds. Based on the aforementioned procedure, we update the formula f (a + 1)≈ 0 to
f (1 + 1) ≈ 0 since [a] = 1, then to f (2) ≈ 0 since (1 + 1)↓ = 2, then to 0 ≈ 0 since
(2)→ 0 ∈I f , and finally to > since (0≈ 0)↓=>. Hence, the entailment holds. ut

11

s1;s2(E, ∀x̄. ϕ): If s1(E, ∀x̄. ϕ) 6= /0 return s1(E, ∀x̄.ϕ), otherwise return s2(E, ∀x̄.ϕ).

s1+s2(E, ∀x̄. ϕ): Return s1(E, ∀x̄. ϕ) ∪ s2(E, ∀x̄. ϕ).

Fig. 3: Compound instantiation strategies: priority instantiation (s1;s2) and interleaved
instantiation (s1+s2), given two base strategies s1 and s2.

Restricting Enumeration Space Enumerative instantiation can be refined further by
noticing that only a subset of the set of terms T(E) will ever be relevant for showing
unsatisfiability of a quantified formula. An approach in this spirit was used by Ge and
de Moura [19], where decidable fragments were identified by noticing that the relevant
domains of quantified formulas in these fragments are guaranteed to be finite. In that
work, the relevant domain of a quantified formula ∀x̄.ψ is computed based on the terms
in E and the structure of its body ψ. For example, t is in the relevant domain of function
f for all ground terms f (t), the relevant domain of x for a quantified formula containing
the term f (x) is equal to the relevant domain of f , and so on. A related approach is to
use sort inference [9,8,23], to compute more precise sort information and thus decrease
the number of possible instantiations.

Example 5. Say E∪Q = {a 6≈ b, f (a)≈ c}∪{∀x.P(f (x))}, where a,b,c, x are of sort
τ, f is a unary function τ→ τ, and P is a predicate on τ. It can be shown that E∪Q is
equivalent to Es ∪Qs = {a1 6≈ b1, f12(a1) ≈ c2}∪{P2(f12(x1))}, where a1,b1, x1 are
of sort τ1, c2 is of sort τ2, f12 is of sort τ1→ τ2, and P2 is a predicate on τ2. ut

Sorts can be inferred in this manner using a linear traversal on the input formula (for
details, see for instance Section 3 of [23]). This technique narrows the set of terms
considered by enumerative instantiation. In the above example, whereas enumerative
instantiation for E∪Q might consider the substitutions {x 7→ c} or {x 7→ f (c)}, for Es∪
Qs it would not consider {x1 7→ c2} since their sorts are different, nor would it consider
{x1 7→ f12(c2)} since f12(c2) is not a well-sorted term. Moreover, the Herbrand universe
of an inferred subsort may be finite when the universe of its parent sort is infinite. In the
above example, the Herbrand universe of τ1 is {a1,b1} and τ2 is { f12(a1), f12(b1),c2},
whereas the Herbrand universe of τ is infinite.

Compound Strategies Since the instantiation strategies from this section have their
respective strengths and weaknesses, it is valuable to combine them. Figure 3 gives two
ways of combining strategies which we refer as priority instantiation and interleaved
instantiation. For base strategies s1 and s2, priority instantiation (s1;s2) first invokes s1.
If this strategy returns a non-empty set of substitutions, it returns that set, otherwise it
returns the instances returned by s2. On the other hand, interleaved instantiation (s1+s2)
returns the union of the substitutions returned by the two strategies.

12

Enumerative instantiation is the most effective when used as a complement to heuris-
tic strategies. In particular, we will see in the next section that the strategies c;e;u and
c;e+u are the most effective strategies for unsatisfiable problems in CVC4.

5 Experiments

This section reports on our experimental evaluation of different strategies based on
enumerative instantiation as implemented in the SMT solver CVC4.2 We present an
extensive analysis of enumerative instantiation and compare it with implementations
of model-based instantiation on both unsatisfiable and satisfiable benchmarks. Experi-
ments were performed on untyped first-order benchmarks from the TPTP library [34]3,
version 6.4.0, and from SMT-LIB [7], as of October 2017, on logics having quanti-
fiers and either uninterpreted functions or arrays. For the latter, we considered also
logics containing other theories such as arithmetic and datatypes. Some benchmarks
are solved by all considered configurations of solvers in less than 0.1 seconds. We dis-
carded those 25580 benchmarks. In total, 42065 problems were selected, 14731 from
TPTP and 27334 from SMT-LIB. All results were produced on StarExec [33], a public
execution service for running comparative evaluations of solvers, with a timeout of 300
seconds.

