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Stabilization of Linear Impulsive Systems
under Dwell-Time Constraints: Interval

Observer-Based Framework
Kwassi H. Degue, Denis Efimov, Jean-Pierre Richard

Abstract

The problem of interval observer design is studied for a class of linear impulsive systems. Ranged and
minimum dwell-time constraints are considered under detectability assumption. The first contribution of this
paper lies in designing interval observers for linear impulsive systems under ranged and minimum dwell-
time constraints, and investigating positivity of the estimation error dynamics in addition to stability. Several
observers are designed oriented on different conditions of positivity and stability for estimation error dynamics.
The boundedness of the estimation error (input-to-state stability property) and the observer stability conditions
are stated as infinite-dimensional linear programming problems. Next, an output stabilizing feedback design
problem is discussed, where the stability is checked using linear matrix inequalities (LMIs). Efficiency of
the proposed approach is demonstrated by computer simulations for a commercial electric vehicle equipped
with a low power range extender fuel cell, a bouncing ball, an academic linear impulsive system and for
Fault Detection and Isolation (FDI) and Fault-Tolerant Control (FTC) of a power split device with clutch for
heavy-duty military vehicles.

I. INTRODUCTION

There are many approaches dealing with the design techniques for state observers [1], [43], [27].
Frequently, these methods are based on (partial) linearity of the observed system, since analysis and
design of stability and performance for linear systems are more developed. When it comes to take
into account the presence of a disturbance or uncertain parameters, the synthesis of a conventional
estimator (whose estimates are converging to the true values of the state) may be complicated [16],
[1], [10], [11]. In such a case the problem of pointwise estimation can be substituted by the interval
one, then using input-output measurements an observer has to estimate the set of admissible values
(interval) for the state at each instant of time [30]. An advantage of interval observer is that it
allows many types of uncertainties to be taken into account in the system. The interval observer
design techniques have been developed for many types of models: continuous-time [38], [48], [9],
discrete-time [16], [39], [21], [40], time-delay [41], [17], [18] and algebraic-differential [19] ones.
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Continuing this line, the problem of design of interval observers for a class of linear hybrid
systems [2], [29] is studied in this paper. Impulsive systems are an important class of hybrid
systems that includes both continuous and discrete event dynamics. The continuous dynamics are
generally represented by differential equations and the discrete ones by switching laws, which govern
discontinuous jumps of continuous states [29], [26]. The instants of these jumps can be time-dependent
or state-dependent [2], [29]. Some kinds of systems, like switched, sampled-time or impulsive ones
for instance, can be presented in the hybrid framework. In the case of impulsive systems, dwell-times
can be defined as the times between two consecutive impulses [3].

Unlike the stability problem for linear impulsive systems has been widely studied in previous works
[34], [3], [44], [46], [32], little attention has been devoted to the observer design for this class of
hybrid systems [42], [52]. In general, it is very difficult to assess the residual estimation error [37].
In opposition to this, interval observers provide bounds of this residual error at any time. The main
peculiarity of interval observation is that it is necessary to ensure positivity of the estimation error
dynamics in addition to their stability. Since two types of dynamics (continuous and discrete) are
present in the hybrid systems, then the conditions of positivity for these two cases (see [20] for
examples) have to be combined, which leads to variety of the applicability conditions and design
structures proposed in this work. Only linear systems, where impulse instants can be inferred from
the measured output or by using a sensor that detects mode transitions, are considered.

Apart from the estimation problem complexity, output stabilization of impulsive systems is an
important problem treated in the literature [24], [3], [7], [33]. The existing solutions in the literature
are based on the assumption that the designed observers converge to the true values of the state.
If only interval estimation is achievable, then the conventional approaches [49], [5], [54] cannot be
applied, but interval observers demonstrated their efficiency for stabilizing control design in different
classes of systems [23], [22], and in this work the approach is extended to impulsive systems.

This paper sets out to make a contribution at two levels. Firstly, the design of interval observers
for a class of hybrid systems (linear impulsive systems) is presented (a preliminary version of this
part was given in [12]). Since impulsive systems are composed by continuous-time and discrete-time
dynamics, and their interactions are governed by dwell time (the time between impulses), then the
analysis of these systems is always based on some assumptions imposed on two parts independently,
and dwell-time restrictions. For the design of interval observers, it is necessary to ensure positivity
and stability of the estimation error dynamics, which has a hybrid nature in the considered case.
Stability conditions for hybrid systems have been already developed. In the present paper the results
of Theorems 1 and 2 given in Section II are used for ranged and minimal dwell time, respectively.
We propose also an extension of the results from [3] on input-to-state stability analysis for linear
impulsive systems. Positivity of hybrid dynamics has not been studied and analyzed in details in
[3]. The synthesized observers take into account four sources of uncertainty: initial conditions for
x(0), instant values of uncertain time-varying inputs in the continuous and discrete dynamics, and
instant values of the measurement noise. It is assumed that all these uncertain factors belong to known
intervals. Since in many applications the continuous or discrete dynamics of a linear impulsive system
may not be observable, the proposed strategies just require the system to be detectable. The conditions
of stability for the estimation error dynamics are formulated as matrix inequalities, which are nonlinear
in the parameter θk := tk+1 − tk, that represents the dwell-time. For θk ∈ [Tmin, Tmax] these matrix
inequalities are infinite-dimensional feasibility problems: methods to solve them efficiently are also
discussed in this work. Secondly, using the interval observers, a stabilizing control design based on
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interval observers as in [23], [22] is presented. Since the interval estimates satisfy x(t) ≤ x(t) ≤ x(t)
for all t ≥ 0, then the stabilization of the bounds x(t) and x̄(t) ensures the same property for the
state x(t) of the considered linear impulsive system. To the best of our knowledge, interval observers
approach has never been proposed for the stabilization of this class of hybrid systems.

The outline of the paper is as follows. Some basic facts from the theories of interval estimation
and hybrid systems are given in Section II, which contains also well-known conditions of positivity
for continuous-time and discrete-time cases separately. Next, in Section III, we investigate conditions
of hybrid systems robust stability under ranged dwell-time, which are applied in Sections IV and
VI to design respectively interval observers and controller. Section IV presents three ways that are
exploited to design interval observers having positive estimation error dynamics, starting from a simple
combination in Theorem 3, then with a non-trivial uniting of different transformation of coordinates
obtained for discrete-time and continuous-time parts in Theorem 4, and finally another generic scheme
is presented in Theorem 5. Asymptotically exact computational approaches are proposed to solve
infinite-dimensional feasibility observer stability conditions in Section V. A control design approach
based on interval estimates for impulsive systems is studied in Section VI. In Section VII these results
are applied to some examples of linear impulsive systems. The first example is a commercial electric
vehicle equipped with a low power range extender fuel cell, the second one is a bouncing ball and the
third example is an academic linear impulsive system. These three examples are devoted to estimation
problem. The last one is a control problem of a power split device with clutch for heavy-duty military
vehicles.

Notation: In this work, the real and integer numbers are denoted by R and Z respectively, R≥0 =
{τ ∈ R : τ ≥ 0} and Z≥0 = Z ∩ R≥0, |x| is stated for the Euclidean norm of a vector x ∈ Rn. We
denote respectively the cones of positive and nonnegative vectors of dimension n respectively by Rn

>0

and Rn
≥0. For a bounded input u : R≥0 → R the symbol ||u||[t0,t1] denotes its L∞ norm:

||u||[t0,t1] = sup
t∈[t0,t1]

|u(t)|,

When t1 = +∞, we simply write ||u||. We denote by L∞ the set of all inputs u with the property
||u|| < ∞. The sequence of integers 1, ..., n is denoted by 1, n. En×m denotes the matrix with all
entries equal 1 (with dimensions n × m). The vector of the eigenvalues of a matrix A ∈ Rn×n is
denoted by λ(A). The relation P � 0 (P � 0) for a symmetric matrix P ∈ Rn×n means that it is
positive (nonnegative) definite, the set of such n×n matrices is denoted by Sn�0. The set of diagonal
matrices of dimension n is denoted by Dn and the subset of those being positive definite is denoted
by Dn

�0.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a hybrid (impulsive) linear system
.
x(t) = Ax(t) +Bu(t) + f(t) ∀t ∈ [ti, ti+1), i ∈ Z≥0,

x(ti+1) = Gx(t−i+1) +Du(ti+1) + g(ti+1) ∀i ≥ 1, (1)
y(t) = Cx(t) + v(t),

where x(t) ∈ Rn is the state vector and x(t−i+1) is the left-sided limit of x(t) for t→ ti+1; u(t) ∈ Rm

is the control; A,G ∈ Rn×n; B,D ∈ Rn×m; f : R≥0 → Rn, f ∈ L∞ is the input for t ∈ [ti, ti+1);
g : R≥0 → Rn, g ∈ C1∩L∞ is the input at time instants ti+1 for i ≥ 1; y(t) ∈ Rp is the output signal
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available for measurements; v ∈ L∞ is the measurement noise; C ∈ Rp×n. The sequence of impulse
events ti with i ∈ Z≥0 is assumed to be positively incremental, i.e. θi = ti+1 − ti > 0 and t0 = 0.
The matrices A, B, C, D, G are assumed to be known. Initial conditions for x(0), instant values
of uncertain time-varying inputs in the continuous f and discrete g dynamics, and instant values of
the measurement noise v are uncertain and included in known intervals. It is required to estimate a
corresponding interval of admissible values for the state vector x(t) for all instants t ≥ 0, and next
provide a solution of practical stabilization problem for the system (1) using the obtained interval
estimates.

