
HAL Id: hal-01777123
https://hal.inria.fr/hal-01777123

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MMFilter: A CHR-Based Solver for Generation of
Executions under Weak Memory Models
Allan Blanchard, Nikolai Kosmatov, Frédéric Loulergue

To cite this version:
Allan Blanchard, Nikolai Kosmatov, Frédéric Loulergue. MMFilter: A CHR-Based Solver for Gen-
eration of Executions under Weak Memory Models. Computer Languages, Systems and Structures,
Elsevier, 2018, 53, pp.121-142. �10.1016/j.cl.2018.03.002�. �hal-01777123�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157505305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01777123
https://hal.archives-ouvertes.fr

MMFilter: A CHR-Based Solver for Generation of
Executions under Weak Memory Models

Allan Blancharda,∗, Nikolai Kosmatovb,∗, Frédéric Loulerguec,∗

aInria Lille - Nord Europe, Villeneuve d’Ascq, France
bCEA, List, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France

cNorthern Arizona University, School of Informatics, Computing, and Cyber Systems,
Flagstaff, USA

Abstract

With the wide expansion of multiprocessor architectures, the analysis and rea-
soning for programs under weak memory models has become an important con-
cern. This work presents MMFilter, an original constraint solver for generating
program behaviors respecting a particular memory model. It is implemented in
Prolog using CHR (Constraint Handling Rules). The CHR formalism provides
a convenient generic solution for specifying memory models. It benefits from the
existing optimized implementations of CHR and can be easily extended to new
models. We present MMFilter design, illustrate the encoding of memory model
constraints in CHR and discuss the benefits and limitations of the proposed
technique.

Keywords: weak memory models, constraint solving, logic programming,
constraint handling rules

1. Introduction

Concurrent programs are hard to design and implement, especially when
running on multiprocessor architectures. For efficiency reasons, multiprocessors
implement weak memory models [1] that allow, for example, instruction re-
ordering or store buffering. Thus multiprocessors exhibit more behaviors than
Lamport’s Sequential Consistency (SC) [18], a theoretical model where an ex-
ecution of a parallel program corresponds to an interleaving of executions of
different threads.

A memory model describes how a program can interact with memory during
its execution. Technical manuals of processors are often vague, and sometimes

∗Corresponding author
Email addresses: allan.blanchard@inria.fr (Allan Blanchard),

nikolai.kosmatov@cea.fr (Nikolai Kosmatov), frederic.loulergue@nau.edu (Frédéric
Loulergue)

Preprint submitted to Elsevier February 5, 2018

p0: Thread 0
(i00) x = 1;
(i01) r0 = y;

Thread 1
(i10) y = 1;
(i11) r1 = x;

p1: Thread 0
(i′00) x = 1;
(i′01) fence;
(i′02) r0 = y;

Thread 1
(i′10) y = 1;
(i′11) fence;
(i′12) r1 = x;

1 :- include(sc). % :-include(tso).% for SC or TSO

2
3 program_p0(Vars , [Thread0 ,Thread1]) :-

4 Vars = [x , y],

5 Thread0 = [(st ,x,1), (ld ,y,R0)],

6 Thread1 = [(st ,y,1), (ld ,x,R1)].

7 program_p1(Vars , [Thread0 ,Thread1]) :-

8 Vars = [x , y],

9 Thread0 = [(st ,x,1), f(any ,any), (ld ,y,R0)],

10 Thread1 = [(st ,y,1), f(any ,any), (ld ,x,R1)].

11
12 ?- valid_execution(program_p0 , tso , no).

Figure 1: (a) Two programs p0 and p1, and (b) their implementations with a solving request.

erroneous. Formal descriptions are necessary, and should be as abstract as
possible to ease reasoning about them.

In the context of the sequential consistency, if we consider, for example,
that two memory locations x and y initially contain 0 and that r0 and r1 are
processor registers, the program p0 in Figure 1a can only give one of the three
possible final results:

• r0 = 0 and r1 = 1, or

• r0 = 1 and r1 = 1, or

• r0 = 1 and r1 = 0.

