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Abstract

TLA+ is a specification language designed for the verification of concurrent and
distributed algorithms and systems. We present an encoding of a non-temporal
fragment of TLA+ into (unsorted) first-order logic and many-sorted first-order
logic, the input languages of first-order automated theorem provers. The non-
temporal subset of TLA+ is based on untyped set theory and includes functions,
arithmetic expressions, and Hilbert’s choice operator. The translation, based
on encoding techniques such as boolification, injection of unsorted expressions
into sorted languages, term rewriting, and abstraction, is the core component
of a back-end prover based on first-order theorem provers and smt solvers for
the TLA+ Proof System.

Keywords: interactive theorem proving, set theory, many-sorted first-order
logic, TLA+, formal verification of distributed systems.

1. Introduction

TLA+ [22] is a specification language designed for the verification of con-
current and distributed algorithms and systems. Its logical foundation is a
combination of variants of Zermelo-Fraenkel set theory with choice (zfc) and
of linear-time temporal logic for modeling, respectively, the data manipulated
by an algorithm, and its behavior. The TLA+ Proof System (tlaps) is an in-
teractive proof assistant that provides support for mechanized reasoning about
TLA+ specifications. It integrates several back-end provers for making auto-
matic reasoners available to users of tlaps. More specifically, tlaps is built
around a so-called Proof Manager [11] that interprets a TLA+ proof, gener-
ates corresponding proof obligations, and passes them to the back-end provers,
which interact with external automated verifiers. The work reported here is mo-
tivated by the development of powerful back-end provers through which users of
tlaps interact with off-the-shelf automated theorem provers for non-temporal

IThis work was partially supported by the MSR-Inria Joint Centre and by project ANR-
13-IS02-0001 of the Agence Nationale de la Recherche.
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TLA+ reasoning. In particular, we focus on two kinds of automated theorem
provers: smt (satisfiability modulo theories) solvers, and provers based purely
on first-order logic (fol), which we call fol provers, such as those based on the
superposition calculus.

Prior to this work, three back-end provers with different capabilities were
available for non-temporal reasoning: Isabelle/TLA+, a faithful encoding of
TLA+ set theory in the Isabelle proof assistant, which provides automated proof
methods based on first-order reasoning and rewriting; Zenon, a tableau prover
for first-order logic with equality that includes extensions for reasoning about
sets and functions; and a decision procedure for Presburger arithmetic called
SimpleArithmetic (now deprecated). The Isabelle and Zenon backends have very
limited support for arithmetic reasoning, while SimpleArithmetic handled only
pure arithmetic formulas, requiring the user to manually decompose the proofs
until the corresponding proof obligations fall within the respective fragments.

Beyond its integration as a semi-automatic backend, Isabelle/TLA+ serves
as the most trusted back-end prover. Accordingly, it is also intended for certify-
ing proof scripts produced by other back-end provers. When possible, backends
are expected to produce a detailed proof that can be checked by Isabelle/TLA+.
Currently, only the Zenon backend has an option for exporting proofs that can
be certified in this way.

In this paper we describe the foundations of a back-end prover based on fol
provers and smt solvers for non-temporal proof obligations arising in tlaps.1

When verifying distributed algorithms, proof obligations are often “shallow”,
but they still require many details to be checked: interactive proofs can become
quite large without powerful automated back-end provers that can cope with a
significant fragment of the language. Sets and functions are at the core of mod-
eling data in the TLA+ language. Tuples and records, which occur very often
in TLA+ specifications, are also functions. Proof obligations corresponding to
non-temporal steps of TLA+ proofs are typically assertions that mix first-order
logic with sets, functions, and arithmetic expressions. Accordingly, we do not
aim at proofs of deep theorems of mathematical set theory but at good automa-
tion for formulas involving elementary set expressions, functions, records, and
integer arithmetic.

The de-facto standard input languages are tptp-fof [34] for fol provers and
smt-lib [7], based on many-sorted fol (ms-fol [24]), for smt solvers.2 Initially,
our goal was to target only smt solvers, but with minor modifications we could
adapt our translation to output untyped fol. This translation, presented in
Section 3, forms the core of the fol and of the smt backends. Although some
of our encoding techniques can be found in similar tools for other set-theoretic
languages, the particularities of TLA+ make the translation non-trivial:

• Since TLA+ is untyped, “silly” expressions such as 3 ∪ true are legal;

1Non-temporal reasoning is enough for proving safety properties and makes up the vast
majority of proof steps in liveness proofs.

2In this paper we use the terms type and sort interchangeably.
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they denote some (unspecified) value. TLA+ does not even distinguish
between Boolean and non-Boolean expressions as in standard first-order
logic, hence Boolean values can be stored in data structures just like any
other value.

• Functions, which are defined axiomatically, are total and have a domain.
This means that a function applied to an element of its domain has the
expected value but for any other argument, the value of the function
application is unspecified. Similarly, the behavior of arithmetic operators
is specified only for arguments that denote numbers.

• TLA+ is equipped with a deterministic choice operator (Hilbert’s epsilon
operator), which has to be soundly encoded.

The first item is particularly challenging for our objectives: whereas an
untyped language like TLA+ is very expressive and flexible for writing speci-
fications, automated reasoners rely on types for good automation, either inter-
nally [37] or explicitly, as in the case of smt solvers. In order to support TLA+

expressions in standard logics with terms, predicates and functions, we intro-
duce a “boolification” step for distinguishing between Boolean and non-Boolean
expressions. In a many-sorted environment, we use a single sort for encoding
non-Boolean TLA+ expressions, but we will introduce axioms that are used
for reflecting expressions into interpreted sorts (such as integer arithmetic) that
are natively supported by automatic reasoners. We therefore call this transla-
tion the “untyped” encoding of TLA+; it essentially delegates type inference
of sorted expressions to the external provers. Although there exist languages
that are based on typed versions of set theory [1, 30], justifications for untyped
specification languages are given by Lamport and Paulson [23]. tlaps supports
the existing TLA+ language, and changing its semantic foundations was not an
option in our work. We also believe that some of the techniques that we develop
can be interesting for developing automated reasoning support for other systems
based on standard, untyped set theory [16, 32]. In a separate paper [29], we
discuss the orthogonal aspect of inferring types, which can be used to optimize
the encoding given to the automated reasoners.

This article extends our paper published at the ABZ 2016 conference [28]
by including the translation to unsorted fol, additional examples, more details
on proofs, algorithms, and encoding of operators, and in the evaluation of the
new backends in the Paxos algorithm. It also supersedes our previous publica-
tions [26, 27], where we presented a primitive encoding of TLA+ into smt-lib
that did not explicitly address boolification, normalization and abstraction, and
did not fully support choose expressions.

The article is structured as follows: Section 2 describes the underlying logic
of TLA+, Section 3 is the core of the paper and explains the encoding, Section 4
provides experimental results, Section 5 discusses related work, and Section 6
concludes and gives directions for future work.
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2. A non-temporal fragment of TLA+

In this section we describe a fragment of the language of proof obligations
generated by the TLA+ Proof System that is relevant for this paper. This
language is a variant of fol with equality, extended in particular by syntax for
set, function and arithmetic expressions, and a deterministic choice operator.
For a complete presentation of the TLA+ language see [22, Sec. 16].

We assume we are given two non-empty, infinite, and disjoint collections V
of variable symbols, and O of operator symbols.3 Each operator symbol is
equipped with its arity. The only syntactical category in the language is the
expression, but for presentational purposes we distinguish terms, formulas, set
expressions, etc. An expression e is inductively defined by the following gram-
mar:

e ::= v | w(e, . . . , e) (terms)
| false | e ⇒ e | ∀v : e | e = e | e ∈ e (formulas)
| {} | {e, . . . , e} | subset e | union e
| {v ∈ e : e} | {e : v ∈ e} (sets)
| choose x : e (choice)
| e[e] | domain e | [v ∈ e 7→ e] | [e → e] (functions)
| 0 | 1 | 2 | . . . | Int | − e | e + e | e < e | e .. e (arithmetic)
| if e then e else e (conditional)

A term is a variable symbol v in V or an application of an operator sym-
bol w in O to expressions, consistent with the arity of w . Formulas are built
from false, implication and universal quantification, and from the binary op-
erators = and ∈. From these formulas, we can define the constant true, the
unary ¬, the binary connectives ∧, ∨, ⇔, and the existential quantifier ∃. Also,
∀x ∈ S : e is defined as ∀x : x ∈ S ⇒ e.

