
HAL Id: hal-01771857
https://hal.inria.fr/hal-01771857

Submitted on 19 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interconnecting and Monitoring Heterogeneous Things
in IoT Applications

Patient Ntumba, Georgios Bouloukakis, Nikolaos Georgantas

To cite this version:
Patient Ntumba, Georgios Bouloukakis, Nikolaos Georgantas. Interconnecting and Monitoring Het-
erogeneous Things in IoT Applications. International Conference on Web Engineering (ICWE), Jun
2018, Caceres, Spain. �hal-01771857�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157509454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01771857
https://hal.archives-ouvertes.fr


Interconnecting and Monitoring Heterogeneous
Things in IoT Applications

Patient Ntumba, Georgios Bouloukakis & Nikolaos Georgantas?

MiMove Team, Inria Paris, France.
firstname.lastname@inria.fr

Abstract. Internet of Things (IoT) applications incorporate hetero-
geneous devices that employ different middleware protocols (MQTT,
CoAP, WebSocket, etc). In this paper we present an extension of our
cross-integration platform which supports the interoperability of IoT de-
vices. In particular, we introduce the VSB Web Console which enables
the development and monitoring of applications with heterogeneous IoT
devices. We showcase our approach using the Fire Detection scenario.

Keywords: Internet of things, Middleware Protocols, Interoperability
Artifacts, Emergency Response

1 Introduction

Internet of Things (IoT) devices such as smart thermostats, activity trackers,
drones, parking sensors, etc, enable developers to create new types of smart
applications. Such devices (or Things) are introduced and deployed by major
tech actors using their own proprietary APIs and protocols. This results in the
deployment of highly heterogeneous devices in terms of both hardware and soft-
ware resources. Additionally, the Things’ diversity – i.e., resource-tiny, resource-
constrained and resource-rich, prevents the development of applications that rely
on a single standard/protocol. Hence, enabling interactions in the IoT requires
to deal with the heterogeneity issue.

Existing interoperability efforts are based on i) bridging communication pro-
tocols; [5,6]; and ii) providing common API abstractions[8]. The former ap-
proach focuses only on the data and primitive conversion between a specific
set of protocols. In the latter approach, developers have to build their appli-
cation by relying on a single protocol or API. In the context of our work, we
have developed the eVolution Service Bus (VSB) [7] which enables the inter-
connection of Things employing different IoT protocols at the middleware layer
(i.e., MQTT [4], CoAP [10], WebSocket [9], HTTP, etc). VSB follows the ESB
paradigm where a common intermediate bus protocol is used to interact with
multiple Things employing middleware-layer protocols or IP-based Gateways
hosting IoT devices. To bridge heterogeneous Things with the intermediate bus

? The work is supported by the research associate team ACHOR (inria.fr/en/associate-
team/achor) and the EU-funded H2020 project FIESTA-IoT (fiesta-iot.eu)



2 Ntumba et al

Fig. 1. VSB Web Console Architecture

protocol, we automatically synthesize interoperability software artifacts, the so
called Binding Components (BCs). BCs perform the mapping between data and
primitives of the bridged protocols. VSB is utilized as core component of the
H2020 CHOReVOLUTION [2] project and enables interactions in IoT chore-
ographies with heterogeneous devices.

In this paper, we rely on VSB and we introduce the VSB Web Console. Our
console provides a graphical interface which enables developers to register their
services/Things employing middleware IoT protocols. Then, based on their use
case scenario, interactions can be enabled between the registered (and possi-
bly heterogeneous) Things. Finally, the resulting application can be monitored
through our console. Monitoring options include: message passing and manage-
ment of the deployed artifacts. To demonstrate our work, we design a use case
for fire detection inside a forest. Hence, we register real sensors (temperature
sensors), devices (a drone) and services (an estimation service) to our console.
Then, to enable the interconnection of heterogeneous devices, we automatically
synthesize and deploy interoperability artifacts. Finally, the forest fire detection
interactions can be monitored using our console.

In the following section, we provide an architectural overview of our console,
as well as details about its implementation. Then, we provide an overview of the
forest fire detection scenario. Finally, we demonstrate its implementation in the
VSB Web Console – this includes a video representation.

2 System Overview

As depicted in Fig. 1, our console is implemented based on MVC standard. Below
we describe its main components which are used to interconnect heterogeneous
Things and monitor IoT applications:

User Interface (UI): is a Web interface used by an IoT developer for regis-
tering services/Things by providing information such as the: i) role (provider,
consumer), ii) host address, iii) employed middleware protocol, iv) supported
operations and their input/output data. This process results to the creation of
the corresponding Generic Interface Description Language (GIDL) model. We
provide the GIDL models of our use case scenario at https://goo.gl/Lnzziz.
The UI is also used for interconnecting the registered services/Things using drag
and drop actions and automated code generation. Finally, is used to manage and
monitor the overall IoT application.

https://goo.gl/Lnzziz


Interconnecting and Monitoring Heterogeneous Things in IoT Applications 3

Controller: it processes all actions performed at the UI, which are forwarded
to the Thing Management component and the corresponding module: i) regis-
tration, ii) generation, iii) monitoring and iv) orchestration.

