
HAL Id: hal-01762446
https://hal.inria.fr/hal-01762446

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-End Learning of Polygons for Remote Sensing
Image Classification

Nicolas Girard, Yuliya Tarabalka

To cite this version:
Nicolas Girard, Yuliya Tarabalka. End-to-End Learning of Polygons for Remote Sensing Image Clas-
sification. IEEE International Geoscience and Remote Sensing Symposium – IGARSS 2018, Jul 2018,
Valencia, Spain. �hal-01762446�

https://hal.inria.fr/hal-01762446
https://hal.archives-ouvertes.fr


END-TO-END LEARNING OF POLYGONS FOR REMOTE SENSING IMAGE
CLASSIFICATION

Nicolas Girard and Yuliya Tarabalka

Université Côte d’Azur, Inria, TITANE team, France
Email: nicolas.girard@inria.fr

ABSTRACT

While geographic information systems typically use
polygonal representations to map Earth’s objects, most state-
of-the-art methods produce maps by performing pixelwise
classification of remote sensing images, then vectorizing the
outputs. This paper studies if one can learn to directly output
a vectorial semantic labeling of the image. We here cast a
mapping problem as a polygon prediction task, and propose
a deep learning approach which predicts vertices of the poly-
gons outlining objects of interest. Experimental results on
the Solar photovoltaic array location dataset show that the
proposed network succeeds in learning to regress polygon
coordinates, yielding directly vectorial map outputs.

Index Terms— High-resolution aerial images, polygon,
vectorial, regression, deep learning, convolutional neural net-
works.

1. INTRODUCTION

One of the most important problems of remote sensing im-
age analysis is image classification, which means identify-
ing a thematic class at every pixel location. A key applica-
tion consists in integrating the recognized objects of inter-
est (e.g., buildings, roads, solar panels) into geographic in-
formation systems (GIS). Since GIS use mostly vector-based
data representations, the obtained classification maps are typ-
ically vectorized into polygons before being uploaded to GIS.
While the commonly employed vectorization routines, such
as Visvalingam-Whyatt [1] and Douglas-Peucker [2] algo-
rithms, are implemented in most GIS packages (e.g., QGIS,
ArcGIS) accurate polygonization of classification maps is still
an open research question, with recent more robust contribu-
tions [3].

The polygonization challenge is illustrated in Fig. 1,
where a classification map obtained by the recent convolu-
tional neural network (CNN)-based approach [4] is poly-
gonized using Douglas-Peucker method with two different
threshold parameters. We can see that in most cases the re-
sulting polygons do not represent well the underlying objects.

In this work, we aim at building a deep learning-based
model, which would be capable to directly output a vectorial

The authors would like to thank ANR for funding the study.

(a) Image & GT (b) Class.map (c) DP, thr. 3 (d) DP, thr. 7

Fig. 1: Example of a polygonization of the classification map.
(a) shows a satellite image and vector format ground truth.
(b) is a classification map obtained by [4]. (c) and (d) are two
polygonization results obtained by Douglas-Peucker method
with different thresholds.

semantic labeling of the image. This objective is inspired by
a few recent works on using neural networks to output geo-
metric objects, such as the convex hull of a point cloud [5] or
the coordinates of object bounding boxes [6]. We formulate a
mapping problem as a polygon prediction task. The proposed
PolyCNN convolutional neural network takes as input image
patches and regresses coordinates of vertices of polygons out-
lining objects of interest. The network is built so that it can
be trained in an end-to-end fashion. We restricted this study
to learning quadrilaterals or 4-sided polygons, the main ob-
jective of the study being to demonstrate that we can produce
classification maps directly in a vector format and to break
a paradigm of two-stage mapping approaches, where raster
classification is followed by polygonization.

In the next section, we present the proposed CNN archi-
tecture. We then perform experimental evaluation on the So-
lar photovoltaic array location and extend dataset (referred to
as PV dataset in the following) [7], and draw conclusions.

2. METHODOLOGY

Our PolyCNN network takes as input a color (RGB) image
patch centered on the object of interest, and directly outputs
the coordinates of a 4-sided polygon in 2D. These image
patches can be obtained by using any object detection sys-
tem, for instance a Faster-RCNN network [8]. In this work,



Fig. 2: Architecture of the complete PolyCNN model. The network takes a color image patch as input and directly outputs the
coordinates of a 4-polygon in 2D. Activation functions are all ReLUs, except the last activation which is a sigmoid (so that the
output coordinates are in [0, 1]). conv = convolutional, fc = fully connected.

we restricted the space of all possible polygons to 4-sided
polygons, so that the network has a fixed-length output. An
extension to n-sided polygons is a subject of our ongoing
work.