For instance, the last result is obtained by the interleaving (i10)(i11)(i00)(i01).
However, for the sake of performance, no current multiprocessor provides a

sequentially consistent memory model. Models are relaxed or weak with respect
to SC. On most processors, the previous example can also provide the result
r0 = 0 and r1 = 0, which is not justifiable by an interleaving. To avoid this
behavior, one can use memory barriers or fences that forbid reorderings as
illustrated by the program p1 of Figure 1a.

We propose a constraint solving based technique that allows to determine
all admissible (i.e. allowed) executions of a program under a memory model.
This technique relies on Prolog and CHR (Constraint Handling Rules) [15]. A
CHR program is a list of rules that act on a store of constraints by adding
or removing constraints in this store. A rule is activated if a combination of
constraints in the store matches the head of the rule (and if an optional Prolog
predicate, called the guard, is satisfied). In our case, constraints express relations
between instructions that basically describe their order of execution. Given a

2

set of relations characterizing the instruction ordering in a program execution,
such rules are used to propagate information and to deduce new, yet unknown
ordering relations for instructions of the execution.

The contributions of this paper include a novel CHR-based technique for
generation of admissible behaviors under memory models and a constraint solver
prototype MMFilter1 implementing this technique for the SC, Total Store Order
(TSO) and Partial Store Order (PSO) models. We discuss the benefits and
limitations of this approach, and show how the use of CHR allows us to define
our model in a concise and intuitive way, taking advantage of a well-established
specification and solving mechanism.

Outline. Section 2 presents some previous work on weak memory models.
Section 3 illustrates the usage of MMFilter. Section 4 gives a brief introduction
to CHR, defines the considered language and basic relations between memory
events used in MMFilter. Section 5 presents the generic model used to define
the notion of candidate executions. Section 6 describes how to define allowed
executions and illustrates this definition for some simple memory models. Sec-
tion 7 discusses the termination of the analysis, while Section 8 presents an
experimental evaluation of its performance and correctness. Finally, Section 9
concludes and gives some future work.

2. Related Work

Recent years have seen many efforts on the formalization of weak memory
models, both on the hardware and software sides.

The formalization of weak memory models can be specific to an architecture,
for example TSO [27], Power [25], or ARM [4], but also to a programming
language, for example C++ [8] or Java [19].

Such a formalization is mandatory when we want to ensure that a program
logic, or a proof method is correct with respect to a target model. They are also
necessary when considering the correctness of compilers that target multi-core
architectures supporting weak memory models. Finally, having formal seman-
tics allows to avoid the ambiguities found in the reference manuals of processors
or languages. For example, a formalization of such manuals and experiments
comparing the behaviors allowed by the formalization and the behaviors ob-
served on actual hardware revealed mismatches for the Power architecture [25].
On the languages side, the behavior of relaxed memory operations in C11 allows
situations where values can appear out-of-thin-air [30].

There exist different formalization approaches [6]: operational models and
axiomatic models. Operational approaches model the behaviors of programs
by building an abstraction of actual hardware, including (idealized) queues and
store buffers.

Axiomatic approaches can be divided into two categories: the first category
aims at generating executions under a weak memory model expressed as orders

1Available at http://allan-blanchard.fr/CHR/MMFilter.tar.gz.

3

http://allan-blanchard.fr/CHR/MMFilter.tar.gz

between events in these executions (Section 2.1). These approaches often rely
on constraint programming to generate valid executions under a memory model.
The second category are axiomatic semantics of programming languages, related
to Hoare logic and the related separation logic (Section 2.2). MMFilter belongs
to the first category: it generates executions defined by an axiomatic definition
of a memory model.

One important aspect of reasoning about weak memory models is to check
or enforce conditions such that all the executions of a program under a weak
memory model will actually be executions that could occur under a sequentially
consistent memory model (Section 2.3).