The proposed control and estimation algorithms are based on the material presented below in this
section.

A. Interval analysis

For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, the relations x1 ≤ x2 and A1 ≤ A2

are understood elementwise. Given a matrix A ∈ Rm×n, define A+ = max{0, A}, A− = A+ − A
(similarly for vectors) and denote the matrix of absolute values of all elements by |A| = A+ + A−.

Lemma 1. [15] Let x ∈ Rn be a vector variable, x ≤ x ≤ x for some x, x ∈ Rn, and A ∈ Rm×n be
a constant matrix, then

A+x− A−x ≤ Ax ≤ A+x− A−x. (2)

B. Nonnegative continuous-time linear systems

A matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues have negative real parts. It is called
Metzler if all its elements outside the main diagonal are nonnegative, i.e. Ai,j ≥ 0 for 1 ≤ i 6= j ≤ n.
Any solution of the linear system

ẋ(t) = Ax(t) +Bω(t), ω : R≥0 → Rq
≥0, (3)

y(t) = Cx(t) +Dω(t),

with x ∈ Rn, y ∈ Rp and a Metzler matrix A ∈ Rn×n, is elementwise nonnegative for all t ≥ 0
provided that x(0) ≥ 0 and B ∈ Rn×q

≥0 [25], [50]. The output solution y(t) is nonnegative if C ∈ Rp×n
≥0

and D ∈ Rp×q
≥0 . Such dynamical systems are called cooperative (monotone) or nonnegative if only

initial conditions in Rn
≥0 are considered [25], [50].

The stability of a Metzler matrix A ∈ Rn×n can be checked verifying a Linear Programming (LP)
problem [25]

ATλ < 0

for some λ ∈ Rn
>0.

C. Nonnegative discrete-time linear systems

A matrix A ∈ Rn×n is called Schur stable if all its eigenvalues have absolute value less than one,
it is called nonnegative if all its elements are nonnegative (i.e. A ≥ 0). Any solution of the system

xt+1 = Axt +Bωt, ω : Z≥0 → Rm
≥0, t ∈ Z≥0
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with xt ∈ Rn and nonnegative matrices A ∈ Rn×n
≥0 and B ∈ Rn×m

≥0 , is elementwise nonnegative for all
t ∈ Z≥0 provided that x(0) ≥ 0 [35]. Such a system is called cooperative (monotone) or nonnegative
[35].

Lemma 2. [25] A matrix A ∈ Rn×n
≥0 is Schur stable iff there exists a diagonal matrix P ∈ Sn�0 such

that ATPA− P ≺ 0.

D. Stability of impulsive systems under ranged dwell-time and under minimum dwell-time constraints

Consider an impulsive linear system with external inputs
.
x(t) = Ax(t) + f(t) ∀t ∈ [ti, ti+1), i ∈ Z≥0, (4)

x(ti+1) = Gx(t−i+1) + g(ti+1) ∀i ≥ 1,

where x(t) ∈ Rn is the state vector and x(t−i+1) is the left-sided limit of x(t) for t → ti+1; A,G ∈
Rn×n; f : R≥0 → Rn, f ∈ L∞ is the input for t ∈ [ti, ti+1); g : R≥0 → Rn, g ∈ C1 ∩L∞ is the input
at time instants ti+1 for all i ≥ 1. The sequence of impulse events ti with i ∈ Z≥0 is assumed to be
positively incremental, i.e. θi = ti+1 − ti > 0 and t0 = 0.

Theorem 1. [3], [4] Consider system (4) with ||f ||∞ = ||g||∞ = 0 and a ranged dwell-time
θi ∈ [Tmin, Tmax] for all i ∈ Z≥0, where 0 < Tmin ≤ Tmax < +∞ are given constants. Then it
is asymptotically stable provided that there exist matrices P ∈ Sn�0 and Q ∈ Sn�0 such that for all
θ ∈ [Tmin, Tmax]

GTeA
TθPeAθG− P = −Q. (5)

Moreover, when the matrices A and G are respectively Metzler and nonnegative, the following
statements are equivalent:

(a) The impulsive system (1) is asymptotically stable under ranged dwell-time [Tmin, Tmax].
(b) There exist a differentiable vector-valued function ψ : [0, Tmax] 7→ Rn, ψ(0) ∈ Rn

>0, and a
scalar ε > 0 such that the inequalities

ψ(τ)TA+
.

ψ(τ)T ≤ 0

and
ψ(0)TG− ψ(θ)T + εET

n×1 ≤ 0

hold for all τ ∈ [0, Tmax] and θ ∈ [Tmin, Tmax].

The proof of the first part of the above theorem is based on the fact that in this case V(x) = xTPx
is a Lyapunov function for (4) at discrete instants of time ti. Let us consider now the minimum
dwell-time case, θi ≥ Tmin for all i ∈ Z≥0, for some given Tmin > 0.

Theorem 2. [3], [4] Consider system (4) with ||f ||∞ = ||g||∞ = 0 and a dwell-time θi ∈ [Tmin,+∞)
for all i ∈ Z≥0, where Tmin is a given constant. Then it is asymptotically stable provided that there
exists a matrix P ∈ Sn�0 such that

ATP + PA ≺ 0, (6)

GTeA
TTminPeATminG− P ≺ 0.



6

Moreover when the matrices A and G are respectively Metzler and nonnegative, the following
statements are equivalent:

(a) The impulsive system (1) is asymptotically stable under minimum dwell-time Tmin.
(b) There exists a differentiable vector-valued function ψ : [0, Tmin] 7→ Rn, ψ(Tmin) ∈ Rn

>0, and a
scalar ε > 0 such that the inequalities

ψ(Tmin)TA < 0,

ψ(τ)TA−
.

ψ(τ)T ≤ 0,

ψ(Tmin)TG− ψ(0)T + εET
n×1 ≤ 0

hold for all τ ∈ [0, Tmin].

III. ROBUST STABILITY OF HYBRID SYSTEMS UNDER RANGED DWELL-TIME

To the best of our knowledge, robust stability of linear impulsive systems with respect to the inputs
under ranged dwell-time has never been proven before. Following [31], [8], robustness with respect
to the inputs f and g can be proven (see the definition of the input-to-state stability (ISS) property
given in those works).

Lemma 3. Consider system (4) with a ranged dwell-time θi ∈ [Tmin, Tmax] for all i ∈ Z≥0, where
0 < Tmin ≤ Tmax < +∞ are given constants. Then, provided that there exist matrices P ∈ Sn�0
and Q ∈ Sn�0 such that for all θ ∈ [Tmin, Tmax] the LMI (5) is satisfied, (4) is ISS and the following
asymptotic gain is guaranteed

lim
t→+∞

|x(t)| ≤ [ρP,Q,W ||g||∞ + Tmax(1+

ρP,Q,W |G|%(A))||f ||∞]%(A),

ρP,Q,W =

√
λmax(W )
λmin(P )

1−
√

λmax(P )− 1
2
λmin(Q)

λmin(P )

,

where W = P + supθ∈[Tmin,Tmax] 2PGe
AθQeA

TθGTP and %(A) =

{
eµ(A)Tmax µ(A) > 0

1 µ(A) ≤ 0
for µ(A) =

maxi=1,n λ(A+A
T

2
) being a logarithmic norm of the matrix A.

Proof. From the system equations we can obtain for all i ∈ Z≥0:

x(t) = eA(t−ti)x(ti) +

∫ t

ti

eA(t−s)f(s)ds ∀t ∈ [ti, ti+1)

and
x(ti+1) = GeATix(ti) + r(ti) ∀i ≥ 1,

where r(ti) = G
∫ ti+1

ti
eA(ti+1−s)f(s)ds+ g(ti+1). Next,

|eA(t−ti)x(ti)| ≤ |eA(t−ti)||x(ti)| ≤ eµ(A)(t−ti)|x(ti)|.
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Let us denote
∣∣∣φ = G

∫ ti+1

ti
eA(t−s)f(s)ds

∣∣∣. One can write

φ ≤ |G|
∫ ti+1

ti

|eA(t−s)||f(s)|ds

≤ |G|
∫ ti+1

ti

eµ(A)(ti+1−s)|f(s)|ds

≤ |G|

{∫ ti+1

ti
eµ(A)Ti |f(s)|ds µ(A) > 0∫ ti+1

ti
|f(s)|ds µ(A) ≤ 0

≤ |G|

{
eµ(A)Ti µ(A) > 0

1 µ(A) ≤ 0

∫ ti+1

ti

|f(s)|ds

≤ Ti|G|%(A)||f ||∞.