2.1. The network

Fig. 2 illustrates the architecture of the proposed PolyCNN
model. The neural network is made out of three parts: feature
extractor, encoder and decoder. The feature extractor uses
the first few layers of a pre-trained Inception V4 network [9]
to extract 384 features of resolution 6 × 6. The encoder then
computes a vector of dimension 128, that can be seen as a
point in a latent space where representing different polygon
shapes is easier. The decoder then decodes this 128 vector
into the polygonal representation that we are used to: 8 scalars
representing the 2D coordinates of 4 points.

To choose the architecture of the encoder and decoder, we
experimented on a much simpler dataset. For this purpose,
we generated 64×64 pixel images of a random white 4-sided
polygon on a black background. This simple dataset does not
require a complex feature extractor, so we used a very small
feature extractor made out of three 5× 5 convolutional layers
(with 8, 16 and 32 channels, respectively), each followed by
a 2 × 2 pooling layer. This allowed for fast experimentation,
and we found the architecture for the encoder and especially
the decoder with the goal of having the smallest model that
could learn to regress vertices of 4-sided polygons.

We then had to choose how much of the pre-trained In-
ception V4 we needed to use. The Inception V4 was trained
on ImageNet [10], whose images are all taken from ground-
level. Our model is meant to be trained on aerial or satellite
images, which have a very different appearance. Thus only
the low-level features of the Inception V4 should be interest-
ing, as they are not specific to an object or a point of view and
remain general enough. Furthermore, using as few layers as
possible has the advantage of yielding a smaller model, which
is thus faster to train and is less prone to over-fitting. Using

the first layers of the Inception V4 up to the mixed5e layer
seemed to be a good choice regarding the previous consider-
ations.
2.2. The loss function

The loss function used to train the PolyCNN network is the
mean L2 distance between the vertices of the ground-truth
polygon and the predicted polygon. We note n the number of
vertices (here fixed to 4), Pgt the n×2 matrix representing the
groundtruth polygon and Ppred the n× 2 matrix representing
the predicted polygon. See Eq. 1 for the definition of such
loss:

L =
1

n

n∑
i=1

‖Pgt(i, .)−Ppred(i, .)‖2 (1)

Eq. 1 assumes that both ground-truth and predicted poly-
gons have their vertices numbered in the same way (same
starting vertex and same orientation). Therefore, this loss
function would force the model to learn a specific starting ver-
tex. The network cannot learn this, because the starting vertex
is arbitrary. A more complex loss has to be used, one which is
invariant to the starting vertex. For this purpose, we compute
all the possible shifts of vertices for the predicted polygon
and take the minimum mean L2 distance (to the groundtruth
polygon) out of all these shifted polygons. Our loss function
is thus defined as:

L = min
∀s∈[0,n−1]

1

n

n∑
i=1

‖Pgt(i, .)−Ppred(i+ s, .)‖2 (2)

Eq. 2 still assumes the orientation of both polygons are
the same (e.g., clockwise), but we found this not to be a prob-
lem: as long as all ground truth polygons have the same ori-
entation, the network learns to output polygons with the same
orientation.

3. EXPERIMENTAL RESULTS

We use the PV dataset [7] to train, validate and test the per-
formance of the proposed network. This dataset contains the



geospatial coordinates and border vertices for over 19000
solar panels (used as ground truth in this work) across 601
high-resolution (30 cm/pixel) aerial orthorectified images
from four cities in California, USA.

(a) PolyCNN (b) U-Net + Douglas-Peucker

Fig. 3: Examples of visual results on the test set. Ground
truth, PolyCNN and baseline polygons are denoted in green,
orange and red, respectively.

3.1. Data pre-processing and augmentation

For each image in the PV dataset, we extract square patches of
size 67 ·

√
2 ≈ 95 pixels (the final image patch will be of size

67 pixels, but we need this margin for the data-augmentation
step) around each polygon from the ground truth that satisfy
the following conditions:

• Number of polygon vertices is 4. All polygons were
simplified first because some of them are overdefined
(e.g., three aligned vertices).

• Polygon diameter is less than 67 · 0.8 = 53.6 pixels
so that enough context is left in the resulting 67 × 67
image patch.

At this point, we have 6366 groundtruth 4-sided polygons
each associated to one image patch. Every patch includes at
least one polygon and if two polygons are adjacent, two dif-
ferent patches are generated, each with its own polygon. We
split this dataset into train, validation and test sets. We set
both validation and testing set sizes to 256 patches each. This
leaves 5854 patches for training. This is a fairly small dataset
for training a deep neural network. We performed data aug-
mentation to try alleviating this problem, consisting of:

1. Random rotations with angle θ ∈ [0, 2π).

2. Random vertical flip on the rotated image.

Finally, the data is normalized. The image values are
scaled between [−1, 1] and the polygon vertex coordinates are
scaled between [0, 1].