To interconnect and monitor two heterogeneous Things, e.g., a drone that
sends/receives notifications using the UDP/MQTT protocols; and a media de-
vice that receives notifications using the WebSocket protocol, our console oper-
ates as follows: the generation module binds the drone’s and the media device’s
GIDL models to automatically generate the BC that is responsible to map data
and primitives described in their GIDL models. Then, the orchestration mod-
ule interconnects these devices by deploying the BC in the console host node.
To monitor the devices and the deployed BC, our console (monitoring module)
implements a listener API which receives published data from the IoT app on
a specific port.

Implementation. The VSB Web Console has been implemented using Java 8

and the GIDL interface is a metamodel developed using the Eclipse Modeling
Framework. Our console can be downloaded through: https://gitlab.inria.
fr/pntumba/vsb-web-console/wikis. We also provide 2 videos for demon-
strating the usage of our console: the 1st one: https://youtu.be/v7ucoSgbZCI,
demonstrates the process of installing the console. Additionally, we show how a
developer can register, interconnect and monitor (heterogeneous or not) Things.

3 Forest Fire Detection Scenario

Continuous monitoring of forests for early fire detection is of primary importance.
In 2007, there were more than 80 human losses in Greece and 670,000 acres
burned because of fires [3]. In this section, we use our console to showcase the
implementation, deployment and monitoring of a fire detection inside a forest.
Implementing such a scenario requires the following sensors and devices:
Temperature or smoke sensors: these can be deployed inside a forest in order
to monitor the forest conditions and push warning notifications. In the context
of our demo, we deploy these sensors into a Raspberry Pi and we employ the
CoAP protocol to push notifications.

Estimator service: it can be deployed inside a fire department for receiving
forest-related notifications. We assume that the estimator service employs the
HTTP protocol to receive notifications.

Drone: a PARROT AR DRONE 2.0 located at the fire department – used
to inspect the forest-area upon a warning notification. Such a device deploys
specific protocols to: i) accept pilot-commands through the UDP protocol and
ii) transmit video stream, location and drone speed to an MQTT broker.

Drone handler: a device handling the drone. We have deployed this device
into a BeagleBone Black[1] platform. This platform employs the HTTP protocol
to receive commands from the estimator service and locate the corresponding
drone into the forest.

Media streaming devices: such devices receive video streaming data by the
drone. We separate them in two categories: i) a device that employs an MQTT

https://gitlab.inria.fr/pntumba/vsb-web-console/wikis
https://gitlab.inria.fr/pntumba/vsb-web-console/wikis
https://youtu.be/v7ucoSgbZCI


4 Ntumba et al

subscription mechanism; and ii) a smartphone that employs the WebSocket pro-
tocol.

Creating an IoT application with the above heterogeneous devices is not a trivial
task. Initially, the developer has to deploy the services/things, select the proper
protocol supporting the constrained sensors/devices or use the already employed
protocol by the device (e.g., drone). Hence, the developer has to be aware of
multiple APIs and protocols for interconnecting its heterogeneous services/things
and create the application.

In this work, we enable developers to register services/Things into the VSB
Web Console which can be installed in their private or public machine (see
Section 2). Then, IoT applications can be created through simple drag and
drop actions. Heterogeneous interconnections are solved by generating automat-
ically BCs. Finally, our console provides a monitoring interface to manage BCs
(start/stop actions) and message passing detection.

In the 2nd video we show the complete implementation and monitoring of
the Fire Detection scenario: https://youtu.be/SJeiqJkBhls.

4 Conclusion

To facilitate the development of IoT applications, we have developed the VSB
Web Console. Using our console, developers are able to register services/Things,
create IoT apps through drag and drop actions, interconnect heterogeneous
Things in an automated manner, and finally monitor the resulting applications.

In future, we intend to provide an API to enable developers accessing the
Controller directly (not only through the UI). Furthermore, we aim to enable a
distributed deployment of BCs.

References

1. BeagleBone Black. https://beagleboard.org/black
2. CHOReVOLUTION EU project. http://www.chorevolution.eu/bin/view/

Main/WebHome

3. Greek forest fires. https://en.wikipedia.org/wiki/2007_Greek_forest_fires
4. MQTT version 3.1.1. https://goo.gl/1WdTPZ
5. Ponte. http://www.eclipse.org/proposals/technology.ponte/
6. Al-Fuqaha, A., et al.: Toward better horizontal integration among iot services.

IEEE Communications Magazine (2015)
7. Bouloukakis, G., et al.: Integration of Heterogeneous Services and Things into

Choreographies. In: ICSOC. Banff, Alberta, Canada
8. Cherrier, S., et al.: D-lite: Building internet of things choreographies. arXiv (2016)
9. Fette, I., Melnikov, A.: The WebSocket Protocol. Tech. rep. (2011)

10. Shelby, Z., Hartke, K.: The Constrained Application Protocol (CoAP). Tech. rep.
(2014)

https://youtu.be/SJeiqJkBhls
https://beagleboard.org/black
http://www.chorevolution.eu/bin/view/Main/WebHome
http://www.chorevolution.eu/bin/view/Main/WebHome
https://en.wikipedia.org/wiki/2007_Greek_forest_fires
https://goo.gl/1WdTPZ
http://www.eclipse.org/proposals/technology.ponte/

	Lecture Notes in Computer Science
	Introduction
	System Overview
	Forest Fire Detection Scenario
	Conclusion