Therefore,
|r(ti)| ≤ Ti|G|%(A)||f ||∞ + ||g||∞

and
||r||∞ ≤ Tmax|G|%(A)||f ||∞ + ||g||∞.

Consider a Lyapunov function V(x) = xTPx, where P ∈ Rn×n is given in LMI (5), then

V(x(ti+1))− V(x(ti)) = xT(ti+1)Px(ti+1)− xT(ti)Px(ti)

= xT(ti)[e
ATTiGTPGeATi − P ]x(ti)

+2rT(ti)PGe
ATix(ti) + rT(ti)Pr(ti)

≤ −0.5xT(ti)Qx(ti) + rT(ti)[P

+2PGeATiQeA
TTiGTP ]r(ti)

≤ − λmin(Q)

2λmax(P )
V (x(ti)) + rT(ti)Wr(ti).

From this expression we obtain

λmin(P )|x(ti+1)|2 ≤ (λmax(P )− 1

2
λmin(Q))|x(ti)|2 + λmax(W )||r||2∞

or equivalently for all i ≥ 1

|x(ti+1)| ≤

√
λmax(P )− 1

2
λmin(Q)

λmin(P )
|x(ti)|+

√
λmax(W )

λmin(P )
||r||∞.

For i→ +∞, since
√

λmax(P )− 1
2
λmin(Q)

λmin(P )
< 1, we derive that

|x(∞)| ≤ ρP,Q,W ||r||∞.

On any interval [ti, ti+1) the following estimate is satisfied

|x(t)| ≤ eµ(A)(t−ti)|x(ti)|+ Tmax%(A)||f ||∞
≤ [|x(ti)|+ Tmax||f ||∞]%(A)
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for all t ∈ [ti, ti+1), then asymptotically the trajectories of (4) enter into the ball

|x| ≤ [ρP,Q,W ||g||∞ + Tmax(1 + ρP,Q,W |G|%(A))||f ||∞]%(A)

and the system is ISS.

This result implies that (4) has bounded solutions for any bounded inputs f and g if the LMI (5)
is valid.

Consider system (4) with a dwell-time θi ∈ [Tmin,+∞) for all i ∈ Z≥0, where Tmin is a given
constant. It can be inferred also that it is ISS provided that there exists a matrix P ∈ Sn�0 such that
the LMIs (6) are satisfied.

IV. INTERVAL OBSERVERS DESIGN

The system (1) has four sources of uncertainty: initial conditions for x(0), instant values of f(t),
g(t) and v(t). It is assumed that all these uncertain factors belong to known intervals.

Assumption 1. The system (1) evolves under predetermined mode transitions, i.e. the impulse instants
are known: θi = ti+1 − ti ∈ [Tmin, Tmax] for all i ∈ Z≥0, where 0 < Tmin ≤ Tmax < +∞ are given
constants.

Assumption 2. The state x(t) is bounded (i.e. x ∈ L∞) for x(0) ∈ [x(0), x̄(0)], and x(0), x̄(0) ∈ Rn

are given constants.

Assumption 3. Let
i) two functions f , f : R≥0 → Rn, f , f ∈ L∞ be given such that

f(t) ≤ f(t) ≤ f̄(t) ∀t ∈ R≥0;

ii) two functions g, g : R≥0 → Rn, g, g ∈ C1 ∩ L∞ be given such that

g(t) ≤ g(t) ≤ ḡ(t) ∀t ∈ R≥0;

iii) the constant 0 ≤ V < +∞ be given such that ||v|| < V .

Assumption 1 is common in the existing literature concerning stability analysis, observer and
control design of hybrid systems [52], [31], [4], [3]. Assumption 2 is common in the existing literature
concerning interval observer design. Assumptions 3.i and 3.ii state that the inputs of the hybrid system
(1) are known up to some interval errors f̄(t) − f(t) and ḡ(t) − g(t). Assumption 3.iii suggests an
upper bound V for the noise v amplitude.

A. Impulsive systems under ranged dwell-time constraints
In this case we need additionally the following assumptions for the system (1):

Assumption 4. There exist matrices L ∈ Rn×p, M ∈ Rn×p, P ∈ Sn�0 and Q ∈ Sn�0 such that
i) the LMI

(G−MC)Te(A−LC)TθPe(A−LC)θ(G−MC)− P = −Q (7)

holds for all θ ∈ [Tmin, Tmax];
ii) the matrix (A− LC) is Metzler;
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iii) the matrix (G−MC) is nonnegative.

When Assumption 4.i holds, the quadratic form V(x) = xTPx is a discrete-time Lyapunov function
for the LTI discrete-time system zi+1 = e(A−LC)θ(G −MC)zi for all θ ∈ [Tmin, Tmax] and i ∈ Z≥0
by Theorem 1 (the matrix P can be selected diagonal since e(A−LC)θ(G −MC) is a nonnegative
matrix for any θ ∈ [Tmin, Tmax]). Assumptions 4.ii and 4.iii are essential for the approach but rather
restrictive, they will be relaxed later.

Under the introduced assumptions an interval observer equations for (1) take the form

.
x(t) = (A− LC)x(t) + Ly(t) +Bu(t) + f(t)

−LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +My(ti+1) (8)
+Du(ti+1) + g(ti+1)−MV,

.
x(t) = (A− LC)x(t) + Ly(t) +Bu(t) + f̄(t)

+LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +My(ti+1)

+Du(ti+1) + g(ti+1) +MV,

∀i ∈ Z≥0, where x(t) ∈ Rn and x(t) ∈ Rn are the lower and the upper interval estimates for the state
x(t), respectively, L = (L+ + L−)Ep×1 and M = (M+ +M−)Ep×1.

Theorem 3. Let Assumptions 1, 2, 3 and 4 be satisfied. Then in (8) for all t ∈ R≥0 the discrepancies
x(t)− x(t) and x(t)− x(t) are bounded and

x(t) ≤ x(t) ≤ x̄(t) (9)

provided that x(0) ≤ x(0) ≤ x̄(0).

Proof. The equation (1) can be rewritten as follows

.
x(t) = (A− LC)x(t) +Bu(t) + L[y(t)− v(t)]

+f(t) ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +Du(ti+1) +M [y(ti+1)− v(ti+1)]

+g(ti+1).

Then the dynamics of the errors e(t) = x(t) − x(t), e(t) = x(t) − x(t) obey the equations for all
i ∈ Z≥0

.
e(t) = (A− LC)e(t) + h1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)e(t−i+1) + h2(ti+1), (10)
.
e(t) = (A− LC)e(t) + h1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)e(t−i+1) + h2(ti+1),
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where

h1(t) = [LV − Lv(t)] + [f(t)− f(t)],

h2(ti+1) = [MV −Mv(ti+1)] + [g(ti+1)− g(ti+1)],

h1(t) = [LV + Lv(t)] + [f(t)− f(t)],

h2(ti+1) = [MV +Mv(ti+1)] + [g(ti+1)− g(ti+1)].

According to Assumption 3, we have h1, h1, h2, h2 ∈ L∞; h1(t) ≥ 0, h1(t) ≥ 0 ∀t ∈ [ti; ti+1)
and h2(ti+1) ≥ 0, h2(ti+1) ≥ 0 ∀i ≥ 1. When Assumption 4.i holds, the system (10) with ranged
dwell-time θi ∈ [Tmin, Tmax] is asymptotically stable for hk = hk = 0, k = 1, 2 and it has bounded
state variables for bounded hk, hk (see Lemma 3). Therefore the variables e(t) and e(t) are bounded
for the dwell-time θk ∈ [Tmin, Tmax]. We continue having boundedness of the errors x̄(t)− x(t) and
x(t) − x(t) as needed. From Assumptions 4.ii and 4.iii we conclude that e(t) ≥ 0 and e(t) ≥ 0
(h1, h1, h2, h2 have the same property and e(0) ≥ 0 and e(0) ≥ 0 by conditions, then the result
follows combining the theories presented in subsections II-B and II-C). That implies the required
order relation x(t) ≤ x(t) ≤ x̄(t) is satisfied for all t ∈ R≥0.

Remark 1. The way the uncertainty (the interval widths ||f̄−f ||, ||ḡ−g||, |x̄(0)−x(0)| and the value
of V ) affects the accuracy of estimation of the current state is not discussed in this work. Indeed the
interval width (the interval estimation accuracy) is proportional to the model uncertainty [6], and in
order to optimize it, the stability conditions have to be reformulated in L2/H∞ setting. However, to
the best of our knowledge, there is no result of this kind for hybrid or impulsive systems with ranged
or minimal dwell time, that is why only qualitative results are given in this paper.

The imposed requirement, that the matrices A − LC and G −MC are Metzler and nonnegative
respectively, is rather restrictive. In order to relax Assumptions 4.ii and 4.iii, let us suggest the
following.

