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Plane-extraction from depth-data using a Gaussian mixture regression model
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aINRIA Grenoble Rhône-Alpes & Univ. Grenoble Alpes, France

Abstract

We propose a novel algorithm for unsupervised extraction of piecewise planar models from depth-data. Among other
applications, such models are a good way of enabling autonomous agents (robots, cars, drones, etc.) to effectively
perceive their surroundings and to navigate in three dimensions. We propose to do this by fitting the data with a
piecewise-linear Gaussian mixture regression model whose components are skewed over planes, making them flat in
appearance rather than being ellipsoidal, by embedding an outlier-trimming process that is formally incorporated into
the proposed expectation-maximization algorithm, and by selectively fusing contiguous, coplanar components. Part of
our motivation is an attempt to estimate more accurate plane-extraction by allowing each model component to make
use of all available data through probabilistic clustering. The algorithm is thoroughly evaluated against a standard
benchmark and is shown to rank among the best of the existing state-of-the-art methods.

1. Introduction

The objective of this paper is to construct simple pla-
nar models of environments by identifying flat surfaces
within depth-data. We propose to do this by (i) fitting the
data with a piecewise-linear Gaussian mixture regression
(GMR) model – a Gaussian mixture model (GMM) whose
components are skewed over planes, making them flat in
appearance rather than being ellipsoidal; and then (ii) se-
lectively fusing contiguous, coplanar components. Part of
our motivation for evaluating this method was to attempt
to estimate more accurate model parameters by allowing
each model component to make use of all available data
through probabilistic clustering. This contrasts with most
other recent methods (Enjarini and Gräser, 2012), (Feng
et al., 2014), (Holz and Behnke, 2012), (Holz et al., 2011),
(Hulik et al., 2012), (Oehler et al., 2011) which, for the
sake of efficiency, compromise by working with noisier
subsets of data-points. The application in which we are
specifically interested is the perception of a 3D environ-
ment by a non-human observer in order to enable navi-
gation within that environment. The observer may be a
wheeled or a legged robot, a drone, a driver-less car, a hu-
man perception-aid such as that seen in (Pradeep et al.,

2013), or any other similar device.

Recently, dense depth-data have become readily avail-
able due to the development of affordable structured light
and time-of-flight cameras. Each of these sensor-types
produces images of depth-related values that can be pro-
jected as clouds of 3D points. These point-clouds, how-
ever, are nothing more than a noisy set of points that only
sample the environment. The observer must then be able
to make sense of these observations by using them to con-
struct a model of some form, e.g. a set of planar surfaces.

An alternative to a piecewise-planar model might be to
attempt to represent the environment as a set of known
objects. To do so, however, comprehensive object-
recognition training would be required. In practice, in a
dynamic, real-world environment, such a technique would
ultimately only be able to complement a more general,
unsupervised approach. Planar primitives are sufficiently
general to model most environments. They are partic-
ularly appropriate in the home and office, where planar
surfaces are prevalent, but can also handle more com-
plex scenes, approximating curved surfaces in a piecewise
fashion. Although a piecewise planar representation of
the environment may not allow many objects to be iden-
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tified, it provides a certain set of very useful semantics.
Namely, the observer knows that it can navigate safely on
roughly horizontal planes and that it cannot pass through
roughly vertical ones.

The main contribution of our paper is a probabilistic
treatment of the problem of extracting planes from depth
images. We propose to combine piecewise linear regres-
sion with GMM (Deleforge et al., 2015), thus yielding an
expectation-maximization (EM) algorithm, with proven
mathematical convergence, that deterministically clusters
the 3-D data into 2-D Gaussian components via likeli-
hood maximization. Moreover, we use a recently pro-
posed trimming method (Galimzianova et al., 2015) that,
unlike random sampling such as RANSAC-based meth-
ods, can be embedded within EM in a principled way. We
demonstrate, using a standard benchmark, that accuracy
of depth-image segmentation by our robust GMR tech-
nique is comparable with the best of the other state-of-
the-art methods.1

2. Related work

There are many different methods of plane-extraction.
These methods tend not to rely on single concepts but,
instead, combine various component-algorithms in differ-
ent ways. There are three components that are typically
used: (i) Region-growing, whether it be to grow regions
pixel by pixel or to absorb some form of nearby superpix-
els; (ii) Pixel-clustering; and (iii) RANSAC plane-fitting,
usually applied to local regions only (Enjarini and Gräser,
2012) (Hulik et al., 2012) (Oehler et al., 2011).