TLA+ has explicit syntax for set objects (empty set, enumeration, power
set, generalized union, and two forms of set comprehension derived from the
standard axiom schema of replacement) that are governed by the following ax-
ioms:

(extensionality) (∀x : x ∈ S ⇔ x ∈ T )⇒ S = T (2.1)

(empty set) x ∈ {} ⇔ false (2.2)

(enumeration) x ∈ {e1, . . . , en} ⇔ x = e1 ∨ . . . ∨ x = en (2.3)

(power set) S ∈ subset T ⇔ ∀x ∈ S : x ∈ T (2.4)

(union) x ∈ union S ⇔ ∃T ∈ S : x ∈ T (2.5)

(comprehension1) x ∈ {y ∈ S : P(y)} ⇔ x ∈ S ∧ P(x ) (2.6)

(comprehension2) x ∈ {e(y) : y ∈ S} ⇔ ∃y ∈ S : x = e(y) (2.7)

3TLA+ operator symbols correspond to the standard function and predicate symbols of
first-order logic but we reserve the term “function” for TLA+ functional values.
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We implicitly consider the universal closures of the above axioms, except for P
and e in the comprehension axioms that are schematic variables, meaning that
they can be instantiated by countably infinite expressions.4

Another primitive construct of TLA+ is Hilbert’s choice operator, written
choose x : P(x ), that denotes an arbitrary but fixed value x such that P(x ) is
true, provided that such a value exists. Otherwise the value of choose x : P(x )
is some fixed, but unspecified value. choose satisfies the following axiom
schemas. The first one gives an alternative way of defining quantifiers, and
the second one expresses that choose is deterministic.(

∃x : P(x )
)
⇔ P

(
choose x : P(x )

)
(2.8)(

∀x : P(x )⇔ Q(x )
)
⇒

(
choose x : P(x )

)
=
(
choose x : Q(x )

)
(2.9)

From axiom (2.9) note that if there is no value satisfying some predicate P ,
then (choose x : P(x )) = (choose x : false). Consequently, the expression
choose x : false and all its equivalent forms represent a unique value.

Certain TLA+ values are functions. Unlike standard zfc set theory, TLA+

functions are not identified with sets of pairs, but TLA+ provides primitive
syntax associated with functions. The expression f [e] denotes the result of
applying function f to e, domain f denotes the domain of f , and [x ∈ S 7→ e]
denotes the function g with domain S such that g [x ] = e, for any x ∈ S . For
x /∈ S , the value of g [x ] is unspecified. A TLA+ value f is a function if and only
if it satisfies the predicate IsAFcn(f ) defined as f = [x ∈ domain f 7→ f [x ]].
The fundamental law governing TLA+ functions is

f = [x ∈ S 7→ e] ⇔ IsAFcn(f ) ∧ domain f = S ∧ ∀x ∈ S : f [x ] = e (2.10)

Natural numbers 0, 1, 2, . . . are primitive symbols of TLA+. Standard mod-
ules of TLA+ define Int to denote the set of integer numbers, arithmetic opera-
tors such as + and < are interpreted in the standard way when their arguments
are integers, and the interval a .. b is defined as {n ∈ Int : a ≤ n ∧ n ≤ b}.

As a set theoretic language, every TLA+ expression—including formulas,
functions, and numbers—denotes a set.

3. Untyped encoding into FOL and MS-FOL

We define a translation from TLA+ to our target languages as follows: given
a TLA+ proof obligation, we generate an equi-satisfiable collection of either
tptp [34] formulas (in the first-order form, or fof, dialect) or smt-lib [7]

4Both axioms (2.6) and (2.7) for set comprehension objects are instances of the standard
axiom schema of replacement: taking the two single-valued predicates φ1(y, x)

∆
= x = y ∧ P(y)

and φ2(y, x)
∆
= x = e(y), we can define {y ∈ S : P(y)} ∆

= R(S , φ1) and {e(y) : y ∈ S} ∆
=

R(S , φ2). The replacement axiom says that, given an expression S and a binary predicate φ,
such that φ is single-valued for any y in S , that is, ∀y ∈ S : ∀x , z : φ(y, x) ∧ φ(y, z )⇒ x = z ,
then there exists a set object R(S , φ), and that x ∈ R(S , φ)⇔ ∃y ∈ S : φ(y, x) [32].

5



formulas (in the auflia logic) whose proof can be attempted respectively by
fol provers or smt solvers.

First, we identify which expressions are used as propositions and translate
them to formulas. All non-Boolean expressions, including sets, functions, and
numbers, are represented by terms (Section 3.1). In the case of smt-lib, we
declare a new sort U, for TLA+ universe, as the target of translating these
expressions.

We then proceed in two main steps. Satisfiability-preserving transforma-
tions are applied during a pre-processing phase in order to remove expressions
not supported by the target languages (Section 3.2). The result is an inter-
mediate basic TLA+ formula, i.e., a TLA+ expression that has an obvious
counterpart in tptp or smt-lib. We define basic TLA+ as a subset of TLA+

consisting of terms, formulas, equality and set membership relations, and if-
then-else expressions. When the target is ms-fol, basic TLA+ aditionally
includes primitive arithmetic operators. This step is the exactly same for both
target languages. The second step is a shallow embedding of basic expressions
into either fol or ms-fol (Section 3.3).

Finally, we explain how the encoding of functions (Section 3.4), tuples and
records (Section 3.5), choose expressions (Section 3.6), strings and if-then-
else expressions (Section 3.7) fit in the preprocessing phase of the translation.

3.1. Boolification

Since TLA+ has no syntactic distinction between Boolean and non-Boolean
expressions, we first need to determine which expressions are used as propo-
sitions. tlaps adopts the so-called liberal interpretation of TLA+ Boolean
expressions [22, Sec. 16.1.3] where any expression whose top-level connective is
a logical operator, = or ∈ has a Boolean value.5 Moreover, the interpretation of
any expression with a top-level logical connective agrees with the interpretation
of the expression obtained by replacing every argument e of that connective
with the expression e = true.

For example, consider ∀x : (¬¬x ) = x , which is not a theorem. Indeed, x
need not be Boolean, whereas ¬¬x is necessarily Boolean, hence we may not
conclude that the expression is valid. However, ∀x : (¬¬x )⇔ x is valid because
it is interpreted as ∀x : (¬¬(x = true))⇔ (x = true). Observe that the value
of x = true is a Boolean for any x , although the truth value is unspecified if x
is non-Boolean.

In order to identify the expressions used as propositions we use the simple
algorithm of Figure 1, which is mutually defined by the operator [[e]]+ that is

5The semantics of TLA+ offers three alternatives to interpret expressions [22, Sec. 16.1.3].
In the liberal interpretation, an expression like 42 ⇒ {} always has a truth value, but it is
not specified if that value is true or false. In the conservative and moderate interpretations,
the value of 42⇒ {} is completely unspecified. Only in the moderate and liberal interpreta-
tion, the expression false ⇒ {} has a Boolean value, and that value is true. In the liberal
interpretation, all the ordinary laws of logic, such as commutativity of ∧, are valid, even for
non-Boolean arguments.
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[[x ]]+
∆
= x b [[w(~e)]]+

∆
= wb([[~e]]−)

[[e1 ⇒ e2]]+
∆
= [[e1]]+ ⇒ [[e2]]+ [[∀x : e]]+

∆
= ∀x : [[e]]+

[[e1 = e2]]+
∆
= [[e1]]− = [[e2]]− [[e1 ∈ e2]]+

∆
= [[e1]]− ∈ [[e2]]−

[[e1[e2]]]+
∆
= ([[e1]]−[[[e2]]−])b [[E ]]+

∆
= error

[[if e1 then e2 else e3]]+
∆
= if [[e1]]+ then [[e2]]+ else [[e3]]+

[[choose x : e]]+
∆
= (choose x : [[e]]+)b

[[x ]]−
∆
= x [[w(~e)]]−

∆
= w([[~e]]−)

[[e1 ⇒ e2]]−
∆
= [[e1 ⇒ e2]]+ [[∀x : e]]−

∆
= [[∀x : e]]+

[[e1 = e2]]−
∆
= [[e1 = e2]]+ [[e1 ∈ e2]]−

∆
= [[e1 ∈ e2]]+

[[e1[e2]]]−
∆
= [[e1]]−[[[e2]]−] [[domain e]]−

∆
= domain [[e]]−

[[[x ∈ e1 7→ e2]]]−
∆
= [x ∈ [[e1]]− 7→ [[e2]]−] [[{~e}]]− ∆

= {[[~e]]−}
[[{x ∈ e1 : e2}]]−

∆
= {x ∈ [[e1]]− : [[e2]]+} [[union e]]−

∆
= union [[e]]−

[[{e1 : x ∈ e2}]]−
∆
= {[[e1]]− : x ∈ [[e2]]−} [[subset e]]−

∆
= subset [[e]]−

[[if e1 then e2 else e3]]−
∆
= if [[e1]]+ then [[e2]]− else [[e3]]−

[[choose x : e]]−
∆
= choose x : [[e]]+

Figure 1: Boolification algorithm: [[e]]+ processes the expression e as a formula, attaching a b

symbol when finding a term, a function application, or a choose, and [[e]]− considers e as a
non-Boolean expression (arithmetic expressions are omitted). Notation: v denotes a variable
identifier, w is a polyadic operator, e, e1, e2 and e3 are expressions, and the symbol E
encompasses all non-Boolean expressions, such as set, function and arithmetic expressions.

applied when the expression e is considered as a formula, and by the operator
[[e]]− that is applied when e is considered a non-Boolean expression. The al-
gorithm recursively traverses an expression searching for sub-expressions that
should be treated as formulas. Sub-expressions e that are used as Booleans,
i.e., that could equivalently be replaced by e = true, are marked as eb , whose
definition can be thought of as eb ∆

= e = true. This only applies if e is a
term, a function application, or a choose expression. If an expression which
is known to be non-Boolean by its syntax, such as a set or a function, is at-
tempted to be boolified, meaning that a formula is expected in its place, the al-
gorithm aborts with a “type” error. In smt-lib we encode x b as boolify(x ), with
boolify : U → Bool. Analogously in tptp we use a unary predicate. The above
examples are translated as ∀xU : (¬¬boolify(x )) = x and ∀xBool : (¬¬x ) ⇔ x ,
revealing their (in)validity.

