
HAL Id: hal-01764527
https://hal.inria.fr/hal-01764527

Submitted on 12 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composition Theorems for CryptoVerif and Application
to TLS 1.3
Bruno Blanchet

To cite this version:
Bruno Blanchet. Composition Theorems for CryptoVerif and Application to TLS 1.3. [Research
Report] RR-9171, Inria Paris. 2018, pp.67. �hal-01764527�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157515612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01764527
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
91

71
--

FR
+E

N
G

RESEARCH
REPORT
N° 9171
April 2018

Project-Team Prosecco

Composition Theorems
for CryptoVerif and
Application to TLS 1.3
Bruno Blanchet

RESEARCH CENTRE
PARIS

2 rue Simone Iff
CS 42112
75589 Paris Cedex 12

Composition Theorems for CryptoVerif and
Application to TLS 1.3

Bruno Blanchet

Project-Team Prosecco

Research Report n° 9171 — April 2018 — 67 pages

Abstract: We present composition theorems for security protocols, to compose a key exchange
protocol and a symmetric-key protocol that uses the exchanged key. Our results rely on the
computational model of cryptography and are stated in the framework of the tool CryptoVerif.
They support key exchange protocols that guarantee injective or non-injective authentication.
They also allow random oracles shared between the composed protocols. To our knowledge, they
are the first composition theorems for key exchange stated for a computational protocol verification
tool, and also the first to allow such flexibility.
As a case study, we apply our composition theorems to a proof of TLS 1.3 Draft-18. This work
fills a gap in a previous paper that informally claims a compositional proof of TLS 1.3, without
formally justifying it.

Key-words: composition, security protocols, verification, computational model, TLS

Théorèmes de composition pour CryptoVerif
et application à TLS 1.3

Résumé : Nous présentons des théorèmes de composition pour les protocoles cryptographiques,
pour composer un protocole d’échange de clés et un protocole à clé symétrique qui utilise la
clé échangée. Nous résultats reposent sur le modèle calculatoire de la cryptographie et sont
formulés dans le cadre de l’outil CryptoVerif. Ils autorisent des protocoles d’échange de clés qui
garantissent l’authentification injective ou non-injective. Ils autorisent aussi le partage d’oracles
aléatoires entre les protocole composés. À notre connaissance, ils sont les premiers théorèmes de
composition pour l’échange de clés formulés pour un outil de vérification de protocole dans le
modèle calculatoire, et aussi les premiers à autoriser une telle flexibililté.

Comme étude de cas, nous appliquons nos théorèmes de composition à une preuve de TLS 1.3
brouillon 18. Ce travail fournit un élément manquant dans un article précédent qui donne
informellement une preuve compositionnelle de TLS 1.3, sans la justifier formellement.

Mots-clés : composition, protocoles cryptographiques, vérification, modèle calculatoire, TLS

Composition Theorems for CryptoVerif and Application to TLS 1.3 3

1 Introduction

The proof of security protocols is notoriously difficult. In particular, when security protocols
grow in size, the complexity of their proof increases, and quickly becomes unmanageable. Com-
position theorems are essential to tackle this problem: they allow one to prove small pieces of the
considered protocol, and to compose these results in order to obtain a proof of the full protocol.

In this paper, we consider the standard game-based computational model of cryptography,
and we focus on the composition between a key exchange protocol and a symmetric key protocol
that uses the key provided by the key exchange. We assume that the key exchange protocol runs
between two participants A and B and is secure: the provided key is secret in the sense that keys
provided in several sessions are indistinguishable from independent random keys; the protocol
provides authentication of A to B, defined based on session identifiers; and A executes at most
one session with a given session identifier. Then, we prove that the security properties of the
symmetric key protocol carry over to the composed protocol. Moreover, we also prove that the
security properties of the key exchange protocol are preserved in the composed protocol (except
for the secrecy of the key on which we perform the composition). This point is important
to be able to perform several compositions one after the other. We have two variants of our
composition theorem: one in which authentication is injective, that is, each execution of B
corresponds to a distinct execution of A; and one in which authentication is non-injective, that
is, several executions of B may correspond to the same execution of A.

An originality of our composition theorems is that they are stated within the framework of
a protocol verification tool, CryptoVerif [11, 12, 14], available at http://cryptoverif.inria.
fr. We use the language of CryptoVerif to represent the cryptographic games; we use security
properties proved by CryptoVerif as assumptions of our composition theorems. Therefore, we
can easily use CryptoVerif to mechanize the proof of the protocol pieces that we compose.

Using such a framework to state composition theorems has several advantages. It strengthens
the abilities of CryptoVerif: thanks to the composition theorems, we can obtain security proofs for
bigger protocols. Moreover, CryptoVerif does not support loops. If we can break a protocol with
loops into pieces without loops, we can verify them using CryptoVerif, and prove security of the
whole protocol with loops by iteratively composing these pieces. Finally, CryptoVerif provides
a rigorous framework for stating the composition theorems: it provides a formal language for
games and for security properties, with a formal semantics. The hypotheses and conclusions of
the composition theorems can then be stated precisely and concisely in that framework.

As a case study, we apply our composition theorems to TLS 1.3. More precisely, we revisit a
previous analysis of TLS 1.3 Draft 18 by Bhargavan et al. [9,10]. This analysis splits TLS 1.3 into
3 pieces: the initial handshake, the handshake with pre-shared key, and the record protocol, and
claims that security of TLS 1.3 can be obtained by composing these 3 pieces. However, it does not
justify this composition formally. Our work fills this gap. TLS 1.3 is particularly well-suited as a
case study to illustrate the power of our composition results. First, it is an important protocol,
which is currently being standardized. The current draft, Draft 28 [35], is now final, and not very
different from Draft 18. We expect that our composition results would apply in the same way
to Draft 28, though the CryptoVerif models of the protocol pieces would require minor changes.
Second, TLS 1.3 is well-designed to allow composition: the handshake produces traffic secrets
used by the record protocol as well as a resumption secret used as a pre-shared key by the next
handshake. The protocol pieces are cleanly separated, so that the only common secret between
them is the symmetric key on which we perform the composition. Third, TLS 1.3 includes loops:
it allows an unbounded number of handshakes with pre-shared key and an unbounded number of
key updates in the record protocol. Therefore, it cannot be analyzed as a whole by CryptoVerif.
The composition results allow us to break these loops and obtain security results for the full

RR n° 9171

http://cryptoverif.inria.fr
http://cryptoverif.inria.fr

4 Bruno Blanchet

protocol. Finally, TLS 1.3 includes a variety of compositions, and we provide theorems for all
of them. While most compositions use a key exchange that provides injective authentication,
TLS also includes 0-RTT (Round Trip Time) data, that is, data that the client sends to the
server immediately after the first message of TLS (ClientHello). Such data can be replayed,
and the corresponding key exchange only provides non-injective authentication. Furthermore,
we also have to deal with altered ClientHello messages; in this case, only the server has the
corresponding key, and that requires a variant of the composition result. Finally, for key updates
in the record protocol, the key is simply computed from the previous key without a proper key
exchange, so we can use a much simpler composition theorem in this case.

Related Work The line of work closest to ours is that of [16, 27, 29]. Brzuska et al. [16]
prove a composition result similar to ours, in an informal game-based framework. Fischlin et
al. [27, 29] extend this framework to multi-stage key exchange protocols, in which parties can
establish multiple keys in different stages and use these keys between stages. They apply their
results to the proof of QUIC [29] and of TLS 1.3 Draft 05, Draft DH [27], and Draft 10 [28]. In
addition to recasting the composition result in CryptoVerif, we extend it in several ways. We
prove that security properties of the key exchange protocol are preserved in the composition,
so we can compose again using other keys. This point appears in [29, Remark, page 16 of the
full version] without proof. We allow the composed protocols to share random oracles; this
point does not appear in [16,27,29]. We prove a composition theorem for protocols that provide
non-injective authentication, used for 0-RTT data in TLS 1.3. Although we do not consider
several stages explicitly, our composition theorems support most compositions allowed by the
multi-stage framework. (We detail the comparison in Section 5.4.)

Brzuska et al. [15] prove a composition theorem that allows the key exchange protocol to
already use the key provided to the symmetric-key protocol, for example for key confirmation.
TLS 1.3 is designed so that the same key is never both used in the key exchange and provided
to the next protocol, so we did not need such a composition result in our case study. We believe
that such a result could also be proved in our framework if desired.

Canetti and Krawczyk [19] prove security of the composition of a key exchange protocol
with specific symmetric-key protocols that use MACs to achieve an authenticated channel or
encrypt-then-MAC to achieve a secure channel.

Barthe et al. [4] develop generic proofs of reduction for one-round key-exchange protocols, such
as Naxos and HMQV, in EasyCrypt. EasyCrypt is an interactive theorem prover specialized for
building game-based security proofs. Thus, their approach provides another way of introducing
modularity in machine-checked proofs of security.

Universal composability (UC) [17,18,20,32] is a framework that allows to compose protocols.
However, proving UC-security requires stronger properties than the game-based framework that
we use ([16, Appendix A] details limitations of the UC framework). Delaune et al. [25] present
a simulation-based framework that is an analogue of UC in the symbolic (Dolev-Yao) model of
cryptography.

Composition theorems have also been proved in the Dolev-Yao model. Many of these theorems
deal with the parallel composition of protocols that share secrets, for trace properties [22, 31],
for resistance against guessing attacks for protocols that share passwords [26], and for privacy
properties [2], using disjointness assumptions such as tagging or disjoint primitives to guarantee
the independence of the protocols. Other results [3, 21] allow sequential composition, in partic-
ular the composition of a key exchange protocol with a symmetric-key protocol that uses the
exchanged key. Ciobâcă et al. [21] consider trace properties, while Arapinis et al. [3] extend the
result to processes with else branches, to private channels, and to privacy properties. Mödersheim
et al. [30,33,34] define notions of security for channels (insecure, authentic, confidential, secure),

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 5

and prove composition results between protocols that establish such channels and protocols that
use them. They also rely on the Dolev-Yao model and use disjointness assumptions. We believe
that the computational model has two advantages: it is more realistic than the Dolev-Yao model
and the computational definitions compose nicely, so that we can avoid disjointness assumptions.

Protocol composition logic [23,24] is a logic for proving security protocols that allows sequen-
tial and parallel composition. It was initially designed in the Dolev-Yao model [23] and adapted
to the computational model [24].

Outline The next section provides a minimal reminder of the CryptoVerif framework. Sec-
tion 3 presents the structure of our proof of TLS, so that we can use it as a motivation for
the composition theorems. Section 4 presents a very simple composition theorem, used for key
updates in TLS 1.3, as a warm-up. Section 5 presents our main composition theorems. Section 6
summarizes their application to TLS, and Section 7 concludes. The appendix provides the proofs
of all results and details on the TLS case study.

2 A Short Reminder on CryptoVerif

Processes, contexts, adversaries CryptoVerif mechanizes proofs by sequences of games,
similar to those written on paper by cryptographers [8, 36]. It represents protocols and crypto-
graphic games in a probabilistic process calculus. We refer the reader to [12, 14] for details on
this process calculus. We explain the necessary constructs as they appear.

We use P , Q for processes. A context C is a process with one or several holes []. We write
C[P1, . . . , Pn] for the process obtained by replacing the holes of C with P1, . . . , Pn respectively.
An evaluation context is a context with one hole, generated by the following grammar:

C ::= evaluation context
[] hole
newChannel c;C channel restriction
Q | C parallel composition
C | Q parallel composition

The channel restriction newChannel c;Q restricts the channel name c, so that communications
on this channel can occur only inside Q, and cannot be received outside Q or sent from outside
Q. The parallel composition Q1 | Q2 makes simultaneously available the processes defined in Q1

and Q2. We use evaluation contexts to represent adversaries.

Indistinguishability A process can execute events, by two constructs: event e(M1, . . . ,Mn)
executes event e with arguments M1, . . . ,Mn, and event_abort e executes event e without
argument and aborts the game. After finishing execution of a process, the system produces
two results: the sequence of executed events E , and the information whether the game aborted
(a = abort, that is, executed event_abort) or terminated normally (a = 0). These events and
result can be used to distinguish games, so we introduce an additional algorithm, a distinguisher
D that takes as input the sequence of events E and the result a, and returns true or false. We
write Pr[Q : D] for the probability that the process Q executes events E and returns a result a
such that D(E , a) = true.

Definition 1 (Indistinguishability). We write Q ≈Vp Q′ when, for all evaluation contexts C
acceptable for Q and Q′ with public variables V and all distinguishers D that run in time at most
tD, |Pr[C[Q] : D]− Pr[C[Q′] : D]| ≤ p(C, tD).

RR n° 9171

6 Bruno Blanchet

Intuitively, Q ≈Vp Q′ means that an adversary has probability at most p of distinguishing
Q from Q′, when it can read the variables in the set V . When V is empty, we omit it. The
probability p may depend on many parameters coming from the context C, that is why p takes as
arguments the whole context C and the runtime of D. CryptoVerif always expresses the proba-
bilities as formulas in which the only parameters that come from the context C are the maximum
runtime of C, the maximum number of times C may send a message to each subprocess in Q
(resp. Q′), and the lengths of bitstrings. This property allows us to simplify probability formulas
by abstracting away the precise context they use and retaining only the useful parameters. We
denote by tC the maximum runtime of C, and use the same notation for processes P , Q, terms
M , and functions f . As usual in cryptographic proofs, we ignore very small runtimes.

The condition that C is acceptable for Q and Q′ with public variables V is a technical
condition that ensures that C[Q] and C[Q′] are well-formed. The public variables V are the
variables of Q and Q′ that C is allowed to read.

Indistinguishability is reflexive (Q ≈V0 Q), symmetric (if Q ≈Vp Q′, then Q′ ≈Vp Q) and
transitive (if Q ≈Vp Q′ and Q′ ≈Vp′ Q′′, then Q ≈Vp+p′ Q′′). Moreover, Q ≈Vp Q′ implies C[Q] ≈V ′p′
C[Q′] for all evaluation contexts C acceptable for Q and Q′ with public variables V and all
V ′ ⊆ V ∪ var(C), where var(C) is the set of variables of C and p′(C ′, tD) = p(C ′[C[]], tD).

Secrecy Intuitively, in CryptoVerif, secrecy means that the adversary cannot distinguish be-
tween the secrets and independent random values. This definition corresponds to the “real-or-
random” definition of security [1]. As shown in [1], this notion is stronger than the one in which
the adversary performs a single test query and some reveal queries. We recall the definition of se-
crecy in CryptoVerif given in [13,14]. Let us first explain CryptoVerif constructs used in this defi-
nition. The replication !i≤nQ represents n copies of the processQ in parallel, indexed by i ∈ [1, n],
where n is named a replication bound. The current replication indices at a certain program point
are the indices i of replications above that program point. In CryptoVerif, all variables defined
under a replication are implicitly arrays indexed by the current replication indices: if Q defines
a variable x under !i≤n, the value of x is in fact stored in x[i]. The definition of x is executed at
most once for each i, so that all values of x are stored in distinct array cells. When a variable is ac-
cessed with current replication indices, we omit the indices, writing x for x[i]. The find construct
reads these array cells: find u = i′ ≤ n suchthat defined(x1[i

′], . . . , xm[i′])∧M then P else P ′

looks for an index i′ ∈ [1, n] such that x1[i′], . . . , xm[i′] are defined and M is true. When such an
index is found, it is stored in u, and process P is executed. Otherwise, process P ′ is executed.
The term M may refer to x1[i′], . . . , xm[i′] and the process P may refer to x1[u], . . . , xm[u] since
these variables are guaranteed to be defined. The input c[i](x : T);P receives a message on
channel c[i]. If this message is in the set of bitstrings T (T stands for “type”), it is stored in
x, and P is executed. Otherwise, the process blocks. The channel c[i] consists of a channel
name c and indices, here i. Very often, these indices are the current replication indices at the
input: the sender can then tell precisely to which copy of the process the message should be
sent. Similarly, the output c[i]〈M〉;Q sends message M on channel c[i]. After the output, the
control is passed to the receiver process, which continues execution. The process Q that follows
the output consists of inputs, possibly under replications and parallel compositions; these inputs
will be executed when a message is sent to them. Finally, the restriction new y : T ;P chooses
uniformly a random element of T , stores it in y, and executes P .

We use ũ as an abbreviation for a sequence of variables: ũ = u1, . . . , um. We write ũ ≤ ñ for
u1 : [1, n1], . . . , um : [1, nm] when ũ = u1, . . . , um and ñ = n1, . . . , nm. We say that a variable
is defined under replications !̃i≤ñ when ĩ = i1, . . . , im, ñ = n1, . . . , nm, and it is defined under
replications !i1≤n1 . . . !im≤nm . (There may be other instructions between these replications.) We

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 7

define that a context has replications !̃i≤ñ above the hole in a similar way. When ñ = n1, . . . , nm,
we define

∏
ñ = n1 × · · · × nm.

Definition 2 (Secrecy). Let x and V be such that x /∈ V . Suppose that the variable x has type
T and is defined under replications !̃i≤ñ in Q. Let

Rx = cs0();new b : bool ; cs0〈〉;
(!is≤ns cs[is](ũ ≤ ñ); if defined(x[ũ]) then

if b then cs[is]〈x[ũ]〉 else

find u′s = i′s ≤ ns suchthat defined(y[i′s], ũ[i
′
s]) ∧ ũ[i′s] = ũ then cs[is]〈y[u′s]〉 else

new y : T ; cs[is]〈y〉
| c′s(b′ : bool); if b = b′ then event_abort S else event_abort S)

where the channels cs0, cs, c′s, the variables ũ, u′s, y, b, b′, and the events S, S do not occur in Q.
The process Q preserves the secrecy of x with public variables V up to probability p when, for

all evaluation contexts C acceptable for Q | Rx with public variables V that do not contain S nor
S, Pr[C[Q | Rx] : S]− Pr[C[Q | Rx] : S] ≤ p(C).

The process Rx chooses a random bit b, and then allows the adversary to query the variable
x: if the adversary sends indices ũ on channel cs[is], and x[ũ] is defined, then the process Rx
replies with the value of x[ũ] when b is true, and with a random value when b is false. The find
in Rx makes sure that, if the indices ũ have already been queried, then the previous reply is
sent; otherwise, a fresh random value y is chosen in the type T of x by new y : T , and sent as
a reply. The replication !is≤ns in Rx allows the adversary to perform at most ns such queries;
ns is chosen large enough so that it is not a limitation. Finally, the adversary sends on channel
c′s its guess b′ for the bit b. If the guess is correct (b′ = b), then the process Rx executes event
S; otherwise, it executes event S. Intuitively, Q preserves the secrecy of x when the adversary
cannot guess b, that is, it cannot distinguish whether the process outputs the value of the secret
(b = true) or outputs independent random numbers (b = false).

Correspondences Correspondences [37] are properties of executed sequences of events, such
as “if some event has been executed, then some other event has been executed”. They are typically
used for formalizing authentication. Given a correspondence corr , we define a distinguisher D
such that D(E , a) = true if and only if the sequence of events E satisfies the correspondence corr .
We write this distinguisher simply corr , and write ¬corr for its negation.

Definition 3 (Correspondence). The process Q satisfies the correspondence corr with public
variables V up to probability p if and only if, for all evaluation contexts C acceptable for Q with
public variables V that do not contain events used in corr , Pr[C[Q] : ¬corr] ≤ p(C).

We refer the reader to [11] for more details on the verification of correspondences in Cryp-
toVerif. We have:

Lemma 1. If Q preserves the secrecy of x with public variables V up to probability p and C is an
acceptable evaluation context for Q with public variables V , then for all V ′ ⊆ V ∪ var(C), C[Q]
preserves the secrecy of x with public variables V ′ up to probability p′ such that p′(C ′) = p(C ′[C]).

If Q satisfies a correspondence corr with public variables V up to probability p and C is an
acceptable evaluation context for Q with public variables V that does not contain events used in
corr , then for all V ′ ⊆ V ∪ var(C), C[Q] satisfies corr with public variables V ′ up to probability
p′ such that p′(C ′) = p(C ′[C]).

RR n° 9171

8 Bruno Blanchet

Handshake without pre-shared key

Handshake with pre-shared key

Record protocol

ems

ems

cats sats resumption_secret

cats sats
cets

resumption_secret

updated ts

Figure 1: Structure of the composition

If Q ≈V ∪{x}p Q′ and Q preserves the secrecy of x with public variables V up to probability
p′, then Q′ preserves the secrecy of x with public variables V up to probability p′′ such that
p′′(C) = p′(C) + 2× p(C[[] | Rx], tS).

If Q ≈Vp Q′ and Q satisfies a correspondence corr with public variables V up to probability
p′, then Q′ satisfies corr with public variables V up to probability p′′ such that p′′(C) = p′(C) +
p(C, tcorr).

Tables CryptoVerif also supports tables. Tables are lists of tuples shared between all hon-
est participants of the protocol. The construct insert Tbl(M1, . . . ,Mn);P inserts element
(M1, . . . ,Mn) in table Tbl, then runs P . The construct get Tbl(x1, . . . , xl) suchthat M in
P else P ′ tries to retrieve an element (x1, . . . , xl) in the table Tbl such that M is true. When
such an element is found, it executes P with (x1, . . . , xl) bound to that element. When no such
element is found, it executes P ′. Equality tests =Mi are also allowed instead of variables xi; in
this case, the table element must contain the value of Mi at the i-th position.

3 Structure of the proof of TLS 1.3

Our proof of TLS 1.3 relies on a previous analysis of the pieces that we compose [9,10]. Figure 1
summarizes the structure of the composition. We provide a brief sketch of those previous results
here; more details are given in Appendix B.1.

The initial handshake, without pre-shared key, provides 4 keys at the end of the protocol: the
client traffic secret cats, used by the record protocol for messages from the client to the server; the
server traffic secret sats, used by the record protocol for messages from the server to the client;
the exporter master secret ems, used to compute exporters (secrets generated by TLS that can
be used by applications or other protocols); and the resumption secret resumption_secret , used
as pre-shared key in the next handshake. For all these keys, CryptoVerif proves in particular
secrecy, forward secrecy (with respect to the compromise of long-term client and server keys),
and authentication.

In this model, the adversary has access to oracles that allow him to compromise the long-term
client and server keys. The security properties are proved provided the long-term key of the peer
is not compromised yet at the end of the handshake. As explained in the definition of secrecy
(Section 2), this model does not include reveal queries for session keys; instead, CryptoVerif

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 9

proves that all keys of the various sessions are indistinguishable from independent random keys,
which is a stronger model [1].

The handshake with pre-shared key uses a pre-shared key and provides the same keys as
above, with the same security properties. Additionally, it provides a client early traffic secret cets,
computed after the first message of the protocol (ClientHello). The record protocol uses this
traffic secret to send messages from the client to the server immediately after the ClientHello
message, so-called 0-RTT data. The ClientHello message may be replayed and the server may
also accept an altered ClientHello message, so CryptoVerif proves weaker properties about
cets. When the ClientHello message is not altered, it proves in particular secrecy and non-
injective authentication, since replays are possible. When the ClientHello message is altered,
it essentially proves that the server has a value of cets that no one else has. In this case, the goal
is to show that the record protocol that uses this value of cets never accepts messages.

Due to limitations of CryptoVerif, we cannot prove forward secrecy with respect to the com-
promise of the pre-shared key in the case of a handshake with pre-shared key and Diffie-Hellman
key exchange. Hence, all properties that we prove for the handshake with pre-shared key rely
on the secrecy of the pre-shared key. In the analysis of this part of the protocol, we can then
consider that the long-term signature keys of the client and the server are compromised, and let
the adversary deal with certificates and signatures if they appear. Therefore, the only common
secret between our models of the initial handshake and of the handshake with pre-shared key is
the pre-shared key. Furthermore, the analysis of the initial handshake allows the compromise of
these long-term signature keys at the end of the handshake, so the security properties that we
prove for the initial handshake remain valid.

Finally, the record protocol uses a traffic secret to derive an updated traffic secret, used for
key updates, and a key and an initialization vector, used for encrypting and decrypting messages
with an authenticated encryption scheme. CryptoVerif proves secrecy of the updated traffic
secret, injective message authentication, and message secrecy. (The adversary cannot distinguish
which one of two sets of messages is encrypted, similarly to the property we mentioned for Sb1
in Example 1.) We also consider two variants of the record protocol for 0-RTT. In the first
variant, the receiver is replicated, so we have non-injective message authentication instead of
the injective one. This variant is useful to support replays of unaltered ClientHello messages.
In the second variant, the sender is additionally removed, and we show that the receiver never
accepts a message. This variant is useful for altered ClientHello messages. The only common
secret between the handshakes and the record protocol is the traffic secret.

The goal of our case study is to combine all these results in order to obtain security results
for the full TLS 1.3 protocol.

4 The Most Basic Composition Theorem
As a warm-up, we present a very simple composition theorem, explained below.

Theorem 1. Let C be any context with one hole, without replications above the hole and without
event_abort. Let Q1 be a process without event_abort. Let M be a term of type T . Let

S1 = C[let k =M in c1〈〉;Q1]

S2 = c2();new k : T ; c3〈〉;Q2

where c1, c2, c3 do not occur elsewhere in S1, S2; k is the only variable common to S1 and S2;
S1 and S2 have no common channel, no common event, and no common table; and k does not
occur in C and Q1. Let c′1 be a fresh channel. Let

Scomposed = C[let k =M in c′1〈〉; (Q1 | Q2)]

RR n° 9171

10 Bruno Blanchet

S1:

k (secret)

S2: new k : T

Q2

Scomposed :

k

Q2

Figure 2: Illustration of Theorem 1

Let S◦composed be obtained from Scomposed by removing all events of S1.

1. If S1 preserves the secrecy of k with public variables V (k /∈ V) up to probability p, then
there exists an evaluation context C ′ such that, for any V1 ⊆ V ∪ (var(S1) \ {k}), we have
S◦composed ≈

V1

p′ C
′[S2] and C ′ is acceptable for S2 without public variables, contains no event,

runs in time at most tC + tQ1 , and does not alter the other parameters (replication bounds,
lengths of bitstrings), where p′(C1, tD) = p(C ′1) and C ′1 runs in time at most tC1

+ tQ2
+ tD

and its other parameters are the same as those of C1.

2. There exists an evaluation context C ′′ such that, for any V ′ ⊆ var(Scomposed), we have
Scomposed ≈V

′

0 C ′′[S1] and C ′′ is acceptable for S1 with public variable k, contains the
events of S2, runs in time at most tQ2 , and does not alter the other parameters.

Moreover, C ′ is independent of Q2 and C ′′ is independent of C and Q1.

In this theorem, illustrated in Figure 2, we compose a system S1 that establishes a key k
with a system S2 that runs Q2 using a fresh random key k. The composed system runs S1 and
Q2 using the key k provided by S1. (The letters Q and S both represent CryptoVerif processes,
in the same grammar. We use S for the systems that we compose and for the composed system,
and Q for other processes.) Intuitively, the composition works because the secrecy of k allows us
to replace k with a fresh random key. (An adversary cannot distinguish k from a fresh random
key.) A detailed proof is provided in Appendix A.4. In contrast to the theorems of Section 5,
in this theorem, S1 is not a key exchange protocol: a single participant establishes the key k, so
the composition is a lot easier.

The assumption that S1 does not contain event_abort is useful because, in the definition
of secrecy, when S1 aborts before a message is sent on cs, neither S nor S is executed, so the
adversary gets no advantage against the secrecy of k for these traces. However, these traces could
still leak information on k that would break the composition. So we prevent S1 from aborting.
This is not a limitation in practice, because event_abort is typically introduced during security
proofs, using Shoup’s lemma [13,36], but does not occur in the initial protocol model.

The assumption that c1, c2, c3 do not occur elsewhere in S1, S2 guarantees that messages sent
to channel c2 (resp. received from c1, c3) really go to the input (resp. come from the output)
shown in the definitions of S1 and S2. The assumption that k does not occur in C and Q

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 11

A (share a key k) B
(m0,m1)−−−−−→

event send(mb) enc(mb,k,r)−−−−−−−→ event recv(mb)

Figure 3: A picture of system Sb2

guarantees that S1 defines k but does not use it. The other assumptions on S1 and S2 can easily
be obtained by renaming if necessary.

The first conclusion of Theorem 1, S◦composed ≈
V1

p′ C
′[S2], allows us to transfer security prop-

erties from S2 to the composed system Scomposed using Lemma 1. In this property, we need to
remove the events of S1, because events can leak information on k even when S1 preserves the
secrecy of k according to Definition 2.

Similarly, the second conclusion of Theorem 1, Scomposed ≈V
′

0 C ′′[S1], allows us to transfer
security properties from S1 to the composed system Scomposed , provided these properties are
proved with public variable k, because C ′′ uses k. These properties may allow us to compose
again Scomposed with another protocol.