In (Feng et al., 2014) and (Holz and Behnke, 2012),
various region-growing concepts are used. E.g. (Holz
and Behnke, 2012) performs per-pixel region-growing
based on per-point normal-orientation and combined
mean squared error (MSE). A second, larger-scale merg-
ing of regions is then performed to collect together planes
that may have become disjoint due to noise in the origi-
nal surface-normals. In (Feng et al., 2014), some of the
noise of per-point normal-estimation is reduced by first
creating a grid of superpixels organised in an adjacency

1Supplemental material can be found at https://team.inria.
fr/perception/research/plane-extraction/.

graph. Agglomerative hierarchical clustering2 (AHC) is
then used to merge the superpixels followed by per-pixel
region-growing to refine the sawtooth edges caused by the
initial grid.

There are many examples of algorithms that perform
clustering. In (Holz et al., 2011), per-pixel normal-
estimation is performed and then clustering by discrete
values of normal-orientation and of perpendicular dis-
tance to the origin. Further pixel-by-pixel refinement is
then performed to capture those points falling just on the
wrong side of the discretization boundaries from the value
of a dominant plane. In (Enjarini and Gräser, 2012) the
gradient of depth (GoD) features are clustered: Points be-
longing to the same plane will have the same GoD across
them. Once clusters are found, RANSAC plane-fitting is
applied followed by merging of nearby planes. In (Pham
et al., 2016) an adjacency graph is constructed over local
surface patches and a graph clustering algorithm is then
applied. Plane extraction is formulated as the minimiza-
tion of a global pairwise energy function which jointly
considers plane fidelities and geometric consistencies be-
tween planes, i.e. orthogonal or parallel planes.

A standard plane-extraction approach is to run
RANSAC sequentially until no more planes can be found
(Gotardo et al., 2003). (Hulik et al., 2012) and (Oehler
et al., 2011) use RANSAC for robust plane-fitting, apply-
ing it to local regions only, for efficiency. Clusters be-
longing to the resulting planar components are then grown
to include surrounding points. (Oehler et al., 2011) finds
the initial local regions via a Hough transform-based pre-
segmentation. In (Gallo et al., 2011) RANSAC is ap-
plied to connected components of inliers. In (Qian and
Ye, 2014) a coherence check is performed to remove data
patches whose normals are in contradiction to the fitted
planes, followed by a recursive plane-clustering process.
One drawback of RANSAC-based methods is that they do
not consider fusion of planar sets of points and hence they
often under-estimate the number of actual planes.

In this work, we introduce the robust piecewise-linear
Gaussian mixture regression (RPL-GMR) algorithm for
optimally fitting a set of planes to a 3D point cloud. The

2Despite it’s name, the AHC in (Feng et al., 2014) is actually per-
forming region-growing on a set of superpixels due to the restriction of
the adjacency graph.
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algorithm contains an outlier-trimming process, thus be-
ing able to replace RANSAC. In the literature, there are
very few examples of using mixture models for plane-
extraction. One example is (Liu et al., 2001). Note, how-
ever, that the model used in (Liu et al., 2001) is a mixture
of unbounded planes that extend throughout the whole
data-set. The idea of plane-locality, which is essential for
good performance in more complex environments, is only
introduced as a post-processing step. The RPL-GMR for-
mulation is such that the locality of planes is estimated
simultaneously with the planar parameters, making RPL-
GMR a more powerful and elegant alternative to existing
methods.

The rest of the paper is organised as follows: Section
3 gives the RPL-GMR formulation and its associated EM
algorithm; Section 4 contains details of the various stages
of the algorithm; in Section 5 our algorithm is evalu-
ated against various others using the SegComp data-set
(Hoover et al., 1996); and in Section 6 we draw conclu-
sions.

3. Piecewise-linear Gaussian mixture regression

The proposed model is a form of constrained GMM to
find planar patches within sets of 3D data-points. A stan-
dard GMM would not be particularly useful and would
find ellipsoid-like densities in the data. The model of
(Deleforge et al., 2015), on the other hand, makes the
assumption that data in high-dimensional space lie on a
lower-dimensional manifold (corrupted only by uncorre-
lated Gaussian noise), and furthermore, that the surface
can be well-approximated by a patchwork of locally lin-
ear functions. A model that makes these assumptions is
ideal in our case where we have data-points measured at
the 2D manifold which is the visible frontier of the scene,
and where we have scenes containing many planes, i.e.
locally linear functions in the manifold.