2.1. Axiomatic Approaches to Execution Generation

Among the tools used to analyze programs under weak memory models, some
tools are dedicated to the generation of executions that are allowed or not for
a program with respect to a targeted model. PPCMem [25] and CPPMem [7]
are dedicated to the generation of allowed executions for programs under Power
and C++11 models, respectively. From a given program, they can generate
all executions allowed by the targeted memory model. For both tools, the
implementation relies on the Lem language [20] from which HOL code and an
executable OCaml code are generated.

The Herd solver [6, 3] is designed as a generic analyzer. It relies again on an
axiomatic formalization. It defines and implements a very weak memory model
that allows a lot of relaxations. The concrete memory models are then provided
by the user through a description language that defines: (i) a combination of
basic relations of the generic model that are respected by the targeted model,
and (ii) the properties these relations must respect. We will further elaborate
on this approach later since this is also the one implemented in MMFilter.

Constraint-based concurrent memory machines (CCMM) [23] provide a for-
malism for definition of weak memory models as constraints on the order of
memory events and the values of variables during a program execution. Ac-
cording to the author it can be adapted to any model. In [23], the considered
model is the Java memory model, implemented by Schrijvers [26] using Prolog
and CHR. We also use Prolog and CHR. As there are already numerous op-
timized implementations of the resolution mechanism for these languages, this
design choice allows us to avoid writing a complete resolution process (that is
necessary for Herd). However, we use the Herd formalization in order to take
advantage of existing models formalized in Herd that appear to be quite easy to
translate into our formalism. To the best of our knowledge, the Java Memory
Model is currently the only model formalized with CCMM.

2.2. Program Logics

An attractive way to analyze programs under a weak memory model is to
design a specific program logic, in the Hoare logic tradition. This is for example
the case of relaxed separation logic [29]. It extends concurrent separation logic
in order to support the C++11 memory model, with several types of memory

4

accesses (sequentially consistent, release, acquire, relaxed) and associated rules
for ownership transfer according to these accesses.

The logic GPS [28] (ghosts, protocols and separation) generalizes relaxed
separation logic by adding the notions of rely-guarantee through the idea of
protocols. Each atomic memory location being linked to an invariant giving a
semantic to loads and stores to this location. This logic is further generalized
by [16].

These efforts rely on an axiomatic definition of the C++11 memory model
that can be seen as a set of constraints on program executions. It becomes
then possible to translate them into the input language of a solver like Herd
or MMFilter in order to apply it to different programs and to validate their
behavior.

2.3. Weak Memory Models and Sequential Consistency

A common way to analyze concurrent programs taking into account weak
memory models is to ensure that the program has sequentially consistent be-
haviors and then to reason under the sequentially consistent memory model.

Indeed, a desirable fundamental property for a weak memory model is that if
no sequentially consistent execution exhibits a data-race, then every execution
can be considered as sequentially consistent. This property is stated in [24]
and is verified for most common memory models [9]. Data-race freedom can
be verified by static analysis [11, 22]. However, this is a hard problem that
generally requires to perform a whole-program analysis.

Another approach is to modify the program in order to ensure that the
program has sequentially consistent behavior by adding fences into the code
to force memory operation ordering. In [21], Owens shows that for programs
under TSO memory model, adding a barrier before each memory load forbids a
particular race condition called triangular-race, and that it is enough to forbid
any data-race under this model. Recent approaches [5] automatically place
fences for any memory model and use a cost model in order to add barriers with
a minimal cost.

3. MMFilter on a Use-case

The purpose of MMFilter is to provide, for a given program, all behaviors
(i.e. executions) that are allowed by a given memory model. The idea is to
transitively propagate ordering relations between instructions (possibly across
threads). As an output, MMFilter can produce the list of propagated constraints
for each allowed execution and their relation graphs (formatted as DOT files).
Moreover, if the user provides a list of expected executions for the input pro-
gram, the solver can identify the subset of expected executions that are not
allowed by the model, and, conversely, the allowed executions that were not
expected.