In our TLS case study, we use this composition theorem to deal with key updates in the
record protocol. The system S1 runs the record protocol and computes an updated traffic secret
from a traffic secret. This updated traffic secret is the key k in the composition theorem. The
system S2 uses this key k to run the record protocol again. The composition theorem allows
us to obtain security properties for a record protocol that performs a key update. We compose
again recursively to allow any number of key updates. The next example presents a simplified
version of this situation, to illustrate the theorem more formally.

Example 1. Consider the system Sb2 defined by

Sb2 = c2();new k : T ; c3〈〉;
(c4((m0 : Tm,m1 : Tm));new r : Tr; event send(mb); c5〈enc(mb, k, r)〉
| c6(y : bitstring); let i⊥(m) = dec(y, k) in event recv(m))

where all bitstrings in Tm have the same length. This system is illustrated in Figure 3. The
system Sb2 chooses a key k, and then runs two participants, say A and B, in parallel. When
A receives two messages m0,m1 of the same length on channel c4, it sends the encryption of
mb under k on channel c5 and records this emission with the event send(mb). When B receives
a ciphertext on channel c6, it decrypts that ciphertext, stores the plaintext in m, and executes
event recv(m). (The decryption function dec returns ⊥ when it fails, and the function i⊥ is
the natural injection from bitstring to bitstring ∪ {⊥}, so that the equality i⊥(m) = dec(y, k)
holds when the decryption succeeds and m is the corresponding cleartext.) When (enc, dec) is
an authenticated encryption scheme, we have S0

2 ≈p1 S1
2 , which means that the adversary can

distinguish whether m0 or m1 was encrypted with probability at most p1, and for b ∈ {0, 1}, Sb2
satisfies the correspondence

corr = inj-event(recv(m)) =⇒ inj-event(send(m)) (1)

up to probability p2 without public variables, which means that each execution of event recv(m)
is preceded by a distinct execution of event send(m), up to cases of probability at most p2. (The
probabilities p1 and p2 come from the probabilities of breaking the security properties of the

RR n° 9171

12 Bruno Blanchet

encryption scheme.) By composing S1 with Sb2, we obtain

Sbcomposed = C[let k =M in c′1〈〉; (Q1

| c4((m0 : Tm,m1 : Tm));new r : Tr; event send(mb); c5〈enc(mb, k, r)〉
| c6(y : bitstring); let i⊥(m) = dec(y, k) in event recv(m))]

Let Sb,◦composed be obtained from Sbcomposed by removing all events of S1. Let V1 = var(S1) \ {k}.
By Theorem 1, we have Sb,◦composed ≈

V1

p′ C ′[Sb2] for b ∈ {0, 1}. (The context C ′ does not de-
pend on b because C ′ is independent of Q2 in Theorem 1.) By Lemma 1, C ′[Sb2] satisfies the
correspondence (1) up to probability p′2 with public variables V1, where p′2(C1) = p2(C1[C

′]),
and so Sb,◦composed satisfies (1) up to probability p′′2 , where p′′2(C1) = p′(C1, tcorr) + p′2(C1) =
p(C ′1) + p2(C

′′
1), C ′1 runs in time at most tC1 + tenc + tdec + tcorr , C ′′1 = C1[C

′] runs in time
at most tC1

+ tC′ = tC1
+ tC + tQ1

, and their other parameters are the same as those of C1.
(The other parameters of C ′′1 = C1[C

′] are the same as those of C1 because C ′ does not al-
ter these parameters.) Therefore, Sbcomposed also satisfies (1) up to probability p′′2 , since S1

does not contain the events send and recv. Moreover, assuming S1 does not contain events,
we have S0

composed = S0,◦
composed ≈

V1

p′ C ′[S0
2] ≈

V1

p′1
C ′[S1

2] ≈
V1

p′ S1,◦
composed = S1

composed where

p′1(C1, tD) = p1(C1[C
′], tD), so by transitivity, S0

composed ≈
V1

2p′+p′1
S1
composed : in the composed

system, the adversary can distinguish whether m0 or m1 was encrypted with probability at most
2p′ + p′1.

5 Main Composition Results

This section presents our main composition theorems. We first need to introduce preliminary
notions and lemmas.

5.1 Transferring Security Properties

We first generalize the notion of indistinguishability. The more general notion still allows us to
transfer security properties from a process to another, as indistinguishability does by Lemma 1.

Definition 4. We write Q ∼→
V,V ′

f,p Q′ if, and only if, for all evaluation contexts C acceptable for
Q with public variables V and all distinguishers D that run in time at most tD, C ′ = f(C) is an
evaluation context acceptable for Q′ with public variables V ′ such that |Pr[C[Q] : D]−Pr[C ′[Q′] :
D]| ≤ p(C, tD).

Intuitively, Q ∼→
V,V ′

f,p Q′ means that, for each adversary against Q (represented by the context
C), there exists a modified adversary against Q′ (represented by the context C ′ = f(C)) such
that C[Q] and C ′[Q′] behave similarly. (The difference between the probabilities Pr[C[Q] : D]
and Pr[C ′[Q′] : D] is at most p(C, tD).)

Indistinguishability corresponds to the particular case in which f is the identity: f(C) = C.
Being able to transform the context C by the function f is useful in composition proofs, in
particular because the variables are not always numbered in the same way in the symmetric key
protocol and in the composed system. In this case, f performs the renumbering of the variables.

The rest of this section shows that Q ∼→
V,V ′

f,p Q′ allows us to transfer indistinguishability,
correspondence, and secrecy properties from Q′ to Q.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 13

Lemma 2. If Q′1 ≈V
′

p′ Q
′
2, Q1

∼→
V,V ′

f,p1 Q′1, and Q2
∼→
V,V ′

f,p2 Q′2, then Q1 ≈Vp′′ Q2, where p′′(C, tD) =
p1(C, tD) + p′(f(C), tD) + p2(C, tD).

Intuitively, if there is an adversary (represented by the context C), that can distinguish Q1

from Q2 with probability p′′, then the properties Q1
∼→
V,V ′

f,p1 Q′1 and Q2
∼→
V,V ′

f,p2 Q′2 guarantee
that there is a modified adversary (represented by the context C ′ = f(C)) that can distinguish
Q′1 from Q′2 with probability at least p′′(C, tD) − p1(C, tD) − p2(C, tD). Since Q′1 ≈V

′

p′ Q
′
2, this

probability is at most p′(f(C), tD), so we obtain Lemma 2. Lemma 3 is a similar result for
correspondences.

Lemma 3. If Q′ satisfies a correspondence corr with public variables V ′ up to probability p′

and Q
∼→
V,V ′

f,p Q′, where f is such that when C does not contain events used by corr , neither
does f(C), then Q satisfies corr with public variables V up to probability p′′, where p′′(C) =
p(C, tcorr) + p′(f(C)).

Definition 5. Assuming Q ∼→
V,V ′

f,p Q′, we say that f is secrecy-preserving for x′ 7→ (x, fsec)
when we have: If Q′ preserves the secrecy of x′ with public variables V ′ \ {x′} up to probability
p′, x′ ∈ V ′, and x ∈ V , then Q preserves the secrecy of x with public variables V \ {x} up to
probability p′′, where p′′(C0) = 2p(C0[[] | Rx], tS) + p′(fsec(C0)).

Definition 5 just defines that function f allows us to transfer secrecy properties. This property
holds in particular when, for every evaluation context C0 acceptable for Q | Rx with public
variables V \{x}, there exist C ′0 and C ′′0 such that f(C0[[] | Rx]) = C ′0[C

′′
0 [] | Rx′]. This condition

guarantees that f preserves the form of contexts that we use to test secrecy C0[[] | Rx], just
allowing the addition of a context C ′′0 before the secrecy test; this addition preserves secrecy by
Lemma 1. (This result is detailed in Lemma 10 in Appendix A.5.) In our composition proofs,
we use this condition, as well as others detailed in the proofs themselves.

5.2 Hash Oracles
The systems S1 and S2 that we compose may use hash oracles. In this paper, we consider only
non-programmable random oracles. The systems S1 and S2 may share the same hash oracles,
which appear once in the composed system. To allow the sharing of oracles between S1 and S2,
we must treat these oracles specially. In this section, we introduce notations and a lemma that
allow us to do that.

We assume that there are L hash oracles (L ≥ 1), and use the following notations: for each
l ≤ L, hl is a function of type Thkh,l

× Th,l → T ′h,l,

Qh =
∏L

l=1
!ih,l≤nh,lch3,l[ih,l](xh,l : Th,l); ch4,l[ih,l]〈hl(hkh,l, xh,l)〉

Ch = ch1();new hkh,1 : Thkh,1
; . . .new hkh,L : Thkh,L

; ch2〈〉; ([] | Qh)

The context Ch first chooses the keys hkh,l (l ≤ L). This choice models the choice of the random
oracles themselves. It is triggered by the reception of a message on ch1 and followed by an output
on ch2. Then, Ch runs the process Qh in parallel with the hole. The process Qh represents L
hash oracles: the l-th hash oracle can be called at most nh,l times; it receives its argument xh,l on
channel ch3,l[ih,l] (ih,l ≤ nh,l) and returns the hash of xh,l on channel ch4,l[ih,l]. We use

∏L
l=1Ql

to denote the parallel composition Q1 | . . . | QL. The context Ch is not an evaluation context
(because it always chooses the keys hkh,l before running the process in the hole). Let Q′h and C ′h
be obtained from Qh and Ch by renaming the replication bounds nh,l into n′h,l and the channels

RR n° 9171

14 Bruno Blanchet

ch1, ch2, ch3,l, ch4,l into c′h1, c
′
h2, c

′
h3,l, c

′
h4,l respectively. Similarly, let Q′′h and C ′′h be obtained

from Qh and Ch by renaming the replication bounds nh,l into n′′h,l and the channels ch1, ch2, ch3,l,
ch4,l into c′′h1, c

′′
h2, c

′′
h3,l, c

′′
h4,l respectively. We say that a process is hash-well-formed when, for

all l ≤ L, it uses hkh,l only in terms of the form hl(hkh,l,M) for some term M , it does not use
the channels ch1, ch2, ch3,l, ch4,l, c′h1, c

′
h2, c

′
h3,l, c

′
h4,l, c

′′
h1, c

′′
h2, c

′′
h3,l, c

′′
h4,l, and it does not use the

variables xh,l.
In the particular case in which there is no hash oracle (L = 0), we define Ch = C ′h = C ′′h = [],

the empty context.
Given a process Q, we write nh,l,Q for the maximum number of evaluations of hl(hkh,l, . . .)

in Q. The same notation applies to contexts C and terms M .
The next lemma is the main technical tool that we use to deal with hash oracles. It allows

us to move the hash oracles under an evaluation context.

Lemma 4. If C is an evaluation context and C[Q] is hash-well-formed, then there exists an
evaluation context C ′ such that for all V such that V ∩ var(Ch) = ∅,

Ch[C[Q]] ≈V0 C ′[C ′h[Q]]

where the context C ′ is independent of Q, runs in time at most tC , and for all l ≤ L, C ′ calls
the l-th hash oracle in C ′h at most nh,l,C times, so n′h,l = nh,l + nh,l,C . (The symbol nh,l occur in
Ch and n′h,l occurs in C

′
h.) The other parameters of C ′ are the same as those of C.

In this lemma, the context C directly calls the hash functions hl, while the context C ′ performs
the same hash evaluations by calling the hash oracles defined by Q′h inside C ′h. (The context C ′
cannot call hl directly, because it does not have access to the keys hkh,l. The context C cannot
call the hash oracles of Ch because it is hash-well-formed, so it does not use the channels ch3,l
and ch4,l.)

5.3 Replication
When we compose a key exchange protocol S1 with a protocol S2 that uses the key, we typically
run n sessions of the key exchange, and each session produces a fresh key. Therefore, we need to
consider n independent sessions of S2, each with a different fresh key. In this section, we show
how to infer security properties (indistinguishability, secrecy, correspondences) of a protocol that
runs n independent sessions from the properties of a protocol that runs a single session. (In the
vocabulary of [16], we consider that the protocol that uses the key is single-session reducible,
and we obtain results similar to theirs for the reduction to a single session [16, Appendix B], but
in the context of CryptoVerif.)

Let us consider a protocol Q that runs a single session. We can model a protocol that runs
n sessions of Q by adding a replication at the top of Q: !i≤nQ. Then all variables defined in
Q implicitly have one more index, i, because they are defined under !i≤n. That allows us to
distinguish the variables used in different sessions. However, this is not sufficient: we want the
adversary to be able to know to (resp. from) which session it sends (resp. receives) messages, so
we add the replication index i to the channels of inputs and outputs in Q. Similarly, we can add
the replication index i as argument of events in Q, to be able to relate events that belong to the
same session. Considering the process Sb2 of Example 1, that yields:

!i≤nc2[i]();new k : T ; c3[i]〈〉;

(c4[i]((m0 : Tm,m1 : Tm));new r : Tr; event send(i,mb); c5[i]〈enc(mb, k, r)〉
| c6[i](y : bitstring); let i⊥(m) = dec(y, k) in event recv(i,m))

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 15

and this process satisfies the correspondence

inj-event(recv(i,m)) =⇒ inj-event(send(i,m))

that is, each execution of recv(i,m) is preceded by a distinct execution of send(i,m), up to cases
of negligible probability. In this process, partnered sessions (which use the same key k) have
the same replication index i. However, this property is not preserved by composition: in a key
exchange protocol, partnered sessions are typically the ones that exchange the same messages,
and they do not necessarily have the same replication index. This will also be true in the
composed system. Partnered sessions can then be determined by a session identifier computed
from the messages exchanged in the protocol, as in [1, 7, 16, 19]: partnered sessions have the
same session identifier. In the composition, the session identifier will be determined by the key
exchange protocol. Therefore, we consider that the protocol that uses the key receives the session
identifier in a variable x, as follows:

!i≤nc2[i](x : Tsid);new k : T ; c3[i]〈〉;

(c4[i]((m0 : Tm,m1 : Tm));new r : Tr; event send(x,mb); c5[i]〈enc(mb, k, r)〉
| c6[i](y : bitstring); let i⊥(m) = dec(y, k) in event recv(x,m))

We use the session identifier x instead of the replication index i in events. The only missing
ingredient in the above process is that the same session identifier should never be used twice,
to avoid confusions between several sessions. The find construct allows us to verify that, by
comparing x to the previously received session identifiers. This explanation leads us to the
following definition:

Definition 6. Given a process P , and replication indices ĩ and a variable x that do not occur
in P , we write AddIdxSid(̃i ≤ ñ, x : Tsid, P) for the process obtained by adding indices ĩ at the
beginning of each sequence of indices of channels in inputs and outputs and at the beginning of
the indices of each variable defined in P (implicit when current replication indices are omitted),
adding variable x at the beginning of each event and at the beginning of each insertion in a table,
and adding the test = x at the beginning of each get in a table.

Given a correspondence corr , we write AddSid(Tsid, corr) for the correspondence obtained by
choosing a fresh variable x of type Tsid and adding it at the beginning of each event in corr .

When Q is of the form Q = c();P and the channels c and c′ and the replication indices ĩ do
not occur in P , we define

AddReplSid(̃i ≤ ñ, c′, Tsid, Q) = !̃i≤ñc′ [̃i](x : Tsid);

find ũ = ĩ′ ≤ ñ suchthat defined(x[̃i′], x′ [̃i′]) ∧ x = x[̃i′] then yield else

let x′ = cst in AddIdxSid(̃i ≤ ñ, x : Tsid, P)

where x, x′, and ũ are fresh variables.

The process AddReplSid(̃i ≤ ñ, c′, Tsid, Q) is the replicated version of process Q = c();P : it
corresponds to ñ copies of Q indexed by ĩ ≤ ñ, as shown by the replication !̃i≤ñ. However, it
additionally manages the session identifier and replication indices as detailed in the explanation
above. The first input in AddReplSid(̃i ≤ ñ, c′, Tsid, Q) receives the session identifier x, the
subsequent find checks that the same x is never used twice, so that there is a bijection between
the value of x and the replication indices ĩ. (When the received session identifier x is equal
to a previous one x[̃i′] with which P was run, it just executes yield, which returns control to

RR n° 9171

16 Bruno Blanchet

the adversary. We record that P is run in session ĩ by defining the variable x′ [̃i] as a constant
value cst. The find requires that x′ [̃i′] be defined, which means that P was run in session ĩ′.
In particular, ĩ′ 6= ĩ, because x′ [̃i] is not defined yet when the find is executed.) Finally, the
process P that follows the input is executed, with the appropriate additions of the replication
indices ĩ or the session identifier x to channels, variables, events, and tables, as defined by
AddIdxSid(̃i ≤ ñ, x : Tsid, P).

Lemmas 5 and 6 below show that indistinguishability, secrecy, and correspondence properties
are preserved by adding a replication. The hash oracles, when present, are left outside the
replication.

Lemma 5. Suppose that V ∩ var(C ′h) = ∅, Q = c();P , Q′ = c();P ′, Q and Q′ are hash-well-
formed and do not contain events, Q! = AddReplSid(̃i ≤ ñ, c′, Tsid, Q), and Q′! = AddReplSid(̃i ≤
ñ, c′, Tsid, Q

′). If C ′h[Q] ≈Vp C ′h[Q
′], then Ch[Q!] ≈Vp′ Ch[Q

′
!] where p

′(C, tD) =
∏
ñ × p(C ′, tD)

and the context C ′ runs in time at most tC + (
∏
ñ− 1)×max(tQ, tQ′), calls the l-th hash oracle

at most n′h,l = nh,l + (
∏
ñ− 1)×max(nh,l,Q, nh,l,Q′) times where C calls the l-th hash oracle at

most nh,l times, and the other parameters of C ′ are the same as those of C.

Lemma 6. Suppose that V ∩ var(C ′h) = ∅, Q is a hash-well-formed process, and Q! =

AddReplSid(̃i ≤ ñ, c′, Tsid, Q).

1. If C ′h[Q] preserves the secrecy of x with public variables V up to probability p with x /∈
var(C ′h) and Q does not contain event_abort, then Ch[Q!] preserves the secrecy of x with
public variables V up to probability p′; and

2. if C ′h[Q] satisfies the correspondence corr with public variables V up to probability p, then
Ch[Q!] satisfies the correspondence AddSid(Tsid, corr) with public variables V up to proba-
bility p′;

where p′(C) =
∏
ñ× p(C ′) and the context C ′ runs in time at most tC + (

∏
ñ− 1)tQ, calls the

l-th hash oracle at most n′h,l = nh,l + (
∏
ñ− 1)nh,l,Q times where C calls the l-th hash oracle at

most nh,l times, and the other parameters of C ′ are the same as those of C.

Example 2. Letting Sb2! = AddReplSid(i ≤ n, c′2, Tsid, S
b
2), by Lemma 5, we obtain S0

2! ≈p′1 S
1
2!

and by Lemma 6, Sb2! satisfies the correspondence

inj-event(recv(x,m)) =⇒ inj-event(send(x,m))

up to probability p′2 without public variables, where p′1(C, tD) = n×p1(C ′, tD), p′2(C) = n×p2(C ′),
and C ′ runs in time at most tC + (n − 1) × tSb

2
and its other parameters are the same as those

of C. (Note that tS0
2
= tS1

2
.)

5.4 Main Composition Theorem
Finally, we obtain our main composition theorem. We write P{M/x} for the process obtained
from P by substituting M for x. We denote by C + tD a context that runs in time at most
tC + tD and such that the other parameters of C + tD are the same as those of C.

Theorem 2 (Main composition theorem). Let C be any context with two holes, with replications
!̃i≤ñ above the first hole and !̃i

′≤ñ′ above the second hole and without event_abort. Let Q1A

and Q1B be processes without event_abort. Let k, kA, kB be variables of type T . Let

Q1 = C[event eA(sid(m̃sgA), kA, ĩ); let k′A = kA in cA [̃i]〈MA〉;Q1A,

event eB(sid(m̃sgB), kB); cB [̃i
′]〈MB〉;Q1B]

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 17

Q2 = c1();new k : T ; c2〈〉; (Q2A | Q2B)

S1 = Ch[Q1]

S2 = C ′h[AddReplSid(̃i ≤ ñ, c′1, Tsid, Q2)]

where Q1 and Q2 are hash-well-formed; m̃sgA is a sequence of variables defined in C above the
first hole and input or output by C above the first hole or by the output cA [̃i]〈MA〉; m̃sgB is a
sequence of variables input or output by C above the second hole; sid is a function that takes
a sequence of messages and returns a session identifier of type Tsid; C, Q1A, Q1B, Q2A, and
Q2B make all their inputs and outputs on pairwise distinct channels with indices the current
replication indices; cA, cB , c1, c′1, c2, k′A, eA, eB do not occur elsewhere in S1, S2; S1 and S2 have
no common variable, no common channel, no common event, and no common table; S1 and S2

do not contain newChannel; and there is no defined condition in Q2.
Let Q′2A = AddIdxSid(̃i ≤ ñ, x : Tsid, Q2A) and Q′2B = AddIdxSid(̃i′ ≤ ñ′, x : Tsid, Q2B). Let

c′A, c
′
B be fresh channels. Let

Qcomposed =

C[event eA(sid(m̃sgA), kA, ĩ); c
′
A [̃i]〈MA〉; (Q1A | Q′2A{kA/k, sid(m̃sgA)/x}),

event eB(sid(m̃sgB), kB); c
′
B [̃i
′]〈MB〉; (Q1B | Q′2B{kB/k, sid(m̃sgB)/x})]

Scomposed = C ′′h [Qcomposed]

Let S◦composed be obtained from Scomposed by removing all events of S1.
Let t1 = tC +

∏
ñ× (tMA

+ tQ1A
) +

∏
ñ′ × (tMB

+ tQ1B
) be an upper bound on the runtime

of Q1, t2 =
∏
ñ × tQ2A

+
∏
ñ′ × tQ2B

be an upper bound on the runtime of Q′2A and Q′2B
in Qcomposed , nh,l,1 = nh,l,C +

∏
ñ × (nh,l,MA

+ nh,l,Q1A
) +

∏
ñ′ × (nh,l,MB

+ nh,l,Q1B
), and

nh,l,2 =
∏
ñ× nh,l,Q2A

+
∏
ñ′ × nh,l,Q2B

.

1. If S1 preserves the secrecy of k′A with public variables V (V ⊆ var(S1)\({kA, k′A}∪var(Ch)))
up to probability p and satisfies the correspondences

inj-event(eB(sid , k)) =⇒ inj-event(eA(sid , k, ĩ)) (2)

event(eA(sid , k1, ĩ1)) ∧ event(eA(sid , k2, ĩ2)) =⇒ ĩ1 = ĩ2 (3)

with public variables V ∪{k′A} up to probabilities p′ and p′′ respectively, then there exists f
such that, for any V1 ⊆ V ∪ (var(Q2)\ ({k}∪ var(C ′h))), we have S◦composed

∼→
V1,V2

f,p3 S2 where
V2 = V1 ∩ var(Q2); p3(C3, tD) = p(C ′3 + tD) + p′(C ′3, tD) + p′′(C ′3, tD) and, assuming C3

calls the l-th hash oracle n′′h,l times, the context C ′3 runs in time at most tC3
+ t2, calls the

l-th hash oracle at most nh,l = n′′h,l+nh,l,2 times, and its other parameters are the same as
those of C3; f(C3) contains the same events as C3, runs in time at most tC3 + t1, calls the
l-th hash oracle at most n′h,l = n′′h,l+nh,l,1 times, and its other parameters are the same as
those of C3; if y ∈ V2, then f is secrecy-preserving for y 7→ (y, fsec) where fsec(C3) has the
same parameters as f(C3).

2. There exists an evaluation context C ′4 such that, for any V ′ ⊆ var(Scomposed) \ ({k′A} ∪
var(C ′′h)), we have Scomposed ≈V

′

0 C ′4[S1] and C ′4 is acceptable for S1 with public variables
k′A, kB, contains the events of S2, runs in time at most t2, calls the l-th hash oracle at most
nh,l,2 times, so nh,l = n′′h,l + nh,l,2, and does not alter the other parameters.

Moreover, f is independent of the details of Q2A and Q2B: it depends only on the channels
of Q2B, whether they are for input or for output, under which replications and with which type
of data; C ′4 is independent of Q1A and Q1B.

RR n° 9171

18 Bruno Blanchet

S1:

A B

kA kB

S2: replicated version of
new k : T

A
Q2A

B
Q2B

Scomposed :

A B

A
Q2A

B
Q2B

kA kB

(S1 may run several sessions of A and B.)

Figure 4: Illustration of Theorem 2

In this theorem, illustrated in Figure 4, the system S1 is a key exchange protocol that provides
a key to two participants: A executes event eA and stores the key in kA and k′A, and B executes
event eB and stores the key in kB . The system S2 creates a fresh key, and also involves two
participants: A executes Q2A and B executes Q2B . The composed system Scomposed combines
S1 and S2 so that A executes Q2A with the key kA and B executes Q2B with the key kB , after
the key exchange S1 provides the key. These systems may share hash oracles, included in Ch, C ′h,
and C ′′h . (These contexts use the same hash functions. The hash oracles are omitted in Figure 4.)

This theorem requires the key exchange to satisfy the following security properties. It must
guarantee the secrecy of the key obtained by A, k′A, and injective authentication of A and B, as
formalized by the correspondence (2). This correspondence means that each execution of event
eB(m̃sg , k) is preceded by a distinct execution of event eA(m̃sg , k, ĩ) for some ĩ, except in cases
of probability at most p′. These two properties imply secrecy of the obtained key on B’s side,
since all keys that B has are also keys that A has. The correspondence (3) means that the event
eA is executed at most once for each session identifier sid , since all such executions must have
the same replication indices ĩ. It allows us to use the session identifier sid as argument x to
identify the session in the system S2. It is easy to prove in practice, both using CryptoVerif and
manually: it is sufficient to notice that sid contains fresh randomness in each execution of eA,
for instance a nonce or an ephemeral public key.

The assumption that S1 and S2 do not contain newChannel guarantees that all channels are
public. It is not a limitation in practice, because CryptoVerif does not support newChannel
in protocol specifications; newChannel is used only in manual proofs. We require that the
inputs and outputs use distinct channels with indices the current replication indices, to identify
channels unambiguously. The assumption that there is no defined condition in Q2 facilitates a
renumbering of variables: the variables of Q2B have indices ĩ in S2 but ĩ′ in Scomposed . It is not
a strong limitation since most usages of find with defined conditions can also be encoded using
tables, and tables are not affected by the renumbering of variables.

Like Theorem 1, the first conclusion of Theorem 2 allows us to transfer security properties
proved on S2 to Scomposed , this time by relying on Section 5.1. We cannot prove indistinguishabil-
ity here, because the variables of Q2B are renumbered as mentioned above: since these variables

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 19

A B
n fresh noncen←−kA fresh key

event eA((n,m2), kA, i) m2−−→ event eB((n,m2), kA)

where m2 = enc(concat(kA, n), klt, r
′).

Figure 5: A simple key exchange protocol

may be public, the renumbering may affect the context as well. The second conclusion allows us
to transfer security properties proved on S1 to Scomposed by Lemma 1, provided they are proved
with public variables including k′A and kB , since C ′4 uses k′A and kB .

In our TLS case study, we apply this theorem to perform most compositions: the handshakes
with the record protocol, using a traffic secret as common key, as well as the handshake with
pre-shared key with itself and the initial handshake with the handshake with pre-shared key,
using the pre-shared key as common key. However, this theorem does not apply for the client
early traffic secret cets, because of the possibility of replays. (Theorem 3 deals with this case.)
The next example illustrates the theorem on a simpler case.

Example 3. Let us suppose that there are no hash oracles and consider the following very simple
key exchange protocol, also shown in Figure 5:

S1 = c7();new klt : T ; c8〈〉;
((!iA≤nAc9[iA](n : Tnonce);new kA : T ;new r′ : Tr; let m2 = enc(concat(kA, n), klt, r

′) in

event eA((n,m2), kA, iA); let k′A = kA in cA[iA]〈m2〉)
|

(!iB≤nBc10[iB]();new n : Tnonce; c11[iB]〈n〉;
c12[iB](m2 : bitstring); let i⊥(concat(kB ,=n)) = dec(m2, klt) in

event eB((n,m2), kB); cB [iB]〈〉))

After an input on channel c7, this process generates a long-term key klt shared between A and
B, returns control to the adversary by outputting on channel c8, and runs the participants A
and B in parallel. The participant B (at the bottom) is run at most nB times. It waits for an
input on channel c10[iB], generates a fresh nonce n and sends it to A on channel c11[iB]. If the
session runs normally, the adversary forwards this nonce to channel c9[iA] for some iA, so that
A receives it, generates a fresh key kA, and computes the message m2 that is the encryption of
kA and n under klt. (The function concat is concatenation.) Then, A executes the event eA to
record that it accepts the key kA, in a session of session identifier (n,m2). (In this example, the
function sid is the pair.) It stores kA in k′A and sends message m2 on channel cA[iA]. If the
session runs normally, the adversary forwards this message to channel c12[iB], so that B receives
it, decrypts it, and in case of success, executes event eB to record that it terminates with key
kB = kA, in a session of session identifier (n,m2).