3.2. Preprocessing

Through a series of transformations applied to a boolified TLA+ proof
obligation, we obtain an equi-satisfiable formula that can be straightforwardly
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passed to the external provers using the direct encoding of basic expressions
described later (Section 3.3). The main motivation is to eliminate those TLA+

expressions that cannot be expressed in first-order logic. Namely, they are
{x ∈ S : P}, {e : x ∈ S}, choose x : P , and [x ∈ S 7→ e], where the predicate
P and the expression e, both of which may have x as free variable, become
second-order variables when quantified.

3.2.1. Normalization by rewriting.

We define a rewriting process that systematically expands definitions of non-
basic constructs. Instead of letting the solver find instances of the background
axioms introduced in Section 2, it applies the “obvious” instances of those ax-
ioms during the translation. For instance, the axioms (2.5) for the union opera-
tor and (2.6) for the first form of comprehension yield, respectively, the rewriting
rules

x ∈ union S −→ ∃T ∈ S : x ∈ T , and
x ∈ {y ∈ S : P(y)} −→ x ∈ S ∧ P(x ).

This simple process of normalization by rewriting is often enough for elimi-
nating all non-basic constructs. The remaining cases are left to the abstraction
mechanism described in the next subsection.

All rewriting rules defined in this paper apply equivalence-preserving trans-
formations. To ensure soundness, we derive each rewriting rule from a theorem
that we have proved in Isabelle/TLA+. More specifically, the theorem corre-
sponding to a rule a −→ b is ∀x : a ⇔ b when a and b are Boolean expressions,
and ∀x : a = b otherwise, where x denotes all free variables in the rule.

The standard zf extensionality axiom for sets (2.1) is unwieldy because it
introduces an unbounded quantifier, which can be instantiated by any value of
sort U. We therefore decided not to include it in the default background the-
ory. Instead, we instantiate the extensionality property for equality expressions
x = y whenever x or y has a top-level operator that constructs a set. In these
cases, we say that we expand equality. Specifically, for each set expression T we
derive rewriting rules for equations x = T and T = x . For instance, the rules

x = {z1, . . . , zn} −→ ∀z : z ∈ x ⇔ z = z1 ∨ · · · ∨ z = zn
x = union S −→ ∀z : z ∈ x ⇔ ∃T ∈ S : z ∈ T , and

x = {z ∈ S : P} −→ ∀z : z ∈ x ⇔ z ∈ S ∧ P

are derived from set extensionality (2.1) and the axioms of set enumeration (2.3),
union (2.5), and bounded set comprehension (2.6).

For example, in the formula

{} = {z ∈ Nat : z < 0}

the equality is rewritten by the expansion rule for set comprehension to

∀z : z ∈ {} ⇔ z ∈ Nat ∧ z < 0.

By applying the rule x ∈ {} −→ false, we obtain the first-order formula

∀z : false⇔ z ∈ Nat ∧ z < 0

8



whose proof relies on the techniques described in Section 3.3 for encoding arith-
metic expressions.

Because extensionality is not applied in full generality, the translation be-
comes incomplete. Even assuming that the automated theorem provers are se-
mantically complete, the translation of a semantically valid TLA+ formula may
become invalid when encoded. In these cases, the user will need to explicitly
add the extensionality axiom as a hypothesis to the TLA+ proof.

We also include a rule for the contraction of set extensionality:

(∀z : z ∈ x ⇔ z ∈ y) −→ x = y (3.1)

which we apply with higher priority than the expansion rules.
All rules of the form a −→ b, including those introduced below for func-

tions and choose expressions, define a term rewriting system (TLA+,−→),
where −→ is a binary relation over well-formed TLA+ expressions. A compre-
hensive list of the rewriting rules can be found in Appendix A.

Before presenting proofs of two properties about (TLA+,−→), we recall
some standard concepts of rewriting systems (RS) [6]. A RS is a pair (A,−→)
consisting of a set A of objects and a binary relation −→ on A. The reflexive
transitive closure of −→ is noted

∗−→, and we write a
∗−→ b when there is some

finite path from a to b. An RS is terminating if there is no infinite descending
chain a0 −→ a1 −→ · · · of objects ai . Then, the relation −→ is well-founded.

Theorem 1. (TLA+,−→) is terminating.

Proof sketch. Termination is proved by embedding (TLA+,−→) into a system
that is known to have a well-founded ordering, typically (N, >) [6]. The em-
bedding is through an ad-hoc monotone mapping µ such that µ(a) > µ(b) for
every rule a −→ b. We define it in such a way that every rule instance strictly
decreases the number of non-basic and complex expressions such as quantifiers.

For that, we assign coefficientsW(e) to every symbol and construct e through
the relation =W , as shown in the Table 1. The lower the coefficient given to e,
the more preference is given to e to be used in the right-hand side of the rules.
Remember that what is considered non-basic, depends on the target language.

Let e|p denote the sub-expression of e at some position p of its syntactic
tree. We define the embedding µ of an expression e as the sum of the coefficients
W(e|p) for every position p in e: µ(e)

∆
= W(e|1) + . . . +W(e|n). Given this

coefficient assignment, one can easily check in all rewriting rules that the weight
of the left-hand side is strictly larger than that of the right-hand side. Therefore,
it is possible to embed (TLA+,−→) into a terminating system.

Our next objective is to prove that (TLA+,−→) is confluent. We say that
two objects a1 and a2 are joinable, noted a1 ↓ a2, if there is an object b such
that a1

∗−→ b and a2
∗−→ b. A RS is confluent if a

∗−→ a1 and a
∗−→ a2

implies a1 ↓ a2, that is, when the system defines at most one normal form for
each object. Newman’s lemma [6] allows us to prove that a terminating RS
is confluent by proving instead that the system is locally confluent, which is

9



v ,w( , . . . , ) =W 0
false,true =W 0

∧,∨,⇒,⇔,¬,= =W 0
6= =W 1

∀,∃ : =W 1
if then else =W 1

0, 1, 2, . . . =W 0
+,−, ∗ =W 0

<,≤,≥, > =W 0
Int ,Nat =W 1
÷,% =W 2

.. =W 2

∈ =W 0
/∈ =W 1

{}, { , . . . , },⊆,∪,∩, \ =W 2
subset,union =W 3

{ ∈ : }, { : ∈ } =W 3

domain =W 1
[ ] =W 2

[ ∈ 7→ ] =W 2
[ except = ] =W 3

[ → ] =W 3

Table 1: Weight coefficients of TLA+ symbols and constructs for termination proof of
(TLA+,−→). Basic operators weigh 0, including ∈ and arithmetic expressions, except for
if-then-else expressions that are non-basic when translating to fol. Non-basic expressions
have a higher coefficient than quantifiers, some more than others, depending if they are ex-
pressed in terms of quantifiers or other non-basic expressions.

a weaker property. A relation −→ is locally confluent if, for every object a,
a −→ a1 and a −→ a2 implies a1 ↓ a2, that is, it is confluent restricted to
one-step divergences.

We still need another step to express the property of local confluence as
one that can be broken down into simpler statements. The Critical Pair Theo-
rem [18, 20] says that a term-rewriting system is locally confluent if and only if
all its critical pairs are joinable. Consider any two rules a1 −→ b1 and a2 −→ b2
whose variables have been renamed such that the rules do not have variables
in common. Let p be some non-root position in the syntactic tree of a1 such
that a1|p is not a variable, and let σ be a most general unifier (mgu) of a1|p
and a2, that is, the superposition of the left-hand sides of both rewriting rules.
Then, the pair 〈b1σ; (a1σ)[b2σ]p〉 is called a critical pair, where a[b]p denotes
the term a such that b replaces a|p .6 A critical pair may in particular arise
by overlapping a rule with itself (with its variables renamed). The number of
critical pairs is finite, and proving that they are joinable is decidable [6].

Theorem 2. (TLA+,−→) is confluent.