For example, if we execute MMFilter on the program_p0 of Figure 1 for the
TSO memory model and ask for the relation graphs, the solver produces the

5

r0 = y(undef) r1 = x(undef)

x = 1 y = 1

y = undef

x = undef

po po

co
co rf

rf

r0 = y(1) r1 = x(1)

x = 1 y = 1

y = undef

x = undef

po po

co
co

rf

rf

r0 = y(undef) r1 = x(1)

x = 1 y = 1

y = undef

x = undef

po po

co
co

rf
rf

r0 = y(1) r1 = x(undef)

x = 1 y = 1

y = undef

x = undef

po po

co
co rf

rf

Figure 2: Generated DOT graphs for program p0 of Figure 1

four graphs presented by Figure 2. These graphs allow the user to visualize the
allowed executions according to a memory model, displaying the basic ordering
relations between instructions that we explain below.

4. Background and Definitions

4.1. Constraint Handling Rules

A program written using CHR [15] consists of a set of rewriting rules that
manipulate a store of constraints. Each rule application leads to removing some
existing constraints and/or adding some new ones. The underlying constraints
are terms that do not involve any computation.

Figure 3 presents the different types of rules used in CHR. A typical rule
contains a head (with a list of CHR constraints), a guard (with a list of Prolog
terms) and a body (with a list of CHR constraints and Prolog terms). A rule can
have an identifier that is then given before the “@” symbol. The first type (line 5)
is simplification: if some subset of constraints of the store match with the given
list of constraints Head, and if the list of Prolog predicates Guard is satisfied, then
the matching constraints are removed from the store and the constraints defined
in Body are added into the store. The rule of propagation (line 6) acts similarly
except that matching constraints are kept in the store. Finally, a simpagation
rule (line 7) combines both: constraints matching the sublist Head_k of the head
are kept, while the ones matching Head_r are removed. In all rules, if the body
contains Prolog terms, they are evaluated and if the evaluation fails, the whole

6

1 % Head : H1 , ..., Hn : CHR constraints

2 % Guard : P1 , ..., Pm : Prolog terms

3 % Body : B1 , ..., Bk : CHR constraints and/or Prolog terms

4
5 simplification @ Head <=> Guard | Body .

6 propagation @ Head ==> Guard | Body .

7 simpagation @ Head_k \ Head_r <=> Guard | Body .

Figure 3: General patterns for CHR Rules

query is considered as failed. On the contrary, the evaluation of the Guard is
used to decide whether the rule can be applied (thus, the rule is simply not
applied if the guard fails).

In a CHR program, once a rule is applied, the result is committed, that is,
there is no backtracking mechanism. Moreover, in the original semantics the
order of application of rules is not defined. That can make the design of a correct
CHR program rather hard. That is why most CHR implementations, including
SWI-Prolog used in the present work, use a refined semantics of CHR [13] that
specifies the order of application of the rules as the order in which they appear
in the program.

4.2. Considered Language

In the considered language, a program is modeled by

• the list of named locations it can access, represented as a list of constant
Prolog terms (that can be seen as named addresses of locations in C), and

• the list of threads, each thread being represented by the list of instructions
it executes.

An instruction can be either a memory operation or a barrier. A load (resp.
a store) instruction is a tuple (ld, loc, v) (resp. (st, loc, v)), where loc is
the read (resp. written) location and v the read (resp. written) value. Both
loc and v can be provided as Prolog variables. In such a case, the solver has
to unify variables to determine their values (or equality with other variables).
We also provide the instruction (rmw, loc, v1, v2), for read-modify-write which
atomically reads value v1 at location loc and writes value v2 into it.

In this language, the programs p0 and p1 in Figure 1 are implemented by
predicates program_0 and program_p1 illustrated in the same figure. The spec-
ified parameters are the list of considered variables ([x,y]) and the program
instructions given as a list of threads (Thread0 and Thread1, defined respectively
on lines 5–6 and 9–10).