Assuming that (enc, dec) is an authenticated encryption scheme, CryptoVerif shows that S1

preserves the secrecy of k′A up to probability p and satisfies (2) and (3) with public variables
k′A, kB up to probabilities p′ and p′′ respectively, which depend on the probability of breaking the
encryption scheme.

We compose S1 with the system Sb2! of Example 2. The syntactic assumptions are easy to

RR n° 9171

20 Bruno Blanchet

check, and the composed system is

Sbcomposed = c7();new klt : T ; c8〈〉;
((!iA≤nAc9[iA](n : Tnonce);new kA : T ;new r′ : Tr; let m2 = enc(concat(kA, n), klt, r

′) in

event eA((n,m2), kA, iA); c′A[iA]〈m2〉;

c4[iA]((m0 : Tm,m1 : Tm));new r : Tr; event send((n,m2),mb); c5[iA]〈enc(mb, kA, r)〉)
|

(!iB≤nBc10[iB]();new n : Tnonce; c11[iB]〈n〉;
c12[iB](m2 : bitstring); let i⊥(concat(kB ,=n)) = dec(m2, klt) in

event eB((n,m2), kB); c′B [iB]〈〉;
c6[iB](y : bitstring); let m = dec(y, kB) in event recv((n,m2),m)))

The composed protocol runs the key exchange as before, then it sends mb encrypted, as in S2.
However, in A, it executes event send with session identifier (n,m2) and encrypts with key kA.
In B, it executes event recv with session identifier (n,m2) and decrypts with key kB. These
values are provided by the key exchange protocol. (The processes Q1A and Q1B are the process 0
that does nothing, so we simply omit them.)

Let Sb,◦composed be obtained from Sbcomposed by removing events eA and eB. Let t1 = t2 =

nAtenc+nBtdec. By Theorem 2, item 1), for b ∈ {0, 1}, there exists f such that Sb,◦composed
∼→
∅,∅
f,p3 S

b
2!

where p3(C3, tD) = p(C ′3 + tD) + p′(C ′3, tD) + p′′(C ′3, tD), C ′3 runs in time at most tC3
+ t2,

f(C3) runs in time at most tC3 + t1, and their other parameters are the same as those of C3.
Since f does not depend on the details of Sb2, f does not depend on b. Since S0

2! ≈p′1 S1
2!,

by Lemma 2, S0,◦
composed ≈p4 S

1,◦
composed where p4(C, tD) = 2p3(C, tD) + p′1(f(C), tD). Since Sb2!

satisfies (1) up to probability p′2, by Lemma 3, Sb,◦composed satisfies (1) up to probability p5(C) =
p3(C, tcorr) + p′2(f(C)), and so does Sbcomposed .

By Theorem 2, item 2), there exist evaluation contexts C ′b4 such that Sbcomposed ≈0 C
′b
4 [S1]

and C ′b4 is acceptable for S1 with public variables k′A, kB, runs in time at most t2, and does not
alter the other parameters. Since S1 satisfies (2) and (3) with public variables k′A, kB up to
probabilities p′ and p′′ respectively, by Lemma 1, C ′b4 [S1] and Sbcomposed satisfy (2) and (3) up to
probabilities p′1(C) = p′(C[C ′b4]) and p′′1(C) = p′′(C[C ′b4]) respectively. Therefore, we transferred
security properties from S1 and Sb2! to the composed system.

The properties required on S1 are closely related to the security of a key exchange protocol as
defined in CryptoVerif [11]. As in [11], we require secrecy of the key obtained by A and injective
authentication of A to B (2). The security of a key exchange includes mutual authentication,
which is not needed for the composition. The correspondence (3) does not appear in [11].
Combined with (2), it implies that sessions that share the same session identifier have the same
key:

event(eA(sid , kA, ĩ1)) ∧ event(eB(sid , kB)) =⇒ kA = kB (4)

a property included in the definition of a key exchange in CryptoVerif [11]. Indeed, if eA(sid , kA,
ĩ1) and eB(sid , kB) are executed, then eA(sid , kB , ĩ2) is also executed for some ĩ2 by (2), which
implies ĩ1 = ĩ2 by (3), so the two events eA(sid , kA, ĩ1) and eA(sid , kB , ĩ2) are actually the same
event, so kA = kB . The converse is not true in general, because (2) and (4) put no constraints
in case event eB is not executed with the considered session identifier.

These properties are also closely related to the properties used in previous composition re-
sults [16, 27, 29]. These results require key secrecy, as well as partnering or match security,

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 21

which provides guarantees similar to (2) and (3). In particular, [16, 29] require a public session
matching algorithm, that is, the adversary knows which sessions are partnered. We also have
this property: sessions are partnered when they have the same session identifier, and the session
identifier is computed from public messages m̃sgA and m̃sgB by the function sid. This property
is relaxed in [27]: they allow to use keys of early stages (which are virtually revealed) in the
session matching. In TLS 1.3, the handshake is encrypted, and the session matching should be
done on the plaintext, so the handshake keys are indeed needed for the session matching. In the
model we consider, instead of encrypting the handshake, the handshake keys are given to the
adversary, so that it can encrypt and decrypt messages. The session matching can then be done
with public data.

However, the required properties still differ from [16, 27, 29] in their presentation. We make
explicit the distinction between the two participants of the protocol, and (3) requires that A
executes at most one session with a given session identifier. By (2), we obtain that B also executes
at most one session with a given identifier. In contrast, [16,27,29] require that there are at most
two sessions with the same identifier, without distinguishing A and B. The correspondence (2)
guarantees that these two sessions have the same key, which is also required by [16,27,29].

Our definition of the key exchange protocol S1 allows much flexibility. In contrast to [16,
27, 29], we do not assume that the key exchange protocol is a public-key protocol. In TLS 1.3,
the handshake with pre-shared key indeed relies on a shared key, and may not need a long-
term public key. We encode “corrupt” queries, used to corrupt long-term keys, for instance
to model forward secrecy, inside the context C. That allows us to deal with protocols that
satisfy forward secrecy or not, without explicit distinction, in contrast to what [16, 27, 29] do.
That also allows us to support keys that are forward secret only from a certain stage, as well
as temporary keys, used in several sessions but not leaked by “corrupt” queries because their
lifetime is short, as in the multi-stage framework of [27, 29]. As in [27, 29], the key exchange
may continue running after accepting a key: it may send messages MA and MB and execute
Q1A and Q1B . We allow composition with keys that are established before the last key exchange
message, provided they are not used in the key exchange protocol. However, we cannot perform
test queries on a stage-i key and still use it in the key exchange protocol; while [27, 29] allow
that, they do not allow composition for such keys. (In their vocabulary, these keys are not final.)
As in [27], the communication partner does not need to be known at the start of the protocol.
Finally, we support key exchange protocols that guarantee mutual authentication, unilateral
authentication, or no authentication, as [27,29]. This point may seem counter-intuitive, since (2)
requires unilateral authentication. However, the security properties are obviously proved only
when the partner is honest. Therefore, the system S1 executes the events eA, eB and stores the
key in k′A only when the partner is honest. (That can be tested using find or tables when the
partner is not authenticated.) Then, the correspondence (2) holds, and we can apply Theorem 2.
When the partner is dishonest, we simply leak the key. Since no security property is desired in
this case, we can trivially compose with any protocol that uses this key. This situation appears
in TLS, when the client is not authenticated. In this case, the server considers that its partner
is honest when the Diffie-Hellman share it receives has been sent by the honest client. This
condition replaces client authentication and allows CryptoVerif to prove (2).

We give a proof sketch of Theorem 2 here. The full proof appears in Appendix A.9.

Proof sketch. Let

G1 = C ′′h [C[event eA(sid(m̃sgA), kA, ĩ);

find ũ′′ = ĩ′′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′′], k[̃i′′′]) ∧

sid(m̃sgA) = sid(m̃sgA [̃i
′′′]) then yield else

new k : T ; c′A [̃i]〈MA〉; (Q1A | Q′2A{sid(m̃sgA)/x}),
RR n° 9171

22 Bruno Blanchet

event eB(sid(m̃sgB), kB);

find ũ = ĩ′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′], k[̃i′′]) ∧

sid(m̃sgA [̃i
′′]) = sid(m̃sgB) ∧ fresh(̃i′′, ũ) then

c′B [̃i
′]〈MB〉; (Q1B | Q′2B{k[ũ]/k, sid(m̃sgB)/x})]]

where fresh(̃i′′, ũ) = find ũ′ = ĩ′′′ ≤ ñ′ suchthat defined(ũ[̃i′′′])∧ũ[̃i′′′] = ĩ′′ then false else true.
We have fresh(̃i′′, ũ) when ĩ′′ was not used before, that is, it does not occur in the array ũ. The
game G1 runs the key exchange protocol followed by the protocol that uses the key, much like
Scomposed . However, in the participant A (after event eA), it does not run the protocol that uses
the key when the same session identifier has already been seen in a previous session (find ũ′′),
and it generates a fresh key k instead of using the key provided by the key exchange protocol
(new k : T). In the participant B (after event eB), it gets the key that has been generated in
A with the same session identifier (find ũ), and requires that the key of a given session of A is
reused at most once by B (condition fresh(̃i′′, ũ)).

Let Q′2 = AddReplSid(̃i ≤ ñ, c′1, Tsid, Q2), so that S2 = C ′h[Q
′
2]. The first step of the proof

consists in showing that G1
∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C5[Q

′
2]] for some evaluation context C5. This is

proved by establishing a correspondence between the traces of these two games. In this step, we
renumber the variables of Q′2B , replacing indices ã ≤ ñ′ in G1 with ũ[ã] ≤ ñ in C ′′h [C5[Q

′
2]]. (The

condition fresh(̃i′′, ũ) guarantees that ũ never takes twice the same value, hence the function from
ã to ũ[ã] is injective. We exclude defined conditions in Q2 to facilitate this renumbering.) Since
some of these variables may be public, this renumbering may also affect the context around G1

and C ′′h [C5[Q
′
2]]. That is why these two games are generally not indistinguishable.

Let G◦1 (resp. C◦5) be obtained from G1 (resp. C5) by removing all events of S1. By
Appendix A.6, Lemma 11, we have

G◦1
∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C

◦
5 [Q

′
2]] (5)

By Lemma 4, there exists an evaluation context C ′5 such that

C ′′h [C
◦
5 [Q

′
2]] ≈

V1∪{ũ}
0 C ′5[C

′
h[Q
′
2]] = C ′5[S2] (6)

where the context C ′5 runs in time at most tC◦5 ≤ t1, calls the l-th hash oracle in C ′h at most
nh,l,C◦5 ≤ nh,l,1 times, so n′h,l = n′′h,l + nh,l,1, and its other parameters are the same as those of
C◦5 .

The proof that S◦composed
∼→
V1,V2

f,p3 S2 then proceeds in two main steps:

1. First, we write the process G1 above as an evaluation context around

S′1 = Ch[C[event eA(sid(m̃sgA), kA, ĩ);new k′A : T ; c′′A [̃i]〈(k
′
A,MA)〉;Q1A,

event eB(sid(m̃sgB), kB); cB [̃i
′]〈MB〉;Q1B]]

Let S′′1 be obtained by replacing new k′A : T with let k′A = kA in in S′1. Let G2 be obtained
by replacing new k : T with let k = kA in in G1. Let G◦2, S′1

◦, and S′′1
◦ be obtained from

G2, S′1, and S′′1 respectively by removing all events of S1. Since S1 preserves the secrecy of
k′A with public variables V (kA, k′A /∈ V), S′1

◦ is indistinguishable from S′′1
◦ (Appendix A.3,

Lemma 9), so G◦1 is indistinguishable from G◦2.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 23

2. Second, we write G2 as an evaluation context around S1. Since S1 satisfies the correspon-
dences (2) and (3), so does G2, so we obtain that, up to a small probability, the find ũ′′

in G2 fails and the find ũ succeeds with k[ũ] = kB . From that, we show that G2 is in-
distinguishable from Scomposed , so G◦2 is indistinguishable from S◦composed (Appendix A.6,
Lemma 11).

We conclude that S◦composed
∼→
V1,V2

f,p3 S2 with f(C3) = f ′(C3)[C
′
5[]] by combining these results

with (5) and (6).
The proof that Scomposed ≈V

′

0 C ′4[S1] is easier. Since k′A and kB are public variables, the con-
text C ′4 can use them. Since m̃sgA and m̃sgB are sent on public channels, the context C ′4 also has
access to them. Therefore, it can execute Q′2A{k′A/k, sid(m̃sgA)/x} and Q′2B{kB/k, sid(m̃sgB)/x}
as the composed system does.

5.5 Non-injective Variant

The next theorem is a variant of Theorem 2 with non-injective authentication. In this case,
the process Q2B may be executed several times for each key. Previous work [16, 27, 29] did not
consider this case.

Theorem 3 (Non-injective variant). The conclusion of Theorem 2 still holds with the following
changes in the hypotheses: Q2 = c1();new k : T ; c2〈〉; (Q2A | !̃i

′≤ñ′Q2B), Q′2B = AddIdxSid(∅ ≤
∅, x : Tsid, Q2B) where the notation ∅ designates the empty sequence, and the correspondence

event(eB(sid , k)) =⇒ event(eA(sid , k, ĩ)) (7)

instead of (2).

In the theorem above, the system S1 satisfies non-injective authentication: the correspon-
dence (7) means that for each execution of eB(sid , k), there is an execution of eA(sid , k, ĩ).
However, event eB(sid , k) can be executed several times for each execution of eA(sid , k, ĩ). To
compensate for that, the process Q2B in Q2, inside the system S2, is replicated: it is under the
replication !̃i

′≤ñ′ , with the same indices as those above eB , so that it can also be executed several
times for each shared key k. In the construction of the composed system, in Q′2B , we do not
need to add replication indices to Q2B , since Q2B already contains the replication indices ĩ′ ≤ ñ′,
because Q2B is under the replication !̃i

′≤ñ′ . Hence, the construction of Q′2B from Q2B just adds
the session identifier x.

In our TLS case study, we use this theorem to compose the handshake with pre-shared key
with the record protocol using the client early traffic secret cets as common key. This theorem
is needed because, in case ClientHello messages are replayed, several sessions of the server
may obtain the same client early traffic secret, so the handshake does not guarantee injective
authentication.

6 Application to TLS 1.3

In this section, we sketch the application of our composition theorems in order to compose the
protocol pieces of TLS 1.3 as outlined in Figure 1. More details are given in Appendix B.2.
The composition theorems are generally easy to apply: their assumptions are either proved by
CryptoVerif or syntactic and easy to verify, and the composed protocol is syntactically built from
the two pieces that we compose. The TLS case study still presents two additional difficulties:

RR n° 9171

24 Bruno Blanchet

• We compose protocols recursively an arbitrary number of times, in case there are successive
handshakes with pre-shared keys or key updates in the record protocol, so we perform proofs
by induction.

• The secrecy of payload messages is expressed by the secrecy of a bit b in a process that
sends message mb encrypted. We translate that into an indistinguishability between the
process that sends m0 and the one that sends m1 (as S0

2 ≈p1 S1
2 in Example 1). Then we

perform compositions on these two processes and combine the obtained results in order to
prove secrecy of messages for composed processes.

The length of the composition proof is mostly due to the number of compositions that we
perform between the various protocol pieces and the number of properties that we prove about
these protocols.

In the composition, we first compose the record protocol with itself recursively by Theorem 1,
using the secrecy of the updated traffic secret, to show that the security properties of the record
protocol are preserved by key updates. We obtain a model of the record protocol that performs
at most m key updates, for any m. We perform similar compositions for the 0-RTT variants.
We put these protocols under replication by Lemmas 5 and 6, to model several sessions of the
record protocol with independent traffic secrets.

Second, we compose the handshake with pre-shared key with the record protocol, using secret
keys cats and sats, by Theorem 2. We also compose them with secret key cets, using Theorem 3
and the first 0-RTT variant of the record protocol, mentioned in Section 3, when the ClientHello
message is unaltered, and using Theorem 5 (shown in Appendix A.12) and the second 0-RTT
variant when the ClientHello message is altered. We also compose the obtained process with
itself recursively, using the resumption secret resumption_secret as pre-shared key in the next
handshake, by Theorem 2, and put it under replication by Lemmas 5 and 6. These compositions
yield processes that perform at most l successive handshakes with pre-shared key and m key
updates.

Third, we compose the initial handshake with the record protocol, using secret keys cats
and sats, by Theorem 2. We also compose the initial handshake with the process that runs
handshakes with pre-shared key, using the resumption secret resumption_secret as pre-shared
key, by Theorem 2.

In all these compositions, CryptoVerif proves all secrecy and correspondence properties re-
quired by the theorems. The composed protocol inherits security properties from the components
we compose. Therefore, these compositions allow us to infer security properties of the TLS proto-
col from properties of the handshakes and the record protocol. In particular, we obtain message
secrecy, message forward secrecy (with respect to the compromise of long-term client and server
keys), and injective message authentication for non-0-RTT application messages in both direc-
tions. For 0-RTT messages, since the handshake does not prevent replays for cets, we obtain
non-injective authentication instead of the injective one. The correspondence properties of the
handshakes are inherited by the composition and we also obtain secrecy of the exported master
secrets ems provided by the various handshakes.

7 Conclusion

This paper presents several composition theorems, to compose a protocol that provides a key
(e.g., a key exchange protocol) with a protocol that uses this key. These theorems rely on
the computational model of cryptography. They are expressed in the framework of the tool
CryptoVerif, so they are easily applicable when each protocol to compose is proved secure by

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 25

CryptoVerif. They provide great flexibility. In particular, they allow the composed protocols to
share hash oracles, and they support non-injective as well as injective authentication.

We apply these theorems to TLS 1.3. This is an important case study, which illustrates well
the power of our results. It allows us to prove security for any number of successive handshakes
and key updates, a result that would be out of scope of CryptoVerif without composition, because
this tool does not support loops. However, our theorems are of much more general interest, and
we expect them to be applied to other protocols in the future. For instance, they apply as soon
as a key exchange protocol provides a key to a cleanly separated transport protocol, a situation
desirable in the design of many protocols.

Our results are specific to the CryptoVerif tool. We see no obstacle to recasting them in the
framework of other tools that perform proofs in the computational model, such as EasyCrypt [5,
6]. However, although the general approach would be the same, a lot of our work would probably
have to be redone to adapt the result to the language and formalism of each new tool. The
assumptions of our theorems are either proved by CryptoVerif or syntactic and easy to verify. If
desired, it would not be difficult to automate their verification and the application of the theorems
in CryptoVerif. However, automating the application to TLS 1.3 would be more complicated,
due to the additional difficulties mentioned at the beginning of Section 6. An interesting future
work would also be to prove composition results with a key exchange protocol that already uses
the key, for instance for key confirmation, in the line of [15].

Acknowledgements This work was partly supported by ANR TECAP (decision number
ANR-17-CE39-0004-03) and H2020 NEXTLEAP.

References
[1] M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange

in the three-party setting. IEE Proceedings Information Security, 153(1):27–39, Mar. 2006.

[2] M. Arapinis, V. Cheval, and S. Delaune. Verifying privacy-type properties in a modular
way. In CSF’12, pages 95–109. IEEE, June 2012.

[3] M. Arapinis, V. Cheval, and S. Delaune. Composing security protocols: from confidentiality
to privacy. In R. Focardi and A. Myers, editors, POST’15, volume 9036 of LNCS, pages
324–343. Springer, Apr. 2015.

[4] G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt. Mind the gap: Modular machine-
checked proofs of one-round key exchange protocols. In E. Oswald and M. Fischlin, edi-
tors, Advances in Cryptology – EUROCRYPT 2015, volume 9057 of LNCS, pages 689–718.
Springer, Apr. 2015.

[5] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-Y. Strub. EasyCrypt: A
tutorial. In A. Aldini, J. Lopez, and F. Martinelli, editors, Foundations of Security Analysis
and Design VII, volume 8604 of LNCS, pages 146–166. Springer, 2014.

[6] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security proofs
for the working cryptographer. In P. Rogaway, editor, Advances in Cryptology – CRYPTO
2011, volume 6841 of LNCS, pages 71–90. Springer, Aug. 2011.

[7] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In B. Preneel, editor, Eurocrypt’00, volume 1807 of LNCS, pages 139–
155. Springer, 2000.

RR n° 9171

26 Bruno Blanchet

[8] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, Eurocrypt’06, volume 4004 of LNCS, pages
409–426. Springer, May 2006. Extended version available at http://ia.cr/2004/331.

[9] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference implementations
for the TLS 1.3 standard candidate. In S&P’17, pages 483–503. IEEE, May 2017.

[10] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference implementations
for the TLS 1.3 standard candidate. Research Report RR-9040, Inria, May 2017. Available at
https://hal.inria.fr/hal-01528752. CryptoVerif scripts available at https://github.
com/Inria-Prosecco/reftls/tree/master/cv.

[11] B. Blanchet. Computationally sound mechanized proofs of correspondence assertions. In
CSF’07, pages 97–111. IEEE, July 2007. Extended version available as ePrint Report
2007/128, http://ia.cr/2007/128.

[12] B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, Oct.–Dec. 2008.

[13] B. Blanchet. Automatically verified mechanized proof of one-encryption key exchange. In
CSF’12, pages 325–339. IEEE, June 2012.

[14] B. Blanchet. CryptoVerif: A computationally-sound security protocol verifier. Available at
http://cryptoverif.inria.fr/cryptoverif.pdf, 2017.

[15] C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams. Less is more: relaxed
yet composable security notions for key exchange. International Journal of Information
Security, 12(4):267–297, Aug. 2013.

[16] C. Brzuska, M. Fischlin, B. Warinschi, and S. Williams. Composability of Bellare-Rogaway
key exchange protocol. In CCS’11, pages 51–62. ACM, 2011.

[17] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS’01, pages 136–145. IEEE, Oct. 2001. An updated version is available at Cryptology
ePrint Archive, http://ia.cr/2000/067.

[18] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authen-
tication and key exchange protocols. In S. Halevi and T. Rabin, editors, TCC’06, vol-
ume 3876 of LNCS, pages 380–403. Springer, Mar. 2006. Extended version available at
http://ia.cr/2004/334.

[19] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In B. Pfitzmann, editor, Eurocrypt’01, volume 2045 of LNCS, pages 453–
474. Springer, May 2001. Long version at https://ia.cr/2001/040.

[20] R. Canetti and T. Rabin. Universal composition with joint state. In D. Boneh, editor,
Crypto’03, volume 2729 of LNCS, pages 265–281. Springer, Aug. 2003.

[21] Ş. Ciobâcă and V. Cortier. Protocol composition for arbitrary primitives. In CSF’10, pages
322–336. IEEE, July 2010.

[22] V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in System
Design, 34(1):1–36, Feb. 2009.

Inria

http://ia.cr/2004/331
https://hal.inria.fr/hal-01528752
https://github.com/Inria-Prosecco/reftls/tree/master/cv
https://github.com/Inria-Prosecco/reftls/tree/master/cv
http://ia.cr/2007/128
http://cryptoverif.inria.fr/cryptoverif.pdf
http://ia.cr/2000/067
http://ia.cr/2004/334
https://ia.cr/2001/040

Composition Theorems for CryptoVerif and Application to TLS 1.3 27

[23] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL). ENTCS,
172:311–358, Apr. 2007.

[24] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound compositional
logic for key exchange protocols. In CSFW’06, pages 321–334. IEEE, July 2006.

[25] S. Delaune, S. Kremer, and O. Pereira. Simulation based security in the applied pi cal-
culus. In R. Kannan and K. Narayan Kumar, editors, FSTTCS’09, volume 4 of Leibniz
International Proceedings in Informatics, pages 169–180. Leibniz-Zentrum für Informatik,
Dec. 2009.

[26] S. Delaune, S. Kremer, and M. D. Ryan. Composition of password-based protocols. In
CSF’08, pages 239–251. IEEE, June 2008.

[27] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol candidates. In CCS’15, pages 1197–1210, 2015. Full version available
at https://ia.cr/2015/914.

[28] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS
1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint Archive, Report
2016/081, 2016. https://ia.cr/2016/081.

[29] M. Fischlin and F. Günther. Multi-stage key exchange and the case of
Google’s QUIC protocol. In CCS’14, pages 1193–1204, 2014. Full version
available at http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/
publications_1/fischlin-guenther-ccs2014.pdf.

[30] T. Groß and S. Mödersheim. Vertical protocol composition. In CSF’11, pages 235–250.
IEEE, June 2011.

[31] J. D. Guttman and F. J. T. Fábrega. Protocol independence through disjoint encryption.
In CSFW’00, pages 24–34. IEEE, July 2000.

[32] R. Küsters and M. Tuengerthal. Composition theorems without pre-established session
identifiers. In CCS’11, pages 41–50. ACM, 2011.

[33] S. Mödersheim and L. Viganò. Secure pseudonymous channels. In M. Backes and P. Ning,
editors, ESORICS’09, volume 5789 of LNCS, pages 337–354. Springer, Sept. 2009.

[34] S. Mödersheim and L. Viganò. Sufficient conditions for vertical composition of security
protocols. In AsiaCCS’14, pages 435–446. ACM, June 2014.

[35] E. Rescorla. The Transport Layer Security (TLS) protocol version 1.3, draft-ietf-tls-tls13-28.
https://tools.ietf.org/html/draft-ietf-tls-tls13-28, Mar. 2018.

[36] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, Nov. 2004. Available at http://ia.cr/2004/332.

[37] T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In S&P’93,
pages 178–194. IEEE, May 1993.

RR n° 9171

https://ia.cr/2015/914
https://ia.cr/2016/081
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlin-guenther-ccs2014.pdf
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlin-guenther-ccs2014.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-28
http://ia.cr/2004/332

28 Bruno Blanchet

Appendices

A Proofs

A.1 Characterization of Secrecy
Lemma 7 below gives a characterization of secrecy, which was used as a definition in versions of
CryptoVerif that did not include event_abort [11,12]. We use it as an intermediate step in our
proofs.

Lemma 7. Let Q be a process that does not contain event_abort. Let x and V be such that
x /∈ V . Let

R0
x = !is≤ns cs[is](ũ ≤ ñ); if defined(x[ũ]) then cs[is]〈x[ũ]〉

R1
x = !is≤ns cs[is](ũ ≤ ñ); if defined(x[ũ]) then

find us1 = is1 ≤ ns suchthat defined(y[is1], ũ[is1]) ∧ ũ[is1] = ũ

then cs[is]〈y[us1]〉

else new y : T ; cs[is]〈y〉

where the channel cs and the variables ũ, us1, y do not occur in Q and the variable x has type T
and is defined under replications !̃i≤ñ in Q. Let Q◦ be obtained from Q by removing all events.

If the process Q preserves the secrecy of x with public variables V up to probability p, then
Q◦ | R0

x ≈Vp′ Q◦ | R1
x, where p′(C, tD) = p(C + tD) and the context C + tD runs in time at most

tC + tD and its other parameters are the same as those of C.
Conversely, if Q◦ | R0

x ≈Vp′ Q◦ | R1
x, then Q preserves the secrecy of x with public variables V

up to probability p, where p(C) = p′(C, tD) and the distinguisher D is true when a certain event
has been executed.

The processes R0
x and R1

x allow the adversary to query the variable x: if the adversary sends
indices ũ on channel cs[is], and x[ũ] is defined, then the process R0

x replies with the value of x[ũ];
instead, the process R1

x replies with a random value. The find in R1
x makes sure that, if the

indices ũ have already been queried, the previous reply is sent; otherwise, a fresh random value
y is chosen in the type T of x by new y : T , and sent as a reply. Lemma 7 says that x is secret
with public variables V if and only if an adversary with access to variables V cannot distinguish
between Q◦ | R0

x and Q◦ | R1
x, that is, it cannot distinguish between the real values of x and

independent random values.

Proof. Let us first prove that, if Q preserves the secrecy of x with public variables V up to
probability p, then Q◦ | R0

x ≈Vp′ Q◦ | R1
x. Let C be an evaluation context acceptable for Q◦ | R0

x

and Q◦ | R1
x with public variables V . Let cs0 and c′s be channels that C does not use. We define

a context C ′ (C + tD in the statement of the lemma) that behaves like C except that:

• C ′ starts by outputting on channel cs0 and inputting on channel cs0, then it starts running
C.

• When C executes an event event e(M1, . . . ,Ml), C ′ collects the executed event in its global
state.