Let this manifold be described by a function g : X 7→ Y
where X ⊂ R2 and Y ⊂ R. Obviously, g(X) is not neces-
sarily linear, in our case being composed of surfaces with
various characteristics. Let x ∈ X and y ∈ Y be realisa-
tions of the random variables X ∈ R2 and Y ∈ R. The pro-
posed model approximates the potentially nonlinear g(x)
in a piecewise linear fashion. As is common practice in
mixture models, a discrete, hidden variable, Z ∈ N is in-
troduced. The complete data then become (X,Y,Z) where

a realisation (x, y,Z = k) of (X,Y,Z) indicates that y is re-
lated to x by an affine mapping indexed by k, plus some
error term, ek. We assume, then, that g(x) can be approx-
imated by the following mixture of K affine transforma-
tions:

Y =

K∑
k=1

I(Z = k)(AkX + bk + ek), (1)

where I is an indicator function such that I(Z) = 1 if
Z = k, or 0 otherwise; Ak ∈ R1×2 and bk ∈ R are the
mapping parameters of the k-th affine transformation; and
ek ∼ N(0, σk), σk ∈ R is an error term capturing inaccu-
racies in both the observations and the mapping. Let the
joint variable (X,Y) be modeled by a GMM:

p(x, y; θ) =

K∑
k=1

πkN(x, y; mk,Vk), (2)

where πk,mk and Vk are the priors, means and covariances
of the mixture, respectively. This is equivalent to:

p(x, y; θ) =

K∑
k=1

p(y|x,Z = k; θ)p(x|Z = k; θ)p(Z = k; θ).

(3)

These probability distributions can be modeled as Gaus-
sians, and so we have:

p(y|x,Z = k; θ) = N(y; Akx + bk, σk), (4)
p(x|Z = k; θ) = N(x; ck,Γk), (5)

p(Z = k; θ) = πk, (6)

where ck ∈ R2 and Γ ∈ R2×2 are, respectively, the centre
and covariance of the Gaussian components in the space
of X. Combining (3), (4), (5) and (6), we get the explicit
expression for the joint probability of the observed data

p(x, y; θ) =

K∑
k=1

πkN(y; Akx + bk, σk)N(x; ck,Γk). (7)

This is equivalent to the Gaussian distribution of the joint
variable (X,Y) in equation (2) where the mean vector and
covariance matrix are given by

mk =

(
ck

Akck + bk

)
,Vk =

(
Γk ΓkA>k

AkΓk σk + AkΓkA>k

)
.

(8)
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The parameter set is θ = {ck,Γk,Ak, bk, σk, πk}
K
k=1 .

The RPL-GMR algorithm is an EM procedure that it-
eratively maximises the expectation of the complete-data
log-likelihood with respect to the probability distribution
of the hidden variables given the current model parame-
ters:

L(θ) =

K∑
k=1

1
rk

N∑
n=1

rnk log(p(xn, yn,Zn = k; θ)), (9)

where N is the number of data points, rk =
∑N

n=1 rnk and
rnk are the responsibilities:

rnk =
πkN(yn; Akxn + bk, σk)N(xn; ck,Γk)∑K
i=1 πiN(yn; Aixn + bi, σi)N(xn; ci,Γi)

. (10)

Maximizing (9) with respect to each of the model parame-
ters in θ we obtain the parameter-update equations below:

ck =

N∑
n=1

rnk

rk
xn, (11)

Γk =

N∑
n=1

rnk

rk
(xn − ck)(xn − ck)>, (12)

Ak = YkX
†

k , (13)

bk =

N∑
n=1

rnk

rk
(yn − Akxn), (14)

σk =

N∑
n=1

rnk

rk
(yn − Akxn − bk)2, (15)

πk = rk/
∑K

k=1
rk, (16)

where † is the Moore-Penrose pseudo inverse operator
and Xk = {

√
rnk(xn − ck)}Nn=1,Yk = {

√
rnk(yn − ȳk)}Nn=1 are

sets of centred and weighted points with ȳk =
∑N

n=1
rnk
rk

yn.
The RPL-GMR algorithm should be evaluated until con-
vergence of the expected complete-data log-likelihood in
(9). A typical convergence criterion might be

L(θ(i+1)) − L(θ(i)) < ε
∣∣∣L(θ(i))

∣∣∣ , (17)

where (i) denotes the iteration index and ε is some con-
stant to be specified.

4. Implementation details

We now describe in detail the implementation of the
proposed method. A formal description is provided in Al-
gorithm 1 and the effect of each of the stages can be seen
in Fig. 1.