Assumption 5. There exist a Metzler matrix R, a matrix T ∈ Rn×n
≥0 and a matrix P ∈ Sn�0 such that

the LMI
T TeR

TθPeRθT − P ≺ 0 (11)

is satisfied for all θ ∈ [Tmin, Tmax].
There exist a matrix L ∈ Rn×p and a matrix M ∈ Rn×p such that λ(A−LC) = λ(R), λ(G−MC) =

λ(T ), the pairs (A−LC, e1), (R, e2), (G−MC, e3), (T, e4) are observable for some ej ∈ R1×n with
j = 1, 4.

When Assumption 5 holds, the quadratic form V(x) = xTPx is a Lyapunov function for linear
discrete-time system zi+1 = eRθTzi for all θ ∈ [Tmin, Tmax] and i ∈ Z≥0 by Theorem 1. In addition,
comparing with Assumptions 4.ii and 4.iii, in Assumption 5 it is proposed that the matrices A−LC
and G−MC are similar to given Metzler and nonnegative matrices R and T , respectively [48], with
different similarity transformation matrices S1 ∈ Rn×n and S2 ∈ Rn×n (i.e. S−11 (A − LC)S1 = R
and S−12 (G−MC)S2 = T ). The key idea of the following design of an interval observer is how to
combine these different transformations of coordinate S1 and S2 (denote S = (S−11 S2)

−1), without
introducing an auxiliary restriction.
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Theorem 4. Let Assumptions 1, 2, 3 and 5 be satisfied. Then for all t ∈ R≥0 the discrepancies
x(t)− x(t) and x̄(t)− x(t) are bounded and

x(t) ≤ x(t) ≤ x̄(t)

provided that x(0) ≤ x(0) ≤ x̄(0), where for all i ∈ Z≥0

x(t) = S+
1 z1(t)− S−1 z1(t),

x̄(t) = S+
1 z1(t)− S−1 z1(t),

ż1(t) = Rz1(t) + F 1y(t)− F1V + (S−11 )+f(t)

−(S−11 )−f(t) ∀t ∈ [ti, ti+1),

z2(t
−
i+1) = S+z1(t

−
i+1)− S−z1(t−i+1),

z2(ti+1) = Tz2(t
−
i+1) + F 2y(ti+1)− F2V

+(S−12 )+g(ti+1)− (S−12 )−g(ti+1),

z1(ti+1) = (S−1)+z2(ti+1)− (S−1)+z2(ti+1), (12)
.
z1(t) = Rz1(t) + F 1y(t) + F1V + (S−11 )+f(t)

−(S−11 )−f(t) ∀t ∈ [ti, ti+1),

z2(t
−
i+1) = S+z1(t

−
i+1)− S−z1(t−i+1),

z2(ti+1) = Tz2(t
−
i+1) + F 2y(ti+1) + F2V

+(S−12 )+g(ti+1)− (S−12 )−g(ti+1),

z1(ti+1) = (S−1)+z2(ti+1)− (S−1)+z2(ti+1),

z1(0) = (S−11 )+x(0)− (S−11 )−x(0),

z1(0) = (S−11 )+x(0)− (S−11 )−x(0),

z2(0) = (S−12 )+x(0)− (S−12 )−x(0),

z1(0) = (S−12 )+x(0)− (S−12 )−x(0),

where F1 = S−11 L, F1 = |F1|Ep×1, F2 = S−12 M and F2 = |F2|Ep×1.

Remark 2. The proposed observer (12) contains interval observers for two sets of new coordinates
z1 = S−11 x and z2 = S−12 x for continuous-time and discrete-time dynamics, respectively, with the
corresponding transitions between them in the instants ti. Such an augmentation of the observer
dimension allows us to avoid a restrictive assumption that there exists a common transformation of
coordinates making the continuous-time and discrete-time parts positive simultaneously.
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Proof. Consider the system (1) in the new coordinates z1 = S−11 x, z2 = S−12 x, z1 = S−1z2
.
z1(t) = Rz1(t) + F 1[y(t)− v(t)]

+S−11 f(t) + S−11 Bu(t) ∀t ∈ [ti, ti+1),

z2(ti+1) = Tz2(t
−
i+1) + F 2[y(ti+1)− v(ti+1)]

+S−12 g(ti+1) + +S−12 Du(ti+1),

y(t) = CS1z1(t) + v(t) ∀t ∈ [ti, ti+1),

y(ti+1) = CS2z2(ti+1) + v(ti+1),

z2(ti+1) = (S+ − S−)z1(ti+1).

The dynamics of the errors e1(t) = z1(t) − z1(t), e1(t) = z1(t) − z1(t), e2(t) = z2(t) − z2(t),
e2(t) = z2(t)− z2(t) obey the equations for all i ∈ Z≥0

ė1(t) = Re1(t) + h1(t) ∀t ∈ [ti, ti+1),

e2(t
−
i+1) = S+e1(t

−
i+1) + S−e1(t

−
i+1),

e2(ti+1) = Te2(t
−
i+1) + h2(ti+1), (13)

e1(ti+1) = (S−1)+e2(ti+1) + (S−1)−e2(ti+1),
.
e1(t) = Re1(t) + h1(t) ∀t ∈ [ti, ti+1),

e2(t
−
i+1) = S+e1(t

−
i+1) + S−e1(t

−
i+1),

e2(ti+1) = Te2(t
−
i+1) + h2(ti+1),

e1(ti+1) = (S−1)+e2(ti+1) + (S−1)−e2(ti+1),

where

h1(t) = [F1V − F 1v(t)] + [(S−11 )f(t)

−(S−11 )+f(t) + (S−11 )−f(t)],

h2(ti+1) = [F2V − F 2v(ti+1)] + [(S−12 )g(ti+1)

−(S−12 )+g(ti+1) + (S−12 )−g(ti+1)],

h1(t) = [F1V + F 1v(t)] + [(S−11 )+f(t)

−(S−11 )−f(t)− (S−11 )f(t)],

h2(ti+1) = [F2V + F 2v(ti+1)] + [(S−12 )+g(ti+1)

−(S−12 )−g(ti+1)− (S−12 )g(ti+1)].

According to Assumption 3 we have h1, h1, h2, h2 ∈ L∞, h1(t) ≥ 0, h1(t) ≥ 0 ∀t ∈ [ti, ti+1) and
h2(ti+1) ≥ 0, h2(ti+1) ≥ 0 ∀i ≥ 1. The matrix R is Metzler, the matrix T is nonnegative and these two
matrices verify the LMI (11) when Assumption 5 is satisfied. Therefore, the system (13) with ranged
dwell-time θi ∈ [Tmin, Tmax] is asymptotically stable for hk = hk = 0, k = 1, 2 and it has bounded
state variables for bounded hk, hk (see Lemma 3), then the variables e1(t), e1(t), e2(t) and e2(t) are
bounded. Thus, the boundedness of z̄j(t) − zj(t), zj(t) − zj(t) for j = 1, 2, and next x̄(t) − x(t),
x(t) − x(t), has been obtained. From the structure of the interval observer (12) and Assumption 5,
since the matrix R is Metzler and the matrix T is nonnegative, we conclude that e1(t) ≥ 0, e1(t) ≥ 0,
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e2(t) ≥ 0 and e2(t) ≥ 0 (h1, h1, h2, h2 have the same property, e1(0) ≥ 0, e1(0) ≥ 0, e2(0) ≥ 0 and
e2(0) ≥ 0 by construction, and the result follows combining the theories presented in subsections
II-B and II-C). Thus, from the definitions of errors we conclude that for all i ∈ Z≥0

z1(t) ≤ z1(t) ≤ z1(t) ∀t ∈ [ti, ti+1),

z2(ti+1) ≤ z2(ti+1) ≤ z2(ti+1) ∀i ≥ 1,

which imply the relations of Theorem 4.

There is another possibility for an interval observer construction avoiding the restrictions of
Assumption 4, but with more conservative stability conditions. To this end, consider the following
assumption.

Assumption 6. There exist a matrix L ∈ Rn×p, a matrix M ∈ Rn×p and a matrix P ∈ Sn�0 such that
the LMI

JTeU
TθPeUθJ − P ≺ 0 (14)

is satisfied for all θ ∈ [Tmin, Tmax] and U =

[
D0 D1

D1 D0

]
, J =

[
(G−MC)p (G−MC)n
(G−MC)p (G−MC)n

]
for

A− LC = D0 −D1 where D0 is Metzler and D1, (G−MC)p, (G−MC)n ∈ Rn×n
≥0 .

Comparing with Assumption 5, here by construction the matrices U and J are Metzler and
nonnegative respectively, i.e. these matrices can always be constructed satisfying these properties
for any A− LC and G−MC (a possible but not unique choice is (G−MC)p = (G−MC)+ and
(G −MC)n = (G −MC)−, for example), then there is no need in transformations of coordinates
S1 and S2. However, the main restriction is on the stability of such U and J , and the conditions of
stability are formulated by LMI (14) following Theorem 1. The following result can be proven.