• When C terminates, C ′ recovers the sequence E of executed events from its global state,
and sends D(E , 0) on channel c′s.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 29

Such a context C ′ exists because it can be encoded as a probabilistic Turing machine adversary,
which can itself be encoded as a context in CryptoVerif [14, Section 2.8].

By definition of secrecy (Definition 2), when b is true, C ′[Q | Rx] behaves like C[Q◦ | R0
x] and

executes event S if and only if true is sent on channel c′s, that is D(E , 0) is true. (It is important
that Q never aborts, so that C ′[Q | Rx] can be programmed never to abort as well, and always
sends some message on c′s.) So

Pr[C[Q◦ | R0
x] : D] = Pr[C ′[Q | Rx] : S/b = true] .

Similarly, when b is false, C ′[Q | Rx] behaves like C[Q◦ | R1
x] and executes event S if and only if

true is sent on channel c′s, so

Pr[C[Q◦ | R1
x] : D] = Pr[C ′[Q | Rx] : S/b = false] .

Therefore,

Pr[C[Q◦ | R0
x] : D]− Pr[C[Q◦ | R1

x] : D]

= Pr[C ′[Q | Rx] : S/b = true]− Pr[C ′[Q | Rx] : S/b = false]

= Pr[C ′[Q | Rx] : S ∧ b = true]/Pr[b = true]− Pr[C ′[Q | Rx] : S ∧ b = false]/Pr[b = false]

= 2.Pr[C ′[Q | Rx] : S ∧ b = true]− 2.Pr[C ′[Q | Rx] : S ∧ b = false]

= Pr[C ′[Q | Rx] : S ∧ b = true] + 1/2− Pr[C ′[Q | Rx] : S ∧ b = true]−
(Pr[C ′[Q | Rx] : S ∧ b = false] + 1/2− Pr[C ′[Q | Rx] : S ∧ b = false])

noting that Pr[C ′[Q | Rx] : S∧ b = true] +Pr[C ′[Q | Rx] : S∧ b = true] = Pr[b = true] = 1/2 since
S or S is always executed in this particular game, and similarly for b = false. Then

Pr[C[Q◦ | R0
x] : D]− Pr[C[Q◦ | R1

x] : D]

= Pr[C ′[Q | Rx] : S ∧ b = true]− Pr[C ′[Q | Rx] : S ∧ b = true]−
Pr[C ′[Q | Rx] : S ∧ b = false] + Pr[C ′[Q | Rx] : S ∧ b = false]

= Pr[C ′[Q | Rx] : S]− Pr[C ′[Q | Rx] : S]
≤ p(C ′) = p′(C, tD)

In case Pr[C[Q◦ | R0
x] : D] − Pr[C[Q◦ | R1

x] : D] < 0, we consider the distinguisher ¬D that
returns the negation of D and obtain

Pr[C[Q◦ | R1
x] : D]− Pr[C[Q◦ | R0

x] : D] = Pr[C[Q◦ | R0
x] : ¬D]− Pr[C[Q◦ | R1

x] : ¬D]

≤ p′(C, tD)

so we conclude that

|Pr[C[Q◦ | R0
x] : D]− Pr[C[Q◦ | R1

x] : D]| ≤ p′(C, tD)

hence Q◦ | R0
x ≈p′ Q◦ | R1

x.
Conversely, let us prove that, if Q◦ | R0

x ≈Vp′ Q◦ | R1
x, then Q preserves the secrecy of x with

public variables V up to probability p, where p(C) = p′(C, tD). Let C be an evaluation context
acceptable for Q | Rx with public variables V that does not contain S nor S. We define a context
C ′ that behaves like C except that:

• When C sends a message on channel cs0, C ′ immediately replies on channel cs0.

RR n° 9171

30 Bruno Blanchet

• When C sends a bit b′ on channel c′s, if the bit b′ is true, then C ′ executes event_abort e,
else C ′ executes event_abort e′.

• When C terminates (without having sent a bit on c′s), C ′ chooses a random bit b′; if b′ is
true, then C ′ executes event_abort e, else C ′ executes event_abort e′.

Let D be the distinguisher such that D(E , a) is true if and only if E contains event e.
When b is true, C ′[Q◦ | R0

x] behaves like C[Q | Rx] and executes event e if and only if b′ = true
is sent on channel c′s (that is, b′ = b, that is, event S is executed) or C[Q | Rx] terminates without
having sent a bit on c′s and the random bit b′ is true. So

Pr[C ′[Q◦ | R0
x] : D] = Pr[C[Q | Rx] : S/b = true] + 1/2Pr[C[Q | Rx] : term./b = true] .

(We write “term.” for “terminates without having sent a bit on c′s”.) Similarly, when b is false,
C ′[Q◦ | R1

x] behaves like C[Q | Rx] and executes event e if and only if b′ = true is sent on channel
c′s (that is, b′ 6= b, that is, event S is executed) or C[Q | Rx] terminates without having sent a
bit on c′s and the random bit b′ is true, so

Pr[C ′[Q◦ | R1
x] : D] = Pr[C[Q | Rx] : S/b = false] + 1/2Pr[C[Q | Rx] : term./b = false] .

Therefore,

Pr[C ′[Q◦ | R0
x] : D]− Pr[C ′[Q◦ | R1

x] : D]

= Pr[C[Q | Rx] : S/b = true]− Pr[C[Q | Rx] : S/b = false] +

1/2Pr[C[Q | Rx] : term./b = true]− 1/2Pr[C[Q | Rx] : term./b = false]

= Pr[C[Q | Rx] : S ∧ b = true]/Pr[b = true]− Pr[C[Q | Rx] : S ∧ b = false]/Pr[b = false] +

1/2Pr[C[Q | Rx] : term. ∧ b = true]/Pr[b = true]−
1/2Pr[C[Q | Rx] : term. ∧ b = false]/Pr[b = false]

= 2.Pr[C[Q | Rx] : S ∧ b = true]− 2.Pr[C[Q | Rx] : S ∧ b = false] +

Pr[C[Q | Rx] : term. ∧ b = true]− Pr[C[Q | Rx] : term. ∧ b = false]

= Pr[C[Q | Rx] : S ∧ b = true] + 1/2− Pr[C[Q | Rx] : S ∧ b = true]−
(Pr[C[Q | Rx] : S ∧ b = false] + 1/2−Pr[C[Q | Rx] : S ∧ b = false])

noting that Pr[C[Q | Rx] : S∧ b = true]+Pr[C[Q | Rx] : S∧ b = true]+Pr[C[Q | Rx] : term.∧ b =
true] = Pr[b = true] = 1/2 and similarly for b = false. So

Pr[C ′[Q◦ | R0
x] :D]− Pr[C ′[Q◦ | R1

x] :D] = Pr[C[Q | Rx] : S]− Pr[C[Q | Rx] : S]

Hence

Pr[C[Q | Rx] : S]− Pr[C[Q | Rx] : S] = Pr[C ′[Q◦ | R0
x] :D]− Pr[C ′[Q◦ | R1

x] :D]

≤ p′(C ′, tD) = p(C ′)

All parameters (runtime, replication bounds, lengths of bitstrings) are the same for C ′ and for
C (up to very small runtimes) so we obtain Pr[C[Q | Rx] : S]− Pr[C[Q | Rx] : S] ≤ p(C).

A.2 Eliminating Private Communications
In this section, we prove indistinguishability results by eliminating communications on private
channels. Let us consider the following simple example. In the next lemma, we write P{M/x}
for the process obtained from P by substitutingM for x. Similarly, we will write Q0{frc/c, c ∈ S}
for the process obtained from Q0 by renaming the channel c into frc for each c ∈ S.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 31

Lemma 8. Let C be any context with replications !̃i≤ñ above the hole. Let P be a process,
without defined conditions on the variable x. We have

newChannel c; (C[c[̃i]〈M〉] | !̃i≤ñc[̃i](x : T);P) ≈V0 C[P{M/x}]

where the channel c does not occur elsewhere and V does not contain x.

The process on the left-hand side sends a message M on the private channel c[̃i], and upon
reception, the message is stored in x and P is executed. In the right-hand side, we shortcut the
private communication and directly execute P with M substituted for x.

Proof sketch. The proof consists in relating the traces of the two processes in the presence of an
evaluation context. It is easy to see that traces of the same probability match in the two processes,
since the output on channel c[ã] must be received by the input on c[ã]. After that communication,
the process P is then executed with the value ofM for x. (Terms are deterministic, so evaluating
M several times or none does not change the behavior of the processes.)

We could prove other indistinguishability results obtained by eliminating private communica-
tions, using the same proof technique. Proving a general lemma would yield complex notations,
so we prefer just referring to this proof technique when we need it in the following composition
results.

A.3 Consequence of Secrecy

The next lemma shows that, when a key k is secret, we can replace k with a fresh random key.
The adversary cannot distinguish the real definition of k from the random one. In this lemma,
we need to remove events, because events can leak information on k even when k is secret. That
allows us to apply the previous characterization of secrecy (Lemma 7).

Lemma 9. Let C be any context with replications !̃i≤ñ above the hole and without event_abort.
Let Q be a process without event_abort. Let C◦ and Q◦ be obtained from C and Q respectively
by removing all events. Let M be a term of type T . Suppose that k does not occur in C, M , M ′,
and Q. Let ck, c′k be channels that do not occur in C and Q. If C[let k = M in ck [̃i]〈M ′〉;Q]
preserves the secrecy of k with public variables V (k /∈ V) up to probability p, then

C◦[let k =M in c′k [̃i]〈(k,M
′)〉;Q◦] ≈Vp′ C◦[new k : T ; c′k [̃i]〈(k,M

′)〉;Q◦]

where p′(C ′, tD) = p(C ′ + tD).

Proof. Let G = C◦[let k = M in ck [̃i]〈M ′〉;Q◦]. Let cs be a channel that does not occur in C
and Q, k′ be a variable that does not occur in C and Q. By Lemma 7, since G does not contain
events, we have G | R0

x ≈Vp′ G | R1
x. Suppose that M ′ has type T ′. Let

C ′ = newChannel ck, cs;

(!̃i≤ñck [̃i](x : T ′); cs[encode(̃i)]〈̃i〉; cs[encode(̃i)](k′ : T); c′k [̃i]〈(k
′, x)〉 | [])

where ñ = n1, . . . , nm and encode(̃i) encodes the tuple ĩ ∈ [1, n1]× · · · × [1, nm] as a element of
[1, n1 × · · · × nm].

We have
C ′[G | R0

x] ≈V0 C◦[let k =M in c′k [̃i]〈(k,M
′)〉;Q◦]

RR n° 9171

32 Bruno Blanchet

by eliminating communications on ck, cs (Appendix A.2) and similarly

C ′[G | R1
x] ≈V0 C◦[new k : T ; c′k [̃i]〈(k,M

′)〉;Q◦]

since the variable k[̃i] is always defined when a message is sent on channel ck [̃i], so when R1
x tests

that definition, and furthermore, the indices ĩ are sent at most once on channel cs[. . .], so R1
x

always replies with a fresh random element of type T . Moreover, since G | R0
x ≈Vp′ G | R1

x, we
have

C ′[G | R0
x] ≈Vp′ C ′[G | R1

x]

(we ignore the small runtime of C ′), so we obtain the desired result by transitivity of ≈.

A.4 Proof for Section 4
Proof of Theorem 1. Let C◦ and Q◦1 be obtained from C and Q1 respectively, by removing all
events. Let C ′ = newChannel c2, c3; (C

◦[c2〈〉; c3(); c′1〈〉;Q◦1] | []). Let c′′1 be a fresh channel.
We have

C ′[S2] ≈V1
0 C◦[new k : T ; c′1〈〉; (Q◦1 | Q2)]

by eliminating communications on channels c2 and c3 (Appendix A.2)

≈V1
0 newChannel c′′1 ; (C

◦[new k : T ; c′′1〈k〉;Q◦1] | c′′1(k : T); c′1〈〉;Q2)
by eliminating communications on channel c′′1 (Appendix A.2)

≈V1

p′ newChannel c′′1 ; (C
◦[let k =M in c′′1〈k〉;Q◦1] | c′′1(k : T); c′1〈〉;Q2)

by Lemma 9 (We ignore the runtime of communication on c′′1 .)

≈V1
0 S◦composed by eliminating communications on channel c′′1 (Appendix A.2)

Let k′ be a fresh variable not in V ′. Let

C ′′ = newChannel c1; (c1(); if defined(k) then let k′ = k in c′1〈〉;Q2{k′/k} | [])

We have

C ′′[S1] ≈V
′

0 C[let k =M in if defined(k) then let k′ = k in c′1〈〉; (Q1 | Q2{k′/k})]
by eliminating communications on channel c1 (Appendix A.2)

≈V
′

0 C[let k =M in c′1〈〉; (Q1 | Q2)] = Scomposed

since the condition defined(k) is always true and k′ = k.

A.5 Proofs for Section 5.1
Proof of Lemma 2. Let C be any evaluation context acceptable for Q1 and Q2 with public vari-
ables V , and D be any distinguisher that runs in time at most tD. Let C ′ = f(C). The context
C is an evaluation context acceptable for Q′1 and Q′2 with public variables V ′. We have

|Pr[C[Q1] : D]− Pr[C[Q2] : D]|
≤ |Pr[C[Q1] : D]− Pr[C ′[Q′1] : D]|+ |Pr[C ′[Q′1] : D]− Pr[C ′[Q′2] : D]|+
|Pr[C ′[Q′2] : D]− Pr[C[Q2] : D]|

≤ p1(C, tD) + p′(f(C), tD) + p2(C, tD)

≤ p′′(C, tD)

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 33

Proof of Lemma 3. Let C be any evaluation context acceptable for Q with public variables V
that does not contain events used in corr . Let C ′ = f(C). The context C ′ is any evaluation
context acceptable for Q′ with public variables V ′ that does not contain events used in corr . We
have

Pr[C[Q] : ¬corr] ≤ |Pr[C[Q] : ¬corr]− Pr[C ′[Q′] : ¬corr]|+ Pr[C ′[Q′] : ¬corr]
≤ p(C, tcorr) + p′(f(C)) = p′′(C)

Lemma 10. If Q ∼→
V,V ′

f,p Q′, x ∈ V , x′ ∈ V ′, V ∩ var(Rx) = {x}, and for every C0 evaluation
context acceptable for Q | Rx with public variables V \ {x}, there exist C ′0 and C ′′0 such that
f(C0[[] | Rx]) = C ′0[C

′′
0 [] | Rx′], (var(C ′0) ∪ var(C ′′0)) ∩ var(Rx′) = ∅, vardef(C ′0) ∩ var(C ′′0) = ∅,

and C ′0 and C ′′0 do not use any common table, then f is secrecy-preserving for x′ 7→ (x, fsec) with
fsec(C0) = C ′0[C

′′
0].

The set vardef(C ′0) contains the variables defined in C ′0.

Proof. Suppose Q ∼→
V,V ′

f,p Q′, x ∈ V , x′ ∈ V ′, and Q′ preserves the secrecy of x′ with public
variables V ′ \ {x′} up to probability p′. Let C0 be any evaluation context acceptable for Q | Rx
with public variables V \ {x}. Let C ′0 and C ′′0 be such that f(C0[[] | Rx]) = C ′0[C

′′
0 [] | Rx′],

(var(C ′0) ∪ var(C ′′0)) ∩ var(Rx′) = ∅, vardef(C ′0) ∩ var(C ′′0) = ∅, and C ′0 and C ′′0 do not use any
common table. The context C ′0[C ′′0 [] | Rx′] is an evaluation context acceptable for Q′ with
public variables V ′. Since var(C ′′0) ∩ var(Rx′) = ∅, C ′′0 does not use x′, so C ′′0 is an evaluation
context acceptable for Q′ with public variables V ′ \ {x′}, so by Lemma 1, C ′′0 [Q′] preserves
the secrecy of x′ with public variables (V ′ ∪ var(C ′′0)) \ {x′} up to probability p1 such that
p1(C

′) = p′(C ′[C ′′0]). Since var(C ′0) ∩ var(Rx′) = ∅, C ′0 does not use x′, so C ′0 is an evaluation
context acceptable for C ′′0 [Q′] | Rx′ with public variables (V ′ ∪ var(C ′′0)) \ {x′}. To see that,
please see the definition of acceptable evaluation contexts [14, Definition 4] and note that we
have var(C ′0) ∩ var(C ′′0 [Q

′] | Rx′) ⊆ (var(C ′0) ∩ var(C ′′0)) ∪ (var(C ′0) ∩ var(Q′)) ⊆ var(C ′′0) ∪ V ′,
vardef(C ′0) ∩ (var(C ′′0) ∪ V ′) = (vardef(C ′0) ∩ var(C ′′0)) ∪ (vardef(C ′0) ∩ V ′) = ∅, and C ′′0 and
C ′′0 [Q

′] | Rx′ do not use any common table. We have

Pr[C0[Q | Rx] : S]− Pr[C0[Q | Rx] : S] ≤ |Pr[C0[Q | Rx] : S]− Pr[C ′0[C
′′
0 [Q

′] | Rx′] : S]|+
Pr[C ′0[C

′′
0 [Q

′] | Rx′] : S]− Pr[C ′0[C
′′
0 [Q

′] | Rx′] : S] +
|Pr[C ′0[C ′′0 [Q′] | Rx′] : S]− Pr[C0[Q | Rx] : S]|

≤ p(C0[[] | Rx], tS) + p1(C
′
0) + p(C0[[] | Rx], tS)

≤ 2p(C0[[] | Rx], tS) + p′(fsec(C0))

since tS = tS and p1(C
′
0) = p′(C ′0[C

′′
0]) = p′(fsec(C0)). We conclude that Q preserves the

secrecy of x with public variables V \ {x} up to probability p′′, where p′′(C0) = 2p(C0[[] |
Rx], tS) + p′(fsec(C0)). Therefore, f is secrecy-preserving for x′ 7→ (x, fsec).

A.6 Removing Events

As in the first conclusion of Theorem 1, we sometimes need to remove events. The next lemma
shows that indistinguishability and the transfer relation of Section 5.1 are preserved by removing
events.

RR n° 9171

34 Bruno Blanchet

Lemma 11. Let Q◦1 and Q◦2 be obtained from Q1 and Q2 respectively by removing events

e1, . . . , en. If Q1 ≈Vp Q2, then Q◦1 ≈Vp Q◦2. If Q1
∼→
V,V ′

f,p Q2 and f commutes with renamings of

events, then Q◦1
∼→
V,V ′

f,p Q◦2.

Proof. Let r(E) be the sequence of events obtained by removing events e1, . . . , en from E . Let α
be a renaming of e1, . . . , en to fresh event names.

Let C be an evaluation context acceptable for Q◦1 and Q◦2 with public variables V and D be a
distinguisher. The context α(C) is also acceptable for Q◦1, Q◦2, Q1, and Q2 with public variables
V . We have

|Pr[C[Q◦1] : D]− Pr[C[Q◦2] : D]| = |Pr[α(C)[Q◦1] : D ◦ α−1]− Pr[α(C)[Q◦2] : D ◦ α−1]|
= |Pr[α(C)[Q1] : D ◦ α−1 ◦ r]− Pr[α(C)[Q2] : D ◦ α−1 ◦ r]|
≤ p(C, tD)

neglecting the runtime of α−1 and r and noticing that the renaming of events does not change
the parameters of C, so Q◦1 ≈Vp Q◦2.

Let C be an evaluation context acceptable for Q◦1 with public variables V and D be a dis-
tinguisher. The context α(C) is also acceptable for Q◦1 and for Q1 with public variables V , so
letting C ′ = f(C), the context α(C ′) = α(f(C)) = f(α(C)) is acceptable for Q2 and so for Q◦2
with public variables V ′, so C ′ is also acceptable for Q◦2 with public variables V ′. We have

|Pr[C[Q◦1] : D]− Pr[C ′[Q◦2] : D]| = |Pr[α(C)[Q◦1] : D ◦ α−1]− Pr[α(C ′)[Q◦2] : D ◦ α−1]|
= |Pr[α(C)[Q1] : D ◦ α−1 ◦ r]− Pr[α(C ′)[Q2] : D ◦ α−1 ◦ r]|
≤ p(C, tD)

so Q◦1
∼→
V,V ′

f,p Q◦2.

A.7 Proof for Section 5.2
of Lemma 4. The lemma holds trivially when there is no random oracle: taking C ′ = C, we have
Ch[C[Q]] ≈V0 C ′[C ′h[Q]] because Ch[C[Q]] = C[Q] = C ′[Q] = C ′[C ′h[Q]]. Let us now assume that
there is at least one random oracle.

Suppose that C = newChannel c̃; ([] | Q1), with ({ch1, ch2, c′h1, c′h2} ∪ {ch3,l, ch4,l, c′h3,l, c′h4,l |
l ≤ L}) ∩ {c̃} = ∅. (We can generalize to any evaluation context by applying the result several
times and by commuting parallel compositions if needed.)

Let Q′1 be obtained from Q1 by introducing assignments to fresh variables xj (j ≥ 1) so that
all occurrences of hl(hkh,l,Mj) are in processes let xj = hl(hkh,l,Mj) in, and replacing these
processes with

c′h3,l[fl,j (̃i)]〈Mj〉; c′h4,l[fl,j (̃i)](xj : T ′h,l)

where ĩ are the replication indices above let xj = hl(hkh,l,Mj) in and the functions fl,j (j ≥ 1)
and the functions fl,0 used below are chosen such that, for each l ≤ L, the function (j, ĩ) 7→ fl,j (̃i)
is injective.

Let yh,l and y′h,l be fresh variables. Let

C ′ = newChannel c′h1, c
′
h2, c

′
h3,l, c

′
h4,l, c̃;

([] | ch1(); c′h1〈〉; c
′
h2(); ch2〈〉;Q′1 |∏L

l=1
!ih,l≤nh,lch3,l[ih,l](yh,l : Th,l); c′h3,l[f0(ih,l)]〈yh,l〉; c

′
h4,l[f0(ih,l)](y

′
h,l : T

′
h,l); ch4,l[ih,l]〈y′h,l〉)

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 35

We have

C ′[C ′h[Q]]

≈V0 newChannel c′h3,l, c
′
h4,l, c̃;

(ch1();new hkh,1 : Thkh,1
; . . .new hkh,L : Thkh,L

; ch2〈〉; (Q′1 | Q | Q′h) |∏L

l=1
!ih,l≤nh,lch3,l[ih,l](yh,l : Th,l); c′h3,l[f0(ih,l)]〈yh,l〉;

c′h4,l[f0(ih,l)](y
′
h,l : T

′
h,l); ch4,l[ih,l]〈y′h,l〉)

by eliminating communications on c′h1 and c′h2 (Appendix A.2)

≈V0 newChannel c̃;

(ch1();new hkh,1 : Thkh,1
; . . .new hkh,L : Thkh,L

; ch2〈〉; (Q1 | Q | Qh))
by eliminating communications on c′h3,l and c

′
h4,l for all l ≤ L (Appendix A.2)

≈V0 Ch[C[Q]]

In the second step, in case the adversary makes an output on ch3,l before outputting on ch1 (and
inputting on ch2), this output blocks immediately in the process after elimination of communica-
tions on c′h3,l, c

′
h4,l (because Qh is not available yet); it succeeds in the process before elimination

of communications on c′h3,l, c
′
h4,l, but the subsequent communication on c′h3,l blocks (because Q

′
h

is not available yet). These two situations are indistinguishable.

A.8 Proofs for Section 5.3
We write AddIdx(ã, Q) for the process obtained by adding indices ã to all names of variables
defined in Q and all names of events and tables in Q, and adding indices ã at the beginning of all
sequences of indices of channels in Q. This is just equivalent to renaming all variable, channel,
event, and table names to distinct names for each value of ã. Similarly, we write AddIdx(ã, corr)
for the correspondence obtained by adding indices ã to event names in corr .

Proof of Lemma 5. In this proof, we order the sequences ã of the same length lexicographi-
cally and use

∏
for the indexed parallel composition. Let Qã = AddIdx(ã, Q) and Q′ã =

AddIdx(ã, Q′). Let Vã be obtained by adding indices ã to all variable names in V , and V ′ =⋃
ã≤ñ Vã. We have C ′h[Qã] ≈Vã

p C ′h[Q
′
ã]. By Lemma 4 applied with context Cã =

(∏
ã′<ãQã′

)
|

[] |
(∏

ã′>ã,ã′≤ñQ
′
ã′

)
, there exists an evaluation context C ′ã such that Ch[Cã[Qã]] ≈V

′

0 C ′ã[C
′
h[Qã]]

and Ch[Cã[Q
′
ã]] ≈V

′

0 C ′ã[C
′
h[Q
′
ã]]. Moreover, by adding context C ′ã, C

′
ã[C
′
h[Qã]] ≈V

′

pã
C ′ã[C

′
h[Q
′
ã]]

where pã(C2, tD) = p(C2[C
′
ã], tD), so by transitivity, Ch[Cã[Qã]] ≈V

′

pã
Ch[Cã[Q

′
ã]]. This result

allows us to replace one process Qã with Q′ã. We use a hybrid argument to replace all processes
Qã with Q′ã for ã ≤ ñ: by transitivity again,

Ch

[∏
ã≤ñ

Qã
]
≈V

′

p′′ Ch

[∏
ã≤ñ

Q′ã
]

where
p′′(C2, tD) =

∑
ã≤ñ

pã(C2, tD) =
∑
ã≤ñ

p(C2[C
′
ã], tD) .

Let C be an acceptable evaluation context for Ch[Q!] and Ch[Q
′
!] with public variables V .

We let C1 be obtained from C by renaming the variables y[ã, b̃] into yã [̃b] for y ∈ V . Let
C2 = C1[newChannel c; (!̃i≤ñc′ [̃i](x : Tsid);find ũ = ĩ′ ≤ ñ suchthat defined(x[̃i′], x′ [̃i′])∧x =

x[̃i′] then yield else let x′ = cst in c[̃i]〈〉 | [])]. We define f by f(C) = C2.

RR n° 9171

36 Bruno Blanchet

We establish a correspondence between the traces of C[Ch[Q!]] and the traces of
C2[Ch[

∏
ã≤ñQã]]: we eliminate communications on c and map variables y[ã, b̃] to yã [̃b] for

y ∈ var(Q) and table entries Tbl(a′, b̃) to Tblã(̃b) for tables Tbl of Q where ã is the index
such that x[ã] = a′ and x′[ã] is defined. (The structure of the find in C2 guarantees that
there exists exactly one such ã: x′[ã] is defined when the process is executed with x[ã] = a′

for the first time. The processes Q and Q′ do not contain events, so events are not affected
by the correspondence. The indices of channels are the same in both processes.) There-

fore, Pr[C[Ch[Q!]] : D] = Pr[C2[Ch[
∏
ã≤ñQã]] : D], so Ch[Q!]

∼→
V,V ′

f,0 Ch[
∏
ã≤ñQã]. Similarly,

Ch[Q
′
!]
∼→
V,V ′

f,0 Ch[
∏
ã≤ñQ

′
ã]. From Ch[

∏
ã≤ñQã] ≈V

′

p′′ Ch[
∏
ã≤ñQ

′
ã] and these two properties, we

conclude by Lemma 2 that
Ch[Q!] ≈Vp′′′ Ch[Q

′
!]

where p′′′(C, tD) = p′′(C2, tD) =
∑
ã≤ñ p(C2[C

′
ã], tD). Considering that the runtime of C2 is

about the same as the runtime of C, the context C2[C
′
ã] runs in time at most tC + (

∏
ñ− 1)×

max(tQ, tQ′), calls the l-th hash oracle at most n′h,l = nh,l+(
∏
ñ−1)×max(nh,l,Q, nh,l,Q′) times,

and its other parameters are the same as those of C. Therefore, p′′′(C, tD) ≤
∏
ñ× p(C ′, tD) =

p′(C, tD).