4.1. Initialisation

The RPL-GMR algorithm (as with any EM algorithm)
does not necessarily find globally optimal solutions and
is therefore sensitive to initial conditions. An important
aspect of initialisation is the decision of how big a model
to use in terms of the number of components. There
is a general consensus that a computationally efficient
and well-founded strategy for mixture-model-selection is
to start with an over-estimated number of components
and to merge them according to criteria such as mini-
mum message length (MML) (Figueiredo and Jain, 2002),
Bayes information criterion (BIC) (Hennig, 2010), an en-
tropy criterion (Baudry et al., 2010), or measuring pair-
wise overlap between components (Melnykov, 2016). We
therefore choose to initialise with a large number of com-
ponents that is likely to be higher than the number of
planes we expect to find, relying on our fusing proce-
dure to later reduce the number of components where
necessary. By initialising with a relatively large number
of components, it also becomes more likely that smaller
planes will be captured.

Plane-size is also an important consideration when de-
ciding on the number of model components for the fol-
lowing reason: Whereas errors in the positions of points
across planes may obey something like Gaussian distribu-
tions, the positions of points along planes have distribu-
tions that are more uniform in nature. Non-Gaussian dis-
tributions can be better described by multiple Gaussians.
As a result, our Gaussian components often prefer to co-
locate, sharing points belonging to a single plane, rather
than forcing each other to occupy different planes. With
components not always readily re-distributing to other re-
gions, it is important that components are placed with
good proximity to all planes during initialisation. For this
reason, if a model with too few components is used, data-
points belonging to smaller planes will often be neglected.
Choosing a relatively large number of initial model com-
ponents is one way to ensure that smaller planes are also
captured. On the other hand, fitting too many model
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Algorithm 1 RPL-GMR

1: procedure RPL-GMR(X,Y,K, ε)
2: θ(i) = KMeansInit(X,Y,K)
3: L(θ(i)) = 0
4: � INITIAL EXPECTATION STEP
5: u(i)

nk = p(yn|xn,Z = k; θ(i))p(xn|Z = k; θ(i))
6: r(i)

nk = π(i)
k u(i)

nk

7: r(i)
n =

∑K
k=1 r(i)

nk
8: repeat
9: r(i)

nk = r(i)
nk/r

(i)
n . Normalise

10: � TRIMMING STEP
11: (X′,Y ′) = trimming(X,Y, r(i)

nk, u
(i)
nk,L(θ(i)))

12: r(i)
k =

∑N′
n′=1 r(i)

n′k

13: π(i)
k = r(i)

k /
∑K

k=1 r(i)
k

14: � MAXIMISATION STEP (using [X′,Y ′])
15: Compute new θ(i+1) from equations (11)-(16)
16: � EXPECTATION STEP (using [X,Y])
17: u(i+1)

nk = p(yn|xn,Z = k; θ(i+1))p(xn|Z =

k; θ(i+1))
18: r(i+1)

nk = π(i+1)
k u(i+1)

nk . Don’t normalise yet
19: r(i+1)

n =
∑K

k=1 r(i+1)
nk

20: L(θ(i+1)) =
∑N

n=1 log(r(i+1)
n )

21: until L(θ(i+1)) − L(θ(i)) < ε|L(θ(i))|
22: � POST-PROCESSING
23: r(i+1)

nk = r(i+1)
nk /r(i+1)

n . Normalise
24: r(i+1)

k =
∑N′

n′=1 r(i+1)
n′k

25: π(i+1)
k = r(i+1)

k /
∑K

k=1 r(i+1)
k

26: clusteringn′ = maxk(r(i+1)
n′k )

27: π(i+1)
k = densityCheck(X′, clusteringn′ , π

(i+1)
k )

28: (θ(i+1), Xseg) =

FuseComponents(θ(i+1), r(i+1)
k ,X,Y)

29: return (θ(i+1), Xseg)

components is computationally expensive and can lead
to over-fitting where components fit to noise, ignoring
larger-scale patterns in the data. The choice of the number
of model components is therefore data-dependent and is a
hyper-parameter that must be tuned.

Initial model parameters are calculated from clusters
found by applying randomly initialised k-means to the 3D
point set. An example of output of this initialisation pro-
cedure is shown in Fig. 1b. Also tested was initialisation

using points within squares of a regular grid. RPL-GMR
was found to converge more quickly when initialised with
k-means than with the regular grid; perhaps because, de-
spite not knowing about planes in the data, k-means is still
able to capture edges where one plane occludes another
and there is a large difference in the proximity of points
between planes.