Theorem 5. Let Assumptions 1, 2, 3 and 6 be satisfied. Then for all t ∈ R≥0 the discrepancies
x(t)− x(t) and x̄(t)− x(t) are bounded and

x(t) ≤ x(t) ≤ x̄(t)

provided that x(0) ≤ x(0) ≤ x̄(0), where for all i ∈ Z≥0:
.
x(t) = D0x(t)−D1x(t) + Ly(t) + f(t)

+Bu(t)− LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)px(t−i+1)− (G−MC)nx(t−i+1)

+Du(ti+1) +My(ti+1) + g(ti+1)−MV, (15)
.
x(t) = D0x(t)−D1x(t) + Ly(t) + f(t)

+Bu(t) + LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)px(t−i+1)− (G−MC)nx(t−i+1)

+Du(ti+1) +My(ti+1) + g(ti+1) +MV,

where L = |L|Ep×1 and M = |M |Ep×1.
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Proof. The equation (1) can be rewritten as follows for all i ∈ Z≥0
.
x(t) = (A− LC)x(t) + L[y(t)− v(t)]

+Bu(t) + f(t) ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +Du(ti+1)

+M [y(ti+1)− v(ti+1)] + g(ti+1).

Then the dynamics of the errors e(t) = x(t)− x(t), e(t) = x(t)− x(t) obey the equations
.
e(t) = D0e(t) +D1e(t) + h1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)pe(t
−
i+1) (16)

+(G−MC)ne(t
−
i+1) + h2(ti+1),

.
e(t) = D0e(t) +D1e(t) + h1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)pe(t
−
i+1)

+(G−MC)ne(t
−
i+1) + h2(ti+1),

where

h1(t) = [LV − Lv(t)] + [f(t)− f(t)],

h2(ti+1) = [MV −Mv(ti+1)] + [g(ti+1)− g(ti+1)],

h1(t) = [LV + Lv(t)] + [f(t)− f(t)],

h2(ti+1) = [MV +Mv(ti+1)] + [g(ti+1)− g(ti+1)].

According to Assumption 3 we have h1, h1, h2, h2 ∈ L∞, h1(t) ≥ 0, h1(t) ≥ 0 ∀t ∈ [ti, ti+1) and
h2(ti+1) ≥ 0, h2(ti+1) ≥ 0 ∀i ≥ 1. If Assumption 6 is satisfied, then system (16) with ranged dwell-
time θi ∈ [Tmin, Tmax] is asymptotically stable for hk = hk = 0, k = 1, 2 and it has bounded state
variables for bounded hk, hk (from Lemma 3). Therefore the variables e(t) and e(t) are bounded, and
the discrepancies x(t) − x(t) and x̄(t) − x(t) inherit the same property. From the interval observer
(15) structure and Assumption 6, since the matrix U is Metzler and the matrix J is nonnegative
(D0 is Metzler and D1, (G −MC)p, (G −MC)n ∈ Rn×n

≥0 ), we obtain that e(t) ≥ 0 and e(t) ≥ 0

(h1, h1, h2, h2 have the same property, e(0) ≥ 0 and e(0) ≥ 0 by construction, and the result follows
combining the theories presented in subsections II-B and II-C). Consequently, the required order
relation x(t) ≤ x(t) ≤ x̄(t) is satisfied for all t ∈ R≥0.

The results of Theorems 4 and 5 can be combined, i.e. only one transformation S1 or S2 can be
used together with the decomposition from Assumption 6.

B. Impulsive systems under minimum dwell-time constraints

The case of linear impulsive systems under minimum dwell-time constraints is considered in this
section. We add the following assumptions for the system (1):

Assumption 7. Let Tmax = +∞.
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Assumption 8. There exist matrices L ∈ Rn×p, M ∈ Rn×p, P ∈ Sn�0 such that the LMIs

(A− LC)TP + P (A− LC) ≺ 0

and
(G−MC)Te(A−LC)TTminPe(A−LC)Tmin(G−MC)− P ≺ 0

are satisfied.

When Assumption 8 holds, the quadratic form V(x) = xTPx is a discrete-time Lyapunov function
for the LTI discrete-time system zi+1 = e(A−LC)θ(G−MC)zi for all θ ∈ [Tmin,+∞) and i ∈ Z≥0 by
Theorem 2.

Corollary 1. Let Assumptions 1, 2, 3, 4.ii, 4.iii, 7 and 8 be satisfied. Then the observer proposed in
Theorem 3 can be applied.

In order to relax Assumptions 4.ii and 4.iii, let us suggest the following.

Assumption 9. There exist a Metzler matrix R, a matrix T ∈ Rn×n
≥0 and a matrix P ∈ Sn�0 such that

the LMIs

RTP + PR ≺ 0,

T TeR
TTminPeRTminT − P ≺ 0

are satisfied.
There exist a matrix L ∈ Rn×p and a matrix M ∈ Rn×p such that λ(A−LC) = λ(R), λ(G−MC) =

λ(T ), the pairs (A−LC, e1), (R, e2), (G−MC, e3), (T, e4) are observable for some ej ∈ R1×n with
j = 1, 4.

Corollary 2. Let Assumptions 1, 2, 3, 7 and 9 be satisfied. Then the observer proposed in Theorem
4 can be applied.

Like in section IV-A, there is another possibility for an interval observer construction avoiding the
restrictions of Assumptions 4.ii and 4.iii, but with more conservative stability conditions. To this end,
consider the following assumption.

Assumption 10. There exist a matrix L ∈ Rn×p, a matrix M ∈ Rn×p and a matrix P ∈ Sn�0 such
that the LMIs

UTP + PU ≺ 0,

JTeU
TTminPeUTminJ − P ≺ 0

are satisfied and U =

[
D0 D1

D1 D0

]
, J =

[
(G−MC)p (G−MC)n
(G−MC)p (G−MC)n

]
for A − LC = D0 − D1

where D0 is Metzler and D1, (G−MC)p, (G−MC)n ∈ Rn×n
≥0 .

Corollary 3. Let Assumptions 1, 2, 3, 7 and 10 be satisfied. Then the observer proposed in Theorem
5 can be applied.
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Figure 1. Flowchart of infinite dimensional feasibility LMI resolution procedure under minimum dwell-time constraints

V. COMPUTATIONAL CONSIDERATIONS

The conditions of Theorems 3, 4 and 5 are infinite-dimensional feasibility problems since, for
example, 7, 11 and 14 are nonlinear in the parameter θ, and for θ ∈ [Tmin, Tmax] these matrix
inequalities consist of an infinite number of LMIs. Hence it is important to propose efficient methods
to solve them. Let us discuss two approaches that can be used to solve these infinite-dimensional
stability conditions.

A. First approach

A first approach consists in selecting manually the gains L and M of the interval observer. Given
these gains, a bisection-like approach is used to find the interval [Tmin, Tmax] where the LMIs 7, 11
and 14 are feasible. Under minimum dwell-time constraints, the procedure used to solve infinite-
dimensional feasibility LMI problems is shown in Fig. 1, it finds an interval [A,B] for Tmin, then
at the end Tmin = A. A similar process can be defined to solve infinite dimensional feasibility LMI
problems under ranged dwell-time constraints.
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B. Second approach
Instead of using the θ-dependent matrix inequalities (5) and (6), the conditions dependent on ψ(t)

from Theorems 1 and 2 can be applied for stability analysis. In this case, to ensure resolution of
these conditions, the observer gains L and M have to be imposed to be time-varying, L(t) and M(t),
respectively. In this subsection we assume that all corresponding positivity restrictions on L(t) and
M(t) are satisfied (they are the same as for the constant gains) and put focus on stability issues.

Assume that Tmin and Tmax (for the ranged dwell-time constraints) and Tmin (for the minimum
dwell-time) are given. Taking into account these bounds, piecewise linear approximations of the
function ψ can be introduced satisfying the conditions of Theorems 1 and 2 by semidefinite
programming. However, as it is noted in [4], such an approximate method may show a poor
convergence and high computational complexity. Then another approach consists in application of
the so-called sum-of-squares (SOS) method [4], based on the result of [47]. An advantage of SOS
tool is that verifying whether a polynomial is SOS can be formulated using semidefinite programs
that can be solved by standards solvers using SOSTOOLS package [45]. For examples of application
of this approach, the cases of Theorem 3 (ranged dwell-time) and Corollary 1 (minimum dwell-time)
are considered in this section (other cases can be treated similarly).

1) Relaxation in Theorem 3 (ranged dwell-time): In this case, following [4], for the interval
observer (8) the gain L is time-varying:

L(t) = L̂(t− ti) ∀t ∈ (ti, ti+1], i ∈ Z≥0,
where L̂ : [0, Tmax] 7−→ Rn×p is a matrix-valued function determined below:

Proposition 1. Let X : [0, Tmax] 7−→ Dn
�0 be a differentiable matrix-valued function, Uc : [0, Tmax] 7−→

Rn×p be a matrix-valued function, Ud ∈ Rn×p be a matrix, and ε, α > 0 be scalars such that the
inequalities

X(τ)A− Uc(τ)C + αI ≥ 0, X(0)G− UdC ≥ 0, (17a)

ET
n×1

[ .