Proof of Lemma 6, Property 1. LetQ◦ andQ◦! be obtained fromQ andQ! respectively by remov-
ing all events. By Lemma 7, we have C ′h[Q

◦] | R0
x ≈Vp1 C

′
h[Q
◦] | R1

x where p1(C, tD) = p(C + tD).
LetQã = AddIdx(ã, Q◦), R0

x,ã = AddIdx(ã, R0
x), and R1

x,ã = AddIdx(ã, R1
x). Let Vã be obtained

by adding indices ã to all variable names in V , and V ′ =
⋃
ã≤ñ Vã. We have

C ′h[Qã] | R0
x,ã ≈Vã

p1 C
′
h[Qã] | R1

x,ã (8)

By Lemma 4 applied with the context Cã = [] |
(∏

ã′≤ñ,ã′ 6=ãQã′
)
, there exists an evaluation

context C ′ã such that Ch[Cã[Qã]] ≈V
′

0 C ′ã[C
′
h[Qã]], so by adding context [] | R0

x,ã,

Ch[Cã[Qã]] | R0
x,ã ≈V

′

0 C ′ã[C
′
h[Qã]] | R0

x,ã

≈V
′

0 C ′ã[C
′
h[Qã] | R0

x,ã]

since the channels restricted by C ′ã do not occur in R0
x,ã, and similarly

Ch[Cã[Qã]] | R1
x,ã ≈V

′

0 C ′ã[C
′
h[Qã] | R1

x,ã]

Moreover, by adding context C ′ã to (8),

C ′ã[C
′
h[Qã] | R0

x,ã] ≈V
′

pã
C ′ã[C

′
h[Qã] | R1

x,ã]

where pã(C2, tD) = p1(C2[C
′
ã], tD), so by transitivity,

Ch[Cã[Qã]] | R0
x,ã ≈V

′

pã
Ch[Cã[Qã]] | R1

x,ã

Let C ′′ã =
(∏

ã′<ãR
0
x,ã′

)
| [] |

(∏
ã′>ã,ã′≤ñR

1
x,ã′

)
. By adding context C ′′ã , we obtain

Ch

[∏
ã≤ñ

Qã
]
| C ′′ã [R0

x,ã] ≈V
′

p′a
Ch

[∏
ã≤ñ

Qã
]
| C ′′ã [R1

x,ã]

where p′ã(C, tD) = pã(C[C
′′
ã], tD) = p1(C[C

′′
ã [C

′
ã]], tD) = p(C[C ′′ã [C

′
ã]] + tD). By transitivity,

Ch

[∏
ã≤ñ

Qã
]
|
(∏

ã≤ñ
R0
x,ã

)
≈V

′

p′′ Ch

[∏
ã≤ñ

Qã
]
|
(∏

ã≤ñ
R1
x,ã

)
Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 37

where p′′(C, tD) =
∑
ã≤ñ p

′
ã(C, tD).

Given a process Q and a replication index i that does not occur in Q, we write AddIdx1(i ≤
n,Q) for the process obtained by adding index i at the beginning of each sequence of indices of
channels in inputs and outputs, at the beginning of each event, at the beginning of the indices
of each variable defined in Q (implicit when current replication indices are omitted), and at the
beginning of each insertion in a table, and adding the test = i at the beginning of each get
in a table. We define AddRepl(i ≤ n,Q) = !i≤nAddIdx1(i ≤ n,Q) and AddRepl(̃i ≤ ñ, Q) =

AddRepl(i1 ≤ n1, . . .AddRepl(im ≤ nm, Q)) when ĩ = i1, . . . , im and ñ = n1, . . . , nm.
Using the same function f and trace correspondence as in Lemma 5, we show that

Ch[Q
◦
!] | AddRepl(̃i ≤ ñ, R0

x)
∼→
V,V ′

f,0 Ch

[∏
ã≤ñ

Qã
]
|
(∏

ã≤ñ
R0
x,ã

)
Ch[Q

◦
!] | AddRepl(̃i ≤ ñ, R1

x)
∼→
V,V ′

f,0 Ch

[∏
ã≤ñ

Qã
]
|
(∏

ã≤ñ
R1
x,ã

)
so by Lemma 2, we have

Ch[Q
◦
!] | AddRepl(̃i ≤ ñ, R0

x) ≈Vp′1 Ch[Q
◦
!] | AddRepl(̃i ≤ ñ, R1

x) (9)

where p′1(C, tD) = p′′(f(C), tD).
Suppose that the variable x has type T and is defined under replications !̃i

′≤ñ′ in Q. Let c′s
be a fresh channel. Let

C2 = newChannel cs;

(!i
′
s≤n

′
sc′s[i

′
s](ũ ≤ ñ, ũ′ ≤ ñ′); cs[ũ, i′s]〈ũ′〉; cs[ũ, i′s](x′ : T); c′s[i′s]〈x′〉 | [])

Let

R′x
0
= !i

′
s≤n

′
s c′s[i

′
s](ũ ≤ ñ, ũ′ ≤ ñ′); if defined(x[ũ, ũ′]) then c′s[i

′
s]〈x[ũ, ũ′]〉

R′x
1
= !i

′
s≤n

′
s c′s[i

′
s](ũ ≤ ñ, ũ′ ≤ ñ′); if defined(x[ũ, ũ′]) then

find u′s1 = i′s1 ≤ n′s suchthat defined(y[i′s1], ũ[i
′
s1], ũ

′[i′s1]) ∧ ũ[i′s1] = ũ ∧ ũ′[i′s1] = ũ′

then c′s[i
′
s]〈y[u′s1]〉

else new y : T ; c′s[i
′
s]〈y〉

be processes R0
x and R1

x associated to Ch[Q
◦
!], using channel c′s instead of cs. We have

C2[Ch[Q
◦
!] | AddRepl(̃i ≤ ñ, R0

x)] ≈V0 Ch[Q
◦
!] | R′x

0

C2[Ch[Q
◦
!] | AddRepl(̃i ≤ ñ, R1

x)] ≈V0 Ch[Q
◦
!] | R′x

1

by eliminating communications on cs (Appendix A.2). Moreover, by adding context C2 to (9),
we obtain

C2[Ch[Q
◦
!] | AddRepl(̃i ≤ ñ, R0

x)] ≈Vp′1 C2[Ch[Q
◦
!] | AddRepl(̃i ≤ ñ, R1

x)]

(We ignore the very small runtime of C2.) So by transitivity of ≈, we have

Ch[Q
◦
!] | R′x

0 ≈Vp′1 Ch[Q
◦
!] | R′x

1

By Lemma 7, we conclude that Ch[Q!] preserves the secrecy of x with public variables
V up to probability p′, with p′(C) = p′1(C, tD) = p′′(f(C), tD) =

∑
ã≤ñ p

′
ã(f(C), tD) =

RR n° 9171

38 Bruno Blanchet

∑
ã≤ñ p(f(C)[C

′′
ã [C

′
ã]] + tD). Since D is true when an event is executed, its runtime tD can

be neglected. Moreover, the context f(C)[C ′′ã [C
′
ã]] runs in time at most tC + (

∏
ñ− 1)tQ, calls

the l-th hash oracle at most n′h,l = nh,l + (
∏
ñ − 1)nh,l,Q times where C calls the l-th hash

oracle at most nh,l times, and its other parameters are the same as those of C. Therefore, the
context f(C)[C ′′ã [C

′
ã]] has the same parameters as the context C ′ in the statement of the lemma,

so p′(C) =
∏
ñ× p(C ′).

Proof of Lemma 6, Property 2. Let Qã = AddIdx(ã, Q). Let Vã be obtained by adding indices
ã to all variable names in V , and V ′ =

⋃
ã≤ñ Vã. Let corr ã = AddIdx(ã, corr). Let corr ′ =

AddSid(Tsid, corr). Let C be an evaluation context acceptable for Ch[Q!] with public variables V
that does not contain events used by corr ′. Let C1 be obtained from C by renaming the variables
y[ã, b̃] to variables yã [̃b] for y ∈ V and ã ≤ ñ. Let

C2 = C1[newChannel c; (!̃i≤ñc′ [̃i](x : Tsid);

find ũ = ĩ′ ≤ ñ suchthat defined(x[̃i′], x′ [̃i′]) ∧ x = x[̃i′]

then yield

else let x′ = cst in c[̃i]〈〉 | [])]

Let Cã =
(∏

ã′<ñ,ã′ 6=ãQã′
)
| []. We have

Advcorr
′

Ch[Q!]
(C) = Pr[C[Ch[Q!]] : ¬corr ′]

= Pr
[
C2

[
Ch

[∏
ã≤ñ

Qã
]]

: ¬∀ã ≤ ñ, corr ã
]

This equality of probabilities is shown by establishing a correspondence between the traces of
C[Ch[Q!]] and the traces of C2[Ch[

∏
ã≤ñQã]]: we eliminate communications on c and map vari-

ables y[ã, b̃] to yã [̃b] for y ∈ var(Q), table entries Tbl(a′, b̃) to Tblã(̃b) for tables Tbl of Q, and
events e(a′, b̃) to events eã(̃b) for events e that occur in corr ′ (all other events can be ignored),
where ã is the index such that x[ã] = a′ and x′[ã] is defined. Therefore, we have

Advcorr
′

Ch[Q!]
(C) ≤

∑
ã≤ñ

Pr
[
C2

[
Ch

[∏
ã≤ñ

Qã
]]

: ¬corr ã
]

≤
∑
ã≤ñ

Pr[C2[Ch[Cã[Qã]]] : ¬corr ã]

By Lemma 4 applied with context Cã, there exists an evaluation context C ′ã such that
Ch[Cã[Qã]] ≈V

′

0 C ′ã[C
′
h[Qã]], so

Advcorr
′

Ch[Q!]
(C) ≤

∑
ã≤ñ

Pr[C2[C
′
ã[C
′
h[Qã]]] : ¬corr ã]

≤
∑
ã≤ñ

p(C2[C
′
ã])

since C2[C
′
ã] does not contain events with indices ã, so does not contain events used by corr ã.

Moreover, the context C2[C
′
ã] runs in time at most tC + (

∏
ñ − 1)tQ, calls the l-th hash oracle

at most n′h,l = nh,l + (
∏
ñ− 1)nh,l,Q times, and its other parameters are the same as those of C.

Therefore, the context C2[C
′
ã] has the same parameters as the context C ′ in the statement of the

lemma, so Advcorr
′

Ch[Q!]
(C) ≤

∏
ñ×p(C ′) = p′(C). Hence, Ch[Q!] satisfies corr ′ = AddSid(Tsid, corr)

with public variables V up to probability p′.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 39

A.9 Proof for Section 5.4

Proof of Theorem 2. Let us first introduce general notations. Given a process Q that makes
all its inputs and outputs on distinct channels with indices the current replication indices, let
chin(Q) (resp. chout(Q)) be the channels on which Q performs its inputs (resp. outputs), and
ch(Q) = chin(Q)∪ chout(Q). For each channel c in ch(Q), let frc be a fresh channel and xc and x′c
be distinct fresh variables. Let ch′(Q) = {frc | c ∈ ch(Q)}. In Q, an input or output on channel
c is under !̃ic≤ñc , and has type Tc. We define two relay processes as follows:

Relay(Q, M̃, M̃ ′) =
∏

c∈chin(Q)
!̃ic≤ñc frc[M̃, ĩc](xc : Tc); c[M̃ ′, ĩc]〈xc〉 |∏

c∈chout(Q)
!̃ic≤ñcc[M̃ ′, ĩc](xc : Tc); frc[M̃, ĩc]〈xc〉

Relay′(Q, M̃) =
∏

c∈chin(Q)
!̃ic≤ñcc[M̃, ĩc](x

′
c : Tc); frc[M̃, ĩc]〈x′c〉 |∏

c∈chout(Q)
!M̃≤ñ

′
!̃ic≤ñc frc[M̃, ĩc](x

′
c : Tc); c[M̃, ĩc]〈x′c〉

The goal of these relay processes is to renumber the first channel indices in Q from M̃ ′ to M̃ .
However, to avoid confusions between channels before renumbering and channels after renumber-
ing, we introduce fresh channels. So the relay process Relay(Q, M̃, M̃ ′) performs the renumbering
and forwards messages on channels frc for c ∈ chin(Q) to c and forward the replies on channels
c ∈ chout(Q) back on frc. The relay process Relay′(Q, M̃) just performs the inverse renaming of
channels: it forwards messages on channels c ∈ chin(Q) to frc and forwards the replies on chan-
nels frc for c ∈ chout(Q) back on c, so that after applying both relay processes, the messages are
exchanged on channels in ch(Q) as in Q. The process Relay′(Q, M̃) does not renumber channel
indices. We use the same notations for a context C instead of a process Q.

We can now start the proof itself. Let ũ, ũ′, and ũ′′ be fresh variables. In particular, they
are not in V1. Let

C5 = newChannel ch′(Q2B); (!̃
i′≤ñ′Relay′(Q2B , ĩ

′) |
newChannel c′1, c2, ch(Q2B);

(C[event eA(sid(m̃sgA), kA, ĩ);

find ũ′′ = ĩ′′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′′], k′A [̃i

′′′]) ∧

sid(m̃sgA) = sid(m̃sgA [̃i
′′′]) then yield else

let k′A = kA in c′1 [̃i]〈sid(m̃sgA)〉; c2 [̃i](); c′A [̃i]〈MA〉;Q1A,

event eB(sid(m̃sgB), kB);

find ũ = ĩ′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′], k′A [̃i

′′]) ∧

sid(m̃sgA [̃i
′′]) = sid(m̃sgB) ∧ fresh(̃i′′, ũ)

then c′B [̃i
′]〈MB〉; (Q1B | Relay(Q2B , ĩ

′, ũ))]

| []))

where fresh(̃i′′, ũ) = find ũ′ = ĩ′′′ ≤ ñ′ suchthat defined(ũ[̃i′′′])∧ũ[̃i′′′] = ĩ′′ then false else true.
We have fresh(̃i′′, ũ) when ĩ′′ was not used before, that is, it does not occur in the array ũ.

RR n° 9171

40 Bruno Blanchet

Let

G0 = C ′′h [C[event eA(sid(m̃sgA), kA, ĩ);

find ũ′′ = ĩ′′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′′], k′A [̃i

′′′]) ∧

sid(m̃sgA) = sid(m̃sgA [̃i
′′′]) then yield else

let k′A = kA in let x = sid(m̃sgA) in

new k : T ; c′A [̃i]〈MA〉; (Q1A | Q′2A),
event eB(sid(m̃sgB), kB);

find ũ = ĩ′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′], k′A [̃i

′′], k[̃i′′], x[̃i′′]) ∧

sid(m̃sgA [̃i
′′]) = sid(m̃sgB) ∧ fresh(̃i′′, ũ) then

c′B [̃i
′]〈MB〉; (Q1B | Q′2B{k[ũ]/k, x[ũ]/x})]]

and

G1 = C ′′h [C[event eA(sid(m̃sgA), kA, ĩ);

find ũ′′ = ĩ′′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′′], k[̃i′′′]) ∧

sid(m̃sgA) = sid(m̃sgA [̃i
′′′]) then yield else

new k : T ; c′A [̃i]〈MA〉; (Q1A | Q′2A{sid(m̃sgA)/x}),
event eB(sid(m̃sgB), kB);

find ũ = ĩ′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′], k[̃i′′]) ∧

sid(m̃sgA [̃i
′′]) = sid(m̃sgB) ∧ fresh(̃i′′, ũ) then

c′B [̃i
′]〈MB〉; (Q1B | Q′2B{k[ũ]/k, sid(m̃sgB)/x})]]

The games G0 and G1 run the key exchange protocol followed by the protocol that uses the
key, much like Scomposed . However, in the participant A (after event eA), they do not run the
protocol that uses the key when the same session identifier has already been seen in a previous
session (find ũ′′), and they generate a fresh key k instead of using the key provided by the key
exchange protocol (new k : T). In the participant B (after event eB), they get the key that has
been generated in A with the same session identifier (find ũ), and require that the key of a given
session of A is reused at most once by B (condition fresh(̃i′′, ũ)).

Let Q′2 = AddReplSid(̃i ≤ ñ, c′1, Tsid, Q2), so that S2 = C ′h[Q
′
2]. We prove that G1

∼→
V1,V1∪{ũ}
f ′,0

C ′′h [C5[Q
′
2]], using G0 as intermediate game.

In the game C ′′h [C5[Q
′
2]], the find ũ′′ in C5 guarantees that the same value of x = sid(m̃sgA)

is never sent twice on channel c′1, so the find introduced at the root of Q′2 by AddReplSid never
succeeds. Then we can remove this find, keeping only its else branch. We can also remove the
assignment let x′ = cst since x′ is now unused. Let Q′′2B = AddIdxSid(̃i ≤ ñ, x : Tsid, Q2B) and
Q′′2 = !̃i≤ñc′1 [̃i](x : Tsid);new k : T ; c2 [̃i]〈〉; (Q′2A | Q′′2B). By the previous reasoning, we have
C ′′h [C5[Q

′′
2]] ≈

V1∪{ũ}
0 C ′′h [C5[Q

′
2]].

Second, we show G0
∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C5[Q

′′
2]]. To prove this property, let us consider an eval-

uation context C6 acceptable for G0 with public variables V1. Let f ′(C6) = C ′6 be obtained from
C6 by replacing array accesses y[M̃, M̃ ′] with y[ũ[M̃], M̃ ′], when y ∈ V1 is defined in Q′2B , M̃
contains as many elements as ĩ′, and M̃ ′ contains the other indices of y if any. The context C ′6 is

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 41

an evaluation context acceptable for C ′′h [C5[Q
′′
2]] with public variables V1 ∪ {ũ}. We establish a

correspondence between the traces of C6[G0] and those of C ′6[C ′′h [C5[Q
′′
2]]]: we eliminate commu-

nications on the private channels c′1, c2, ch(Q2B), and ch′(Q2B) (Appendix A.2) and we renumber
the variables of Q′2B , replacing indices ã ≤ ñ′ in C6[G0] with ũ[ã] ≤ ñ in C ′6[C ′′h [C5[Q

′′
2]]]. (The

condition fresh(̃i′′, ũ) guarantees that ũ never takes twice the same value, hence the function from
ã to ũ[ã] is injective. We exclude defined conditions in Q2 to facilitate this renumbering.) In this
correspondence between traces, an execution ofQ′2B = AddIdxSid(̃i′ ≤ ñ′, x : Tsid, Q2B) with repli-
cation indices ã in C6[G0] corresponds to an execution of Q′′2B = AddIdxSid(̃i ≤ ñ, x : Tsid, Q2B)
with replication indices ũ[ã] in C ′6[C

′′
h [C5[Q

′′
2]]]. These two executions have the same values of

k and x due to the substitution k[ũ]/k, x[ũ]/x in G0. They have the same value of other vari-
ables by the renumbering of variables, and produce the same events and table entries, since the
events and table entries do not contain the replication indices ĩ but the session identifier x. The
channel indices are renumbered using the relay processes Relay(Q2B , ĩ

′, ũ) and Relay′(Q2B , ĩ
′). In

C ′′h [C5[Q
′′
2]], in find ũ, when k′A [̃i

′′] is defined, the output on c′1 [̃i′′] has been executed, so x[̃i′′]
and k[̃i′′] are defined, the input on c2 [̃i′′] has been executed, and the process Q′′2B is available with
indices ũ = ĩ′′. Moreover, Q′′2B with these indices is not available earlier to the context, because
the channels of Q′′2B are hidden by newChannel and are accessible only via the relay processes
Relay(Q2B , ĩ

′, ũ) and Relay′(Q2B , ĩ
′). In G0, the variables k′A, x, and k are always defined at the

same time. Hence, in both C ′′h [C5[Q
′′
2]] and G0, when k′A [̃i

′′] is defined, so are k[̃i′′] and x[̃i′′]. We
add them to the defined condition so that we can refer to k[ũ] and x[ũ] in Q′2B{k[ũ]/k, x[ũ]/x}
in G0.

Third, we show G1 ≈V1
0 G0. Starting from G0, we replace x with its value sid(m̃sgA), and we

note that x[ũ] = sid(m̃sgA[ũ]) = sid(m̃sgB) by the condition of find ũ, so we replace x[ũ] with
sid(m̃sgB). Since k′A and x are defined at the same time as k, we replace k′A and x with k in
the defined conditions. Finally, we can remove the definitions of k′A and x since they are now
unused, and we obtain the game G1.

By combining the previous three results, we have G1
∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C5[Q

′
2]]. Let C◦5 be

obtained from C5 by removing all events and G◦1 be obtained from G1 by removing all events of
S1. By Lemma 11, we have

G◦1
∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C

◦
5 [Q

′
2]] (10)

By Lemma 4, there exists an evaluation context C ′5 such that

C ′′h [C
◦
5 [Q

′
2]] ≈

V1∪{ũ}
0 C ′5[C

′
h[Q
′
2]] = C ′5[S2] (11)

where the context C ′5 runs in time at most tC◦5 ≤ t1, calls the l-th hash oracle in C ′h at most
nh,l,C◦5 ≤ nh,l,1 times, so n′h,l = n′′h,l + nh,l,1, and its other parameters are the same as those of
C◦5 .

The proof that S◦composed
∼→
V1,V2

f,p3 S2 then proceeds in two main steps:

1. First, we write the process G1 above as an evaluation context around

S′1 = Ch[C[event eA(sid(m̃sgA), kA, ĩ);new k′A : T ; c′′A [̃i]〈(k
′
A,MA)〉;Q1A,

event eB(sid(m̃sgB), kB); cB [̃i
′]〈MB〉;Q1B]]

Let S′′1 be obtained by replacing new k′A : T with let k′A = kA in in S′1. Let G2 be
obtained by replacing new k : T with let k = kA in in G1. Let G◦2, S′1

◦, and S′′1
◦ be

obtained from G2, S′1, and S′′1 respectively by removing all events of S1. Since S1 preserves
the secrecy of k′A with public variables V (kA, k′A /∈ V) up to probability p, by Lemma 9,
S′1
◦ is indistinguishable from S′′1

◦, so G◦1 is indistinguishable from G◦2.

RR n° 9171

42 Bruno Blanchet

2. Second, we write G2 as an evaluation context around S1. Since S1 satisfies the correspon-
dences (2) and (3), so does G2, so we obtain that, up to a small probability, the find ũ′′

in G2 fails and the find ũ succeeds with k[ũ] = kB . From that, we show that G2 is
indistinguishable from Scomposed , so by Lemma 11, G◦2 is indistinguishable from S◦composed .

We conclude by combining these results with (10) and (11). Let us detail these two steps.
Let m̃sg

′
A (resp. m̃sg

′
B) be the sequence of variables corresponding to m̃sgA (resp. m̃sgB),

but using variables xc of the relay process Relay(C, ∅, ∅) instead of variables of C. (We use ∅ for
the empty sequence. In case a variable of m̃sgA is output by the output cA [̃i]〈MA〉, MA is equal
to this variable, and m̃sg

′
A uses xA instead of this variable. In the context C1 below, xA contains

the value of MA.) The goal of the relay process Relay(C, ∅, ∅) is to capture in variables m̃sg
′
A,

visible outside C, the content of m̃sgA, which are variables internal to C but sent or received
on public channels, and similarly for m̃sgB . Since we use the relay process Relay(C, ∅, ∅), the
external inputs and outputs are now done on the new channels frc for c ∈ ch(C), so we rename
the channels c ∈ ch(C) to frc on the other side of the equivalence below.

Given a process Q that makes all its inputs and outputs on distinct channels with indices the
current replication indices, let chst(Q) be the channels on which Q performs its first inputs. For
each channel c in chst(Q), let frc be a fresh channel and xc be a fresh variable. In Q, an input
on channel c is under !̃ic≤ñc , and has type Tc. We define a relay process as follows:

Relayst(Q) =
∏

c∈chst(Q)
!̃ic≤ñc frc [̃i, ĩc](xc : Tc); c[̃i, ĩc]〈xc〉

The process Relayst(Q) relays messages received on fresh channels frc for c ∈ chst(Q) to channel
c. In the context C1 below, we hide the channels in chst(Q1A) and execute Relayst(Q1A) only
when the find ũ′′ fails. As a result, the adversary against C1[S

′
1] can access Q1A (by sending

messages on frch for c ∈ chst(Q1A)) only when the find ũ′′ fails, similarly to what happens in
G1. We proceed in a similar way for Q1B .

Suppose that MA has type TA and MB has type TB . Let c′′A be a fresh channel. Let k′, xA,
xB be fresh variables. Let

C1 = newChannel c′′A, cB , ch(C), chst(Q1A), chst(Q1B);

(Relay(C, ∅, ∅) |

!̃i≤ñc′′A [̃i]((k
′ : T, xA : TA));

find ũ′′ = ĩ′′′ ≤ ñ suchthat defined(m̃sg
′
A [̃i
′′′], k[̃i′′′], m̃sg

′
A [̃i]) ∧

sid(m̃sg
′
A [̃i]) = sid(m̃sg

′
A [̃i
′′′]) then yield else

let k = k′ in c′A [̃i]〈xA〉; (Relayst(Q1A) | Q′2A{sid(m̃sg
′
A [̃i])/x}) |

!̃i
′≤ñ′cB [̃i

′](xB : TB);

find ũ = ĩ′′ ≤ ñ suchthat defined(m̃sg
′
A [̃i
′′], k[̃i′′], m̃sg

′
B [̃i
′]) ∧

sid(m̃sg
′
A [̃i
′′]) = sid(m̃sg

′
B [̃i
′]) ∧ fresh(̃i′′, ũ) then

c′B [̃i
′]〈xB〉; (Relayst(Q1B) | Q′2B{k[ũ]/k, sid(m̃sg

′
B [̃i
′])/x}) |

[])

Q′1 = C[event eA(sid(m̃sgA), kA, ĩ);new k′A : T ; c′′A [̃i]〈(k
′
A,MA)〉;Q1A,

event eB(sid(m̃sgB), kB); cB [̃i
′]〈MB〉;Q1B]

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 43

Let G2 be obtained by replacing new k : T with let k = kA in in G1:

G2 = C ′′h [C[event eA(sid(m̃sgA), kA, ĩ);

find ũ′′ = ĩ′′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′′], k[̃i′′′]) ∧

sid(m̃sgA) = sid(m̃sgA [̃i
′′′]) then yield else

let k = kA in c′A [̃i]〈MA〉; (Q1A | Q′2A{sid(m̃sgA)/x}),
event eB(sid(m̃sgB), kB);

find ũ = ĩ′′ ≤ ñ suchthat defined(m̃sgA [̃i
′′], k[̃i′′]) ∧

sid(m̃sgA [̃i
′′]) = sid(m̃sgB) ∧ fresh(̃i′′, ũ) then

c′B [̃i
′]〈MB〉; (Q1B | Q′2B{k[ũ]/k, sid(m̃sgB)/x})]]

Let Q′′1 be obtained by replacing new k′A : T with let k′A = kA in in Q′1. Let G◦2, Q′1
◦, and Q′′1

◦

be obtained from G2, Q′1, and Q′′1 respectively by removing all events of S1.
We have G1{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)} ≈V1

0 C ′′h [C1[Q
′
1]], by eliminating com-

munications on c′′A, cB , ch(C), chst(Q1A), and chst(Q1B) (Appendix A.2), since the finds in C1

have the same effect as the ones in G1, because m̃sg
′
A and m̃sg

′
B contain the same value as m̃sgA

and m̃sgB respectively, by construction. Since C1 does not contain events of S1, by Lemma 11,

G◦1{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)} ≈V1
0 C ′′h [C1[Q

′
1
◦
]] (12)

Similarly, G2{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)} ≈V1
0 C ′′h [C1[Q

′′
1]] so by Lemma 11,

G◦2{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)} ≈V1
0 C ′′h [C1[Q

′′
1
◦
]] (13)

By Lemma 4, there exists an evaluation context C ′1 such that

C ′′h [C1[Q
′
1
◦
]] ≈V1

0 C ′1[Ch[Q
′
1
◦
]] (14)

C ′′h [C1[Q
′′
1
◦
]] ≈V1

0 C ′1[Ch[Q
′′
1
◦
]] (15)

where the context C ′1 runs in time at most tC1 ≤ t2, calls the l-th hash oracle in Ch at most
nh,l,C1

≤ nh,l,2 times, so nh,l = n′′h,l + nh,l,2, and its other parameters are the same as those of
C1.