It is possible to specify a name for the register that stores the read or written
value, or containing the accessed location, using the syntax register:Value,
where register is a Prolog constant and Value can be either a constant or

7

1 lwmp_nofc ([x,y], [T0,T1]) :-

2 T0 = [(st,x,42), (st ,y,x)],

3 T1 = [(ld,y,r11:V1), (ld, r11:V1 , r12:V2)].

Figure 4: Address dependency using named registers

a variable. It allows to create data or address dependencies to order some
instructions.

For example, a program can read a location l from another location and
then use l to read the value at this location in the memory, as illustrated by
Figure 4. An allowed execution of this program proceeds as follows. First,
the thread T0 writes 42 to location x and then writes location x to location y.
Next, the thread T1 reads location y and puts the read value (x) in register
r11. Finally, it reads a value from the indicated location (x) and saves the read
value (42) in register r12. In another behavior, the second thread could start its
execution before the first one writes location x into y. This behavior would be
allowed but we should then indicate that it produces a bad memory access. This
is done by detecting load and store instructions at invalid memory locations.
When such an operation appears, we add a constraint in the store saying that
the corresponding read or write is a runtime error.

A fence instruction has two parameters defining the types of memory oper-
ations ordered by the fence. We write f(t_op1, t_op2), where t_op1 and t_op2

can be ld, st or any. It expresses that every operation t_op1 preceding the fence
will be ordered before every operation t_op2 that follows the fence. The any

keyword stands for both ld and st operation types.

4.3. Basic Relations

We will use the term candidate execution to designate an execution for which
we have not yet verified its validity according to a given memory model, and
allowed execution for an execution that can happen according to a memory
model.

Following [6], we use several relations to formalize memory models. The set
of basic relations characterizing an execution includes four notions:

• PO : program order,

• CO : coherency order,

• RF : reads-from,

• FR : from-read.

We illustrate those relations with an example of execution of the program
p0 in Figure 1 presented in Figure 5. We add two store instructions in the
very beginning of the execution to initialize the values at locations x and y

8

i01 : (ld, y, V0← Ω) i11 : (ld, x, V1← 1)

i00 : (st, x, 1) i10 : (st, y, 1)

(st, y,Ω)

(st, x,Ω)

po po

co
co

rf
rf

fr

Figure 5: Example of execution of program p0 of Figure 1

by an undefined value, denoted by Ω. We consider a scenario where the load
instruction i01 reads the value Ω from location y, and i11 reads 1 from x.

Two memory operations i1 and i2 are in relation PO(i1, i2) if they belong to
the same thread, and if i1 is syntactically ordered before i2 in it. For example,
in Figure 5, we have PO(i00, i01) and PO(i10, i11). It is worth noting that fences
are not related by PO as they give guarantees about the order of execution of
instructions (and lead to additional fence contraints described below). If a fence
separates two memory operations i1 and i2, we still have a PO relation between
them and not with the fence instruction. The PO relation is the one that is
most commonly relaxed by memory models. In MMFilter, the PO relation is
first defined only on successive instructions, and later entirely computed by the
transitive closure IPO defined in Section 5.

The CO relation orders store instructions to each memory location. Intu-
itively, for a given memory location, it corresponds to a global history of writes
to that location as we would see it if we could observe every store instruction
at the global memory level. In our example, store instructions to x are ordered
by CO as follows: (st, x,Ω) happens before i00 : (st, x, 1). In this program,
it is the only possible order since initialization is always performed before any
other write to a location. Again, we only define CO for successive store instruc-
tions, the transitive closure being computed later during the propagation phase
if needed.

The RF(iW , iR) relation determines which store instruction iW wrote the
value read by a load instruction iR at a given location. It assigns a unique store
instruction to every load instruction. In our example, RF orders for instance
i00 : (st, x, 1) and i10 : (ld, x, V1← 1). The notation V1← 1 indicates here that
the read value is 1.