X(τ) +X(τ)A− Uc(τ)C
]
≤ 0 (17b)

and
ET
n×1 [X(0)G− UdC −X(θ) + εI] ≤ 0 (18)

hold for all τ ∈ [0, Tmax] and θ ∈ [Tmin, Tmax]. If the gains of the interval observer (8) are computed
as

L̂(τ) = X(τ)−1Uc(τ) and M = X(0)−1Ud,

then the conditions and the result of Theorem 3 are satisfied.

Proof. The conditions in (17a) guarantee that the matrix A− L(τ)C is Metzler for all τ ∈ [0, Tmax]
and that the matrix G − MC is nonnegative. Using the change of variables ψ(τ) = X(τ)En×1,
L̂(τ) = X(τ)−1Uc(τ) and M = X(0)−1Ud, one can remark that the conditions (17b) and (18) are
equivalent to

ψ(τ)T(A− L̂(τ)C) +
.

ψ(τ)T ≤ 0, ∀τ ∈ [0, Tmax]

ψ(0)T(G−MC)− ψ(θ)T + εET
n×1 ≤ 0, ∀θ ∈ [Tmin, Tmax].

It can be inferred from Theorem 1 that this is equivalent to saying that the error dynamics (10) is
asymptotically stable under ranged dwell-time [Tmin, Tmax].



18

C. Relaxation in Corollary 1 (minimum dwell-time)
Following [4], for the interval observer (8) we propose the following form for the gain L:

L(t) =

{
L̂(t− ti) ∀t ∈ (ti, ti + τ ], i ∈ Z≥0,
L̂(Tmin) ∀t ∈ (ti + Tmin, ti+1], i ∈ Z≥0,

where L̂ : R≥0 7−→ Rn×p is a function determined below.

Proposition 2. Let X : [0, Tmin] 7−→ Dn
�0 be a differentiable matrix-valued function, Uc : [0, Tmin] 7−→

Rn×p be a matrix-valued function, Ud ∈ Rn×p be a matrix, and ε, α > 0 be scalars such that the
inequalities

X(τ)A− Uc(τ)C + αI ≥ 0, X(Tmin)G− UdC ≥ 0, (19a)

ET
n×1

[ .

X(Tmin)A− Uc(Tmin)C + αI
]
≤ 0, (19b)

ET
n×1

[
−

.

X(τ) +X(τ)A− Uc(τ)C
]
≤ 0 (19c)

and
ET
n×1 [X(Tmin)G− UdC −X(0) + εI] ≤ 0 (20)

hold for all τ ∈ [0, Tmin]. Hence, the gains of the interval observer (8) can be computted as follows

L̂(τ) = X(τ)−1Uc(τ) and M = X(Tmin)−1Ud.

Proof. The conditions in (19a) guarantee that the matrix A− L(τ)C is Metzler for all τ ∈ [0, Tmin]
and that the matrix G − MC is nonnegative. Using the change of variables ψ(τ) = X(τ)En×1,
L̂(τ) = X(τ)−1Uc(τ) and M = X(Tmin)−1Ud, one can remark that the conditions (19b) , (19c) and
(20) are equivalent to

ψ(Tmin)T(A− L̂(τ)C) < 0,

ψ(τ)T(A− L̂(τ)C)−
.

ψ(τ)T ≤ 0,

ψ(Tmin)T(G−MC)− ψ(0)T + εET
n×1 ≤ 0.

It can be inferred from Theorem 2 that this is equivalent to saying that the error dynamics (10) are
asymptotically stable under minimum dwell-time Tmin.

VI. CONTROL DESIGN

The idea of this work consists in solving the stabilization problem for the completely known system
(8) instead of (1). Under conditions of Theorem 3, if both x(t) and x̄(t) converge to zero, then the
state x(t) also has to converge to zero, and boundedness of x(t) follows by the same property of x(t)
and x̄(t). In this case the signal y(t) is treated in the system (8) as a state dependent disturbance.

Corollary 4. Let Assumptions 1, 3, 4.ii and 4.iii be satisfied, then

|y(t)| ≤ |C|(|x(t)|+ |x̄(t)|), ∀t ∈ R≥0.

Proof. Indeed, from (9)

xk(t) ≤ xk(t) ≤ x̄k(t) ∀t ≥ 0 ∀k = 1, . . . , n
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under conditions of Theorem 3, then

|xk(t)| ≤ max{|xk(t)|, |x̄k(t)|}

and a straightforward computation shows

|x(t)|2 =
n∑
k=1

|xk(t)|2 ≤
n∑
k=1

max{|xk(t)|2, |x̄k(t)|2}

≤
n∑
k=1

|xk(t)|2 + |x̄k(t)|2 = |x(t)|2 + |x̄(t)|2

or
|x(t)| ≤ |x(t)|+ |x̄(t)|.

Consequently,
|y(t)| = |Cx(t)| ≤ |C||x(t)| ≤ |C|(|x(t)|+ |x̄(t)|)

for all t ≥ 0.

Hence, one has to stabilize the system (8) uniformly (or robustly) with respect to a Lipschitz
nonlinearity y. The control is chosen as a conventional state linear feedback

u(t) =Kx(t) +Kx̄(t), ∀t ∈ [ti, ti+1),

u(ti+1) =Jx(t−i+1) + Jx(t−i+1), (21)

where K, K, J and J are four feedback gains to be designed. When substituting the control (21)
into (8), it follows that

.
x(t) = (A− LC +BK)x(t) + Ly(t) +BKx̄(t) + f(t)

−LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC +DJ)x(t−i+1) +My(ti+1) (22)
+DJx(t−i+1) + g(ti+1)−MV,

.
x(t) = (A− LC +BK)x(t) + Ly(t) +BKx(t) + f̄(t)

+LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC +DJ)x(t−i+1) +My(ti+1)

+DJx(t−i+1) + g(ti+1) +MV,

and it is necessary to analyse stability of this nonlinear system. Let us introduce ε(t) = [xT(t) x̄T(t)]T

and the matrices

R =

[
A− LC +BK BK

BK A− LC +BK

]
,

S =

[
G−MC +DJ DJ

DJ G−MC +DJ

]
,

δ(t) =

[
f(t)− LV
f̄(t) + LV

]
, ς(ti+1) =

[
g(ti+1)−MV

g(ti+1) +MV

]
,



20

then one can rewrite the system (22) as

ε̇(t) =Rε(t) + δ(t) +

[
Ly(t)
Ly(t)

]
(23)

ε(ti+1) =Sε(t−i+1) + ς(ti+1) +

[
My(ti+1)
My(ti+1)

]
.

Theorem 6. Let Assumptions 1, 3, 4.ii and 4.iii hold, x(0) ≤ x(0) ≤ x̄(0) and there exist matrices
K ∈ Rm×n, K ∈ Rm×n, J ∈ Rm×n, J ∈ Rm×n, P ∈ S2n

�0 and Q ∈ S2n
�0 such that the matrix inequality

eR
TθSTPeRθ − P +Q = 0 (24)

is satisfied for all θ ∈ [Tmin, Tmax], and

ρP,Q,W
√

2|M |+
√

2Tmax(1 + ρP,Q,W |S|%(R))|L|]%(R)|C| < 1, (25)

where W = P + supθ∈[Tmin,Tmax] 2PSe
RθQeR

TθSTP . Then the system (1), (8), (21) is ISS with respect
to the inputs δ and ς .

Proof. Since Assumptions 4.ii, 4.iii and 3 are satisfied, then all conditions of Theorem 3 are verified,
and the interval inclusion (9) holds. By construction, (9) is true for any input u, and for the control
(21) in particular. After substitution of (21) in (1) and (8), the dynamics of (8) can be presented in
the form of (23), where according to Corollary 4 the variable y can be considered as a nonlinear
function of the state of (23)

|y| ≤ |C||ε|.