Since S1 = Ch[Q1] preserves the secrecy of k′A with public variables V up to probability p,
by Lemma 9, we have Ch[Q

′
1
◦
] ≈Vp0 Ch[Q

′′
1
◦
] where p0(C3, tD) = p(C3 + tD). Therefore,

C ′1[Ch[Q
′
1
◦
]] ≈V1

p1 C
′
1[Ch[Q

′′
1
◦
]] (16)

where p1(C3, tD) = p0(C3[C
′
1], tD) = p(C3[C

′
1] + tD) = p(C ′3 + tD) and the context C ′3 runs in

time at most tC3
+ t2, calls the l-th hash oracle at most nh,l = n′′h,l + nh,l,2 times, and its other

parameters are the same as those of C3.
By combining (12), (14), (16), (15), and (13) by transitivity, we obtain

G◦1{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)} ≈V1
p1 G

◦
2{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)}

so by renaming channels
G◦1 ≈V1

p1 G
◦
2 (17)

RR n° 9171

44 Bruno Blanchet

Introducing relay processes and renaming channels as above, we define

C2 = newChannel cA, cB , ch(C), chst(Q1A), chst(Q1B);

(Relay(C, ∅, ∅) |

!̃i≤ñcA [̃i](xA : TA);

find ũ′′ = ĩ′′′ ≤ ñ suchthat defined(m̃sg
′
A [̃i
′′′], k[̃i′′′], m̃sg

′
A [̃i]) ∧

sid(m̃sg
′
A [̃i]) = sid(m̃sg

′
A [̃i
′′′]) then yield else

if defined(k′A [̃i]) then let k = k′A [̃i] in c′A [̃i]〈xA〉;

(Relayst(Q1A) | Q′2A{sid(m̃sg
′
A [̃i])/x}) |

!̃i
′≤ñ′cB [̃i

′](xB : TB);

find ũ = ĩ′′ ≤ ñ suchthat defined(m̃sg
′
A [̃i
′′], k[̃i′′], m̃sg

′
B [̃i
′]) ∧

sid(m̃sg
′
A [̃i
′′]) = sid(m̃sg

′
B [̃i
′]) ∧ fresh(̃i′′, ũ) then

c′B [̃i
′]〈xB〉; (Relayst(Q1B) | Q′2B{k[ũ]/k, sid(m̃sg

′
B [̃i
′])/x}) |

[])

so that we have

G2{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)} ≈V1
0 C ′′h [C2[Q1]]

By Lemma 4, there exists an evaluation context C ′2 such that

C ′′h [C2[Q1]] ≈V1
0 C ′2[Ch[Q1]] = C ′2[S1]

where the context C ′2 runs in time at most tC2
≤ t2, calls the l-th hash oracle in Ch at most

nh,l,C2
≤ nh,l,2 times, so nh,l = n′′h,l + nh,l,2, and its other parameters are the same as those of

C2. Therefore,

G2{frc/c, c ∈ ch(C) ∪ chst(Q1A) ∪ chst(Q1B)} ≈V1
0 C ′2[S1]

The process S1 satisfies the correspondences (2) and (3) with public variables V ∪ {k′A}
up to probabilities p′ and p′′ respectively. Hence, by Lemma 1, the process C ′2[S1] satisfies
these correspondences with public variables V1 up to probabilities p′1(C3, tD) = p′(C3[C

′
2], tD) =

p′(C ′3, tD) and p′′1(C3, tD) = p′′(C3[C
′
2], tD) = p′′(C ′3, tD) respectively, where the context C ′3 runs

in time at most tC3
+ t2, calls the l-th hash oracle at most nh,l = n′′h,l+nh,l,2 times, and its other

parameters are the same as those of C3, and so does G2.
In G2, for traces that satisfy these two correspondences, we have that event eA is never

executed twice with the same session identifier sid(m̃sgA) because of the correspondence (3) so
find ũ′′ always fails. It can then be removed, keeping only its else branch. Moreover, by (2), for
each ĩ′ such that event eB(sid(m̃sgB [̃i

′]), kB [ĩ′]) has been executed, there exists a distinct ĩ such
that eA(sid(m̃sgA [̃i]), kA [̃i], ĩ) has been executed, with sid(m̃sgA [̃i]) = sid(m̃sgB [̃i

′]) and kA [̃i] =
kB [ĩ′]. Therefore, the conditions of find ũ are satisfied with ĩ′′ = ĩ, so find ũ succeeds. (Injectivity
guarantees that we can always find a fresh ĩ′′.) Furthermore, by (3), there is at most one ĩ such
that eA(sid(m̃sgA [̃i]), kA [̃i], ĩ) is executed with sid(m̃sgA [̃i]) = sid(m̃sgB [̃i

′]), so we have ĩ′′ = ĩ

and k[ũ] = k[̃i′′] = k[̃i] = kA [̃i] = kB [ĩ′]. Therefore, we can run Q′2B{kB [̃i′]/k, sid(m̃sgB)/x}

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 45

when find ũ succeeds. Since ũ is no longer used, we can remove find ũ. Hence,

G2 ≈V1

p′1+p
′′
1
C ′′h [C[event eA(sid(m̃sgA), kA, ĩ); let k = kA in c′A [̃i]〈MA〉;

(Q1A | Q′2A{sid(m̃sgA)/x}),

event eB(sid(m̃sgB), kB); c
′
B [̃i
′]〈MB〉; (Q1B | Q′2B{kB/k, sid(m̃sgB)/x})]]

≈V1

p′1+p
′′
1
Scomposed

By Lemma 11, we have
G◦2 ≈

V1

p′1+p
′′
1
S◦composed (18)

so by combining (18), (17), (10), and (11), we obtain

S◦composed ≈
V1

p′1+p
′′
1
G◦2 ≈V1

p1 G
◦
1
∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C

◦
5 [Q

′
2]] ≈

V1∪{ũ}
0 C ′5[S2]

so S◦composed
∼→
V1,V1∪{ũ}
f ′,p1+p′1+p

′′
1
C ′5[S2], so we obtain S◦composed

∼→
V1,V2

f,p3 S2 by defining f(C3) =

f ′(C3)[C
′
5[]].

Furthermore, by Lemma 10, if y ∈ V2∩var(Q2A), then f is secrecy-preserving for y 7→ (y, fsec)
where fsec(C3) = f ′(C3)[C

′
5[]]. Let us verify the assumptions of Lemma 10. First, we have

(var(f ′(C3))∪ var(C ′5))∩ var(Ry) = ∅. Indeed, var(C3)∩ var(Ry) = ∅ because C3 is an evaluation
context acceptable for S◦composed | Ry with public variables V1 \ {y} and (V1 \ {y})∩ var(Ry) = ∅
because the variables ofRy other than y are fresh. Moreover, var(C ′5)∩var(Ry) ⊆ var(S1)∩{y} = ∅
because y ∈ var(S2) and S1 and S2 have no common variable, and the other variables are
fresh: the variables of C ′5 are those of C◦5 plus fresh variables by the construction done in
Lemma 4, the variables of C◦5 are those of S1 plus the fresh variables ũ, ũ′, and the variables of
Ry other than y are fresh. Second, let S◦1 be obtained from S1 by removing all events. We have
vardef(f ′(C3)) ∩ var(C ′5) = vardef(C3) ∩ var(S◦1) ⊆ vardef(C3) ∩ var(S◦composed | Ry) = ∅ because,
as above, the variables of C ′5 are those of S◦1 plus fresh variables. Third, f ′(C3) and C ′5 do not
use any common table because C3 is an evaluation context acceptable for S◦composed | Ry with
public variables V1 \{y} so C3 and S◦composed | Ry have no common table, the tables of f ′(C3) are
those of C3, and the tables of C ′5 are those of C◦5 by the construction done in Lemma 4, which
are among those of S◦composed .

This property does not apply to variables y ∈ V2 ∩ var(Q2B) because they are renumbered
by f , so we perform a separate proof for such variables. Let y ∈ V2 ∩ var(Q2B). Suppose that
S2 preserves the secrecy of y with public variables V2 \ {y} up to probability p2. By Lemma 1,
C ′5[S2] preserves the secrecy of y with public variables (V2 ∪ var(C ′5)) \ {y} up to probability p′2
such that p′2(C5) = p1(C5[C

′
5]). Let Ry be the process used for testing secrecy of y in S◦composed .

Let R′y be obtained by renumbering the variables Ry: R′y = f ′(Ry), that is,

R′y = cs0();new b : bool ; cs0〈〉;
(!is≤ns cs[is](ũ1 ≤ ñ′, ũ2 ≤ ñ2); if defined(y[ũ[ũ1], ũ2]) then

if b then cs[is]〈y[ũ[ũ1], ũ2]〉 else

find u′s = i′s ≤ ns suchthat defined(y′[i′s], ũ1[i
′
s], ũ2[i

′
s]) ∧ ũ1[i′s] = ũ1 ∧ ũ2[i′s] = ũ2

then cs[is]〈y′[u′s]〉 else new y′ : T ; cs[is]〈y′〉
| c′s(b′); if b = b′ then event_abort S else event_abort S)

RR n° 9171

46 Bruno Blanchet

Let c′′s be a fresh channel, ũ′1, ũ′2, y′′, ũ′′1 , ũ′′2 , y′′′ be fresh variables, and let us define relay
processes:

RelayR = !is≤ns c′′s [is](ũ
′
1 ≤ ñ′, ũ′2 ≤ ñ2); if defined(ũ[ũ′1]) then

cs[is]〈ũ[ũ′1], ũ′2〉; cs[is](y′′ : T); c′′s [is]〈y′′〉

Relay′R = !is≤ns cs[is](ũ
′′
1 ≤ ñ′, ũ′′2 ≤ ñ2); c′′s [is]〈ũ′′1 , ũ′′2〉; c′′s [is](y′′′ : T); cs[is]〈y′′′〉

The process RelayR renumbers the queries for y like f ′ renumbers y. However, it uses channel
c′′s instead of cs, so we use process Relay′R to revert to channel cs. Let CR = newChannel c′′s ;
(Relay′R | newChannel cs; (RelayR | [])). Let R′′y be the process used for testing secrecy of y
in C ′5[S2]. (The process R′′y differs from Ry because y has indices ĩ′ ≤ ñ′, ĩ2 ≤ ñ2 in S◦composed ,
while it has indices ĩ ≤ ñ, ĩ2 ≤ ñ2 in C ′5[S2].) We have

C ′5[S2] | R′y ≈
V1
0 CR[C

′
5[S2] | R′′y]

by eliminating communications on the private channels cs and c′′s (Appendix A.2). The equality
test ũ1[i′s] = ũ1 performed by R′y in the left-hand side becomes ũ[ũ1[i′s]] = ũ[ũ1] in the right-hand
side because R′′y always receives ũ[ũ1] instead of ũ1. These two tests are equivalent, because ũ[̃i′]
cannot have the same value for different values of ĩ′ due to the condition fresh(̃i′′, ũ).

Let C0 be any evaluation context acceptable for S◦composed | Ry with public variables V1 \{y}.
The context f ′(C0)[CR] is acceptable for C ′5[S2] | R′′y with public variables (V2 ∪ var(C ′5)) \ {y},
by the definition of acceptable evaluation contexts [14, Definition 4]. Indeed,

var(f ′(C0)[CR]) ∩ var(C ′5[S2] | R′′y)
= var(C0) ∩ (var(C ′5) ∪ var(C ′h) ∪ var(Q2) ∪ {y}) because the other variables are fresh
⊆ var(C0) ∩ (var(C ′5) ∪ ((var(C ′h) ∪ var(Q2) ∪ {y}) ∩ V1 \ {y})) (19)
⊆ var(C0) ∩ (var(C ′5) ∪ (V2 \ {y}))
⊆ (var(C ′5) ∪ V2) \ {y} (20)

The inclusion (19) holds because var(C0) ∩ (var(C ′h) ∪ var(Q2) ∪ {y}) ⊆ var(C0) ∩ var(S◦composed |
Ry) ⊆ V1 \ {y} and (20) holds because y /∈ var(C0) by the inclusion var(C0) ∩ (var(Q2) ∪ {y}) ⊆
V1 \ {y} shown above. We also have vardef(f ′(C0)[CR]) ∩ ((V2 ∪ var(C ′5)) \ {y}) ⊆ vardef(C0) ∩
((V1 ∪ var(S◦composed | Ry)) \ {y}) = ∅ because the variables of f ′(C0)[CR] are those of C0 plus
fresh variables, V2 ⊆ V1, the variables of C ′5 are var(S◦1) ⊆ var(S◦composed) plus fresh variables,
vardef(C0) ∩ (V1 \ {y}) = ∅, and vardef(C0) ∩ var(S◦composed | Ry) = ∅. Moreover, f ′(C0)[CR]
and C ′5[S2] | R′′y do not use any common table, because C0 and S◦composed | Ry do not use any
common table, the tables of f ′(C0)[CR] are those of C0, and the tables of C ′5[S2] | R′′y are those
of C◦5 and S2, that is, of S1 and S2, so of S◦composed. We have

Pr[C0[S
◦
composed | Ry] : S]− Pr[C0[S

◦
composed | Ry] : S]

≤ |Pr[C0[S
◦
composed | Ry] : S]− Pr[f ′(C0)[C

′
5[S2] | R′y] : S]|+

(Pr[f ′(C0)[C
′
5[S2] | R′y] : S]− Pr[f ′(C0)[C

′
5[S2] | R′y] : S]) +

|Pr[f ′(C0)[C
′
5[S2] | R′y] : S]− Pr[C0[S

◦
composed | Ry] : S]|

≤ p3(C0[[] | Ry], tS) +
(Pr[f ′(C0)[CR[C

′
5[S2] | R′′y]] : S]− Pr[f ′(C0)[CR[C

′
5[S2] | R′′y]] : S]) +

p3(C0[[] | Ry], tS)

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 47

≤ 2p3(C0[[] | Ry], tS) + p′2(f
′(C0)[CR])

≤ 2p3(C0[[] | Ry], tS) + p2(fsec(C0))

since tS = tS and p′2(f
′(C0)[CR]) = p2(f

′(C0)[CR[C
′
5]]) = p2(fsec(C0)) by defining fsec(C0) =

f ′(C0)[CR[C
′
5]]. We conclude that Scomposed preserves the secrecy of y with public variables

V1 \ {y} up to probability p′′, where p′′(C0) = 2p3(C0[[] | Ry], tS) + p2(fsec(C0)). Therefore, f is
secrecy-preserving for y 7→ (y, fsec).

Let us prove the second point. Let xA, xB , k′′A, k
′′
B be fresh variables not in V ′. Let m̃sg

′
A (resp.

m̃sg
′
B) be the sequence of variables corresponding to m̃sgA (resp. m̃sgB), but using variables

xc of the relay process Relay(C, ∅, ∅) instead of variables of C. As above, the goal of the relay
process Relay(C, ∅, ∅) is to capture in variables m̃sg

′
A, visible outside C, the content of m̃sgA,

which are variables internal to C but sent or received on public channels, and similarly for m̃sgB .
Since Relay(C, ∅, ∅) renames channels c ∈ ch(C) to frc, we use the relay process Relay′(C, ∅) to
perform the reverse renaming.

Let

C4 = newChannel ch′(C); (Relay′(C, ∅) |
newChannel cA, cB , ch(C); (Relay(C, ∅, ∅) |

!̃i≤ñcA [̃i](xA : TA); if defined(k′A [̃i], m̃sg
′
A [̃i]) then

let k′′A = k′A [̃i] in c′A [̃i]〈xA〉;Q
′
2A{k′′A/k, sid(m̃sg

′
A [̃i])/x} |

!̃i
′≤ñ′cB [̃i

′](xB : TB); if defined(kB [̃i
′], m̃sg

′
B [̃i
′]) then

let k′′B = kB [̃i
′] in c′B [̃i

′]〈xB〉;Q′2B{k′′B/k, sid(m̃sg
′
B [̃i
′])/x} | []))

By Lemma 4, there exists an evaluation context C ′4 such that

C ′′h [C4[Q1]] ≈V
′

0 C ′4[Ch[Q1]] = C ′4[S1]

where the context C ′4 runs in time at most tC4
≤ t2, calls the l-th hash oracle in Ch at most

nh,l,C4
≤ nh,l,2 times, so nh,l = n′′h,l + nh,l,2, and its other parameters are the same as those of

C4, that is, it does not alter the other parameters.
We have

C ′′h [C4[Q1]] ≈V
′

0 C ′′h [C[event eA(sid(m̃sgA), kA, ĩ); let k′A = kA in if defined(k′A [̃i]) then

let k′′A = k′A [̃i] in c′A [̃i]〈MA〉; (Q1A | Q′2A{k′′A/k, sid(m̃sgA)/x}),

event eB(sid(m̃sgB), kB); if defined(kB [̃i
′]) then

let k′′B = kB [̃i
′] in c′B [̃i

′]〈MB〉; (Q1B | Q′2B{k′′B/k, sid(m̃sgB)/x})]]

by eliminating communications on the private channels cA, cB , ch(C), ch′(C) (Appendix A.2),
so

C ′4[S1] ≈V
′

0 C ′′h [C4[Q1]]

≈V
′

0 C ′′h [C[event eA(sid(m̃sgA), kA, ĩ); c
′
A [̃i]〈MA〉; (Q1A | Q′2A{kA/k, sid(m̃sgA)/x}),

event eB(sid(m̃sgB), kB); c
′
B [̃i
′]〈MB〉; (Q1B | Q′2B{kB/k, sid(m̃sgB)/x})]]

= Scomposed

since k′A is an abbreviation for k′A [̃i], so k
′
A [̃i] is always defined and k′′A = k′A = kA, and similarly

for kB . We can remove the assignment to k′A since k′A is not used and k′A /∈ V ′.

RR n° 9171

48 Bruno Blanchet

A.10 Variant with Several Holes
In Theorem 2, event eB appears in a single hole of the context C. Theorem 4 generalizes it to
several holes.

Theorem 4 (Variant with several holes for event eB). Let C be any context with J + 1 holes,
with replications !̃i≤ñ above the first hole and !̃i

′
j≤ñ

′
j above the (j + 1)-th hole (1 ≤ j ≤ J) and

without event_abort. Let Q1A and Q1B,j (1 ≤ j ≤ J) be processes without event_abort. Let
k, kA, kB,j (1 ≤ j ≤ J) be variables of type T . Let

Q1 = C[event eA(sid(m̃sgA), kA, ĩ); let k′A = kA in cA [̃i]〈MA〉;Q1A,

(event eB(sid(m̃sgB,j), kB,j); cB,j [̃i
′
j]〈MB,j〉;Q1B,j)1≤j≤J]

Q2 = c1();new k : T ; c2〈〉; (Q2A | Q2B)

S1 = Ch[Q1]

S2 = C ′h[AddReplSid(̃i ≤ ñ, c′1, Tsid, Q2)]

where Q1 and Q2 are hash-well-formed; m̃sgA is a sequence of variables defined in C above
the first hole and input or output by C above the first hole or by the output cA [̃i]〈MA〉; for all
j ∈ {1, . . . , J}, m̃sgB,j is a sequence of variables input or output by C above the (j + 1)-th hole;
sid is a function that takes a sequence of messages and returns a session identifier of type Tsid; C,
Q1A, Q1B,j (1 ≤ j ≤ J), Q2A, and Q2B make all their inputs and outputs on pairwise distinct
channels with indices the current replication indices; cA, cB,j (1 ≤ j ≤ J), c1, c′1, c2, k′A, eA,
eB do not occur elsewhere in S1, S2; S1 and S2 have no common variable, no common channel,
no common event, and no common table; S1 and S2 do not contain newChannel; and there is
no defined condition in Q2.

Let Q′2A = AddIdxSid(̃i ≤ ñ, x : Tsid, Q2A) and Q′2B,j = AddIdxSid(̃i′j ≤ ñ′j , x : Tsid, Q2B). Let
c′A, c

′
B,j (1 ≤ j ≤ J) be fresh channels. Let

Qcomposed =

C[event eA(sid(m̃sgA), kA, ĩ); c
′
A [̃i]〈MA〉; (Q1A | Q′2A{kA/k, sid(m̃sgA)/x}),

(event eB(sid(m̃sgB,j), kB,j); c
′
B,j [̃i

′]〈MB,j〉; (Q1B,j | Q′2B,j{kB,j/k, sid(m̃sgB,j)/x}))1≤j≤J]
Scomposed = C ′′h [Qcomposed]

Let S◦composed be obtained from Scomposed by removing all events of S1.
Then we have the same properties as in Theorem 2 with

∑J
j=1

∏
ñ′j instead of

∏
ñ′ and C ′′

independent of Q1A and Q1B,j (1 ≤ j ≤ J).

Proof. The proof is the same as for Theorem 2. We just need to repeat the treatment of the
hole that contains event eB for each j ∈ {1, . . . , J}; the definition of fresh(̃i′′, ũ) is updated
into fresh(̃i′′, (ũj)1≤j≤J) = find

⊕J
j=1 ũ

′
j = ĩ′′′j ≤ ñ′j suchthat defined(ũj [̃i

′′′
j]) ∧ ũj [̃i′′′j] =

ĩ′′ then false else true, using a find with several branches, so that we have fresh(̃i′′, (ũj)1≤j≤J)

when ĩ′′ was not used before, that is, it does not occur in any array ũj for j ∈ {1, . . . , J}.

A.11 Proof for Section 5.5
Proof of Theorem 3. The proof of this theorem is very similar to the proof of Theorem 2, so
we do not repeat it, but just point out the differences. Let C5 be defined as in the proof of

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 49

Theorem 2 except that the condition fresh(̃i′′, ũ) is removed, because we do not have injectivity,
and the process Relay(Q2B , ĩ

′, ũ) is replaced with Relay(Q2B , ĩ
′, (ũ, ĩ′)). Indeed, the indices of

Q2B are renumbered in a different way: the indices of Q2B in the composed system are ĩ′; in
Theorem 2, they are mapped to ũ[ĩ′] in S2, while in this theorem, they are mapped to ũ[ĩ′], ĩ′ in
S2. This change affects the rest of proof as we detail below. Let G0 be defined as in the proof of
Theorem 2, except that the condition fresh(̃i′′, ũ) is removed. Let Q′2, Q′′2B , and Q

′′
2 be defined

as in the proof of Theorem 2. We have C ′′h [C5[Q
′′
2]] ≈

V1∪{ũ}
0 C ′′h [C5[Q

′
2]], as in Theorem 2.

Next, we show G0
∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C5[Q

′′
2]]. To prove this property, we consider an evaluation

context C6 acceptable for G0 with public variables V1. Let f ′(C6) = C ′6 be obtained from C6

by replacing array accesses y[M̃, M̃ ′] with y[ũ[M̃], M̃ , M̃ ′], when y ∈ V1 is defined in Q′2B , M̃
contains as many elements as ĩ′, and M̃ ′ contains the other indices of y if any. We establish a
correspondence between the traces of C6[G0] and those of C ′6[C ′′h [C5[Q

′′
2]]]: we eliminate commu-

nications on the private channels c′1, c2, ch(Q2B), ch′(Q2B) (Appendix A.2) and we renumber
the variables of Q′2B , replacing indices ã ≤ ñ′ in C6[G0] with ũ[ã], ã ≤ ñ, ñ′ in C ′6[C ′′h [C5[Q

′′
2]]].

In this correspondence, an execution of Q′2B = AddIdxSid(∅ ≤ ∅, x : Tsid, Q2B) with replication
indices ã in C6[G0] corresponds to an execution of Q′′2B = AddIdxSid(̃i ≤ ñ, x : Tsid, Q2B) with

replication indices ũ[ã], ã in C ′6[C
′′
h [C5[Q

′′
2]]]. The proofs of G0

∼→
V1,V1∪{ũ}
f ′,0 C ′′h [C5[Q

′′
2]] and of

S◦composed
∼→
V1,V2

f,p3 S2 then proceed as in the proof of Theorem 2: the removal of the condition
fresh compensates for the non-injectivity of the correspondence (7).

For y ∈ V2∩var(Q2A), f is secrecy-preserving for y 7→ (y, fsec) where fsec(C3) = f ′(C3)[C
′
5[]],

by Lemma 10, as in Theorem 2. For y ∈ V2 ∩ var(Q2B), the proof needs to be adapted since the
renumbering of variables has changed. Suppose that S2 preserves the secrecy of y with public
variables V2 \ {y} up to probability p2. By Lemma 1, C ′5[S2] preserves the secrecy of y with
public variables (V ′ ∪ var(C ′5)) \ {y} up to probability p′2 such that p′2(C5) = p1(C5[C

′
5]). Let Ry

be the process used for testing secrecy of y in S◦composed . Let R
′
y be obtained by renumbering the

variables Ry: R′y = f ′(Ry), that is,

R′y = cs0();new b : bool ; cs0〈〉;
(!is≤ns cs[is](ũ1 ≤ ñ′, ũ2 ≤ ñ2); if defined(y[ũ[ũ1], ũ1, ũ2]) then

if b then cs[is]〈y[ũ[ũ1], ũ1, ũ2]〉 else

find u′s = i′s ≤ ns suchthat defined(y′[i′s], ũ1[i
′
s], ũ2[i

′
s]) ∧ ũ1[i′s] = ũ1 ∧ ũ2[i′s] = ũ2

then cs[is]〈y′[u′s]〉 else new y′ : T ; cs[is]〈y′〉
| c′s(b′); if b = b′ then event_abort S else event_abort S)

Let c′′s be a fresh channel, ũ′1, ũ′2, y′′, ũ′′1 , ũ′′2 , y′′′ be fresh variables, and let us define relay
processes:

RelayR = !is≤ns c′′s [is](ũ
′
1 ≤ ñ′, ũ′2 ≤ ñ2); if defined(ũ[ũ′1]) then

cs[is]〈ũ[ũ′1], ũ′1, ũ′2〉; cs[is](y′′ : T); c′′s [is]〈y′′〉

Relay′R = !is≤ns cs[is](ũ
′′
1 ≤ ñ′, ũ′′2 ≤ ñ2); c′′s [is]〈ũ′′1 , ũ′′2〉; c′′s [is](y′′′ : T); cs[is]〈y′′′〉

The process RelayR renumbers the queries for y like f ′ renumbers y. However, it uses channel
c′′s instead of cs, so we use process Relay′R to revert to channel cs. Let CR = newChannel c′′s ;
(Relay′R | newChannel cs; (RelayR | [])). Let R′′y be the process used for testing secrecy of y
in C ′5[S2]. (The process R′′y differs from Ry because y has indices ĩ′ ≤ ñ′, ĩ2 ≤ ñ2 in S◦composed ,

RR n° 9171

50 Bruno Blanchet

while it has indices ĩ ≤ ñ, ĩ′ ≤ ñ′, ĩ2 ≤ ñ2 in C ′5[S2].) We have

C ′5[S2] | R′y ≈
V1
0 CR[C

′
5[S2] | R′′y]

by eliminating communications on the private channels cs and c′′s (Appendix A.2). The equality
test ũ1[i′s] = ũ1 performed by R′y in the left-hand side becomes ũ[ũ1[i′s]] = ũ[ũ1] ∧ ũ1[i′s] = ũ1 in
the right-hand side because R′′y always receives ũ[ũ1], ũ1 instead of ũ1. It is easy to see that these
two tests are equivalent: the second test includes the first one as a conjunct, and conversely
when ũ1[i

′
s] = ũ1 holds, we obviously have ũ[ũ1[i′s]] = ũ[ũ1]. The rest of the proof that f is

secrecy-preserving for y 7→ (y, fsec) proceeds exactly as in Theorem 2.
The proof of the second point of the theorem also proceeds as in Theorem 2.

A.12 Single Process with Key Reuse
The next theorem is a weakened variant of Theorem 1 that allows us to reuse the same key k
several times. This situation complicates the theorem considerably.

Theorem 5. Let C be any context with one hole, with replications !̃i≤ñ above the hole and
without event_abort. Let Q1 be a process without event_abort. Let M be a term of type T .
Let

Q′1 = C[let k =M in event e(sid(m̃sg), k);

find ũ = ĩ′ ≤ ñ suchthat defined(m̃sg [ĩ′], k1[ĩ′]) ∧ sid(m̃sg [ĩ′]) = sid(m̃sg)

then c1 [̃i]〈M1〉;Q1

else let k1 = k in c′1 [̃i]〈M1〉;Q1]

Q2 = !̃i
′′≤ñQ0

Q′2 = c2();new k : T ; c3〈〉;Q2

S1 = Ch[Q
′
1]

S2 = C ′h[AddReplSid(̃i ≤ ñ, c′2, Tsid, Q′2)]

where Q′1 and Q′2 are hash-well-formed; m̃sg is a sequence of variables input or output by C above
the hole; sid is a function that takes a sequence of messages and returns a session identifier of type
Tsid; c1, c′1, c2, c′2, c3, e, k1, ũ do not occur elsewhere in S1, S2; k does not occur elsewhere in S1

(k occurs in Q0); k is the only common variable between S1 and S2; S1 and S2 have no common
channel, no common event, and no common table; S1 and S2 do not contain newChannel; Q2

contains no defined condition; and C and Q2 make all their inputs and outputs on pairwise
distinct channels with indices the current replication indices. Let ch(Q0) be the channels of Q0.
For each channel c in ch(Q0), let frc be a fresh channel.

Let Q′0 = AddIdxSid(∅ ≤ ∅, x : Tsid, Q0). Let c′′1 be a fresh channel. Let

Qcomposed = C[let k =M in event e(sid(m̃sg), k); c′′1 [̃i]〈M1〉;

(Q1 | Q′0{̃i/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)})]
Scomposed = C ′′h [Qcomposed]

Let S◦composed be obtained from Scomposed by removing the events of S1.
Let t1 = tC +

∏
ñ× (tM + tQ1

) be an upper bound on the runtime of Q′1, t2 =
∏
ñ× tQ0

be
an upper bound on the runtime of Q′0 in Qcomposed , nh,l,1 = nh,l,C +

∏
ñ× (nh,l,M +nh,l,Q1

), and
nh,l,2 =

∏
ñ× nh,l,Q0

.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 51

1. If S1 preserves the secrecy of k1 with public variables V (V ⊆ var(S1)\ ({k1}∪var(Ch))) up
to probability p and S1 satisfies the correspondence event(e(sid , k))∧event(e(sid , k′)) =⇒
k = k′ with public variables V ∪ {k1} up to probability p′, then there exists an evaluation
context C ′5

◦ such that, for any V1 ⊆ V ∪ (var(Q′2) \ ({k}∪ var(C ′h))), we have S◦composed ≈
V1

p′′

C ′5
◦
[S2], C ′5

◦ is acceptable for S2 without public variables and contains no event, and C ′5
◦

runs in time at most t1, calls the l-th hash oracle at most nh,l,1 times, so n′h,l = n′′h,l+nh,l,1,
and does not alter the other parameters, where p′′(C3, tD) = p(C ′3 + tD) + p′(C ′3, tD) and,
assuming C3 calls the l-th hash oracle at most n′′h,l times, the context C ′3 runs in time at
most tC3

+ t2, calls the l-th hash oracle at most nh,l = n′′h,l + nh,l,2 times, and its other
parameters are the same as those of C3.