We follow the convention in Section 4 for identifying configurations based on their
instantiation strategy. All configurations of CVC4 use conflict-based instantiation [28,5]
with highest priority, so we omit the prefix “c;” from the names of CVC4 configurations
e.g. e+u in fact means c;e+u. Sort inference, as discussed in Section 4.1, is also used by
all configurations of CVC4.

5.1 Impact of Enumerative Instantiation in CVC4

In this section, we highlight the impact of enumerative instantiation in CVC4 for un-
satisfiable benchmarks. Where applicable, we contrast the difference in the impact of
enumerative instantiation and model-based instantiation on the performance of CVC4
on unsatisfiable benchmarks.

The comparison of various instantiation strategies supported by CVC4 is summa-
rized in Figure 4. In the table, each row is dedicated to a library and logic. SMT-LIB
is shown in more granularity than TPTP to highlight comparisons of individual strate-
gies. The first column identifies the subset and the second shows its total number of
benchmarks. The next seven columns show the number of benchmarks found to be
unsatisfiable by each configuration. The last three columns show the results of virtual
portfolio solvers, with uport combining e, u, e;u, and e+u; and mport combining e, m,
e;m, and e+m; while port combines all seven configurations.

2 For details, see http://matryoshka.gforge.inria.fr/pubs/fol enumerative inst/
3 In SMT parlance, the logic of these benchmarks is quantified EUF.

13

http://matryoshka.gforge.inria.fr/pubs/fol_enumerative_inst/

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102
C

PU
tim

e
(s

)
e+u
e;u
e+m
e;m
e
u
m

Library # u e;u e+u e m e;m e+m uport mport port

TPTP 14731 4426 6125 6273 5396 4369 6066 6151 6674 6566 6859

UF 7293 2607 2906 2961 2862 2418 2898 2972 3119 3045 3159
UFDT 4384 1783 1977 1998 1958 1642 1954 1993 2091 2070 2113
UFLIA 7745 3622 5022 5037 4867 2638 4966 4989 5253 5132 5279
UFNIA 3213 1788 1947 1978 1937 1169 1860 1865 2107 2064 2138
Others 4699 2019 2348 2288 2320 966 2338 2312 2400 2363 2404

Total 42065 16245 20325 20535 19340 13202 20082 20282 21644 21240 21952

Fig. 4: CVC4 configurations on unsatisfiable benchmarks with a 300 second timeout.

First, we can see that u outperforms m, as it solves 3043 more benchmarks overall.
While this is not close to the performance of E-matching (e), it should be noted that u is
highly orthogonal to e, solving 1737 benchmarks that could not be solved by e4. Com-
bining e with either u or m, using either priority or interleaving instantiation, leads to
significant gains in performance. Overall the best configuration is e+u, that is, the inter-
leaving of enumerative instantiation and E-matching, which solves 20535 benchmarks,
that is, 253 more than its counterpart e+m interleaving model-based instantiation and
E-matching, and 1295 more than E-matching alone. In the UFLIA logic, the enumer-
ative techniques are specially effective in comparison with the model-based ones. In
particular, they enable CVC4 to solve previously intractable problems, e.g. the family
“sexpr” with 32 problems. These are notoriously hard problems involving the verifica-
tion of C# programs using Spec# [6]. Z3 can solve 31 of them thanks to its advanced
optimizations of E-matching [13]. CVC4 previously could solve at most 16 using tech-
niques combining e and m, but u alone could solve 27, and all of 32 are solved by e+u.
Another example is the family “vcc-havoc” in UFNIA, stemming from the verification

4 Number of uniquely solved benchmarks between configurations are available in Appendix A.

14

of concurrent C with VCC [10]. The strategy e+u solves 940 out of 984 problems,
outperforming e and its combinations with m, which solve at most 860 problems5.