9

1 apply_generic_model(VARS , THREADS) :-

2 enrich_prog (0,THREADS ,EnrichedThreads),

3 compute_pos(EnrichedThreads),

4 append(EnrichedThreads , PRG),

5 compute_rel_all_threads(data , EnrichedThreads),

6 compute_rel_all_threads(addr , EnrichedThreads),

7 LOCS = [undefined | VARS],

8 ops_to_each(st, LOCS , PRG , STORES),

9 ops_to_each(ld, LOCS , PRG , LOADS),

10 permute_stores(STORES , PSTORES),

11 compute_all_cos(PSTORES),

12 compute_all_rfs(LOADS , PSTORES).

Figure 6: Generation of candidate executions (part of generic model.pl)

The FR(iR, iW) relation is derived from CO and RF. It associates to every
load instruction iR all store instructions iW that will successively write at the
read location after the read operation iR.

For example, if we consider the link RF((st, y,Ω), (ld, y, V0← Ω)), since
CO indicates that (st, y, 1) is executed after (st, y,Ω), and (ld, y, V0← Ω) reads
from this second write, we know that (st, y, 1) is executed after (ld, y, V0← Ω).
So we have FR((ld, y, V0← Ω), (st, y, 1)).

Since relation PO is defined by the program and FR is derived from CO
and RF, a candidate execution can be defined by a combination of CO and
RF. In other words, it is determined by a combination of permutations of store
instructions to each memory location and a choice of store instruction for each
load instruction. Therefore, Figure 5 is an example of a candidate execution.
Another one is given page 20 by Figure 15.

5. Generic Model

In this section, we present the weakest memory model we consider, referred
to as generic model. This model accepts every candidate execution as an allowed
execution. The generic model allows us to produce all candidate executions by
only guaranteeing that:

• for every memory location, its value is initially undefined,

• two writes at the same location cannot happen at the same time, and are
ordered,

• if a store instruction is associated to a load instruction by RF, the read
value is equal to the written value.

After the generation of candidate executions, forbidden executions will be fil-
tered out by specific memory models (as described in Section 6).

10

The generation is illustrated by Figure 6 and contains the following main
steps:

• adding unique identifiers to instructions (line 2),

• extracting PO (line 3),

• searching address and data dependencies (line 5–6),

• extracting load and store instructions for each memory location (lines 8–
9),

• generating CO by creating a permutation of store instructions to each
memory location and combining them (lines 10–11),

• generating RF by associating a store instruction to each load instruction
(line 12).

During this generation, the FR relation, and the transitive closures of PO
and CO are deduced using CHR rules that are activated on the fly as constraints
are added into the store. The rules that are specific to each model are also
activated this way. It allows MMFilter to early identify subsets of executions as
forbidden by the memory model, avoiding to generate them entirely.

5.1. Extraction of PO and Dependencies

First, we add some information to instructions: a thread identifier N_th and
an instruction identifier N_inst inside the thread. Instructions are immediately
added to the store of constraints as we process a list of instructions.

Memory operations (OP,Loc,Val) are modeled by CHR constraints of the
form i(N_th, N_inst, OP, Loc, Val). Fence instructions f(t_op1, t_op2) are
modeled by CHR constraints fence(N_th, N_inst, t_op1, t_op2). For exam-
ple, instructions of the program program_p0 in Figure 1 are translated into the
following CHR constraints: i(0,0,st,x,1), i(0,1,ld,y,R0), i(1,0,st,y,1) and
i(1,1,ld,x,R1).

We also replace read-modify-write operations by a read iread followed by
a write iwrite, however in order to guarantee atomicity, we also add a CHR
constraint rmw(iread, iwrite) that is exploited by a CHR rule (presented in Sec-
tion 5.3) that rejects executions violating atomicity of the instruction.

The Prolog predicate enrich_prog(0,THREADS,EnrichedThreads) in Figure 6
produces the translation from original instructions to “identified” ones in a very
straightforward way: it visits the different lists of instructions of the program.
Then the resulting program is scanned to build the PO constraints between
successive (identified) instructions.