2. There exists an evaluation context C ′4 such that, for any V ′ ⊆ var(Scomposed) \ ({k1, ũ} ∪
var(C ′′h)), we have Scomposed ≈V

′

0 C ′4[S1] and C ′4 is acceptable for S1 with public variable k,
contains the events of S2, runs in time at most t2, calls the l-th hash oracle at most nh,l,2
times, so nh,l = n′′h,l + nh,l,2, and does not alter the other parameters.

Moreover, C ′5
◦ is independent of the details of Q0: it depends only on the channels of Q0,

whether they are for input or for output, under which replications and with which type of data;
C ′4 is independent of Q1.

In this theorem, the system S1 establishes a key k and the system S2 creates a fresh key k
and runs several sessions of Q0 using this key. The composed system runs S1 and Q0 using the
key k provided by S1. As in Theorem 2, these systems can share hash oracles, included in Ch,
C ′h, and C

′′
h .

Inside S1, the find and the assignment k1 = k in Q′1 just serve for specifying the desired
security properties of S1, as follows. When the session identifier sid(m̃sg) has not been seen
before, S1 stores its key k in k1, and we require that k1 be secret. As a consequence of secrecy, the
keys obtained with different session identifiers are indistinguishable from independent random
numbers. Furthermore, the correspondence event(e(sid , k)) ∧ event(e(sid , k′)) =⇒ k = k′

guarantees that, when another session has the same session identifier sid , then it also has the
same key. Since the session identifiers can be computed from public messages m̃sg , the adversary
knows whether S1 reuses the same key or uses a fresh key. Therefore, a context around S1 can
know whether it should run another session of Q0 with the same key or a new session of Q0 with
a fresh key. This observation is important for the proof of the first point of Theorem 5.

As in the previous theorems, the first point of Theorem 5 allows us to transfer security
properties from S2 to the composed system Scomposed , and the second point allows us to transfer
security properties from S1 to Scomposed .

Proof of Theorem 5. We use the notations of relay processes of the proof of Theorem 2. Let k′
and r be fresh variables. Let

C5 = newChannel c′2, c3, ch(Q0);

(C[let k′ =M in event e(sid(m̃sg), k′);

find ũ = ĩ′ ≤ ñ suchthat defined(r[̃i′], m̃sg [̃i′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then c′′1 [̃i]〈M1〉; (Q1 | Relay(Q0, ĩ, (ũ, ĩ)))

else let r = cst in c′2 [̃i]〈sid(m̃sg)〉; c3 [̃i](); c′′1 [̃i]〈M1〉; (Q1 | Relay(Q0, ĩ, (̃i, ĩ)))]

| [])

In the then branch, the key k is the same as for indices ũ, so we reuse it. In the else branch, a
new key k is created by sending a message on c′2 [̃i] and receiving the reply on c3 [̃i].

RR n° 9171

52 Bruno Blanchet

Let Q′′2 = AddReplSid(̃i ≤ ñ, c′2, Tsid, Q
′
2), so that we have S2 = C ′h[Q

′′
2]. By Lemma 4, there

exists an evaluation context C ′5 such that

C ′′h [C5[Q
′′
2]] ≈

V1
0 C ′5[C

′
h[Q
′′
2]] = C ′5[S2] (21)

where the context C ′5 runs in time at most tC5
≤ t1, calls the l-th hash oracle in C ′h at most

nh,l,C5
≤ nh,l,1 times, so n′h,l = n′′h,l + nh,l,1, and its other parameters are the same as those of

C5.
Let

G1 = C ′′h [newChannel ch(Q0);C[

let k′ =M in event e(sid(m̃sg), k′);

find ũ = ĩ′ ≤ ñ suchthat defined(r[̃i′], m̃sg [̃i′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then c′′1 [̃i]〈M1〉; (Q1 | Relay(Q0, ĩ, (ũ, ĩ)))

else

let r = cst in new k : T ; c′′1 [̃i]〈M1〉;

(Q1 | Relay(Q0, ĩ, (̃i, ĩ)) | AddIdxSid(̃i ≤ ñ, x : Tsid, Q2){sid(m̃sg)/x})]]

We have C ′′h [C5[Q
′′
2]] ≈

V1
0 G1 by eliminating communications on c′2 and c3 (Appendix A.2). Note

that the find introduced at the root of Q′′2 by AddReplSid never succeeds because the session
identifier sid(m̃sg) is sent on c′2 only when it was not seen before. Let

G2 = C ′′h [newChannel ch(Q0);C[

let k =M in event e(sid(m̃sg), k);

find ũ = ĩ′ ≤ ñ suchthat defined(k1 [̃i
′], m̃sg [̃i′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then c′′1 [̃i]〈M1〉; (Q1 | Relay(Q0, ĩ, (ũ, ĩ)))

else

new k1 : T ; c′′1 [̃i]〈M1〉;

(Q1 | Relay(Q0, ĩ, (̃i, ĩ)) | AddIdxSid(̃i ≤ ñ, x : Tsid, Q2){k1/k, sid(m̃sg)/x})]]

We also have G1 ≈V1
0 G2 by renaming k into k1 and k′ into k, and using the definition of k1 [̃i′]

instead of the definition of r[̃i′], which is equivalent since these variables are defined at the same
time. That allows us to remove the variable r. Therefore, by transitivity, C ′5[S2] ≈V1

0 G2. Let C ′5
◦

and G◦2 be obtained from C ′5 and G2 respectively by removing the events of S1. By Lemma 11,
we have

C ′5
◦
[S2] ≈V1

0 G◦2 (22)

Let

Q′′1 = C[let k =M in event e(sid(m̃sg), k);

find ũ = ĩ′ ≤ ñ suchthat defined(k1 [̃i
′], m̃sg [̃i′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then c1 [̃i]〈M1〉;Q1

else new k1 : T ; c′1 [̃i]〈(k1,M1)〉;Q1]

Let G3 be obtained by replacing new k1 : T with let k1 = k in in G2. Let Q′′′1 be obtained by
replacing new k1 : T with let k1 = k in in Q′′1 . Let G◦3, Q′′1

◦, and Q′′′1
◦ be obtained from G3,

Q′′1 , and Q′′′1 respectively by removing the events of S1.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 53

By introducing a relay process and renaming channels as in the proof of Theorem 2, we have

G◦2{frc/c, c ∈ ch(C)} ≈V1
0 C ′′h [C1[Q

′′
1
◦
]] (23)

G◦3{frc/c, c ∈ ch(C)} ≈V1
0 C ′′h [C1[Q

′′′
1
◦
]] (24)

for some evaluation context C1 that runs in time at most t2. By Lemma 4, there exists an
evaluation context C ′1 such that

C ′′h [C1[Q
′′
1
◦
]] ≈V1

0 C ′1[Ch[Q
′′
1
◦
]] (25)

C ′′h [C1[Q
′′′
1
◦
]] ≈V1

0 C ′1[Ch[Q
′′′
1
◦
]] (26)

where the context C ′1 runs in time at most tC1
≤ t2, calls the l-th hash oracle in Ch at most

nh,l,C1
≤ nh,l,2 times, so nh,l = n′′h,l + nh,l,2, and its other parameters are the same as those of

C1.
Since S1 = Ch[Q

′
1] preserves the secrecy of k1 with public variables V (k1, k /∈ V) up to

probability p, by Lemma 9, we have Ch[Q
′′
1
◦
] ≈Vp0 Ch[Q

′′′
1
◦
] where p0(C3, tD) = p(C3 + tD).

Therefore,
C ′1[Ch[Q

′′
1
◦
]] ≈V1

p1 C
′
1[Ch[Q

′′′
1
◦
]] (27)

where p1(C3, tD) = p0(C3[C
′
1], tD) = p(C3[C

′
1] + tD) = p(C ′3 + tD) and the context C ′3 runs in

time at most tC3
+ t2, calls the l-th hash oracle at most nh,l = n′′h,l + nh,l,2 times, and its other

parameters are the same as those of C3. So by combining (23), (25), (27), (26), and (24),

G◦2{frc/c, c ∈ ch(C)} ≈V1
p1 G

◦
3{frc/c, c ∈ ch(C)}

so by renaming channels
G◦2 ≈V1

p1 G
◦
3 (28)

Let

G4 = C ′′h [C[let k =M in event e(sid(m̃sg), k);

find ũ = ĩ′ ≤ ñ suchthat defined(k1 [̃i
′], m̃sg [̃i′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then (∗) c′′1 [̃i]〈M1〉; (Q1 | Q′0{k1[ũ]/k, ĩ/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)})

else let k1 = k in c′′1 [̃i]〈M1〉; (Q1 | Q′0{k1/k, ĩ/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)})]]

We have

G3 ≈V1
0 G4

by eliminating communications on ch(Q0) (Appendix A.2) and mapping all variables x[̃b, ã, . . .]
(̃b ≤ ñ, ã ≤ ñ) of AddIdxSid(̃i ≤ ñ, x : Tsid, Q2){k1/k, sid(m̃sg)/x}) to x[ã, . . .], which is possible
without clashes since there is a single value of b̃ actually used for each ã (̃b = ũ[ã] when ũ[ã]

is defined; b̃ = ã otherwise). The table entries and the events are the same on both sides
because they contain the session identifier x = sid(m̃sg), not the replication indices ĩ. By
introducing again a relay process and renaming channels as in the proof of Theorem 2, we have
G4{frc/c, c ∈ ch(C)} ≈V1

0 C ′′h [C2[Q
′
1]] for some evaluation context C2 that runs in time at most

t2 and uses the public variable k1. By Lemma 4, there exists an evaluation context C ′2 such that
C ′′h [C2[Q

′
1]] ≈

V1
0 C ′2[Ch[Q

′
1]] = C ′2[S1] where the context C ′2 runs in time at most tC2

≤ t2, calls
the l-th hash oracle in Ch at most nh,l,C2

≤ nh,l,2 times, so nh,l = n′′h,l + nh,l,2, and its other
parameters are the same as those of C2.

RR n° 9171

54 Bruno Blanchet

Since S1 satisfies the correspondence event(e(sid , k)) ∧ event(e(sid , k′)) =⇒ k = k′ with
public variables V ∪ {k1} up to probability p′, by Lemma 1, C ′2[S1] satisfies this correspondence
with public variables V1 up to probability p′1(C3, tD) = p′(C3[C

′
2], tD) = p′(C ′3, tD) where the

context C ′3 runs in time at most tC3
+ t2 and its other parameters are the same as those of

C3, and so do C ′′h [C2[Q
′
1]] and G4. Therefore, we infer that, at the program point (∗) in G4,

k1[ũ] = k[ũ] = k except in cases of probability p′1, since sid(m̃sg [ũ]) = sid(m̃sg). So we have
G4 ≈V1

p′1
G5 where

G5 = C ′′h [C[let k =M in event e(sid(m̃sg), k);

find ũ = ĩ′ ≤ ñ suchthat defined(k1 [̃i
′], m̃sg [̃i′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then c′′1 [̃i]〈M1〉; (Q1 | Q′0{sid(m̃sg)/x, ĩ/̃i′′, frc/c, c ∈ ch(Q0)})

else let k1 = k in c′′1 [̃i]〈M1〉; (Q1 | Q′0{sid(m̃sg)/x, ĩ/̃i′′, frc/c, c ∈ ch(Q0)})]]

Moreover, G5 ≈V1
0 Scomposed since k1 is used only in the test of find (k1 /∈ V) and both branches

of find execute the same code except for the assignment to k1, so the find and the assignment
to k1 can be removed. Therefore, by transitivity, G3 ≈V1

p′1
Scomposed , so by Lemma 11,

G◦3 ≈
V1

p′1
S◦composed (29)

By combining (22), (28), and (29) by transitivity, we obtain

C ′5
◦
[S2] ≈V1

p1+p′1
S◦composed

Let us prove the second point. Let T1 be the type of M1. Let k′ be a fresh variable not
in V ′. Let m̃sg

′ be the sequence of variables corresponding to m̃sg , but using variables of the
relay process Relay(C, ∅, ∅) instead of variables of C. As above, the goal of the relay process
Relay(C, ∅, ∅) is to capture in variables m̃sg

′, visible outside C, the content of m̃sg , which are
variables internal to C but sent or received on public channels. Since Relay(C, ∅, ∅) renames
channels c ∈ ch(C) to frc, we use the relay process Relay′(C, ∅) to perform the reverse renaming.

Let

C4 = newChannel ch′(C); (Relay′(C, ∅) |
newChannel c1, c

′
1, ch(C); (Relay(C, ∅, ∅) |

!̃i≤ñc1 [̃i](y1 : T1); if defined(k[̃i], m̃sg
′
[̃i]) then

let k′ = k[̃i] in c′′1 [̃i]〈y1〉;Q′0{k′/k, ĩ/̃i′′, sid(m̃sg
′
[̃i])/x, frc/c, c ∈ ch(Q0)} |

!̃i≤ñc′1 [̃i](y2 : T1); if defined(k[̃i], m̃sg
′
[̃i]) then

let k′ = k[̃i] in c′′1 [̃i]〈y2〉;Q′0{k′/k, ĩ/̃i′′, sid(m̃sg
′
[̃i])/x, frc/c, c ∈ ch(Q0)} |

[]))

By Lemma 4, there exists an evaluation context C ′4 such that

C ′′h [C4[Q
′
1]] ≈V

′

0 C ′4[Ch[Q
′
1]] = C ′4[S1]

where the context C ′4 runs in time at most tC4
≤ t2, calls the l-th hash oracle in Ch at most

nh,l,C4
≤ nh,l,2 times, so nh,l = n′′h,l + nh,l,2, and its other parameters are the same as those of

C4, that is, it does not alter the other parameters.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 55

Hence, we have

C ′4[S1] ≈V
′

0

C ′′h [C[let k =M in event e(sid(m̃sg), k);

find ũ = ĩ′ ≤ ñ suchthatdefined(m̃sg [̃i′], k1 [̃i
′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then

(if defined(k[̃i]) then let k′ = k[̃i] in

c′′1 [̃i]〈M1〉; (Q1 | Q′0{k′/k, ĩ/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)}))
else

let k1 = k in if defined(k[̃i]) then

let k′ = k[̃i] in c′′1 [̃i]〈M1〉; (Q1 | Q′0{k′/k, ĩ/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)})]]

by eliminating communications on the private channels ch′(C), c1, c′1, ch(C) (Appendix A.2), so

C ′4[S1] ≈V
′

0 C ′′h [C[let k =M in event e(sid(m̃sg), k);

find ũ = ĩ′ ≤ ñ suchthat defined(m̃sg [̃i′], k1 [̃i
′]) ∧ sid(m̃sg [̃i′]) = sid(m̃sg)

then c′′1 [̃i]〈M1〉; (Q1 | Q′0{̃i/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)})

else let k1 = k in c′′1 [̃i]〈M1〉; (Q1 | Q′0{̃i/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)})]]

since k is an abbreviation for k[̃i], so k[̃i] is always defined and k′ = k. Hence

C ′4[S1] ≈V
′

0 C ′′h [C[let k =M in event e(sid(m̃sg), k);

c′′1 [̃i]〈M1〉; (Q1 | Q′0{̃i/̃i′′, sid(m̃sg)/x, frc/c, c ∈ ch(Q0)})]]
= Scomposed

since both branches of find execute the same code except for the assignment to k1 and k1 and
ũ are not used ({k1, ũ} ∩ V ′ = ∅).

A.13 Lemma on a Process that Chooses a Bit
In this section, we consider processes P0 and P1 that do not contain b0 and a process

Q = c(x : T);new b0 : bool ; if b0 then P1 else P0

that chooses a random bit b0 and runs P0 or P1 depending on the value of this bit. For v ∈ {0, 1},
we define Qv = c(x : T);Pv. The process Qv runs as Q when b0 = v. (0 stands for false and 1
for true.) Let Q◦v be obtained from Qv by removing all events. We have the following lemma.

Lemma 12. If Q preserves the secrecy of b0 with public variables V up to probability p and Q
does not contain event_abort, then Q◦0 ≈Vp′ Q◦1 where p′(C, tD) = 4p(C + tD).

Intuitively, the adversary can distinguish Q◦0 from Q◦1 if and only if it can determine the value
of b0, that is, b0 is not secret.

Proof. Let C be any acceptable evaluation context for Q0 and Q1 with public variables V , and
D a distinguisher. Let cs0, cs, and c′s be channels that C does not use.

RR n° 9171

56 Bruno Blanchet

Let C ′ be a context that runs C but stores events executed by C in its internal state instead
of actually executing events, computes D on the stored sequence of events executed by C and
stores the result in b′0, outputs on channel cs0 and inputs on channel cs0, outputs on channel
cs, receives the answer b′′0 on channel cs. If b′0 = b′′0 , it chooses a random b′ and sends it on
channel c′s. If b′0 6= b′′0 , it sends false on channel c′s. Such a context C ′ exists because it can be
encoded as a probabilistic Turing machine adversary, which can itself be encoded as a context
in CryptoVerif [14, Section 2.8].

When b0 = v, C ′[Q | Rx] stores in b′0 the result of C[Q◦v] : D. When b′0 = v,

• if b = true (probability 1/2), then b′′0 = b0 = v, so b′ is random: b′ = true and S is executed
with probability 1/4 and b′ = false and S is executed with probability 1/4;

• if b = false (probability 1/2), then b′′0 is random, so

– b′′0 = v with probability 1/4, so b′ is random: b′ = true and S is executed with
probability 1/8 and b′ = false and S is executed with probability 1/8;

– b′′0 6= v with probability 1/4, and in this case b′ = false and S is executed.

When b′0 6= v,

• if b = true (probability 1/2), then b′′0 = b0 = v, so b′ = false and S is executed with
probability 1/2;

• if b = false (probability 1/2), then b′′0 is random, so

– b′′0 6= v with probability 1/4, so b′ is random: b′ = true and S is executed with
probability 1/8 and b′ = false and S is executed with probability 1/8;

– b′′0 = v with probability 1/4, and in this case b′ = false and S is executed.

So

Pr[C ′[Q | Rx] : S/b0 = v] =
5

8
Pr[C[Q◦v] : D = v] +

3

8
Pr[C[Q◦v] : D 6= v]

=
3

8
+

1

4
Pr[C[Q◦v] : D = v]

because Pr[C[Q◦v] : D 6= v] = 1 − Pr[C[Q◦v] : D = v]. Finally, since C ′[Q | Rx] always executes
either S or S, we obtain

Pr[C ′[Q | Rx] : S]− Pr[C ′[Q | Rx] : S]
= 2.Pr[C ′[Q | Rx] : S]− 1

= Pr[C ′[Q | Rx] : S/b0 = 0] + Pr[C ′[Q | Rx] : S/b0 = 1]− 1

=
3

8
+

1

4
Pr[C[Q◦0] : D = 0] +

3

8
+

1

4
Pr[C[Q◦1] : D = 1]− 1

=
1

4
(1− Pr[C[Q◦0] : D]) +

1

4
Pr[C[Q◦1] : D]− 1

4

=
1

4
(Pr[C[Q◦1] : D]− Pr[C[Q◦0] : D])

so Pr[C[Q◦1] : D] − Pr[C[Q◦0] : D] = 4(Pr[C ′[Q | Rx] : S] − Pr[C ′[Q | Rx] : S]) ≤ 4p(C + tD) =
p′(C, tD)

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 57

B Details on the Proof of TLS
This appendix relies on the CryptoVerif analysis of TLS by Bhargavan et al. described in [10,
Section 6]. The CryptoVerif scripts for their analysis are available at https://github.com/
Inria-Prosecco/reftls/tree/master/cv. We provide a brief reminder of the results of this
analysis, before explaining the composition. For the full details, we still recommend reading [10,
Section 6] before this appendix.

B.1 Reminder
Even though CryptoVerif can evaluate the probability of success of an attack as a function of the
number of sessions and the probability of breaking each primitive (exact security), for simplicity,
as in [10], we consider the asymptotic framework in which we only show that the probability
of success of an attack is negligible as a function of the security parameter η. (A function f is
negligible when for all polynomials q, there exists ηo ∈ N such that for all η > η0, f(η) ≤ 1

q(η) .)
Therefore, we omit probabilities from the security properties. All processes run in polynomial
time in the security parameter and manipulate bitstrings of polynomially bounded length.

The analysis of [10, Section 6] splits TLS 1.3 into three components: the initial handshake,
the handshakes with pre-shared key, and the record protocol.

Initial Handshake The initial handshake is a Diffie-Hellman key-exchange protocol between
a client and a server. It provides 4 keys: the server application traffic secret sats used by the
record protocol for sending messages from the server to the client, the client application traffic
secret cats similar for messages from the client to the server, the exporter master secret ems, and
the resumption secret resumption_secret used as pre-shared key by the next handshake. The
key sats can be used to send messages from the server to the client before the last message of
the handshake; these messages are called 0.5-RTT messages. These keys are stored in variables
with prefix c_ on the client side and s_ on the server side. Furthermore, on the server side, the
variables s_cats, s_ems, and s_resumption_secret are duplicated, with suffixes 1 and 2, for a
technical reason (see [10]). CryptoVerif proves the following correspondences:

inj-event(ClientTerm(log4, s_keys)) =⇒ inj-event(ServerAccept(log4, s_keys, i)) (30)
event(ServerAccept(log4, s_keys, i)) ∧ event(ServerAccept(log4, s_keys ′, i′)) =⇒ i = i′ (31)
inj-event(ServerTerm(log7, c_keys)) =⇒ inj-event(ClientAccept(log7, c_keys, i)) (32)
event(ClientAccept(log7, c_keys, i)) ∧ event(ClientAccept(log7, c_keys ′, i′)) =⇒ i = i′ (33)

with public variables Vin = {c_cats, c_sats, c_ems, c_resumption_secret , s_cats1 , s_cats2 ,
s_sats, s_ems1 , s_ems2 , s_resumption_secret1 , s_resumption_secret2}. The correspon-
dences (30) and (32) prove injective mutual key authentication, and (31) and (33) prove that the
accept events are executed at most once for value of the session identifier log4 or log7. The ses-
sion identifier log7 contains all messages of the protocol, while log4 contains all messages except
the last one (client Finished). The keys c_keys include all four keys mentioned above, while
s_keys does not contain the resumption secret. CryptoVerif also proves that the protocol pre-
serves the secrecy of s_sats with public variables Vin \ {c_sats, s_sats}, of c_cats with public
variables Vin\{c_cats, s_cats1 , s_cats2}, of c_ems with public variables Vin\{c_ems, s_ems1 ,
s_ems2}, and of c_resumption_secret with public variables Vin \ {c_resumption_secret ,
s_resumption_secret1 , s_resumption_secret2}. The events are executed and the keys are
stored in the corresponding variable only when each participant believes that it talks to a honest
peer: when the honest peer is authenticated and not compromised, or when the honest peer is

RR n° 9171

https://github.com/Inria-Prosecco/reftls/tree/master/cv
https://github.com/Inria-Prosecco/reftls/tree/master/cv

58 Bruno Blanchet

compromised but the received messages still come from it, or when the peer is not authenticated
but the Diffie-Hellman share comes from the honest peer.

Handshakes with Pre-Shared Key The handshakes with pre-shared key rely on a previ-
ously established pre-shared key to execute a handshake between the client and the server, with
or without Diffie-Hellman key exchange. They produce the same keys as the initial handshake,
plus an additional client early traffic secret cets, computed after the first message of the protocol
(ClientHello). This traffic secret is used by the record protocol to send messages from the client
to the server immediately after the ClientHello message, so-called 0-RTT data. These keys are
stored in variables with prefix c_ client side and s_ server side for the handshake without Diffie-
Hellman exchange, and cdhe_ client side and sdhe_ server side for the handshake with Diffie-
Hellman exchange. Server-side, cets is stored in the variables s_cets2 when the ClientHello
has not been altered by an adversary, s_cets3 when it has been altered, and s_cets1 when it has
been altered and the considered ClientHellomessage has not been received before (and similarly
with dhe added for the handshake with Diffie-Hellman exchange). CryptoVerif proves the corre-
spondences (30) to (33) with public variables Vpsk containing all variables with prefixes c_, s_,
cdhe_, and sdhe_. CryptoVerif also proves that the protocol preserves the secrecy of s_sats
with public variables Vpsk \ {c_sats, s_sats}, of c_cats with public variables Vpsk \ {c_cats,
s_cats}, of c_ems with public variables Vpsk \ {c_ems, s_ems}, and of c_resumption_secret
with public variables Vpsk \ {c_resumption_secret , s_resumption_secret}.

For 0-RTT traffic, CryptoVerif shows the correspondences

event(ServerEarlyTerm1(log1 , cets)) =⇒ event(ClientEarlyAccept1(log1 , cets, i)) (34)
event(ClientEarlyAccept1(log1 , cets, i)) ∧ event(ClientEarlyAccept1(log1 , cets ′, i′)) =⇒ i = i′

(35)

with public variables Vpsk, and the secrecy of c_cets with public variables Vpsk \ {c_cets,
s_cets2}. These properties deal with the case of ClientHello messages that have not been
altered by the adversary. The authentication (34) is non-injective because the ClientHello
message can be replayed.

To deal with the case of altered ClientHellomessages, CryptoVerif shows the correspondence

event(ServerEarlyTerm2(log1 , cets)) ∧ event(ServerEarlyTerm2(log1 , cets ′)) =⇒ cets = cets ′

(36)

with public variables Vpsk, and the secrecy of s_cets1 with public variables Vpsk \ {s_cets1 ,
s_cets3}. The correspondence (36) means that, if the server receives twice the same altered
ClientHello message, then it computes the same early traffic secret cets.

CryptoVerif proves similar properties for the handshake with Diffie-Hellman exchange, with
suffix DHE added to the events and dhe added to the variables.

Record Protocol The record protocol is modeled in CryptoVerif as follows:

Rec = c1();new b : bool ;new ts : key ; let tsupd = HKDF_expand_upd_label(ts) in c2〈〉;
(Qsend(b) | Qrecv)

It chooses a random bit b (false = 0 or true = 1) and a random traffic secret ts. It computes
the updated traffic secret tsupd , and then provides two processes Qsend(b) and Qrecv. The
process Qsend(b) receives two clear messages msg0 and msg1, and a counter count . Provided the
counter has not been used for sending a previous message and the messages msg0 and msg1 have

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 59

the same padded length, it executes the event sent0(count ,msgb) and sends the message msgb
encrypted using keys derived from the traffic secret ts. The process Qrecv receives an encrypted
message and a counter count . Provided the counter has not been used for receiving a previous
message, it decrypts the message using keys derived from the traffic secret ts and executes event
received0(count ,msg) where msg is the clear message. Both the emission and reception can be
executed several times, and the encryption scheme is authenticated.

CryptoVerif proves the secrecy of tsupd with public variable b, the secrecy of b with public
variable tsupd , and the correspondence

inj-event(received0(count ,msg)) =⇒ inj-event(sent0(count ,msg))

with public variables b, tsupd . This correspondence shows injective message authentication.
We consider two other variants of the record protocol, used for 0-RTT. In the first variant,

Rec0-RTT, the receiver process is replicated once more, so that several sessions may have the same
traffic secret, thus the receiver accepts messages with the same counter in different sessions with
the same traffic secret. It models that the server may receive several times the same ClientHello
message, yielding the same traffic secret. In this model, CryptoVerif proves the secrecy of tsupd
with public variable b, the secrecy of b with public variable tsupd , and the correspondence

event(received0(count ,msg)) =⇒ event(sent0(count ,msg))

with public variables b, tsupd .
In the second variant, Rec0-RTT,Bad, the sender process is additionally removed. This model

corresponds to the situation in which the ClientHello message is altered, and thus the server
obtains a traffic secret that is not used by any client. In this model, CryptoVerif proves the
secrecy of tsupd with no public variable and the correspondence event(received0(count ,msg)) =⇒
false with public variable tsupd , that is, event(received0(count ,msg)) can be executed only with
negligible probability.

B.2 The Composition
Let us now apply our composition theorems to compose the three parts of TLS 1.3 into the whole
protocol.

Record Protocol with Key Updates We compose the record protocol with itself, to deal
with key updates.