If there exist matrices K, K, J, J , P and Q such that the matrix inequality (24) is satisfied, then
according to Lemma 3 the system (23) is ISS with respect to the auxiliary inputs

f(t) = δ(t) +

[
Ly(t)
Ly(t)

]
, g(ti+1) = ς(ti+1) +

[
My(ti+1)
My(ti+1)

]
,

which contain the state-dependent function y. From the asymptotic gain property established in Lemma
3, we know that asymptotically the trajectories enter in the ball

|ε| ≤ [ρP,Q,W ||g||∞ + Tmax(1 +

ρP,Q,W |S|%(R))||f ||∞]%(R)

≤ [ρP,Q,W (||ς||∞ +
√

2|M ||y|) + Tmax(1 +

ρP,Q,W |S|%(R))× (||δ||∞ +
√

2|L||y|)]%(R)

= [ρP,Q,W ||ς||∞ + Tmax(1 + ρP,Q,W |S|%(R))||δ||∞]

×%(R) + [ρP,Q,W
√

2|M |+
√

2Tmax(1 +

ρP,Q,W |S|%(R))|L|]%(R)|y|
≤ [ρP,Q,W ||ς||∞ + Tmax(1 + ρP,Q,W |S|%(R))||δ||∞]

×%(R) + [ρP,Q,W
√

2|M |+
√

2Tmax(1 +

ρP,Q,W |S|%(R))|L|]%(R)|C||ε|.
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Table I
PARAMETERS USED IN THE APPLICATION

Param. Meaning
Lfc inductance of the smoothing inductor
RLfc resistance of the smoothing inductor
iLfc smoothing inductor’s current
ufc fuel cell’s voltage
uch1 one of the two chopper’s voltages
Ftrac traction force
Fres resistive forces
Mtot equivalent total mass of the chassis
vveh vehicle’s velocity
f rolling resistance coefficient
g acceleration due to gravity
α slope rate
Cx air drag coefficient
ρ mass density of the considered fluid

vwind wind’s velocity
A frontal area

Therefore, by the standard small-gain arguments, if the condition (25) is satisfied, then the asymptotic
gain property is validated

|ε| ≤
[ρP,Q,W ||ς||∞ + Tmax(1 + ρP,Q,W |S|%(R))||δ||∞]%(R)

1− [ρP,Q,W

√
2|M |+

√
2Tmax(1 + ρP,Q,W |S|%(R))|L|]%(R)|C|

,

and the system (23) is ISS with respect to the inputs δ and ς .

VII. APPLICATIONS

In this section, four examples are presented. The first example is a commercial electric vehicle
equipped with a low power range extender fuel cell, the second one is a bouncing ball and the third
example is an academic linear impulsive system. These three examples are devoted to estimation
problem. The last one is a control problem of a power split device with clutch for heavy-duty military
vehicles.

A. Case of Theorem 3
A commercial electric vehicle equipped with a low power range extender fuel cell system is

considered [13]. The regenerative braking is assumed sufficient to stop the vehicle (no mechanical
braking) and the induction machine is replaced by a permanent magnet DC machine supplied by a
chopper from the battery (see Fig. 2).

With reference to the notation in Table I, the smoothing inductor of the fuel cell system can be
represented by the following equation

Lfc
d

dt
iLfc = ufc − uch1 −RLfciLfc.

Using the Newton’s second law, we obtain

Mtot
d

dt
vveh = Ftrac − Fres

Fres = fMtotg + 0.5ρCxA(vveh + vwind)
2 +Mtotgα.
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Figure 2. Fuel Cell range extension of the considered vehicle [13]

Horizontal surface is considered in this example, then α = 0.
Let us consider an abstract failure mode scenario of the electric vehicle where ufc = uch1 and

0.5ρCxA = ζMtotv
−1
veh for all t 6= 10 + 20k with k ∈ N, where ζ is a given constant. Discrete

dynamics appear for the system in this failure mode for t = 10 + 20k, k ∈ N. The force resisting the
motion when the vehicle rolls on the surface is neglected (f = 0). The case where RLfc

Lfc
= γ = 1.5

and ζ = 0.1 is considered. In this abstract scenario, let us neglect the traction force and the wind’s
velocity. That is, Ftrac = 0 and vwind = 0. Additional uncertain time-varying inputs are injected to
the continuous dynamics and to the discrete ones, then this failure mode can be represented by the
following system with x(t) = [iLfc(t) vveh(t)]

T

.
x(t) = Ax(t) + b(t) ∀t 6= 10 + 20k, k ∈ N,
x(t) = Gx(t−) + d(t) ∀t = 10 + 20k, k ∈ N,
y(t) = Cx(t) + v(t),

where the matrices A, C and G are defined as follows

A =

[
−γ 0
0 −ζ

]
, C =

[
0 1

]
, G =

[
1.8 0
1.2 0.7

]
,

and x(t) ∈ R2, y(t) ∈ R are the state and the output, respectively. The signals b(t), d(t) and v(t) are

b(t) =

[
β sin(2t)
β sin(2t)

]
, d(t) =

[
δ sin(t) + 0.3
δ sin(t) + 0.3

]
,

v(t) = V sin(t),

where β = 0.1, δ = 0.1 and V = 0.1 are known parameters. Thus,

b(t) =

[
−β
−β

]
, b(t) =

[
β
β

]
,

d(t) =

[
−δ + 0.3
−δ + 0.3

]
, d(t) =

[
δ + 0.3
δ + 0.3

]
.

Assumption 3 is then satisfied. One can remark that in this case, the pair (A,C) is not observable,
but doing the PBH (Popov–Belevitch–Hautus) test for the eigenvalues of the matrices A, it can
be easily proved that the pair (A,C) is detectable. Assumption 4.ii is verified when we choose

L =
[

0 2.6
]T: the matrix A − LC =

[
−1.5 0

0 −2.7

]
is Metzler. Assumption 4.iii is verified
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Figure 3. Results of the simulation for the case of Theorem 3

when one selects M =
[

0 0.4
]T: the matrix G−MC =

[
1.8 0
1.2 0.3

]
is nonnegative but not Schur

stable. By applying Matlab YALMIP toolbox [36] to solve the LMIs we found that Assumption 8
holds for all θ ∈ [0.3919,+∞). Then the system (10) with the minimum dwell-time Tmin = 0.3919
is ISS. Therefore all conditions of Corollary 1 are satisfied and the interval observer (8) solves the
problem of interval state estimation. The results of simulation are shown in Fig. 3, where the solid
lines represent the states xk, k = 1, 2 and the dash lines are used for the interval estimates xk and
xk.

B. Case of Theorem 4
Consider the case of vertical motion of a ball under gravity with a constant acceleration g. The

dynamics are given by
.
p(t) = v(t);

.
v(t) = −g,

where p(t) ∈ R≥0 is the position of the ball and v(t) ∈ R is its velocity, which is assumed to be
downward. Upon hitting the ground at instant of time t′ ≥ 0 with p(t′) = 0, we instantly set v(t′) to
-ρv(t′−), where ρ ∈ [0, 1] is the coefficient of restitution. In general, this model can be presented in
the form of system (1)

x(t) = [p(t) v(t)]T,
.
x(t) = Ax(t) + b(t) when x1(t) 6= 0,

x(t) = Gx(t−) + d(t) when x1(t) = 0,

y(t) = Cx(t),

where A =

[
0 1
0 0

]
, C =

[
1 0

]
, G =

[
1 0
0 −ρ

]
; x(t) ∈ R2, y(t) ∈ R are respectively the state

and the output; the signals b(t) and d(t) model some additional perturbing forces applied to the ball

b(t) =

[
β sin(t)

−g + β sin(t)

]
, d(t) =

[
δ sin(t)
δ sin(t)

]
,
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Figure 4. Results of the simulation for the case of Theorem 4

where β = 0.5 and δ = 0.5 are known parameters. Thus,

b(t) =

[
−β
−g − β

]
, b(t) =

[
β

−g + β

]
,

d(t) =

[
−δ
−δ

]
, d(t) =

[
δ
δ

]

and Assumption 3 is then satisfied. Assume that ||x|| < +∞ (Assumption 7 is valid). Verifying
the LMIs with Matlab YALMIP toolbox [36], we found that Assumption 9 holds for any minimum
dwell-time Tmin > 0. Therefore, all conditions of Corollary 2 are satisfied. Finally, the matrices

R =

[
−2 0
0 −1

]
, S1 =

[
−0.7071 −0.4472
−0.7071 −0.8944

]
,

T =

[
−0.8 0

0 0.9

]
, S2 =

[
0 0.9594
1 0.2822

]

satisfy all conditions of Theorem 4 and the interval observer (12) solves the problem of interval state
estimation for bouncing ball. The results of simulation are shown in Fig. 4, where the solid lines
represent the states xk, k = 1, 2 and the dash lines are used for the interval estimates xk and xk.

Remark 3. In the example of the bouncing ball considered in this work, the measurement noise is
equal to zero. This means the times of the jumps in the state are well estimated as the output signal
is supposed to be perfect (without noise). In the real case, there is always a measurement noise in the
output signal: the jump times in the state are not known and need to be estimated. It may introduce
a time-delay in the estimated jumping time and causes some additional error in the state estimation.
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C. Case of Theorem 5

Let us denote by Λ the set of transition times of the clock signal in Fig. 5 when its changes from
one to zero (rising times). Consider the following system

.
x(t) = Ax(t) + b(t) ∀t ∈ R≥0 \ Λ,

x(t) = Gx(t−) + d(t) ∀t ∈ Λ,

y(t) = Cx(t),

where the matrices A, C and G are defined as follows

A =

[
−2 0
0 −1

]
, C =

[
1 0

]
, G =

[
2 0
1 −0.2

]
and x(t) ∈ R2, y(t) ∈ R are respectively the state and the output. The signals b(t) and d(t) are

b(t) =

[
β sin(2t) cos(t)
β sin(2t) cos(t)

]
, d(t) =

[
0.2 + δ sin(t)
0.2 + δ sin(t)

]
with known β = 0.1 and δ = 0.1. Thus,

b(t) =

[
−β
−β

]
, b(t) =

[
β
β

]
,

d(t) =

[
−δ + 0.2
−δ + 0.2

]
, d(t) =

[
δ + 0.2
δ + 0.2

]
.