Inside a thread, besides the PO-relation, we also need to extract two de-
pendencies: data and address dependencies (produced by the Prolog predicate
compute_rel_all_threads, respectively parameterized with data and addr). A
dependency exists from an instruction i1 to an instruction i2 if i1 reads a value

11

v that is then used by i2. If i2 is a store instruction writing a value that de-
pends on v, we have a data-dependency data(i1, i2). If i2 is a memory operation
with an access to an address that depends on v, we have an address-dependency
addr(i1, i2).

The program in Figure 4 contains an address-dependency, so we produce a
constraint addr((1,0,ld,y,r11:V1) , (1,1,ld,r11:V1,r12:V2)). If T1 had a
third instruction (st, z, r12:V2) writing the read value at some location z, we
would have a data-dependency data((1,1,ld,r11:V1,r12:V2) , (1,2,st,z,r12:V2)).

5.2. Generation of CO and RF

The production of a candidate execution can be split into two phases (cf.
lines 10–12 in Figure 6): first, build a permutation of the store instructions
(to produce CO); second, for each of these permutations, associate to each load
instruction a possible store instruction having written the read memory location
(to produce RF).

CO is a relation that orders the store instructions for each memory location.
In order to produce a candidate permutation for this relation, we first find
all store instructions to each location. A candidate execution is obtained by
taking a permutation of store instructions to each location. For each of these
permutations, we also add, at the beginning of the list, a store instruction
i(-1,-1,st,LOC,undefined) that defines the value at the given location LOC to be
undefined before any other store instruction. The corresponding CO constraints
are extracted similarly to the extraction of PO.

Extracting RF constraints requires to have both load and store instructions
to each memory location. A combination of pairs load/store instructions is
added to a generated set of CO constraints. For any correct access, we generate
a constraint rf(i(T1,N1,st,Loc,Val), i(T2,N2,ld,Loc,Val)). Note that, as we
can add a register indication in Loc and Val, the generated constraint can be
slightly different, but this notation gives the general idea.

If a load instruction is performed from an undefined memory location a con-
straint rf(undefined, Load) is generated, and reads the value undefined. Later,
a CHR rule will also produce a corresponding rte (runtime-error) constraint
which means that the execution comprises an undefined memory access.

5.3. Derivation of IPO, FR and RMW Atomicity

We derive FR (the from-read relation) and IPO (the transitive closure of
PO) from previously described constraints.

The FR relation associates to each load instruction, the consecutive store
instructions that will, according to CO, overwrite the location the load instruc-
tion reads. We implement it using two CHR rules mentioned on the right side
of Figure 7.

The first expresses that if a load instruction LD reads a value written by a
store instruction ST and, according to CO, the store instruction ST1 overwrites
the read value, then we have a FR constraint between LD and ST1. It corresponds,
in the example of execution on the left side of the figure, to the detection of the
FR constraint numbered 1.

12

(st, l, v)

(ld, l, v)

(st, l, v1)

(st, l, v2)

rf

co

co

fr(1)

fr(2)

1 rf(ST,LD), co(ST,ST1) ==> fr(LD,ST1).

2 fr(LD,ST), co(ST,ST2) ==> fr(LD,ST2).

Figure 7: FR computation (part of generic model.pl)

1 % PO transitive closure

2 duplicate_removal @ ipo(I0,I1) \ ipo(I0,I1) <=> true.

3 rename_po @ po(I0 ,I1) ==> ipo(I0 ,I1).

4 transitive_closure @ ipo(I0 ,I1), ipo(I1 ,I2) ==> ipo(I0 ,I2).

Figure 8: IPO computation rules (part of generic model.pl)

The second rule produces successive FR constraints starting from a previ-
ously computed FR constraint. If ST is a instruction store that overwrites the
value read by LD and, according to CO, ST2 overwrites the value written by ST,
then we also have an FR constraint between LD and ST2. It corresponds, in the
execution on the left side of the figure, to the detection of the FR constraint
numbered 2.