As a first step, let us establish properties of the record protocol without composition. For
s ∈ {0, 1}, let Recs be the protocol obtained by always choosing b = s in the record protocol
Rec. Let Rec◦s be obtained by removing events in Recs. Let Rec? be the protocol in which the
choice of b is removed and the sender receives a single clear message and sends it encrypted. We
let corr j be the correspondence

inj-event(receivedj(count ,msg)) =⇒ inj-event(sentj(count ,msg))

We prove that Rec◦0 ≈V Rec◦1 and for all s ∈ {0, 1, ?}, Recs preserves the secrecy of tsupd and
satisfies the correspondence corr0 with public variables V , where V = {tsupd}.

Proof. By Lemma 12, since Rec preserves the secrecy of b with public variables V , we have
Rec◦0 ≈V Rec◦1.

Moreover, since Rec preserves the secrecy of tsupd and satisfies the correspondence corr0 with
public variables V , so do Rec0 and Rec1 by Lemma 1, because for s ∈ {0, 1}, Recs ≈V Cs[Rec]

RR n° 9171

60 Bruno Blanchet

and the evaluation context Cs receives two messages msg0 and msg1 and forwards two copies of
msgs to Rec, so that Rec always sends msgs encrypted independently of the value of b.

Furthermore, since Rec preserves the secrecy of tsupd and satisfies the correspondence corr0
with public variables V , Rec? satisfies the same properties by Lemma 1, because Rec? ≈V C[Rec],
where the evaluation context C receives a single message msg and forwards two copies of msg
to Rec, so that Rec always sends msg0 = msg1 = msg encrypted independently of the value of
b.

Let us now define the record protocol with m key updates as follows:

Recms = c1();new ts : key ; c2〈〉; (
∏m

j=0
Qjsend,s |

∏m

j=0
Qjrecv)

where s is the side (0, 1, or ?), Qjsend,s is a process that receives messages on channel cj3 and sends
them encrypted using the j-th updated traffic secret on channel cj4, and Q

j
recv is a process that

receives messages on channel cj5 and decrypts them using the j-th updated traffic secret. The pro-
cess Qjsend,s uses table table_count_send j and event sentj ; Qjrecv uses table table_count_recv j

and event receivedj . When s is 0 or 1, Qjsend,s receives two clear messages msg0 and msg1 and
sends msgs encrypted. When s = ?, Qjsend,s receives a single message and sends it encrypted.
Let Recm,◦s be obtained by removing all events in Recms .

The record protocol can be written:

Recs = c1();new ts : key ; let tsupd = HKDF_expand_upd_label(ts) in c2〈〉;
(Q0

send,s | Q0
recv)

We prove that Recm,◦0 ≈ Recm,◦1 and for all s ∈ {0, 1, ?}, Recms satisfies the correspondences
corr j with no public variable for j ≤ m.

Proof. The proof proceeds by induction on m.
Case m = 0: Since Rec◦0 ≈V Rec◦1 and for all s ∈ {0, 1, ?}, Recs satisfies the correspondence

corr0 with public variables tsupd , we have Rec0,◦0 ≈ Rec0,◦1 and for all s ∈ {0, 1, ?}, Rec0s satisfies
the correspondence corr0 with no public variable, by removing the assignment to tsupd .

Case m+1: By induction hypothesis, Recm,◦0 ≈ Recm,◦1 and for all s ∈ {0, 1, ?}, Recms satisfies
the correspondences corr j with no public variable for j ≤ m. Let Rec′s

m be obtained from Recms
by renaming ts to tsupd and other variables to fresh variables, the events receivedj and sentj to
receivedj+1 and sentj+1 respectively for j ≤ m, the channels c1, c2, c

j
3, c

j
4, c

j
5 to c′1, c′2, c

j+1
3 ,

cj+1
4 , cj+1

5 respectively for j ≤ m, and the tables table_count_send j and table_count_recv j to
table_count_send j+1 and table_count_recv j+1 respectively for j ≤ m. The processes Q′jsend,s
and Q′jrecv are defined in a similar way.

We compose Recs with Rec′s′
m by Theorem 1. By the previous renaming, tsupd is the only

common variable between the processes Recs and Rec′s′
m, and these processes have no common

channel, no common event, and no common table. We obtain the composed system

Scomposed,s,s′ = c1();new ts : key ; let tsupd = HKDF_expand_upd_label(ts) in c′′2〈〉;

(Q0
send,s | Q0

recv |
∏m

j=0
Q′

j
send,s′ |

∏m

j=0
Q′

j
recv)

for some fresh channel c′′2 , so that we have

Scomposed,s,s{c2/c′′2} ≈ Recm+1
s

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 61

Let S◦composed,s,s′ be obtained from Scomposed,s,s′ by removing events received0 and sent0, and
S◦◦composed,s,s′ be obtained from Scomposed,s,s′ by removing all events. Since Recs preserves the
secrecy of tsupd , Theorem 1 shows that S◦composed,s,s′ ≈ C ′s[Rec

′
s′
m
] for some evaluation context

C ′s acceptable for Rec′s′
m without public variables and containing no event. Moreover, it also

shows that Scomposed,s,s′ ≈ C ′′s′ [Recs] for some evaluation context C ′′s′ acceptable for Recs with
public variable tsupd and containing the events receivedj and sentj for 1 ≤ j ≤ m + 1. Indeed,
C ′s does not depend on the side s′ of Rec′s′

m and C ′′s′ does not depend on the side s of Recs.
Since Scomposed,s,s ≈ C ′′s [Recs] and Recs satisfies the correspondence corr0 with public vari-

ables tsupd , then by Lemma 1, Scomposed,s,s satisfies the correspondence corr0 with no public
variable, and so does Recm+1

s . Since

S◦composed,s,s ≈ C ′s[Rec
′
s
m
]

nd Rec′s
m satisfies the correspondences corr j with no public variable for 1 ≤ j ≤ m+1, then by

Lemma 1 so do S◦composed,s,s, Scomposed,s,s, and Recm+1
s . Hence Recm+1

s satisfies the correspon-
dences corr j with no public variable for j ≤ m+ 1.

Finally, let C ′′0
◦ be obtained from C ′′0 be removing the events receivedj and sentj for 1 ≤ j ≤

m+ 1. Using Lemma 11,

S◦◦composed,0,0 ≈ C ′′0
◦
[Rec◦0] ≈ C ′′0

◦
[Rec◦1] ≈ S◦◦composed,1,0

≈ C ′1[Rec
′
0
m,◦

] ≈ C ′1[Rec
′
1
m,◦

] ≈ S◦◦composed,1,1

(37)

so Recm+1,◦
0 ≈ Recm+1,◦

1 by renaming c′′2 to c2.

We can apply a similar reasoning to the two variants of the record protocol for 0-RTT data.

• For s ∈ {0, 1}, let Rec0-RTT
m
s be the process obtained by always choosing b = s in Rec0-RTT

and composing it with itself m times. Let Rec0-RTT
m
? be the process Rec0-RTT in which the

choice of b is removed and the sender receives a single clear message and sends it encrypted,
composed with itself m times. Let Rec0-RTT

m,◦
s be obtained from Rec0-RTT

m
s by removing

all events. We prove that Rec0-RTT
m,◦
0 ≈ Rec0-RTT

m,◦
1 and that, for all s ∈ {0, 1, ?},

Rec0-RTT
m
s satisfies the correspondences

event(receivedj(count ,msg)) =⇒ event(sentj(count ,msg))

with no public variable for all j ≤ m.

• We also prove that the process Rec0-RTT,Bad
m, obtained by composing Rec0-RTT,Bad with

itself m times, satisfies the correspondences

event(receivedj(count ,msg)) =⇒ false

with no public variable for all j ≤ m. (This variant contains no sender process, so it does
not use b.)

By Lemmas 5 and 6, we infer that replicated versions of the record protocol satisfy similar
properties. Let us define ReplC(Q) = AddReplSid(iC ≤ nC , c

′
1, bitstring , Q) and ReplS(Q) =

AddReplSid(iS ≤ nS , c′1, bitstring , Q).

• ReplC(Rec
m,◦
0) ≈ ReplC(Rec

m,◦
1) and for all s ∈ {0, 1, ?}, ReplC(Recms) satisfies the corre-

spondences inj-event(receivedj(x, count ,msg)) =⇒ inj-event(sentj(x, count ,msg)) with
no public variable for all j ≤ m.

RR n° 9171

62 Bruno Blanchet

• ReplS(Rec
m
s) satisfies the same properties.

• ReplC(Rec0-RTT
m,◦
0) ≈ ReplC(Rec0-RTT

m,◦
1) and for all s ∈ {0, 1, ?}, ReplC(Rec0-RTT

m
s)

satisfies the correspondences event(receivedj(x, count ,msg)) =⇒ event(sentj(x, count ,
msg)) with no public variable for all j ≤ m.

• ReplS(Rec0-RTT,Bad
m) satisfies the correspondences event(receivedj(x, count ,msg)) =⇒

false with no public variable for all j ≤ m.

Handshakes with Pre-Shared Key We compose the handshakes with pre-shared key with
the record protocol:

1. with secret key c_cats using Theorem 2 and process ReplC(Rec
m
s), for 1-RTT client-to-

server messages. (Event eA is ClientAccept and event eB is ServerTerm. In [10, Figure 9],
event ClientAccept occurs at line 3: and event ServerTerm occurs at line 7:.)

2. with secret key s_sats using Theorem 2 and process ReplS(Rec
m
s), for 0.5-RTT and 1-

RTT server-to-client messages. (Event eA is ServerAccept and event eB is ClientTerm.
In [10, Figure 9], event ServerAccept occurs at line 6: and event ClientTerm occurs at line
2:.)

3. with secret key c_cets using Theorem 3 and the variant ReplC(Rec0-RTT
m
s) of the record

protocol with an additional replication in the receiver process, for 0-RTT messages when
the ClientHello message has not been altered. (Event eA is ClientEarlyAccept1 and event
eB is ServerEarlyTerm1. In [10, Figure 9], event ClientEarlyAccept1 occurs at line 1: and
event ServerEarlyTerm1 occurs at line 4:.)

4. with secret key s_cets3 using Theorem 5 and the variant ReplS(Rec0-RTT,Bad
m) of the

record protocol without sender process, for 0-RTT when the ClientHello message has
been altered. (Event e is ServerEarlyTerm2, which occurs at line 5: in [10, Figure 9].)

We perform similar compositions (numbered 1’ to 4’) in the handshake with pre-shared key and
Diffie-Hellman key agreement.

Before applying the theorems, we permute assignments and events as needed so that the
process has the form required in the theorem. We also notice that the events contain more
keys in the process than in the composition theorems: the handshake process contains events
eA((m̃sgA), (k̃A), ĩ) and eB((m̃sgB), (k̃B)) while in the composition theorems, the process Q′1
contains eA((m̃sgA), kA, ĩ) and eB((m̃sgB), kB), where k̃A contains kA and k̃B contains kB at the
same position. (The function sid just returns the tuple of messages.) As a result, the correspon-
dences (2) and (7) that we prove are stronger than those in the composition theorems: they mean
that for each execution of event eB((m̃sg), (k̃)), there is an execution of event eA((m̃sg), (k̃), ĩ) for
some ĩ, with the same tuples of keys k̃ = k̃A = k̃B while the composition theorems just require
the equality for one key k = kA = kB . The meaning of the correspondence (3) is unchanged,
since in this correspondence, the keys are distinct variables so their value does not matter.

In the composition, we index the events that come from the record protocol with an index
c from 1 to 4 and from 1’ to 4’ corresponding to the number of the composition that adds this
instance of the record protocol, so we use events sentc,j and receivedc,j . We index the channels,
tables, and variables from the record protocol in a similar way, so that they are distinct in the
various compositions.

For the first composition, we compose the handshakes with pre-shared key QPSKH with
the record protocol Rec1,ms , obtained from ReplC(Rec

m
s) by this renaming, with secret key

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 63

c_cats using Theorem 2, as announced above. We obtain a composed protocol S1,m
composed,s.

Let S1,m,◦
composed,s be obtained from S1,m

composed,s by removing the events of the handshake protocol,
and S1,m,◦◦

composed,s be obtained from S1,m
composed,s by removing all events. By Theorem 2, we have

S1,m,◦
composed,s

∼→
V 1
psk,∅
f1 Rec1,ms and S1,m

composed,s ≈
V 1
psk C1

s [QPSKH] for some evaluation context C1
s ac-

ceptable for QPSKH with public variables {c_cats, s_cats}, where V 1
psk = Vpsk\{c_cats, s_cats}.

By Lemma 11, we have S1,m,◦◦
composed,s

∼→
V 1
psk,∅
f1 Rec1,m,◦s , where the process Rec1,m,◦s is obtained by

deleting events in Rec1,ms . Since ReplC(Rec
m,◦
0) ≈ ReplC(Rec

m,◦
1), that is, Rec1,m,◦0 ≈ Rec1,m,◦1 ,

we have S1,m,◦◦
composed,0 ≈

V 1
psk S1,m,◦◦

composed,1 by Lemma 2. By Lemma 3 and S1,m,◦
composed,s

∼→
V 1
psk,∅
f1 Rec1,ms ,

the processes S1,m,◦
composed,s and S1,m

composed,s inherit the correspondence properties of the record
protocol. By Lemma 1 and S1,m

composed,s ≈
V 1
psk Cs[QPSKH], the process S1,m

composed,s inherits corre-
spondence and secrecy properties of the handshake with pre-shared keys (but the variable c_cats
on which we compose and the corresponding variable s_cats in the peer are removed from the
public variables V 1

psk and from the secrets).
We perform the second composition in a similar way. We compose S1,m

composed,s with the record
protocol Rec2,ms′ , obtained by renaming ReplS(Rec

m
s′), with secret key s_sats using Theorem 2, as

announced above. We obtain a composed protocol S2,m
composed,s,s′ . Let S2,m,◦

composed,s,s′ be obtained
from S2,m

composed,s,s′ by removing the events of S1,m
composed,s, and S2,m,◦◦

composed,s,s′ be obtained from

S2,m
composed,s,s′ by removing all events. By Theorem 2, we have S2,m,◦

composed,s,s′
∼→
V 2
psk,∅
f2
s

Rec2,ms′ and

S2,m
composed,s,s′ ≈

V 2
psk C2

s′ [S
1,m
composed,s] for some evaluation context C2

s′ acceptable for S1,m
composed,s

with public variables {s_sats, c_sats}, where V 2
psk = V 1

psk \{s_sats, c_sats}. By Lemma 11, we

have S2,m,◦◦
composed,s,s′

∼→
V 2
psk,∅
f2
s

Rec2,m,◦s′ , where the process Rec2,m,◦s′ is obtained by deleting events in
Rec2,ms′ . Since ReplS(Rec

m,◦
0) ≈ ReplS(Rec

m,◦
1), that is, Rec2,m,◦0 ≈ Rec2,m,◦1 , we have

S2,m,◦◦
composed,0,0 ≈

V 2
psk S2,m,◦◦

composed,0,1

by Lemma 2. Moreover, using Lemma 11,

S2,m,◦◦
composed,0,1 ≈

V 2
psk C2,◦

1 [S1,m,◦◦
composed,0] ≈

V 2
psk C2,◦

1 [S1,m,◦◦
composed,1] ≈

V 2
psk S2,m,◦◦

composed,1,1

so
S2,m,◦◦
composed,0,0 ≈

V 2
psk S2,m,◦◦

composed,1,1 .

By Lemma 3 and S2,m,◦
composed,s,s

∼→
V 2
psk,∅
f2
s

Rec2,ms , the processes S1,m,◦
composed,s,s and S1,m

composed,s,s in-

herit the correspondence properties of the record protocol. By Lemma 1 and S2,m
composed,s,s ≈

V 2
psk

C2
s [S

1,m
composed,s], the process S2,m

composed,s,s inherits correspondence and secrecy properties of the
handshake with pre-shared keys (but the variable s_sats on which we compose and the corre-
sponding variable c_sats in the peer are removed from the public variables V 2

psk and from the
secrets).

We perform the other compositions in the same way. We obtain processes QmPSKH,s

that run one handshake with pre-shared key and the record protocol with at most m
key updates and side s. Let Qm,◦PSKH,s be obtained from QmPSKH,s by removing all events.
The composition theorems show that Qm,◦PSKH,0 ≈V Qm,◦PSKH,1 where V = {c_ems, s_ems,
cdhe_ems, sdhe_ems, c_resumption_secret , s_resumption_secret , cdhe_resumption_secret ,
sdhe_resumption_secret}, and that QmPSKH,s satisfies correspondences and secrecy properties

RR n° 9171

64 Bruno Blanchet

that come from the handshake (but the variables c_cats, s_sats, c_cets, s_cets3 , cdhe_cats,
sdhe_sats, cdhe_cets, and sdhe_cets3 on which we compose and the corresponding variables
in the peer are removed from the public variables V and from the secrets) and from the record
protocol (with additional index c in the correspondences). That is, QmPSKH,s satisfies the corre-
spondences (30) to (36), the correspondences (30) to (36) with suffix DHE in the events, and

inj-event(receivedc,j(x, count ,msg)) =⇒ inj-event(sentc,j(x, count ,msg))

for c ∈ {1, 2, 1′, 2′} and j ≤ m
event(receivedc,j(x, count ,msg)) =⇒ event(sentc,j(x, count ,msg))

for c ∈ {3, 3′} and j ≤ m
event(receivedc,j(x, count ,msg)) =⇒ false

for c ∈ {4, 4′} and j ≤ m

with public variables V and preserves the secrecy of

c_ems with public variables V \ {c_ems, s_ems},
cdhe_ems with public variables V \ {cdhe_ems, sdhe_ems},
c_resumption_secret with public variables

V \ {c_resumption_secret , s_resumption_secret},
cdhe_resumption_secret with public variables

V \ {cdhe_resumption_secret , sdhe_resumption_secret}

Let us define processes Ql,mPSKH,s that run at most l+1 successive handshakes with pre-shared
key and the record protocol with at most m key updates and side s. In these processes, we
add an index k to all events: k is a bitstring of length at most l, where the length of k is
the number of handshakes with pre-shared key made before the current one and the i-th bit of
k is 1 if and only if the i-th handshake used a Diffie-Hellman exchange. The index k is also
added to the variables c_ems, s_ems, cdhe_ems, sdhe_ems. We also add arguments x̃k to
events, where x̃k is a sequence of variables that will contain the messages sent and received
by the handshakes above the current one. The sequence x̃k contains as many variables as the
length of k. The processes Ql,mPSKH,s start with a context Ch that defines a random oracle:
Ql,mPSKH,s = Ch[Q

l,m
PSKH-no-ROM,s]. Hence, the corresponding replicated process constructed by

Lemmas 5 and 6 is Ql,mPSKH-Repl,s = C ′h[AddReplSid(iC ≤ nC , c
′, bitstring , Ql,mPSKH-no-ROM,s)]. Let

Ql,m,◦PSKH,s be obtained from Ql,mPSKH,s by removing all events, and Ql,m,◦PSKH-Repl,s be obtained from
Ql,mPSKH-Repl,s by removing all events.

We have Q0,m
PSKH,s = QmPSKH,s. Using a proof by induction as for the record protocol above,

from properties of Ql,mPSKH,s, we infer properties of Ql,mPSKH-Repl,s by Lemmas 5 and 6 and we
compose QmPSKH,s with Q

l,m
PSKH-Repl,s, with secret c_resumption_secret using Theorem 2. (Event

eA is ClientAccept and event eB is ServerTerm.) We perform a similar composition with secret
cdhe_resumption_secret . Then, we obtain properties of Ql+1,m

PSKH,s.
We obtain that Ql,m,◦PSKH,0 ≈Vl Ql,m,◦PSKH,1 and that Ql,mPSKH,s satisfies the same correspondences

as QmPSKH,s, with additional index k of length at most l and additional arguments x̃k in the
events and with public variables Vl, and preserves the secrecy of c_emsk with public variables
Vl \ {c_emsk, s_emsk} and of cdhe_emsk with public variables Vl \ {cdhe_emsk, sdhe_emsk},
where Vl =

⋃
k of length at most l{c_emsk, s_emsk, cdhe_emsk, sdhe_emsk}.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 65

We also obtain that Ql,m,◦PSKH-Repl,0 ≈Vl Ql,m,◦PSKH-Repl,1 and that Ql,mPSKH-Repl,s satisfies the same
correspondences as QmPSKH,s, with additional index k of length at most l and additional arguments
x, x̃k in the events and with public variables Vl, and preserves the secrecy of c_emsk with public
variables Vl \ {c_emsk, s_emsk} and of cdhe_emsk with public variables Vl \ {cdhe_emsk,
sdhe_emsk}.

Full Protocol We compose the initial handshake with the record protocol:

1. with secret key c_cats using Theorem 4 and process AddReplSid(iC ≤ nC , c
′, bitstring ,

Recms), for 1-RTT client-to-server messages. (Event eA is ClientAccept and event eB is
ServerTerm. In [10, Figure 8], event ClientAccept occurs at line 2: and event ServerTerm
occurs at line 6: and in the process QServerAfter0 .5RTT2 . We need the variant with several
holes of Theorem 2, shown in Appendix A.10, because event ServerTerm occurs twice.)

2. with secret key c_sats using Theorem 2 and process AddReplSid(iS ≤ nS , c
′, bitstring ,

Recms), for 0.5-RTT and 1-RTT server-to-client messages. (Event eA is ServerAccept and
event eB is ClientTerm. In [10, Figure 8], event ServerAccept occurs at line 4: and event
ClientTerm occurs at line 1:.)

In the composition, we index the events that come from the record protocol with an index c
(1 or 2) corresponding to the number of the composition that adds this instance of the record
protocol, so we use events sentc,j and receivedc,j .

We also compose the initial handshake with the process Ql,mPSKH-Repl,s that runs handshakes
with pre-shared key, with secret key c_resumption_secret using Theorem 4. (Event eA is
ClientAccept and event eB is ServerTerm. Again, we need the variant with several holes of
Theorem 2, because event ServerTerm occurs twice.)

Finally, we compose the obtained process with a process that runs the rest of the TLS
protocol (record protocol and/or handshakes with pre-shared key) without any event or security
claim, when the honest client talks to a dishonest server or conversely. In these cases, the model
leaks the session keys, so we just put the process in a context that receives these keys and runs
the rest of TLS, and perform the composition by eliminating communications (Appendix A.2).
In [10, Figure 8], this situation occurs at lines 3:, 5:, 7:, and at a line similar to 7: in the process
QServerAfter0 .5RTT2 .

We obtain processes Ql,mTLS,s that run the initial handshake followed by at most l successive
handshakes with pre-shared key and the record protocol with at most m key updates and side
s. Let Ql,m,◦TLS,s be obtained from Ql,mTLS,s by removing all events.

These processes satisfy the following properties: Ql,m,◦TLS,0 ≈V
′
l Ql,m,◦TLS,1 and Ql,mTLS,s satisfies the

correspondences (30) to (33) (inherited from the initial handshake), the correspondences (30)
to (36) with additional index k and additional arguments x, x̃k in the events, the correspon-
dences (30) to (36) with suffix DHE, additional index k, and additional arguments x, x̃k in the
events,

inj-event(receivedc,j(x
′, count ,msg)) =⇒ inj-event(sentc,j(x

′, count ,msg))

for c ∈ {1, 2, 1′, 2′} and j ≤ m
(38)

inj-event(receivedk,c,j(x
′, x̃k, x, count ,msg)) =⇒ inj-event(sentk,c,j(x

′, x̃k, x, count ,msg))

for c ∈ {1, 2, 1′, 2′} and j ≤ m (39)

event(receivedk,c,j(x
′, x̃k, x, count ,msg)) =⇒ event(sentk,c,j(x

′, x̃k, x, count ,msg))

for c ∈ {3, 3′} and j ≤ m
(40)

RR n° 9171

66 Bruno Blanchet

event(receivedk,c,j(x
′, x̃k, x, count ,msg)) =⇒ false

for c ∈ {4, 4′} and j ≤ m
(41)

all with public variables V ′l and preserves the secrecy of

c_ems with public variables V ′l \ {c_ems, s_ems1 , s_ems2},
c_emsk with public variables V ′l \ {c_emsk, s_emsk},
cdhe_emsk with public variables V ′l \ {cdhe_emsk, sdhe_emsk}

where

V ′l = {c_ems, s_ems1 , s_ems2} ∪
⋃

k of length at most l

{c_emsk, s_emsk, cdhe_emsk, sdhe_emsk} .

(The events and variables with additional index k are considered different from the events and
variables without that index, even when k is empty. Those without index k come from the initial
handshake. Those with index k come from the handshake with pre-shared key.)

The equivalence Ql,m,◦TLS,0 ≈V
′
l Ql,m,◦TLS,1 proves message secrecy: an adversary cannot distinguish

whether the protocol encrypted the first or the second set of plaintexts. The correspondences (38)
and (39) prove injective message authentication for 0.5-RTT and 1-RTT data, while the corre-
spondences (40) prove non-injective message authentication for 0-RTT data: if a honest receiver
is in a honest session (that is, it talks to a honest sender) and receives a message, then this
message was sent by the honest sender talking to the honest receiver. Furthermore, the message
has the same associated counter count on both sides. Other correspondences show (injective or
non-injective) key authentication, and unique accept for the composed protocol. We also obtain
the secrecy of the exporter master secrets computed by the various handshakes: the adversary
cannot distinguish them from independent random values.

Remark The correspondence (31) with additional index k and additional arguments x, x̃k in
the events is

event(ServerAcceptk(x, x̃k, log4, s_keys, i)) ∧
event(ServerAcceptk(x, x̃k, log4, s_keys ′, i′)) =⇒ i = i′

(42)

It shows that, when two executions of ServerAcceptk with the same log (x, x̃k, log4) from the
beginning of the protocol always have the same final replication index i. However, the intuitive
extension of (31) to the composed system is rather that ServerAcceptk is executed at most once
with the same log, that is, two executions of ServerAcceptk with the same log have all their
replication indices equal:

event(ServerAcceptk(x, x̃k, log4, s_keys, i0, ĩk, i)) ∧

event(ServerAcceptk(x, x̃k, log4, s_keys ′, i′0, ĩ
′
k, i
′)) =⇒ (i0, ĩk, i) = (i′0, ĩ

′
k, i
′)

(43)

where ĩk contains as many replication indices as the length of k.
In general, AddReplSid can add only the session identifier to the events, and not the repli-

cation indices, because the replication indices are renumbered during the composition. (With
the notations of Theorem 2, the indices of Q2B are renumbered.) That would break some corre-
spondences. In the particular case of (31), we could actually add the indices because either the
indices of both occurrences of ServerAcceptk are not renumbered or they are renumbered in the
same way, so the correspondence is preserved.

Inria

Composition Theorems for CryptoVerif and Application to TLS 1.3 67

Formally, we do not need (43), because in all our compositions, we use as key exchange proto-
col (system S1 in Theorem 2) a protocol that performs a single handshake, so (31) itself is enough.
We may still want to prove (43). We can show it by combining several correspondences: in the
composed protocol, the event ServerAcceptk is always preceded by the events ServerAccept (for the
initial handshake) and ServerAcceptk′ for each strict prefix k′ of k (for the previous handshakes
with pre-shared key). These events use as log a prefix of the log for ServerAcceptk. Therefore, if we
have two executions of ServerAcceptk with the same log, ServerAcceptk(x, x̃k, log4, s_keys, i0, ĩk, i)

and ServerAcceptk(x, x̃k, log4, s_keys ′, i′0, ĩ
′
k, i
′), then we have two executions of ServerAccept with

the same log, which implies that they have the same replication index by (31), so i0 = i′0. For
each strict prefix k′ of k, we also have two executions of ServerAcceptk′ with the same log, which
implies that they have the same final replication index by (31) with additional index k′ and
additional arguments x, x̃k′ , so ĩk and ĩ′k have the same (|k′| + 1)-th element, where |k′| is the
length of k′. By (42), we have i = i′. So by combining these results, we have (43).

The same remark applies to the correspondences (33) and (35) as well.

RR n° 9171

RESEARCH CENTRE
PARIS

2 rue Simone Iff
CS 42112
75589 Paris Cedex 12

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	A Short Reminder on CryptoVerif
	Structure of the proof of TLS 1.3
	The Most Basic Composition Theorem
	Main Composition Results
	Transferring Security Properties
	Hash Oracles
	Replication
	Main Composition Theorem
	Non-injective Variant

	Application to TLS 1.3
	Conclusion
	Proofs
	Characterization of Secrecy
	Eliminating Private Communications
	Consequence of Secrecy
	Proof for Section 4
	Proofs for Section 5.1
	Removing Events
	Proof for Section 5.2
	Proofs for Section 5.3
	Proof for Section 5.4
	Variant with Several Holes
	Proof for Section 5.5
	Single Process with Key Reuse
	Lemma on a Process that Chooses a Bit

	Details on the Proof of TLS
	Reminder
	The Composition