The portfolio columns of the table in Figure 4 highlight the improvement due to
enumerative instantiation for CVC4 on the number of solved problems: there are 712
more problems overall solved when adding enumerative instantiation in the strategies
(see columns mport and port). The cactus plot of Figure 4 shows that while the prior-
ity strategies are initially quicker, the interleaving ones scale better, solving more hard
problems than their priority counterparts. Overall, we conclude that in addition to be-
ing much simpler to implement6 instantiation strategies that combine E-matching with
enumerative instantiation in CVC4 have a noticeable advantage over those that combine
E-matching with model-based instantiation on unsatisfiable problems.

We remark that there are several inherent differences between enumerative instan-
tiation and model-based instantiation that influence the comparison. The first concerns
theory combination. In CVC4, as in most SMT solvers, the ground solver determines
the consistency of the current set of asserted ground literals in two phases: initially for
each theory in isolation and then, if no conflict is found, for the combination of the-
ories based on techniques from [22]. Since the second phase is expensive and rarely
produce conflicts, the instantiation module interleaves e and u with theory combina-
tion to improve performance. However, since m requires the ground solver to produce
a model, which can only be done after theory combination, this optimization cannot be
applied. The second drawback is due to MBQI in CVC4 being originally designed for
finite-model finding [29]. This way quantifiers over infinite sorts are not considered for
instantiation when this strategy is in place. This makes the comparison in the context
of theories which may require infinite sorts, such as arithmetic, unfair. Moreover, even
disabling features which are not necessary for searching for unsatisfiability, like model
minimization, there is still some general overhead that we could not remove, as it can
be seen in Figure 4 with the line for e+m. These drawbacks nevertheless also highlight
subtle points that need to be considered when implementing MBQI and that do not
affect enumerative instantiation, given its inherent simplicity.

5.2 Comparison Against Other SMT Solvers

In this section, we compare our implementation of enumerative instantiation in CVC4
against another state-of-the-art SMT solver: Z3 [14] (version 4.5.1) which, like CVC4,
also relies on E-matching instantiation for handling unsatisfiable problems. Before mak-
ing the comparison, we first summarize the main differences between Z3 and CVC4
here. Z3 uses several optimizations for E-matching that are not implemented in CVC4,

5 A detailed comparison by families can be seen in Appendix A.
6 As a rough estimate, the implementation of enumerative instantiation in CVC4 is around 500

lines of code, whereas model-based instantiation is around 4500 lines of code.

15

6000 8000 10000 12000 14000 16000 18000 20000 22000
10−1

100

101

102
C

PU
tim

e
(s

)
uport-i
mport-i
z3 mport-i
e
z3 e

Library # z3 m z3 e z3 e;m z3 mport-i e uport-i mport-i

TPTP 14731 2382 4098 5288 5519 5396 6519 6396

UF 7293 1192 2428 2516 2600 2862 3076 2982
UFDT 4384 838 1702 1721 1781 1958 2062 2036
UFLIA 7745 2460 4751 4841 4923 4867 5164 5049
UFNIA 3213 1089 2074 2112 2238 1937 2091 2015
Others 4699 990 2226 2332 2346 2320 2393 2357

Total 42065 8951 17279 18810 19407 19340 21305 20835

Fig. 5: Z3 and CVC4 on unsatisfiable benchmarks with a 300 second timeout.

including the use of code trees and techniques for applying instantiation incrementally
during the CDCL(T) search (see Section 5 of [13]). It also implements techniques for
removing previously considered instantiations from its set of known clauses (see Sec-
tion 7 of [13]). The main advantage of CVC4 with respect to Z3 is its use of conflict-
based instantiation c [28], which is enabled by default in all strategies we considered. It
also supports interleaved instantiation strategies as described in Section 4.1, whereas Z3
does not. In addition to these differences, Z3 implements model-based instantiation m
as described in [19], whereas CVC4 implements model-based instantiation as described
in [30]. Finally, CVC4 implements enumerative instantiation as described in this paper,
which we compare as an alternative to these implementations.

Figure 5 summarizes the performance of Z3 on our benchmark set. First, like CVC4,
using model-based instantiation to complement E-matching leads to significant gains in
Z3, as z3 e;m solves a total of 1731 more benchmarks than solved by E-matching alone
z3 e. In comparison with CVC4, the configuration z3 e outperforms e in the logics with
non-linear arithmetic and other theories, while e is better in the others. Finally, Z3’s
implementation of model-based quantifier instantiation by itself z3 m is not effective
for unsatisfiable benchmarks, solving only 8951 overall.