Proof sketch. By Newman’s lemma and the Critical Pair Theorem, and because
(TLA+,−→) is terminating, it suffices to prove that all critical pairs are join-
able. By enumerating all combinations of rewriting rules, we can find all critical
pairs 〈e1; e2〉 between them. To prove that all e1 and e2 are joinable for each

6For example, in a term-rewriting system over standard fol, consider the rules
f (f (x , y), z ) −→ f (x , f (y, z )) and f (g(a), a) −→ b, where f , g are functions and x , y, a are vari-
ables. By unifying the subterm f (x , y) with f (g(a), a), we obtain the mgu {x 7→ g(a); y 7→ a}
and their critical pair 〈f (g(a), f (a, z )); f (b, z )〉. An expression such as f (f (g(a)), a), z ) can be
reduced to the two elements of the critical pair.

10



such pairs, we reduce them to their normal forms e ′1 and e ′2 and show that they
are syntactically equal. In particular, the contraction rule (3.1) is necessary for
obtaining a normalizing system.

We illustrate the procedure with one example. Consider the pair of overlap-
ping rules x ∪ {} −→ x and

y = t ∪ u −→ ∀z : z ∈ y ⇔ z ∈ t ∨ z ∈ u (3.2)

that yield the mgu {t 7→ x ; u 7→ {}} and the critical pair

〈∀z : z ∈ y ⇔ z ∈ x ∨ z ∈ {}; y = x 〉.

The first element of the pair is not yet in normal form, but y = x is. By the
rules x ∈ {} −→ false, ϕ ∨ false −→ ϕ, and (3.1), it is possible to reach the
same normal form as the second element. Therefore these two rules are joinable.

What this case shows is that there are two ways of reducing an expression
such as S = T ∪ {} to its normal form, S = T . A possible one-step path is by
the rule x ∪ {} −→ x . The other choice is by first applying (3.2), yielding the
path

S = T ∪ {} −→ ∀z : z ∈ S ⇔ z ∈ T ∨ z ∈ {} by (3.2)

−→ ∀z : z ∈ S ⇔ z ∈ T ∨ false by x ∈ {} −→ false

−→ ∀z : z ∈ S ⇔ z ∈ T by ϕ ∨ false −→ ϕ

−→ S = T by (3.1)

Similar reasoning can be applied to all critical pairs of (TLA+,−→).

3.2.2. Abstraction

Applying rewriting rules does not always suffice for obtaining formulas in
basic normal form. As a toy example, consider the valid proof obligation
∀x : P({x} ∪ {x}) ⇔ P({x}). The non-basic sub-expressions {x} ∪ {x} and
{x} do not occur in the form of a left-hand side of any rewriting rule, so they
must first be transformed into a form suitable for rewriting.

We call the technique described here abstraction of non-basic expressions.
After applying rewriting, some non-basic expression ψ may remain in the proof
obligation. For all occurrences of ψ with free variables x1, . . . , xn , we introduce in
their place a fresh term k(x1, . . . , xn), and add the formula k(x1, . . . , xn) = ψ as
an assumption in the appropriate context. The new term acts as an abbreviation
for the non-basic expression, and the equality acts as its definition, paving the
way for a transformation to a basic expression using normalization. We ensure
that non-basic expressions occurring more than once are replaced by the same
symbol.

In our example the expressions {x} ∪ {x} and {x} are replaced by fresh
constant symbols k1(x ) and k2(x ). Then, the abstracted formula is

∧ ∀x : k1(x ) = {x} ∪ {x}
∧ ∀x : k2(x ) = {x}
⇒ ∀x : P(k1(x ))⇔ P(k2(x )).
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which is now in a form where it is possible to expand (using extensionality) the
equalities in the newly introduced definitions. In order to preserve satisfiability
of the proof obligation, we have to add as hypotheses instances of extensional-
ity contraction for every pair of definitions where extensionality expansion was
applied. The final equi-satisfiable formula in basic normal form is

∧ ∀x , z : z ∈ k1(x )⇔ z = x ∨ z = x
∧ ∀x , z : z ∈ k2(x )⇔ z = x
∧ ∀x , y : (∀z : z ∈ k1(x )⇔ z ∈ k2(y))⇒ k1(x ) = k2(y)
⇒ ∀x : P(k1(x ))⇔ P(k2(x )).

3.2.3. Eliminating definitions

Efficiently handling equality is very important in practice, and we rely on
a procedure for eliminating definitions. This procedure has the opposite effect
of the abstraction method where definitions are introduced and afterwards ex-
panded to basic expressions. It collects all definitions of the form x = ψ, and
then simply applies the rewriting rules x −→ ψ to substitute every occurrence
of the term x by the non-basic expression ψ in the rest of the context. The
definitions we want to eliminate typically occur in the original proof obligation,
that is, they do not result from the abstraction step.

This transformation produces expressions that can eventually be normalized
to their basic form. To avoid rewriting loops and ensure termination, it can
only be applied if x does not occur in ψ. For instance, the two equations
x = y and y = x + 1 will be transformed into y = y + 1, which cannot further
be rewritten.7 After applying the substitution, we can safely discard from the
resulting formula the definition x = ψ, when x is a variable. However, we
must keep the definition if x is a complex expression. Suppose we discard an
assumption domain f = S , where the conclusion is f ∈ [S → T ]. Only after
applying the rewriting rules, the conclusion will be expanded to an expression
containing domain f , but the discarded fact required to simplify it to S will be
missing.

3.2.4. Preprocessing algorithm

Now we can put together boolification and the encoding techniques described
above in a single algorithm called preprocess.

preprocess(φ)
∆
= φ

. boolify

. Fix reduce

reduce(φ)
∆
= φ

. Fix (eliminate ◦ rewrite)

. Fix (abstract ◦ rewrite)

Here, Fix A means that step A is executed until reaching a fixed point, the
combinator ., used to chain actions on a formula φ, is defined as φ . f

∆
= f (φ),

and function composition ◦ is defined as f ◦ g
∆
= λφ. g(f (φ)).

7The problem of efficiently eliminating definitions from propositional formulas is a major
open question in the field of proof complexity. The definition-elimination procedure can result
in an exponential increase in the size of the formula when applied näıvely [2].

12



Given a TLA+ formula φ, the algorithm boolifies it and then applies re-
peatedly the step called reduce to obtain its basic normal form, which serves
as the input for the embedding described in Section 3.3. In turn, reduce first
eliminates the definitions in the given formula (Section 3.2.3) and applies the
rewriting rules (Section 3.2.1) repeatedly, and then applies abstraction (Sec-
tion 3.2.2) followed by rewriting repeatedly.

The preprocess algorithm is sound, because it is composed of sound sub-
steps, and it terminates, meaning that it will always compute a basic normal
formula.

Theorem 3. The preprocess algorithm terminates.

Proof idea. Observe that the elimination step is in some sense opposite to the
abstraction step: the first one eliminates every definition x = ψ by using it as
the rewriting rule x −→ ψ, while the latter introduces a new symbol x in the
place of an expression ψ and asserts x = ψ, where ψ is non-basic in both cases.
That is why we apply elimination before abstraction, and why each of those is
followed by rewriting. We have to be careful that abstract and eliminate do
not repeatedly act on the same expression. eliminate does not produce non-
basic expressions, but abstract generates definitions that can be processed by
eliminate, reducing them again to the original non-basic expression. That is
the reason for rewrite to be applied after every application of abstract: the
new definitions are rewritten, usually by an extensionality expansion rule. In
short, termination depends on the existence of extensionality rewriting rules
for each kind of non-basic expression that abstract may catch. Then, for any
TLA+ expression there exists an equi-satisfiable basic expression in normal form
that the algorithm will compute.

3.3. Direct embedding

The preprocessing phase outputs a boolified basic TLA+ expression that we
will encode essentially using first-order formulas and uninterpreted functions,
without substantially changing its structure. In short, the final step of the
encoding maps the given basic expression to corresponding formulas in the target
languages in an (almost) verbatim way. The direct embedding follows the same
basic approach for single-sorted and many-sorted logics.

For first-order TLA+ expressions it suffices to apply a shallow embedding
into first-order formulas. When the target language is fol, we will encode
non-Boolean and Boolean operators respectively as functions and predicates,
respecting their arities. For example, the primitive relation ∈, which is the
only set theoretic operator that can appear in a basic TLA+ formula, will be
represented by a predicate in of arity two. When the target language is sorted,
non-logical TLA+ operators will be declared as function or predicate symbols
with U-sorted arguments. So for instance, ∈ will be encoded in smt-lib as the
function in : U× U→ Bool.

In order to reason about the theory of arithmetic, an automated prover
requires type information, either generated internally, or provided explicitly in
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the input language. The operators and formulas that we have presented so far
are expressed in FOL using uninterpreted function symbols over the sorts U
and Bool.

We want to benefit from the native capabilities for arithmetic provided by the
smt solvers, but we cannot directly embbed the arithmetic expressions using the
built-in Int type for integers of smt solvers. For example, it would be unsound
to represent the TLA+ formula x−0 = x by assigning type Int to the variable x
and using the built-in integer subtraction of the smt solver to encode TLA+’s
subtraction operator. Instead, we declare an injective function i2u : Int→ U that
embeds built-in integers into the sort U.8 Integer literals k are simply encoded
as i2u(k). For example, the formula 3 ∈ Int is translated as in(i2u(3), tla Int),
for which we have to declare tla Int : U and add to the translation the axiom
for Int :

∀xU : in(x , tla Int)⇔ ∃n Int : x = i2u(n).