4.2. Robustness to outliers
Data-sets containing outliers can introduce biases into

model parameters during plane-fitting and can even lead
to completely spurious planes being found. As mentioned
in Section 2, many plane-extraction methods achieve ro-
bustness by fitting planes using RANSAC. Instead, we
embed a trimming step, inspired by (Galimzianova et al.,
2015), within the body of the EM procedure: At each iter-
ation of RPL-GMR, points are ranked based on how likely
they are to be outliers, then a certain fraction are discarded
(or trimmed) from the top of the ranking before contin-
uing to the maximisation step. The general assumption
made during trimming is that the parameters of the model
are initialised (and remain) to be close to their ideal val-
ues. If this is true then outliers can be identified based on
their agreement (or lack of agreement) with the current
estimate of the model.

To trim successfully, we need two things: (i) reason-
able knowledge of the number of outlying data-points;
and (ii) a score by which the data-points can be ranked
in order of likelihood that they are outliers. Knowledge of
the number of outlying data-points can be obtained from
training data or else from known camera-characteristics.
It is better to over-estimate this fraction (Galimzianova
et al., 2015). As for the score, (Galimzianova et al.,
2015) recommends that, for unbalanced Gaussian mix-
tures, i.e. mixtures where components represent different
numbers of data-points, component-wise confidence-level
ordering based on Mahalanobis distance from the most
likely component-centre should be used. This avoids the
trimming of all points belonging to weak components, as
might occur with ordering based on posterior probabili-
ties. Posterior probabilities are used, however, to asso-
ciate points with most likely components. Rather than or-
dering based on Mahalanobis distances, we use the likeli-
hood, p(x, y|Z = k; θ), since it is already calculated prior
to the trimming step (unk in Algorithm 1). This ordering
is equivalent to ordering by Mahalanobis distances since,
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(a) 3D point-cloud input. (b) K-means initialisation. (c) Clusters based on MAP

(d) Outlying components detected (e) Intermediate fusion. (f) Final result

Figure 1: Visualisation of various stages of Algorithm 1.

for Gaussians, Mahalanobis distance is proportional to√
− log p(x, y|Z = k; θ), and

√
− log(x) decreases mono-

tonically between 0 and 1.
EM guarantees to increase (9) at each iteration. How-

ever, by including the trimming step, the data-set used
during the maximisation step will likely change at each
iteration. This breaks the guarantee of an ever-increasing
log-likelihood. To avoid this problem, additional in-
dividual points are trimmed from the sum until the log-
likelihood becomes larger than that following the previ-
ous iteration. This allows the log-likelihood to be used to
test for convergence, even after having removed at least
a fraction, 1 − α, of the points. The maximisation step
then improves the parameters to further increase the log-
likelihood.

An example of output from RPL-GMR is given in Fig.
1c. For visualisation purposes, clusterings of points based
on MAP are represented by different colours. In the same
colours, we have also plotted contours of constant proba-
bility for each of the X-space Gaussians given by equa-

tion (5). Points that have been trimmed are shown in
black, including those of a plane for which a component
was unfortunately not found. In Fig. 1d, two deleted
components (black contours) are shown. These were re-
moved by an additional densityCheck() function (see Al-
gorithm 1) that attempts to detect and remove any outly-
ing components (components fitted only to outlying data-
points) by comparing the density of MAP-clustered points
in X-space to a threshold, Tρ.

4.3. Fusing of planar Gaussian components
At first glance, rather than combining components as a

post-processing stage, it might seem that it would be more
elegant to include some form of model-selection within
the RPL-GMR loop. In (Figueiredo and Jain, 2002), for
example, the number of model components is gradually
reduced during the EM procedure until the most parsimo-
nious description of the data is found, as measured by a
Minimum Message Length (MML) criterion. In our case,
however, reducing the number of components based on

6



Table 1: SegComp benchmarking results using the test data of the ABW and PERCEPTRON datasets. The best results are shown in bold and the
second-best results are shown in slanted bold. Our method yields very good results (second best and third best in terms of number of correctly
detected planes. Overall, RPL-GMR is the second best performing method.

Method Correctly detected Orientation deviation Over-seg. Under-seg. Missed Spurious
SegComp ABW data-set (30 test images) (Hoover et al., 1996). Scores calculated using a threshold of 80% pixel-overlap.