16

Library # u e;u e+u e m e;m e+m uport mport port

TPTP 14731 471 492 464 17 930 808 829 504 949 959

UF 7293 39 42 42 0 70 69 65 45 78 81
Theories 20041 3 3 3 3 350 267 267 3 353 353

Total 42065 513 537 509 20 1350 1144 1161 552 1380 1393

Table 1: CVC4 configurations on satisfiable benchmarks with a 300 second timeout.

To further compare Z3 and CVC4, the third column from the left is the number of
benchmarks solved by CVC4’s E-matching strategy (e), which we gave in Figure 4. The
second to last column uport-i gives the number of benchmarks solved by at least one
of u, e, or e;u in CVC4, where we intentionally omit the interleaved strategy e+u, since
Z3 does not support a similar strategy. The column mport-i is computed similarly. We
compare these with the fifth column, z3 mport-i, i.e. the number of benchmarks solved
by either z3 m, z3 e or z3 e;m. A comparison of these is given in the cactus plot of Fig-
ure 5. We can see that due to Z3’s highly optimized implementations, z3 mport-i solves
the highest number of problems in less than one second (around 13000), whereas the
portfolio strategies of CVC4 solve more for larger timeouts. Overall, the best portfolio
strategy is enumerative instantiation in CVC4, which solves a total of 21305 unsatis-
fiable benchmarks overall, which is 1965 more benchmarks than z3 mport-i, and 470
more benchmarks than mport-i. We thus conclude that the use of enumerative instanti-
ation when paired with E-matching and conflict-based instantiation in CVC4 improves
the state-of-the-art of instantiation-based SMT solvers for unsatisfiable benchmarks.

Comparison with Automated Theorem Provers Automated theorem provers like Vam-
pire [24] and E [32] use substantially different techniques based on superposition, hence
we do not provide an extensive comparison here. However, we do remark that the gains
provided by enumerative instantiation were one of the main reasons for CVC4 being
more competitive in the 2017 CASC competition of automatic theorem provers [35].
CVC4 placed third in the category with unsatisfiable problems on the empty theory, as
in previous years, behind superposition-based theorem provers Vampire and E, which
implement complete strategies. There was, however, a 23% reduction in the number of
problems that E solves and CVC4 does not, w.r.t. the previous competition, reducing
the gap between the two systems.

Satisfiable Benchmarks In Table 1 we present the results of the same configurations
evaluated in Figure 5 on determining that benchmarks are satisfiable. As one would
expect, m is much better than u for satisfiable benchmarks. Since in MBQI one builds
a candidate model and checks it, producing the right candidate directly provides you

17

a model. In u, however, the existence of a model can only be determined after the
enumeration saturates. Overall, m solves 1350 benchmarks across all theories. As ex-
pected, this is much higher than the number solved by u, which solves 510 benchmarks,
all from the empty theory. Nevertheless, there are 13 satisfiable problems solved by u
and not by m, which shows that enumerative instantiation has some orthogonality on
satisfiable benchmarks as well. We conclude that enumeration not only has superior
performance to MBQI on unsatisfiable benchmarks, but also can be an alternative for
satisfiable benchmarks in the empty theory.

5.3 Artifact

We have produced an artifact [27] to reproduce the experimental results presented in
this paper. The artifact contains the binaries of the SMT solvers CVC4 and Z3, the
benchmarks on which they were evaluated, and the running scripts for each configura-
tion evaluated. Detailed instructions are given to perform tests on the various bench-
mark families with all configurations within the time limits, as well as for retrieving
the respective results in CSV format. The artifact has been tested in the virtual machine
available at [21].

6 Conclusion

We have presented a strengthening of the Herbrand Theorem, and used it to devise an
efficient technique for enumerative instantiation. The implementation of this technique
in the state-of-the-art SMT solver CVC4 increases its success rate and outperforms ex-
isting implementations of MBQI on unsatisfiable problems with quantified formulas.
Given its relatively simple implementation, this technique is well poised as an alter-
native to MBQI for being integrated in an instantiation based SMT solver to achieve
completeness in first-order logic with the empty theory and equality, as well as perform
improvements also when theories are considered.