Observe that this axiom introduces two quantifiers in the results of our trans-
lation. We can avoid the universal quantifier by encoding expressions of the
form x ∈ Int directly into ∃n Int : x = i2u(n), but the existential quantifier re-
mains. Arithmetic operators over TLA+ values are defined homomorphically
over the image of i2u by axioms such as

∀m Int,n Int : plus(i2u(m), i2u(n)) = i2u(m + n), (3.3)

where + denotes the built-in addition over integers, and plus : U × U → U
represents the addition operator of TLA+.

As a result, type inference in all these cases is, in some sense, delegated
to the back-end prover. The link between built-in operations and their TLA+

counterparts is effectively defined only for values in the range of the function i2u.
If we call basic to fol(φ) and basic to msfol(φ) the embeddings of a

basic TLA+ formula φ into fol and ms-fol respectively, we can define the
processes of encoding TLA+ into fol and ms-fol as:

tla to fol(φ)
∆
= φ

. preprocess

. basic to fol

tla to msfol(φ)
∆
= φ

. preprocess

. basic to msfol

In the following we provide two toy examples that illustrate these encodings.

3.3.1. Example: encoding into fol

In TLA+, the cardinality of finite sets is expressed using a unary constant op-
erator called Cardinality . Given constant predicates IsFiniteSet and IsBijection

8The typical injectivity axiom ∀m Int,n Int : i2u(m) = i2u(n) ⇒ m = n generates instantia-
tion patterns for every pair of occurrences of i2u. Noting that i2u is injective iff it has a partial
inverse u2i, we use instead the axiom ∀n Int : u2i(i2u(n)) = n, which generates a linear number
of instances i2u(n), where u2i : U→ Int is unspecified.
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1 axiom isint(0)
2 axiom isint(1)
3 axiom ∀X ,M ,N . in(X , tla Nat)⇔ isint(X ) ∧ leq(0,X )
4 axiom ∀X ,M ,N . in(X , interval(M ,N ))⇔

isint(M ) ∧ isint(N ) ∧ isint(X )∧
leq(M ,X ) ∧ leq(X ,M )

5 axiom ∀S . boolify(isFiniteSet(S ))
⇒ ∀N . N = cardinality(S )

⇔ in(N , tla Nat) ∧
∃F . boolify(isBijection(F , interval(1,N ),S ))

6 conjecture ∀S . boolify(isFiniteSet(S ))⇒ in(cardinality(S ), tla Nat)

Figure 2: tptp-fof encoding of the obligation generated from the proof of CardinalityInNat .

(defined elsewhere), the semantics of Cardinality is defined with the following
axiom:

axiom CardinalityAxiom ≡ ∀S : IsFiniteSet(S )⇒
∀n : (n = Cardinality(S ))⇔

(n ∈ Nat) ∧ ∃f : IsBijection(f , 1..n,S )

Now consider the following lemma and its proof:

lemma CardinalityInNat
∆
= ∀S : IsFiniteSet(S )⇒ Cardinality(S ) ∈ Nat

by CardinalityAxiom,FOL

The by proof statement asserts that the lemma can be proved using Cardinality-
Axiom as a fact, and that the Proof Manager should attempt to find a proof
by using the fol back-end prover. The definitions for predicates IsFiniteSet
and IsBijection are irrelevant for the proof. The Proof Manager will generate a
proof obligation whose plain translation (without optimizations) to tptp-fof
is presented in Figure 2. Lines 3 and 4 give the axioms for tla Nat and interval,
respectively. They are not required for the validity of the lemma, but we include
them in the translation simply because the operators Nat and .. (for integer
intervals) occur in the obligation. Note that the function leq representing the
operator ≤ is left unspecified. Line 5 is the translation of CardinalityAxiom.
Line 6 corresponds to the theorem’s statement.

3.3.2. Example: encoding into ms-fol

Consider the trivial TLA+ proof obligation ∀x ∈ Int : x + 0 = x . Its trans-
lation to smt-lib is shown in Figure 3: line 4 states the injectivity of i2u, line 5
corresponds to the axiom of addition, and line 6 to the proper (negated) proof
obligation. Let us illustrate the interplay of the axioms on this concrete exam-
ple. By Skolemization on line 6, the solver introduces a new constant, say n, of
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1 declare i2u : (Int) U
2 declare u2i : (U) Int
3 declare plus : (U U) U
4 assert ∀n Int : u2i(i2u(n)) = n
5 assert ∀m Int,n Int. plus(i2u(m), i2u(n)) = i2u(m + n)
6 assert ¬(∀xU. (∃n Int. x = i2u(n))⇒ plus(x , i2u(0)) = x )

Figure 3: smt-lib encoding of ∀x : x ∈ Int ⇒ x + 0 = x (in a pretty-printed presentation).

sort Int, such that x = i2u(n). It can then reason as follows

plus(x , i2u(0)) = plus(i2u(n), i2u(0)) (x = i2u(n))

= i2u(n + 0) (by axiom 3.3)

= i2u(n) (by smt arithmetic)

= x (x = i2u(n))

and conclude that the assertion is unsatisfiable, hence the original proof obliga-
tion is valid.

3.4. Encoding functions

A TLA+ function [x ∈ S 7→ e(x )] is akin to a “bounded” λ-abstraction: the
function application [x ∈ S 7→ e(x )][y ] reduces to the expected value e(y) if the
argument y is an element of S , as stated by the axiom (2.10), but nothing can
be concluded otherwise. For example, the formula

f = [x ∈ {1, 2, 3} 7→ x ∗ x ]⇒ f [0] < f [0] + 1, (3.4)

although syntactically well-formed, should not be provable. Indeed, since 0 is
not in the domain of f , we cannot even deduce that f [0] is an integer.

We represent the application of an expression f to another expression x
by two distinct first-order terms depending on whether the domain condition
x ∈ domain f holds or not: we introduce binary operators α and ω defined as

x ∈ domain f ⇒ α(f , x ) = f [x ] and x /∈ domain f ⇒ ω(f , x ) = f [x ].

From these conditional definitions, we can derive the theorem

f [x ] = if x ∈ domain f then α(f , x ) else ω(f , x ) (3.5)

that gives a new defining equation for function application. In this way, func-
tions are just expressions that are conditionally related to their argument by α
and ω.

Using theorem (3.5), the expression f [0] in the above example (3.4) is en-
coded as if 0 ∈ domain f then α(f , 0) else ω(f , 0). The solver would have
to use the hypothesis to deduce that domain f = {1, 2, 3}, reducing the con-
dition 0 ∈ domain f to false. The conclusion can then be simplified to the
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formula ω(f , 0) < ω(f , 0) + 1, which cannot be proved, as expected. Another
example is f [x ] = f [y ] in a context where x = y holds: the formula is valid
irrespective of whether the domain conditions hold or not.

Whenever possible, we try to avoid the encoding of function application as
in the definition (3.5). From (2.10) and (3.5), we deduce the rewriting rule

[x ∈ S 7→ e(x )][a] −→ if a ∈ S then e(a) else ω([x ∈ S 7→ e(x )], a)

This rule replaces two non-basic operators (function application and the function
expression) in the left-hand side by only one non-basic operator in the right-hand
side (the first argument of ω), which is required for termination of (TLA+,−→)
as stated by Theorem 1.

In sorted languages like ms-fol, there is no notion of function domain other
than the types of function arguments. Because explicit functions [x ∈ S 7→ e]
cannot be mapped directly to first-order expressions, we treat them as any other
non-basic expression. The following rewriting rule derived from axiom (2.10)
replaces the function construct by a formula containing only basic operators:

f = [x ∈ S 7→ e] −→ IsAFcn(f ) ∧ domain f = S ∧ ∀x ∈ S : α(f , x ) = e

Observe that we have simplified f [x ] to α(f , x ), because x ∈ domain f .
In order to prove that two functions are equal, we need to add a background

axiom that expresses the extensionality property for functions:

∀f , g : ∧ IsAFcn(f ) ∧ IsAFcn(g)
∧ domain f = domain g
∧ ∀x ∈ domain g : α(f , x ) = α(g , x )
⇒ f = g

Again, note that f [x ] and g [x ] were simplified using α. Unlike set extensional-
ity, this formula is guarded by IsAFcn, avoiding the instantiation by expressions
that are not considered functions. To prove that domain f = domain g , we
still need to add to the translation the set extensionality axiom, which we ab-
stain from. Instead, reasoning about the equality of domains can be solved by
adding to the translation an instance of set extensionality for domain expres-
sions involving expressions that are known to be functions:

∀f , g : ∧ IsAFcn(f ) ∧ IsAFcn(g)
∧ ∀x : x ∈ domain f ⇔ x ∈ domain g
⇒ domain f = domain g

3.5. Encoding tuples and records

TLA+ defines n-tuples as functions with domain 1 ..n, and records as func-
tions whose domain is a fixed finite set of strings. By treating them as non-basic
expressions, we just need to add suitable rewriting rules to (TLA+,−→), in par-
ticular those for extensionality expansion. Below we describe only the encoding
of tuples; the encoding of records is analogous.