USF (Gotardo et al., 2003) 12.7 / 15.2 (83.5%) 1.6 0.2 0.1 2.1 1.2
WSU (Gotardo et al., 2003) 9.7 / 15.2 (63.8%) 1.6 0.5 0.2 4.5 2.2
UB (Gotardo et al., 2003) 12.8 / 15.2 (84.2%) 1.3 0.5 0.1 1.7 2.1
UE (Gotardo et al., 2003) 13.4 / 15.2 (88.1%) 1.6 0.4 0.2 1.1 0.8

UFPR (Gotardo et al., 2003) 13.0 / 15.2 (85.5%) 1.5 0.5 0.1 1.6 1.4
Oehler et al. (Oehler et al., 2011) 11.1 / 15.2 (73.0%) 1.4 0.2 0.7 2.2 0.8

Holz et al. (Holz and Behnke, 2012) 12.2 / 15.2 (80.1%) 1.9 1.8 0.1 0.9 1.3
Feng et al. (Feng et al., 2014) 12.8 / 15.2 (84.2%) 1.7 0.1 0.0 2.4 0.7

RPL-GMR (proposed) 13.1 / 15.2 (85.8%) 1.6 0.2 0.1 1.8 0.8
SegComp PERCEPTRON data-set (30 test images) (Hoover et al., 1996). Scores calculated using a threshold of 80% pixel-overlap.

USF (Gotardo et al., 2003) 8.9 / 14.6 (60.9%) 2.7 0.4 0.0 5.3 3.6
WSU (Gotardo et al., 2003) 5.9 / 14.6 (40.4%) 3.3 0.5 0.6 6.7 4.8
UB (Gotardo et al., 2003) 9.6 / 14.6 (65.7%) 3.1 0.6 0.1 4.2 2.8
UE (Gotardo et al., 2003) 10.0 / 14.6 (68.4%) 2.6 0.2 0.3 3.8 2.1

UFPR (Gotardo et al., 2003) 11.0 / 14.6 (75.3%) 2.5 0.3 0.1 3.0 2.5
Oehler et al. (Oehler et al., 2011) 7.4 / 14.6 (50.1%) 5.2 0.3 0.4 6.2 3.9

Holz et al. (Holz and Behnke, 2012) 11.0 / 14.6 (75.3%) 2.6 0.4 0.2 2.7 0.3
Feng et al. (Feng et al., 2014) 8.9 / 14.6 (60.9%) 2.4 0.2 0.2 5.1 2.1

RPL-GMR (proposed) 10.6 / 14.6 (72.4%) 2.5 0.3 0.3 3.0 2.0

MML is not meaningful since our distributions of points
are non-Gaussian. E.g. many of the planar surfaces are
rectangular and are more effectively modelled by multiple
components. Rather than reducing the number of compo-
nents during EM iterations, our approach is, instead, to
fuse components together as a post-processing stage. By
doing so, we are able to obtain more accurate estimates
of the plane parameters by combining information from
multiple co-planar components, but are also able to main-
tain the associations of data points with the original set of
model components since no further expectation steps are
performed following the fusing stage.

Components are fused together if three criteria are met:
1) The components must be adjacent to one another;
2) By combining the components, the RMS probability-
weighted deviation of points perpendicular to the com-
bined plane must not exceed a certain threshold; and 3)
Each of the components being fused must not protrude
too far from the plane of the other component. Similar
to (Feng et al., 2014), we first build an adjacency graph

of clusters in the 2D X-space. In (Feng et al., 2014) this
is straightforward as their data are divided into a regu-
lar grid. In our case, model components are scattered
throughout the data and we must explicitly test for ad-
jacency. To do this, we test for overlap of ellipses formed
from the Mahalanobis distances of the Gaussians in (5),
scaled by a factor cDM . An efficient method for testing the
overlap of ellipses can be found in (Etayo et al., 2006). An
alternative approach could be to test for adjacency of con-
vex cells in the 3D Voronoi tessellation formed by MAP
partitioning of the space about the mixture model.

In order to test the second and third fusing-criteria, we
make use of the principal components of variation in the
data as weighted by the responsibilities found for each
component. I.e. for each component, we calculate eigen-
values of the responsibility-weighted data: the smallest
eigenvalue is equivalent to the mean squared error (MSE)
of points from the plane. In practice we calculate the
eigenvalues of matrix (8).

The fusing algorithm proceeds as follows: The node
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in the adjacency graph whose component has the small-
est MSE is identified; hypothetical combinations are then
made with each adjacent component to find the plane with
the lowest combined MSE. No combination is made if
the best resulting MSE is greater than a certain threshold,
TMS E , or if the third fusing-criterion is not met (discussed
below). Fusing will terminate once each combination of
adjacent nodes has been tested. In (Feng et al., 2014),
the MSEs are stored in a min-heap data-structure for ef-
ficiency. This could be done here as well. However, the
cost of running our fusing algorithm is already much less
than running RPL-GMR.