Future work includes further restricting the enumeration space, for instance with or-
dering criteria in the spirit of resolution-based theorem proving [3]. Another direction
is lifting the techniques seen here to reasoning in higher-order logic. To handle quantifi-
cation over functions it is often necessary to enumerate expressions, and so performing
such an enumeration in a principled manner is paramount for this domain. Techniques
from syntax-guided function synthesis [1] could be combined with enumerative instan-
tiation to pursue this goal.

Data Availability Statement and Acknowledgments The datasets generated and ana-
lyzed during the current study are available in the figshare repository: https://doi.

org/10.6084/m9.figshare.5917384

This work was partially funded by the National Science Foundation under Award
1656926, by the H2020-FETOPEN-2016-2017-CSA project SC2 (712689), and by the

18

https://doi.org/10.6084/m9.figshare.5917384
https://doi.org/10.6084/m9.figshare.5917384

European Research Council (ERC) starting grant Matryoshka (713999). We would
like to thank the anonymous reviewers for their comments. We are grateful to Jasmin
C. Blanchette for discussions, encouragements and financial support through his ERC
grant.

References

1. R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In Formal Methods In
Computer-Aided Design (FMCAD), pages 1–8. IEEE, 2013.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, New
York, NY, USA, 1998.

3. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of automated reasoning, volume 1, pages 19–99. 2001.

4. H. Barbosa. New techniques for instantiation and proof production in SMT solving. PhD
thesis, Université de Lorraine, Universidade Federal do Rio Grande do Norte, 2017.

5. H. Barbosa, P. Fontaine, and A. Reynolds. Congruence closure with free variables. In
A. Legay and T. Margaria, editors, Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 10206 of Lecture Notes in Computer Science, pages 214–230,
2017.

6. M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino, W. Schulte, and H. Ven-
ter. The Spec# Programming System: Challenges and Directions, pages 144–152. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

7. C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5. Technical report,
Department of Computer Science, The University of Iowa, 2015. Available at www.SMT-

LIB.org.
8. K. Claessen, A. Lillieström, and N. Smallbone. Sort It Out with Monotonicity, pages 207–

221. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
9. K. Claessen and N. Sörensson. New techniques that improve MACE-style finite model find-

ing. In Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algo-
rithms, Applications, 2003.

10. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A Practical System for Verifying Concurrent C, pages 23–42. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

11. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
mun. ACM, 5(7):394–397, July 1962.

12. M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, July 1960.

13. L. de Moura and N. Bjørner. Efficient E-Matching for SMT Solvers. In F. Pfenning, edi-
tor, Proc. Conference on Automated Deduction (CADE), volume 4603 of Lecture Notes in
Computer Science, pages 183–198. Springer, 2007.

14. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan and
J. Rehof, editors, Tools and Algorithms for Construction and Analysis of Systems (TACAS),
volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

19

15. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theorem Prover for Program Checking.
J. ACM, 52(3):365–473, 2005.

16. H. B. Enderton. A mathematical introduction to logic. Academic Press, 2 edition, 2001.
17. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. Logic

in Computer Science, Symposium on, 0:55, 2003.
18. Y. Ge, C. Barrett, and C. Tinelli. Solving Quantified Verification Conditions Using Satis-

fiability Modulo Theories. In F. Pfenning, editor, Proc. Conference on Automated Deduc-
tion (CADE), volume 4603 of Lecture Notes in Computer Science, pages 167–182. Springer
Berlin Heidelberg, 2007.

19. Y. Ge and L. de Moura. Complete Instantiation for Quantified Formulas in Satisfiabiliby
Modulo Theories. In A. Bouajjani and O. Maler, editors, Computer Aided Verification (CAV),
volume 5643 of Lecture Notes in Computer Science, pages 306–320. Springer, 2009.

20. P. C. Gilmore. A proof method for quantification theory: Its justification and realization.
IBM J. Res. Dev., 4(1):28–35, Jan. 1960.

21. A. Hartmanns and P. Wendler, 2018. figshare, https://doi.org/10.6084/m9.figshare.

5896615.
22. D. Jovanovic and C. Barrett. Being careful about theory combination. Formal Methods in

System Design, 42(1):67–90, 2013.
23. K. Korovin. Non-cyclic sorts for first-order satisfiability. In P. Fontaine, C. Ringeissen,

and R. Schmidt, editors, Frontiers of Combining Systems (FroCoS), volume 8152 of Lecture
Notes in Computer Science, pages 214–228. Springer Berlin Heidelberg, 2013.