17



A tuple 〈e1, e2, . . . , en〉 is defined as the function

[i ∈ 1 ..n 7→ if i = 1 then e1 else (if i = 2 then e2 else ( · · · else en))],

so that 〈e1, . . . , en〉[i ] = ei when i ∈ 1 ..n. From this definition and from the
axioms of extensionality (2.1) and functions (2.10), we derive the rule:

t = 〈e1, . . . , en〉 −→ ∧ IsAFcn(t)
∧ domain t = 1 ..n
∧
∧

ei :U
α(t , i) = ei

∧
∧

ei :Bool
α(t , i)b ⇔ ei

(3.6)

Note that the translation distinguishes the elements ei that are Booleans
(noted ei :Bool) from those that are not (noted ei :U), in line with the Boolifi-
cation step introduced in Section 3.1.

As in the case of function extensionality, the properties of tuple extension-
ality are lost when equality is expanded. We need to identify those tuples that
have the same structure, that is, those that have the same number of elements.
Whenever the rule (3.6) is triggered on a tuple of length n, we add the following
formula as an axiom to the translation:

∀t1, t2 : ∧ IsAFcn(t1) ∧ IsAFcn(t2)
∧ domain t1 = 1 ..n
∧ domain t2 = 1 ..n
∧ t1[1] = t2[1] ∧ . . . ∧ t1[n] = t2[n]
⇒ t1 = t2

(3.7)

This approach is limited to tuples whose length can be determined in an obvious
way, which is the case in most practical cases. Otherwise, they would be treated
as any other function expression.

3.6. Encoding choose

The choose operator is not natively supported by automatic provers for
first-order logic (fol or ms-fol). Nevertheless, we provide support for reason-
ing about choose expressions that occur in specifications. By introducing a
definition for choose x : P(x ), we obtain the theorem(

y = choose x : P(x )
)
⇒
(
(∃x : P(x ))⇔ P(y)

)
,

where y is some fresh symbol. This theorem can be conveniently used as a
rewriting rule after abstraction of choose expressions, and for choose expres-
sions that occur negatively, in particular, as hypotheses of proof obligations.

For determinism of choice (axiom (2.9)), suppose an arbitrary pair of choose
expressions φ1

∆
= choose x : P(x ) and φ2

∆
= choose x : Q(x ) where the free

variables of φ1 are x1, . . . , xn (noted x) and those of φ2 are y1, . . . , ym (noted y).
We need to check whether formulas P and Q are equivalent for every pair of
expressions φ1 and φ2 occurring in a proof obligation. By abstraction of φ1
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and φ2, we obtain the axiomatic definitions ∀x : f1(x) = choose x : P(x ) and
∀y : f2(y) = choose x : Q(x ), where f1 and f2 are fresh operator symbols of
suitable arity. Then, we just need to state the extensionality property for the
pair f1 and f2 as the axiom ∀x,y :

(
∀z : P(z )⇔ Q(z )

)
⇒ f1(x) = f2(y).

3.7. Encoding strings and if-then-else expressions

In fof, we treat every string as a constant, being careful to avoid name
clashes with the variables, and assert that every literal string occurring in the
proof obligation is different from each other. In smt-lib, strings are encoded
using the same technique as arithmetic expressions: for every string literal that
occurs in a proof obligation, we declare it as a constant of a newly declared
sort Str. Then, we use an injective function str2u : Str → U to lift string ex-
pressions. In TLA+, strings are sequences of characters, and operations such as
sequence concatenation can be applied to strings. However, the TLA+ model
checker handles strings as constants, and most TLA+ specifications only use
constant strings. Similarly, our current implementation has no built-in sup-
port for applying sequence operations to strings, but the encoding provides the
groundwork for such an extension, which could leverage recent work in smt
solvers on string theories [38].

The expression if c then t else u can be conveniently mapped verbatim
using smt-lib’s conditional operator to ite(c, t , u), where c is of sort Bool (or
boolified), and t and u have the same sort. However, tptp-fof does not provide
any similar feature, so we have to encode it as a first-order formula.

When both t and u are propositions or Boolified expressions, noted φ1 and
φ2, we can apply the equivalence-preserving transformation:

if c then φ1 else φ2 −→ c ⇒ φ1 ∧ ¬c ⇒ φ2 (3.8)

When t and u are terms, we define the collection of rewriting rules:

P(a, if c then t else u) −→ if c then P(a, t) else P(a, u) (3.9)

where P is a placeholder for a predicate or an operator parameterized by some
other expression a. The formula P(a, e) can take the form a = e, a ∈ e, a ⇒ e,
a[e], etc. For example, when P(a, e) ≡ a = e, the rule becomes

a = if c then t else u −→ if c then a = t else a = u.

These rules are to be read modulo symmetry of the equality symbol. The
purpose of the set of rules (3.9) is to distribute P on the subexpressions t and u
while pulling out the if expression from the non-Boolean operators. Eventually,
P will be a Boolean operator, allowing the application of rule (3.8) or a direct
encoding with the ite operator. In fact, we apply the rules (3.9) also during the
smt translation because evidence indicates that they improve its success rate.

This näıve approach to encoding conditional term-expressions could result
in an exponential blow-up compared to the size of the original formula, mainly if
the sub-expressions are again conditional expressions. The above rules introduce
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redundancies: the condition c appears twice in the right-hand side of rule (3.8),
and the expression a is also repeated in the rules (3.9). We apply a simple
heuristic to abstract the redundant expression. If c or a are just variables, we
leave the translation as it is. Otherwise, we abstract the repeated expressions
by satisfiability-preserving transformations. For instance, rule (3.8) is modified
to introduce a fresh variable z as an abbreviation of c:

if c then φ1 else φ2 −→ ∃z : (z ⇔ c) ∧ (z ⇒ φ1) ∧ (¬z ⇒ φ2)

where z ⇔ c can be simplified later. This abstraction method is applied analo-
gously to the rules (3.9).

4. Evaluation

In order to validate our approach we took several existing tlaps proofs, cov-
ering verification case studies as well as a standard library containing mathemat-
ical theorems about finite sets and their cardinalities. These proofs had been
developed interactively using the previously available tlaps backend provers
Zenon, Isabelle/TLA+ and the decision procedure for Presburger arithmetic.
We will refer to the combination of those three backends as ZIP for short.

We rewrote the proofs using the new fol and smt backend provers. For each
benchmark, we compare two dimensions of an interactive proof: size and time.
We define the size of an interactive proof as the number of proof obligations
generated by the Proof Manager from the proof tree, which is proportional
to the number of interactive steps and therefore represents the user effort for
making tlaps check the proof. The time is the number of seconds required by
the Proof Manager to verify those proofs on a 2.2GHz Intel Core i7 with 8GB
of memory.

Table 2 presents the results for the proofs of four case studies: type cor-
rectness and mutual exclusion of the Bakery and Peterson algorithms, three
properties about the Memoir security architecture [15], which we divide in type
correctness (T) and two refinement proofs (I, A), and type correctness and con-
sistency of the Paxos consensus algorithm.

For each case in the table, we compare how proofs of different sizes are
handled by the backends. Each line corresponds to an interactive proof of some
given size, that is, the number of generated proof obligations. The third colum
gives the ratio of size reduction from the proof in the row below. The next
columns correspond to the time an automated prover takes to find a proof
for every proof obligation. For each entry in the table, the same prover was
executed for all generated proof obligations. The Bakery and Paxos benchmarks
require arithmetic reasoning, therefore their entries for the fol provers are
empty. An entry with the symbol “-” means that the solver reached the timeout
without finding an automated proof for at least one of the proof obligations. The
backends were executed with a timeout of 300 seconds. For our tests we used
the off-the-shelf smt solvers CVC4 v1.3 and Z3 v4.3.2, and the fol provers
E v1.7 and SPASS v3.5.
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size ratio ZIP CVC4 Z3 E SPASS
Peterson 3 3.3 - 0.41 0.34 63.32 7.55
Peterson 10 5.69 0.78 0.80 4.22 44.64
Bakery 19 11.7 - 36.86 15.20
Bakery 223 52.74
Memoir-T 1 12.0 - - 1.99 - 39.72
Memoir-T 12 35.3 - 3.11 3.21 - 9.43
Memoir-T 424 7.31
Memoir-I 2 4.5 - - - 1.51 1.50
Memoir-I 9 6.8 - 3.84 9.35 3.95 4.11
Memoir-I 62 8.20
Memoir-A 6 4.5 - - - 7.78 12.86
Memoir-A 27 4.7 - 11.31 11.46 9.96 9.99
Memoir-A 127 19.10
Paxos 83 5.3 - 17.34 15.89
Paxos 442 36.03

Table 2: Evaluation results about properties of algorithms and systems.