3.2. Training

The Inception V4 layers are pre-trained on ImageNet [10]
and are fine-tuned during training. The Decoder is also pre-
trained, this time on the generated dataset of 4-sided polygons
we mentioned in the methodology section. We used an Adam
optimizer with the default values for the decay rates for the
moment estimates β1 = 0.9 and β2 = 0.999. A batch size
of 256 was used. The learning rate (lr) follows a different
schedule for the 3 parts of the model:

lr up to iteration 500 1000 90000
Inception V4 layers 0 0 1e− 5

Encoder 1e− 5 1e− 5 1e− 5
Decoder 0 1e− 5 1e− 5

3.3. Results and discussion

To compare our results, we introduce a baseline method
to predict 4-sided polygons. It consists of applying U-Net
[11] for pixelwise classification (which yielded the highest
performance in large-scale aerial image classification chal-
lenge [12]) followed by a Douglas-Peucker vectorization
algorithm to obtain 4-sided polygons. Because the U-Net
can predict several solar arrays within the image patch, it can
result in multiple blobs in the prediction image. We thus vec-
torize the blob which gives the maximum intersection with
the ground truth blob. This way we always obtain a 4-sided
polygon around the center of the image, just like our method.

Fig. 3 illustrates examples of visual results on the test set.
We can observe through the whole test set that our method



Fig. 4: Test set polygon accuracy as a function of the thresh-
old in pixels.

outputs polygons which feature better preservation of geomet-
ric regularities, such as orientation and close-to-right angles,
when compared to the baseline approach.

We use two quantitative measures:
1) Intersection over union (IoU) between the predicted

and the ground truth polygons. The proposed PolyCNN and
the baseline methods yield a mean IoU of 79.5% and 62.4%,
respectively.

2) We introduce a more interesting measure for polygon
comparison, which captures well the shape deformation of
the prediction polygon. The L2 distance between each pair of
vertices is computed (the pair is composed of one groundtruth
vertex and its corresponding predicted vertex, the correspon-
dence is chosen exactly the same as for the modified loss in
Eq. 2). We then compute the fraction of vertices in the whole
test set which are closer to their ground truth position than a
certain threshold value in pixels, and call it a polygon accu-
racy measure. Fig. 4 shows the obtained polygon accuracy as
a function of the threshold in pixels for both approaches.

From the experimental comparison, we can conclude that
the proposed PolyCNN network succeeds in learning to pre-
dict vertices of 4-sided polygons corresponding to the objects
of interest.

Finally, we would like to note that if we train from scratch,
i.e. without using the pre-trained Inception V4, the network
does not succeed to learn a vectorial semantic labeling. The
Tensorflow code of the PolyCNN network will be made avail-
able by the time of publication.

4. CONCLUDING REMARKS

We showed that learning directly in vectorial space is pos-
sible in a end-to-end fashion and yields better results than a
2-step process involving a U-Net followed by vectorization.
Indeed our method can better predict the geometric shape of
the object.

The proposed architecture is relatively big with more than
2.7 × 10e6 weights. We will try using a fully-convolutional
architecture in the future which should greatly reduce the

amount of weights. Other areas of future experimentation in-
clude using different feature extractors (U-Net, SegNet [13]),
learning n-sided polygons with variable n and learning to
outline other type of objects such as buildings.

5. REFERENCES

[1] M. Visvalingam and J. D. Whyatt, “Line generalisation
by repeated elimination of the smallest area,” The Car-
tographic Journal, vol. 30, no. 1, pp. 46–51, 1992.

[2] D. H. Douglas and T. K. Peucker, “Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature,” The Canadian Cartog-
rapher, vol. 10, no. 2, pp. 112–122, 1973.

[3] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez,
“Polygonization of remote sensing classification maps
by mesh approximation,” in IEEE ICIP, 2017.

[4] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez,
“High-resolution aerial image labeling with convolu-
tional neural networks,” IEEE TGRS, vol. 55, no. 12,
2017.

[5] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer net-
works,” 2015, pp. 2692–2700.

[6] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov,
“Scalable object detection using deep neural networks,”
2014, pp. 2147–2154.

[7] K. Bradbury et al., “Distributed solar photovoltaic ar-
ray location and extent dataset for remote sensing object
identification,” Scientific Data, vol. 3:160106, 2016.

[8] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster
R-CNN: towards real-time object detection with region
proposal networks,” CoRR, vol. abs/1506.01497, 2015.

[9] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4,
inception-resnet and the impact of residual connections
on learning,” CoRR, vol. abs/1602.07261, 2016.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “ImageNet: A Large-Scale Hierarchical Image
Database,” in CVPR, 2009.

[11] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,”
in MICCAI, 2015, vol. 9351, pp. 234–241.

[12] B. Huang et al., “Large-scale semantic classification:
outcome of the first year of inria aerial image labeling
benchmark,” in IGARSS, 2018.

[13] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Seg-
net: A deep convolutional encoder-decoder architecture
for image segmentation,” CoRR, vol. abs/1511.00561,
2015.