24. L. Kovács and A. Voronkov. First-order theorem proving and vampire. In N. Sharygina
and H. Veith, editors, Computer Aided Verification (CAV), volume 8044 of Lecture Notes in
Computer Science, pages 1–35. Springer Berlin Heidelberg, 2013.

25. D. Prawitz. An improved proof procedure1. Theoria, 26(2):102–139, 1960.
26. A. Reynolds. Conflicts, models and heuristics for quantifier instantiation in SMT. In

L. Kovács and A. Voronkov, editors, Vampire workshop, EPiC Series in Computing, pages
1–15. EasyChair, 2016.

27. A. Reynolds, H. Barbosa, and P. Fontaine. Revisiting enumerative instantiation - Artifact,
2018. figshare, https://doi.org/10.6084/m9.figshare.5917384.

28. A. Reynolds, C. Tinelli, and L. M. de Moura. Finding conflicting instances of quantified
formulas in SMT. In Formal Methods In Computer-Aided Design (FMCAD), pages 195–
202. IEEE, 2014.

29. A. Reynolds, C. Tinelli, A. Goel, and S. Krsti. Finite model finding in smt. In N. Sharygina
and H. Veith, editors, Computer Aided Verification (CAV), volume 8044 of Lecture Notes in
Computer Science, pages 640–655. Springer Berlin Heidelberg, 2013.

30. A. Reynolds, C. Tinelli, A. Goel, S. Krsti, M. Deters, and C. Barrett. Quantifier Instantiation
Techniques for Finite Model Finding in SMT. In M. P. Bonacina, editor, Proc. Conference on
Automated Deduction (CADE), volume 7898 of Lecture Notes in Computer Science, pages
377–391. Springer, 2013.

31. J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, Jan. 1965.

32. S. Schulz. E - a brainiac theorem prover. AI Commun., 15(2,3):111–126, Aug. 2002.
33. A. Stump, G. Sutcliffe, and C. Tinelli. Starexec: A cross-community infrastructure for logic

solving. In S. Demri, D. Kapur, and C. Weidenbach, editors, International Joint Confer-
ence on Automated Reasoning (IJCAR), volume 8562 of Lecture Notes in Computer Science,
pages 367–373. Springer, 2014.

20

https://doi.org/10.6084/m9.figshare.5896615
https://doi.org/10.6084/m9.figshare.5896615
https://doi.org/10.6084/m9.figshare.5917384

34. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

35. G. Sutcliffe. The CADE ATP System Competition - CASC. AI Magazine, 37(2):99–101,
2016.

21

A Further Evaluation of Enumerative Instantiation

A comparison between all CVC4 and Z3 configurations on all unsatisfiable and satisfi-
able benchmarks can be seen in Tables 2 and 3, respectively. A detailed comparison by
benchmark families can be seen in Table 4.

u e;u e+u e m e;m e+m z3 m z3 e z3 e;m

u x 978 557 1737 4406 1110 815 7806 3315 2079
e;u 5058 x 649 988 7736 377 879 11795 3875 2694
e+u 4847 859 x 1784 7790 1129 991 11934 4266 2956
e 4832 3 589 x 7331 201 724 11311 3067 2525
m 1363 516 457 1193 x 517 251 5954 2657 1634
e;m 4947 134 676 943 7457 x 602 11604 3730 2624
e+m 4852 836 738 1666 7331 802 x 11692 4060 2823

z3 m 1703 421 350 922 1703 473 361 x 1454 538
z3 e 4349 829 1010 1006 6734 927 1057 9782 x 67
z3 e;m 7242 1179 1231 1995 7242 1352 1351 10397 1598 x

Table 2: Number of uniquely solved benchmarks between each pair of configurations
on all unsatisfiable benchmarks.

u e;u e+u e m e;m e+m z3 m z3 e z3 e;m

u x 14 20 493 16 14 17 25 497 22
e;u 38 x 34 517 13 6 13 23 521 20
e+u 16 6 x 489 14 9 13 24 493 20
e 0 0 0 x 0 0 0 0 4 0
m 853 826 855 1330 x 235 206 178 1334 280
e;m 645 613 644 1124 29 x 26 117 1128 175
e+m 665 637 665 1141 17 43 x 110 1145 171

z3 m 923 897 926 1391 239 384 360 x 1395 234
z3 e 0 0 0 0 0 0 0 0 x 0
z3 e;m 875 849 877 1346 296 397 376 189 1350 x

Table 3: Number of uniquely solved benchmarks between each pair of configurations
on all satisfiable benchmarks.