Assumption 3 is then satisfied. One can remark that in this case, the pairs (A,C) and (G,C) are not
observable. Doing the PBH test for the eigenvalues of the matrices A and G, it can be easily proved

that the pairs (A,C) and (G,C) are detectable. For L =
[

0 4
]T and A−LC =

[
−2 0
−4 −1

]
, we

choose

D0 =

[
−1.5 0

0 −1

]
, D1 =

[
0.5 0
4 0

]
,

then D0 is Metzler and D1 ∈ Rn×n
≥0 . Note that the matrix A−LC is not Metzler. For M =

[
−1 2.8

]T

and G−MC =

[
2 1
1 −3

]
, we choose

(G−MC)p =

[
2.5 1
1 0

]
, (G−MC)n =

[
0.5 0
0 3

]
.

(G−MC)p ∈ Rn×n
≥0 and (G−MC)n ∈ Rn×n

≥0 . Note that the matrix G−MC is negative and is not
Schur stable. By applying Matlab YALMIP toolbox [36] to solve the LMIs we found that Assumption
10 holds for all Tk ∈ (2.7579,+∞). Therefore, all conditions of Corollary 3 are satisfied and the
interval observer (15) solves the problem of interval state estimation. The results of simulation are
shown in Fig. 5, where the solid lines represent the states xk, k = 1, 2 and the dash lines are used
for the interval estimates xk and xk.



26

Figure 5. Results of the simulation for the case of Theorem 5

D. Case of output stabilizing feedback using control of Theorem 6

Let us apply now the stabilizing feedback control that has been designed in this paper to Fault
Detection and Isolation (FDI) and Fault-Tolerant Control (FTC) of a complex uncertain system.

Hybrid electric vehicles (HEVs) can be classified with respect to their energy flow used for
propulsion as either series or parallel [51]. Combining these two systems one can obtain the so-called
series-parallel HEVs, which have the advantages of these two basic architectures, but have a more
complicated structure. The Power Split Device (PSD) that divides the power coming from various
power sources into the drivetrain (see Fig. 2) plays a major role in the suitable energy management
strategy of series-parallel HEVs [28]. A hybrid powertrain with a high availability for heavy-duty
military vehicles is considered for our application. A series-parallel HEV architecture is considered
along with the Ravigneaux geartrain as PSD [51].

The considered architecture is comprised of a PSD mounted with shafts connected to two electric
machines (EM1 and EM2) through gearboxes, an Internal Combustion Engine (ICE) and transmission
with clutch through a gearbox [51] (see Fig. 3). The role of a clutch is to connect the driving shaft
to a driven shaft, so that the driven shaft may be started or stopped at will, without stopping the
driving shaft. In conventional vehicles, the clutch allows for power to be transmitted from the ICE
to the wheels in order to change the speed ratio using the gearbox [51].

The behavior of the clutch is nonlinear, and two different states are considered: the slipped (open)
one and the locked (closed) one. During the locked position of the clutch, the system is considered
as a single equivalent inertia: the disks are rigidly coupled with each other.

With reference to the notation in Table II, the locked position of the clutch can be modeled by the
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Figure 6. Series-Parallel HEV Configuration with PSD [51]

Figure 7. Considered System Layout [51]

following equations

JCL1
d

dt
ΩCL + fCL1ΩCL = TCL2 − TPC ,

TCL1 = TCL2 = TCL,

ΩPC = ΩCL.

Let us consider an abstract failure mode scenario of the braking phase of the heavy-duty military
vehicle with TCL1 = TCL2 = 0, and assume that there is a coefficient κ = 1, which is added to
the friction coefficient fCL1 at all instants t = 3k with k ∈ Z≥0. The case where a decrease in
normal force leads to an increase in friction is considered. This situation leads to a negative friction
coefficient [53]. For the application, the case with fCL1 = −0.5 and JCL1 = 1kg.m2 is considered.
Dissipation losses, vibration, abrasion and temperature effects are neglected. Then this failure mode
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Table II
PARAMETERS USED IN THE APPLICATION

Param. Meaning
TCL1 Torque provided upstream of the clutch
TCL2 Torque provided downstream of the clutch
TPC Torque carried by connected shaft to planet-carrier
ΩCL Speed of the primary shaft after the clutch
ΩPC Speed of the secondary shaft before the clutch
fCL1 Friction coefficient of the shaft
JCL1 Inertia of the shaft

can be represented by the following system with x(t) = ΩCL and u(t) = TPC
.
x(t) = ax(t) + bu(t) + f(t) ∀t 6= 3k, k ∈ Z≥0,
x(t) = hx(t−) + du(t) + g(t) ∀t = 3k, k ∈ Z≥0, (26)
y(t) = cx(t) + v(t),

where a, b, c, d and h are defined as follows

a =
−fCL1
JCL1

= 0.5, b =
−1

JCL1
= −1,

c = 10, d = −1, h =
−fCL1 + κ

JCL1
= 1.5,

and x(t) ∈ R, y(t) ∈ R are the state and the output, respectively. The external disturbances and
noises f(t), g(t) and v(t) for simulation are selected as follows

f(t) = β sin(2t), g(t) = δ sin(t),

v(t) = V cos(t),

where β = 10−3, δ = 10−2 and V = 2 are given parameters. Thus,

f(t) = −β, f(t) = β,

g(t) = −δ, g(t) = δ.

Assumption 3 is then satisfied. Assumption 4.ii is verified when one chooses l = 0: a− lc = 0.5 is
Metzler but not Hurwitz stable. Assumption 4.iii is verified when we choose m = 0.14: g−mc = 0.1
is nonnegative. By applying Matlab YALMIP toolbox [36] with discretization to solve the LMIs we
found that Assumption 4.i holds for all θ ∈ [0, 4.6051]. Then the system (8) with this ranged dwell-
time is ISS. Therefore all conditions of Theorem 3 are satisfied and the interval observer (8) solves
the problem of interval state estimation for the Fault Detection and Isolation (FDI). The results of
simulation are shown in Fig. 8 where the solid line represents the state x, and the dash lines are used
for the interval estimates x and x which are given in the logarithmic scale.

The considered fault in the state is detectable and isolable since x appears in the analytical
redundancy relation (26) and the fault signature matrix is distinguishable [14]. Hence it is required
to stabilize the state, which represents the speed of the primary and secondary shaft after and before
the clutch during the braking phase of the heavy-duty military vehicle in the considered failure mode.
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Figure 8. Results of the simulation of the interval state estimation

Figure 9. Results of the simulation of the stabilization

The time response is required to be less than 60 seconds. Equations (24) and (25) are satisfied when
one chooses k = 0.1, k = 0.65, j = 0.1 and j = −0.15. The matrices

R =

[
−0.15 −0.1
−0.65 0.4

]
, S =

[
0.25 −0.1
0.15 0

]
satisfy all conditions of Theorem 4 for all θ ∈ [0, 4.6051] and the controller (21) solves the problem
of stabilization of the speed ΩCL. Then the system (1), (8), (21) is ISS with respect to the inputs f
and g. The results of simulation are shown in Fig. 9 where the solid line represents the state x, and
the dash lines are used for the interval estimates x and x. From these results we can conclude that the
speed ΩCL is stabilized and the time response, which is tR ≈ 32 seconds, meets the requirements.

VIII. CONCLUSION

The problems of interval estimation and output robust stabilization for a class of linear impulsive
systems subject to signal uncertainties have been considered in this paper. The goal of the proposed
approach is to take into account the presence of disturbance or uncertain parameters during the
synthesis. A new approach for output feedback design is proposed for this class of systems, where
an interval observer is used instead of a conventional one. Two main techniques have been proposed
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for the design of interval observers. The first one is based on a static transformation of coordinates,
which connects a linear impulsive system with its nonnegative representation when the system is
asymptotically stable under ranged dwell-time and under minimum dwell-time constraints. The second
technique uses a representation of impulsive system in a nonnegative form. Knowing the estimates of
the upper and the lower bounds of the state, the problem of output stabilization is reduced to a problem
of robust state feedback design. Asymptotically exact computational approaches are proposed to solve
the interval observers stability conditions of infinite-dimensional feasibility problems, formulating
them using semidefinite programs that can be solved by standards solvers. The efficiency of these
techniques is shown on examples of computer simulation for linear impulsive systems including
a power split device with clutch for heavy-duty military vehicles. Further research will focus on
the design of interval observers for nonlinear hybrid systems with parameter and switching instants
uncertainties, and on the consideration of other types of uncertainties such as neglected nonlinear
terms.
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