Table 3 shows results about a set of proofs of theorems about finite sets
and their cardinalities. Here we compare the ZIP proofs against a combination
of Zenon and smt solvers, because a few proof obligations generated from big
structural high-level formulas can be proved only by Zenon, and the smt solvers
are required for arithmetic reasoning.

In all cases, the use of the new backend leads to significant reductions in
interactive proof sizes and running times compared to the original proofs. We
consider the proof size to be the more significant metric: the larger the proof,
the more interactive proof steps are required, and the more effort the user has
to expend for decomposing the proof into steps that the backends can verify.
For the algorithms and systems, we observe a reduction in size of about one
order of magnitude. In particular, the “shallow” proofs of the first three case

Finite Sets ZIP Zenon+SMT
size time size time ratio

CardZero 11 5.42 5 0.48 2.2
CardPlusOne 39 5.35 3 0.49 13.0
CardOne 6 5.36 1 0.35 6.0
CardOneConv 9 0.63 2 0.35 4.5
FiniteSubset 62 7.16 21 5.94 2.9
PigeonHole 42 7.07 20 7.01 2.1
CardMinusOne 11 5.44 5 0.75 2.2

Table 3: Evaluation results for theorems about finite sets and cardinalities.
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studies required only minimal interaction. For instance, in the Peterson case,
fol provers and smt solvers can cope with a proof that generates 3 obligations,
whereas the ZIP backends time out in at least one of them. Instead, ZIP requires
a more fine-grained proof of size 10. For Finite Sets, the reduction is less
impressive, but nevertheless proofs could be reduced to half the original size or
better.

The performance of the smt solvers and the fol provers is comparable. smt
solvers are very efficient for “shallow” proof obligations, in particular, when few
quantifiers need to be instantiated. fol provers reliably find necessary instanti-
ations for quantified formulas, which may arise from set-theoretic constructions,
but they are not appropriate for obligations involving arithmetic reasoning. Be-
yond our experiments reported here, the smt backend has been used extensively
within tlaps, and has in fact become the default backend that is invoked be-
fore Zenon and Isabelle. It has been instrumental in using tlaps for developing
larger case studies [3, 5].

5. Related work

Some of the encoding techniques described in Section 3, such as rewrit-
ing or abstraction, can be considered as simply folklore. Nevertheless, to our
knowledge they have not been combined and studied in this way. Moreover,
the idiosyncrasies of TLA+ render their applicability non-trivial. For instance,
axiomatized TLA+ functions with domains, including tuples and records, are
deeply rooted in the language.

The B and Z specification languages are also based on ZF set theory, although
in a somewhat weaker version, because terms and functions have (monomorphic)
types in the style of ms-fol, thus greatly simplifying the translations to smt
languages. Another difference is that functions are defined as binary relations,
as is typical in set theory. There are two smt plugins for the Rodin tool set
for Event-B. The SMT solvers plugin [13] directly encodes simple sets (i.e.,
excluding set of sets) as polymorphic λ-expressions, which are not part of the
smt-lib standard and are only handled by the parser of the veriT smt solver.
The ppTrans plugin [21] generates different smt sorts for each combination of
simple sets, power sets and cartesian products found in the proof obligation.
Therefore, there is one membership operator for every declared set sort, with
the advantage that the proof search space is further partitioned, although this
requires that the type of every term be known beforehand. (In TLA+, this can
be achieved in certain cases through type synthesis; see [29].) Additionally, when
ppTrans detects the absence of sets of sets, the translation is further simplified
by encoding sets by their characteristic predicates.

Similarly, Atelier-B discharges proof obligations to different smt solvers
through Why3, with similar results to those of Rodin’s SMT plug-ins [25]. Set
theory, including extensionality, is axiomatized as a new Why3 theory, where
sets have an abstract, polymorphic type. The Alt-Ergo smt solver is particu-
larly useful for Why3 because it natively handles polymorphic first-order for-
mulas [9]. Function application is represented using a binary operator and then
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axiomatized. In the context of the BWare project, Conchon et al. [10] proposed
many internal optimizations to improve the performance of Alt-Ergo, in order
to discharge Atelier-B proof obligations obtained from industrial settings.

ProB includes a translation between TLA+ and B [17], allowing TLA+

users to use ProB tools. It relies on Kodkod, the Alloy Analyzer’s backend, to
do constraint solving over the first-order fragment of the language, and on the
ProB kernel for other expressions [33].

More recently, Delahaye et al. [14] proposed a different approach to reason
about set theory, instead of a direct encoding into fol. The theory of deduction
modulo is an extension of predicate calculus that includes rewriting of terms
and propositions. It is well suited for proof search in axiomatic theories such as
Peano arithmetic or Zermelo set thery, as it turns axioms into rewriting rules.

The tool mptp [36] translates Mizar to tptp-fof [34]. The Mizar language,
targeted at formalized mathematics, provides second-order predicate variables
and abstract terms derived from replacement and comprehension, such as the
set {n−m where m,n is Integer : n < m}. During preprocessing, mptp replaces
them by fresh symbols, with their definitions at the top level. Similar to our
abstraction technique, it resembles Skolemization.

The abstraction technique that we use for handling non-basic expressions is
reminiscent of the Tseitin transformation [35] that introduces new variables for
abbreviating sub-formulas when transforming a formula into conjunctive normal
form.9 The abstraction method, just as the Tseitin transformation and also
Skolemization, does not preserve logical equivalence because of the additional
function symbols it introduces. However, it preserves satisfiability, and this
is sufficient for refutation-based theorem proving. Other more sophisticated
CNF conversion techniques do not require introducing fresh names for all sub-
formulas [4, 12, 31].

The analogue of abstraction in λ-calculus is the λ-lifting transformation,
which eliminates free variables from λ-expressions by introducing additional pa-
rameters to let-definitions and λ-applications. Thus, bounded let-definitions can
be moved out to a global scope. This technique is used to encode Isabelle/HOL
functions into ms-fol [8]. In this encoding, but now comparing to Boolifica-
tion, formulas and terms are separated by treating all expressions as terms (no
predicates are declared in the translation) and injecting expressions expected
to be formulas into a new sort isomorphic to Bool. This encoding technique,
inspired from Spark [19], is left intentionally incomplete.

6. Conclusions

We have presented a sound and effective way of discharging TLA+ proof
obligations using automated theorem provers based on unsorted and many-

9The goal of the Tseitin transformation is to avoid the exponential explosion in the number
of clauses during clausification, i.e. the conversion from a fol formula to an equi-satisfiable
CNF formula.
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sorted first-order logic. This encoding forms the core of a back-end prover that
integrates external fol provers and smt solvers as oracles with the TLA+ Proof
System (tlaps). The main component of the backend is a generic translation
framework that makes available to tlaps any fol prover or smt solver that
supports the de facto standard formats tptp-fof or smt-lib.

Our translation enables the backend to successfully encode non-temporal
proof obligations in the TLA+ language. The untyped universe of TLA+ is
represented as a universal sort. Purely set-theoretic expressions are mapped to
formulas over uninterpreted symbols, together with relevant background axioms.
For smt solvers, the built-in integer sort and arithmetic operators are homo-
morphically embedded into the universal sort, and type inference is in essence
delegated to the solver. Functions, tuples, records, and the choose operator
(Hilbert’s choice) are encoded using a preprocessing mechanism that combines
term rewriting with abstraction. The soundness of the encoding is immediate:
all rewriting rules and axioms about sets, functions, records, tuples, etc. are
theorems in the background theory of TLA+ that have been proved in the Is-
abelle encoding. For ensuring completeness of our encoding, we would have to
include the standard axiom of set extensionality in the background theory. For
efficiency reasons, we include only instances of extensionality for specific sets,
function domains, and functions.

Encouraging results show that fol provers and smt solvers significantly
reduce the effort of interactive reasoning for verifying “shallow” TLA+ proof
obligations, as well as some more involved formulas including linear arithmetic
expressions, in the case of smt solvers. Both the time required to find automatic
proofs and, more importantly, the size of the interactive proof, which reflects
the number of user interactions, can be remarkably reduced with our back-end
prover.

The translation presented here forms the basis for further optimizations.
In [29] we have explored the use of (incomplete) type synthesis for TLA+ ex-
pressions, based on a type system with dependent and refinement types. Exten-
sions for reasoning about real arithmetic and finite sequences would be useful.
What is more important, we rely on the soundness of external provers, tem-
porarily including them as part of tlaps’s trusted base. In future work we
intend to reconstruct within Isabelle/TLA+ (along the lines presented in [8])
the proof objects that many fol provers and smt solvers can produce. Such a
reconstruction would have to take into account not only the proofs generated
by the solvers, but also all the steps performed during the translation, including
rewriting and abstraction.

Acknowledgement. We are grateful to the anonymous reviewers of both this
article and the ABZ paper [28] for their comments and suggestions that helped
improve the presentation.
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Appendix A. Rewriting rules

This appendix lists the collection of rewriting rules applied during the pre-
processing phase of the translation from (boolified) TLA+ to unsorted and
many-sorted first-order logic. This list is not comprehensive; trivial rules such as
x ∧true −→ x are omitted. All rewriting rules were encoded and mechanically
verified in Isabelle/TLA+.