22

L
ibrary

#
u

e;u
e+u

e
m

e;m
e+m

uport
m

port
port

z3
m

z3
e

z3
e;m

z3
m

port-i

T
PT

P
14731

4426
6125

6273
5396

4369
6066

6151
6674

6566
6859

2382
4098

5288
5519

A
U

FB
V

D
T

L
IA

-rec-fun-ijcar2016
1519

231
230

230
223

87
230

232
232

232
232

198
155

213
226

A
U

FD
T

L
IA

-fm
f-cav2013

200
106

107
107

104
98

106
106

107
106

107
41

103
107

107
A

U
FL

IR
A

-nasa
1044

831
1003

996
994

516
1003

1003
1003

1003
1003

583
994

1003
1003

A
U

FL
IR

A
-peter

197
5

99
42

99
0

99
99

99
99

99
0

99
99

99
A

U
FL

IR
A

-w
hy

705
662

672
677

672
190

672
642

699
674

699
55

673
676

676
A

U
FN

IR
A

-FFT
466

36
60

59
58

27
66

69
76

76
80

19
53

56
56

U
F-cdt-cade2015

2912
1284

1458
1472

1452
1260

1458
1488

1521
1520

1544
601

1262
1272

1311
U

FD
T-cdt-cade2015

3819
1760

1966
1987

1956
1622

1943
1973

2068
2050

2090
823

1679
1689

1748
U

FD
T

L
IA

-induction-vm
cai2015

293
49

53
58

52
1

52
52

58
54

58
18

60
59

60
U

FD
T-rec-fun-ijcar2016

565
23

11
11

2
20

11
20

23
20

23
15

23
32

33
U

F-grasshopper
307

280
292

302
285

205
291

297
303

297
304

185
277

290
294

U
FL

IA
-boogie

1028
390

694
700

689
166

689
658

714
690

714
95

687
696

698
U

FL
IA

-grasshopper
357

311
322

338
320

247
318

318
345

324
346

196
312

329
335

U
FL

IA
-sexpr

32
27

15
32

15
2

15
10

32
16

32
3

30
31

31
U

FL
IA

-sim
plify

798
460

743
767

743
307

737
764

770
777

777
425

798
798

798
U

FL
IA

-sim
plify2

1955
1302

1946
1874

1839
1072

1947
1943

1950
1951

1951
1170

1949
1952

1952
U

FL
IA

-sledgeham
m

er
3283

979
1147

1172
1108

760
1107

1143
1287

1221
1304

455
823

876
950

U
FL

IA
-tokeneer

272
140

142
142

142
82

142
142

142
142

142
101

142
142

142
U

FN
IA

-lahiri-cav09-storm
-queries

364
227

227
227

227
227

227
227

227
227

227
53

285
286

286
U

FN
IA

-sledgeham
m

er
1420

383
496

493
494

331
459

469
545

544
562

319
408

411
536

U
FN

IA
-spec

sharp
444

269
361

318
361

89
362

309
370

363
370

66
432

437
438

U
FN

IA
-vcc-havoc

984
909

863
940

855
522

812
860

965
930

979
651

949
978

978
U

F-sledgeham
m

er
4058

1032
1145

1176
1114

942
1138

1176
1284

1217
1300

406
878

943
984

O
thers

243
205

117
119

112
51

100
113

106
114

123
86

96
126

110

Table
4:C

om
parison

ofallC
V

C
4

and
Z

3
configurations

on
unsatisfiable

benchm
arks

by
fam

ilies.

23

	Revisiting Enumerative Instantiation
	1 Introduction
	2 Preliminaries
	3 Herbrand Theorem and Beyond
	4 Quantifier Instantiation in CDCL(T)
	4.1 Implementing Enumerative Instantiation

	5 Experiments
	5.1 Impact of Enumerative Instantiation in CVC4
	5.2 Comparison Against Other SMT Solvers
	5.3 Artifact

	6 Conclusion
	A Further Evaluation of Enumerative Instantiation