Up to this point in the algorithm, we have made efforts
to ensure that smaller planes in our unbalanced mixture
are not lost. For example, one reason we initialise with a
large number of components is to capture smaller planes.
We also used component-wise confidence-level ordering
during trimming to avoid the loss of smaller planes. With-
out the third fusing-criterion, however, smaller planes
could easily be subsumed by larger ones, provided the
MSE remains low enough. In some cases the data-based
distance metric of combined MSE works well. E.g. dom-
inant planes are able to mop up small erroneous planar
components fitted to noise at the edges of true clusters,
despite having orientations roughly perpendicular to the
main plane. If the smaller plane extends significantly
beyond the noise of the more dominant plane, however,
then we probably don’t want to merge the two. Before
merging any two components, therefore, we perform the
third check on the magnitudes of projections of the two
main eigenvectors (in both negative and positive direc-
tions) onto the other plane’s normal. The test fails if, for
both planes, the magnitude of any of these four projec-
tions is greater than a certain threshold: Tpro j ×

√
MSE.

5. Benchmarking

We evaluated the RPL-GMR algorithm using the ABW
and PERCEPTRON data-sets available as part of the Seg-
Comp (Segmentation Comparison) project from the Uni-
versity of South Florida (Hoover et al., 1996). Both of
these data-sets contain depth-images of entirely planar
scenes along with ground-truth segmentations. The im-
ages of the ABW data-set were taken using an ABW
structured light camera whereas the PERCEPTRON cam-
era uses scanning laser range finding (LRF) technol-

ogy. Each set contains 10 training-images and 30 test-
images. The SegComp package also includes an auto-
mated comparison program that compares segmented im-
ages with the ground-truth segmentations and produces
various statistics. As well as comparing clustered pixels
in the image, the program compares the orientations of the
model planes that were found.

When working with depth-images, it is advantageous to
be able to use image-coordinates as values in the X-space
of the RPL-GMR model. Doing so avoids potential prob-
lems with the degeneracy of points that happen to share
the same xy-coordinates in Cartesian space. (In an image,
each point has its own, non-degenerate uv-coordinate.)
The transformation from image-space to depths, how-
ever, is nonlinear. To avoid this problem, it is necessary
to work with a quantity that is inversely proportional to
depth, such as disparity. In our evaluation we worked with
the quantity s/Z using the scale-factor s =

(rows+cols)/2
(1/z)max−(1/z)min

.
Without the scale-factor, inverse depths (which tend to be
very small values) have little effect during the EM proce-
dure and the algorithm struggles to differentiate between
nearby planes of different orientations. U, V and s/Z are
the axes plotted in Fig. 1a.

The parameters of our algorithm were tuned by exper-
imenting on the ABW and PERCEPTRON training sets.
We arrived at the following settings: K = 200 (the num-
ber of model components) was chosen as it gives an ini-
tial clustering similar in size to the smallest planes of the
training sets, e.g. Fig. 1b; cDM = 2.1 (the ellipse size
used for adjacency checking of components) was chosen
such that the ellipse sizes, e.g. Fig. 1c, roughly con-
tain all MAP-clustered points; Tpro j = 10 (the param-
eter that avoids fusing of small planar components with
large perpendicular planes) was chosen so that the vec-
tor (Tpro j

√
MS E )v, where v is the unit vector normal

to the plane, would not extend too far beyond the cloud
of noisy points belonging to that plane; the simple value
of Tρ = 0.5 (the threshold for the outlying-component-
check, based on density inX-space) was chosen to signify
that, using Fig. 1d as reference, at least 50% of the pix-
els contained within any ellipse must be MAP-associated
with that component in order to be considered valid.

For α, values were taken directly from the provided
ground-truth segmentations of the training sets (α = 0.98
for ABW and α = 0.99 for PERCEPTRON). However,
as previously noted, using an over-estimate of α = 0.98
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(a) 21/27, 6 missed, 3
spurious

(b) 16/19, 1 over, 2
missed, 1 spurious

(c) 14/17, 3 missed, 3
spurious

(d) 15/17, 2 missed (e) 9/10, 1 missed, 1
spurious

(f) 6/6 (g) 6/6, 1 spurious (h) 11/11 (i) 13/13, 1 spurious (j) 22/30, 2 under, 4
missed, 2 spurious

Figure 2: Results from the SegComp benchmark using RPL-GMR. Examples from ABW test data (top row) and from the PERCEPTRON test data
(bottom row).