Appendix A.1. First-order logic and choose operator

∀x : x ∈ {e1, . . . , en} ⇒ p(x ) −→ p(e1) ∧ . . . ∧ p(en) (x /∈ FV1..n)

∃x : x ∈ {e1, . . . , en} ∧ p(x ) −→ p(e1) ∨ . . . ∨ p(en) (x /∈ FV1..n)

∀x ∈ {y ∈ S : q(y)} : p(x ) −→ ∀x ∈ S : q(x )⇒ p(x )

∃x ∈ {y ∈ S : q(y)} : p(x ) −→ ∃x ∈ S : q(x ) ∧ p(x )

y = choose x : P(x ) −→ (∃x : P(x ))⇔ P(y)

where FV1..n = FV (e1)∪ . . .∪FV (en) and FV (e) is the set of free variables of
e.

Appendix A.2. Set theory

x ∈ {} −→ false x /∈ S −→ ¬(x ∈ S )

x ∈ {e1, . . . , en} −→ x = e1 ∨ . . . ∨ x = en S ⊆ T −→ ∀x : x ∈ S ⇒ x ∈ T

x ∈ {y ∈ S : p(y)} −→ x ∈ S ∧ p(x ) x ∈ e1 ∪ e2 −→ x ∈ e1 ∨ x ∈ e2

S ∈ subset T −→ ∀x : x ∈ S ⇒ x ∈ T x ∈ e1 ∩ e2 −→ x ∈ e1 ∧ x ∈ e2

x ∈ union S −→ ∃T : T ∈ S ∧ x ∈ T x ∈ e1 \ e2 −→ x ∈ e1 ∧ ¬(x ∈ e2)

x ∈ e1 .. e2 −→ x ∈ Int ∧ e1 ≤ x ∧ x ≤ e2

Instances of set extensionality:

S = {} −→ ∀x : ¬(x ∈ S )

S = {e1, . . . , en} −→ ∀x : x ∈ S ⇔ x = e1 ∨ . . . ∨ x = en

S = subset T −→ ∀x : x ∈ S ⇔ (∀y : y ∈ x ⇒ y ∈ T )

S = union T −→ ∀x : x ∈ S ⇔ (∃y : y ∈ T ∧ x ∈ y)

S = {x ∈ T : p(x )} −→ ∀x : x ∈ S ⇔ x ∈ T ∧ p(x )

S = {e(y) : y ∈ T} −→ ∀x : x ∈ S ⇔ (∃y : y ∈ T ∧ x = e(y))

S = T ∪U −→ ∀x : x ∈ S ⇔ x ∈ T ∨ x ∈ U

S = T ∩U −→ ∀x : x ∈ S ⇔ x ∈ T ∧ x ∈ U

S = T \ U −→ ∀x : x ∈ S ⇔ x ∈ T ∧ ¬(x ∈ U )

∀x : x ∈ S ⇔ x ∈ T −→ S = T
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Appendix A.3. Functions

[x ∈ S 7→ e(x )][a] −→ if a ∈ S then e(a) else ω([x ∈ S 7→ e(x )], a)

[f except ![x ] = y ][a] −→ if a ∈ domain f
then (if x = a then y else α(f , a))
else ω([f except ![x ] = y ], a)

domain [x ∈ S 7→ e] −→ S

domain [f except ![x ] = y ] −→ domain f

f ∈ [S → T ] −→ ∧ isAFcn(f )
∧ domain f = S
∧ ∀x ∈ S : α(f , x ) ∈ T

[g except [a] = b] ∈ [S → T ] −→ ∧ isAFcn(g)
∧ domain g = S
∧ a ∈ S
∧ b ∈ T
∧ ∀x ∈ S \ {a} : α(f , x ) ∈ T

[x ∈ S ′ 7→ e(x )] ∈ [S → T ] −→ ∧ S ′ = S
∧ ∀x ∈ S : e(x ) ∈ T

isAFcn([x ∈ S 7→ e]) −→ true

isAFcn([f except ![x ] = y ]) −→ true

Instances of extensionality:

f = [x ∈ S 7→ e(x )]
e(x):Bool−→ ∧ isAFcn(f )

∧ domain f = S
∧ ∀x ∈ S : α(f , x )b ⇔ e(x )

f = [x ∈ S 7→ e(x )] −→ ∧ isAFcn(f )
∧ domain f = S
∧ ∀x ∈ S : α(f , x ) = e(x )

g = [f except ![a] = b]
b:Bool−→ ∧ isAFcn(g)

∧ domain f = domain g
∧ a ∈ domain g ⇒ α(g , a)b ⇔ b
∧ ∀x ∈ domain f \ {a} : α(g , x ) = α(f , x )

g = [f except ![a] = b] −→ ∧ isAFcn(g)
∧ domain f = domain g
∧ a ∈ domain g ⇒ α(g , a) = b
∧ ∀x ∈ domain f \ {a} : α(f , x ) = α(g , x )

[x ∈ S 7→ e(x )] = [x ∈ T 7→ d(x )] −→ S = T ∧ ∀x ∈ S : e(x ) = d(x )
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Appendix A.4. If-then-else

if c then t else u
t,u:Bool−→ c ⇒ t ∧ ¬c ⇒ u (when c is a variable)

if c then t else u
t,u:Bool−→ ∃z : (z ⇔ c) ∧ c ⇒ t ∧ ¬c ⇒ u

x ⊗ if c then t else f −→ if c then x ⊗ t else x ⊗ f

f [if c then t else u] −→ if c then f [t ] else f [u]

O1(if c then t else u) −→ if c then O1(t) else O1(u)

where x is a term, ⊗ is an infix binary TLA+ operator such as =, ∈ ,⇒, ∧,⇔,
+, or <, and O1 is a prefix unary TLA+ operator such as ¬, domain, subset
or union.

Appendix A.5. Tuples and records

Notation: the expression [hi 7→ ei ]i:1 ..n abbreviates [h1 7→ e1, . . . , hn 7→ en ]
and [hi : ei ]i:1 ..n abbreviates [h1 : e1, . . . , hn : en ].

〈e1, . . . , en〉[i ] −→ ei when i ∈ 1 ..n

t ∈ S1 × . . .× Sn −→ ∧ isAFcn(t)
∧ domain t = 1 ..n
∧ α(t , 1) ∈ S1 ∧ . . . ∧ α(t ,n) ∈ Sn

[hi 7→ ei ]i:1..n .hj −→ ej when j ∈ 1 ..n

[r except !.h1 = e].h2 −→ if “h1” = “h2” then e else r .h2

r .h −→ r [“h”]

r ∈ [hi : Si ]i:1..n −→ ∧ isAFcn(r)
∧ domain r = {“h1”, . . . , “hn”}
∧ α(r , “h1”) ∈ S1 ∧ . . . ∧ α(r , “hn”) ∈ Sn

[hi 7→ ei ]i:1..n ∈ [fj : Sj ]j :1..m −→ ∧ {“h1”, . . . , “hn”} = {“f1”, . . . , “fm”}
∧
∧

ei ∈ Sj when hi = fj , i ∈ 1 ..n, j ∈ 1 ..m

domain 〈〉 −→ {}
domain [hi 7→ ei ]i:1..n −→ {“h1”, . . . , “hn”}
domain 〈e1, . . . , en〉 −→ 1 ..n

domain [r except !.h = e] −→ domain r
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Instances of extensionality:

t = 〈e1, . . . , en〉 −→ ∧ isAFcn(t)
∧ domain t = 1..n
∧
∧

ei :Bool
α(t , i)b ⇔ ei

∧
∧

ei :U
α(t , i) = ei

T = S1 × . . .× Sn −→ ∀x : x ∈ T ⇔ ∧ isAFcn(x )
∧ domain x = 1..n
∧ α(x , 1) ∈ S1 ∧ . . . ∧ α(x ,n) ∈ Sn

r = [hi 7→ ei ]i:1..n −→ ∧ isAFcn(r)
∧ domain r = {“h1”, . . . , “hn”}
∧ “h1” ∈ domain r ∧ . . . ∧ “hn” ∈ domain r
∧
∧

ei :Bool
α(r , “hi”)b ⇔ ei

∧
∧

ei :U
α(r , “hi”) = ei

x = [y except !.h = e] −→ ∧ isAFcn(x )
∧ domain x = domain y
∧ “h” ∈ domain y ⇒ α(x , “h”) = e
∧ ∀k ∈ domain y \ {“h”} : α(x , k) = α(y , k)

R = [hi : Si ]i:1..n −→ ∀r : r ∈ R ⇔
∧ isAFcn(r)
∧ domain r = {“h1”, . . . , “hn”}
∧ “h1” ∈ domain r ∧ . . . ∧ “hn” ∈ domain r
∧ α(r , “h1”) ∈ S1 ∧ · · · ∧ α(r , “hn”) ∈ Sn
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