for both data-sets would also have been appropriate. To
tune TMS E , crude parameter searches were performed in
the range [1.5, 12] at intervals of 0.5. This arrived at val-
ues of TMS E = 5 for ABW and 7.5 for PERCEPTRON.
However, we noticed that above a value of around 5, sen-
sitivity to the parameter was low due to the additional
test on Tpro j before fusing components. Note that Tpro j

requires less tuning as the threshold used is also propor-
tional to

√
MS E. We did not tune the stopping criterion of

the EM algorithm and set this to the relatively strict value
of ε = 10−5, which was never achieved during bench-
marking. In all cases we stopped the EM algorithm after
a maximum of 50 iterations, which was enough to reach
a satisfactory level of convergence and produce the near-
optimal results. The automated results of running on the
SegComp test sets are given in Table 1 and a selection of
images for direct comparison with those shown in (Feng
et al., 2014) are shown in Fig. 2.

Comparison of results in Table 1 shows that RPL-GMR
performs consistently well by most of the measures. Out
of the nine methods, for the ABW data-set, RPL-GMR
ranks second (or joint-second) for four out of the six

measures (correct detections, over-segmentation, under-
segmentation, and for not producing spurious planes). For
the orientation-deviation and missed planes metrics, RPL-
GMR ranks lower: joint-fourth and fifth, respectively.
However, scores for these metrics are well within the nor-
mal range. For the PERCEPTRON data-set, RPL-GMR
ranks as second for not producing spurious planes, joint-
second for both orientation-deviation and for not miss-
ing planes, and third and joint-third for correctly detect-
ing planes and not over-segmenting them. RPL-GMR
ranked as only joint-sixth for under-segmentation. How-
ever, again, this score is well within the normal range.

For qualitative evaluation, a selection of segmented im-
ages is displayed in Fig. 2. These can be compared di-
rectly with those presented in (Feng et al., 2014). Accord-
ing to Table 1, our algorithm over- and under-segments
slightly more than (Feng et al., 2014) but correctly de-
tects significantly more planes. The only images in Fig. 2
that are representative of this happen to be Figures 2h, 2i
and 2j from the PERCEPTRON data-set. In general, it
seems as though our method was better able to handle the
noisier PERCEPTRON data-set than (Feng et al., 2014).
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In Figures 2h and 2j we were able to meet the 80% pixel-
overlap threshold for correctly detecting planes whereas
(Feng et al., 2014) seems to have missed planes by dis-
carding many noisy pixels or else over-segmenting due to
the noise. In Fig. 2j it is more obvious that our method
has performed better, correctly capturing three rather sub-
tle planes: one tightly angled plane on the left-hand side
of a box (shown in blue), and two small planes at subtly
different angles inside the octagonal, toric object. Despite
these successes, there remains some room for improve-
ment. In Fig. 2e a large section of a plane has been missed.
This seems to have been caused by a combination of un-
fortunate initialisation and a value of α that was perhaps
slightly too small for the image. One solution might be
to initialise with a larger number of components, but at
greater computational cost. Another problem that can be
seen is the under-segmentation of planes in Figures 2c, 2g
and 2i. These issues seem to have been misdiagnosed by
the automated SegComp comparison program as spurious
planes since the largest parts of the planes were captured
correctly. These problems of over-segmentation could po-
tentially be solved by better tuning of the Tpro j and TMS E

parameters. A coarse hyper-parameter search was per-
formed, however.

6. Conclusions

We have shown that the proposed RPL-GMR algorithm
can be used successfully to extract planar patches from
depth-data. Combined with an outlier-trimming step em-
bedded within the EM procedure to achieve robustness
and with a component-fusing method, benchmark results
place our algorithm among the top-performing algorithms
in the recent literature in terms of segmentation-quality.
The proposed method processes 3D point clouds with no
prior information about the sensor being used. RPL-GMR
is slower than other recent methods, due to the batch na-
ture of EM. However, several strategies could be used to
accelerate the algorithm, for example by assuming that the
data have a grid-like structure, which enables efficient im-
plementations of region growing, e.g. (Feng et al., 2014)
and (Holz and Behnke, 2012). The most time-consuming
part of the algorithm is the E-step which repeatedly com-
putes the Mahalanobis distance between the cluster cen-
ters and all the data points. Several data sampling strate-
gies could be used to speed up the execution of EM, such

as running K-means with the desired number of sampled
points and then replacing the small clusters of points thus
obtained with the cluster centers. One also notices that the
proposed algorithm could be used to find an initial seg-
mentation before being applied incrementally as new data
become available, e.g. (Evangelidis and Horaud, 2017).
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