We define IPO as the transitive closure of PO, which is needed to define
some memory models. We know that this relation is acyclic by definition. We
produce IPO thanks to the rules illustrated in Figure 8. For each existing PO
constraint between two instructions, we create a new constraint IPO (line 3).
We then apply the transitivity using the rule in line 4. We delete duplicates as
soon as possible using the rule defined in line 2.

Finally, once we know RF, CO and FR, we can add the CHR rules that
guarantee the atomicity of RMW, composed of a load instruction followed by a
store instruction at the same memory location. We must ensure that another
store instruction cannot overwrite the value read by the load instruction of
the read-modify-write operation before its store instruction is performed. We
express this condition by the rule in line 1 of Figure 9. Behaviors forbidden by
this rule are illustrated in Figure 10.

13

1 rmw(LD ,ST), fr(LD ,CST), co(CST ,ST) <=> false.

Figure 9: RMW coherency rule (part of generic model.pl)

(ld, l, v1)

(st, l, v2)

(st, l, v1)

(st, l, x)rmw

rf

fr

co

co

Figure 10: RMW Atomicity: forbidden scenarios

5.4. Derivation of Barrier Constraints

Barriers force an ordering of instructions inside a thread. The developer
(or eventually the compiler) puts such barriers into the code to ensure that
some operations will be effectively ordered in a certain way during execution.
Depending on the hardware architecture, barriers can be more or less precise,
for example by taking into account the type of operations to determine whether
they can be reordered through barriers. This is why in our language, barriers
require two parameters that are types of access to the memory: f(t1,t2). All
operations of type t1 that precede the barrier will be ordered strictly before all
operations of type t2 that follow the barrier.

We encode this behavior by deriving more information from constraints al-
ready added to the store of constraints, namely enriched instructions, as illus-
trated by Figure 11.

The predicate wait_for (resp., delay) expresses that a barrier must wait for
an execution (resp., delay a too early execution) of an instruction of a certain
type if this instruction must be ordered before (resp., after) a barrier in a given
thread.

The CHR rule, lines 7 to 10, determines for a given pair of memory operations
and a given barrier, if the considered memory operations are ordered by the
barrier. We must check that the first instruction must be executed before the
barrier, that delays the execution of the second instruction. In this case, we add

14

1 wait_for(fence(T,NF,any ,_), i(T,NI,_,_,_)) :- NI =< NF.

2 wait_for(fence(T,NF,O,_), i(T,NI,O,_,_)) :- NI =< NF.

3
4 delay(fence(T,NF ,_,any), i(T,NI ,_,_,_)) :- NI >= NF.

5 delay(fence(T,NF ,_,O), i(T,NI ,O,_,_)) :- NI >= NF.

6
7 i(T,N0 ,O0 ,L0 ,V0), fence(T,N,OF0 ,OF1), i(T,N1 ,O1 ,L1 ,V1) ==>

8 wait_for(fence(T,N,OF0 ,OF1), i(T,N0,O0,L0,V0)),

9 delay(fence(T,N,OF0 ,OF1), i(T,N1 ,O1 ,L1 ,V1))

10 | barrier(i(T,N0,O0,L0 ,V0), i(T,N1 ,O1 ,L1 ,V1)).

Figure 11: Barriers computation (part of generic model.pl)

a new CHR constraint barrier/2 for these instructions into the store.

6. Specific Models

The generic model allows to produce all candidate executions of a program
by considering a very weak memory model. An execution is defined by a com-
bination of CO and RF. Other relations, like the program order PO or address
and data dependencies are not necessary to characterize a candidate execution.

To describe a specific memory model, the principle is to define the relations
that must be respected in order to accept a candidate execution as an allowed
execution. A model M respects (i.e. preserves) a relation R if any pair of
instructions ordered by R is guaranteed to happen in the corresponding order
in the executions allowed by M .

In order to define the relation respected by a specific model, we define a
new CHR constraint R, that will be named after the considered memory model
(sc(I0,I1) for SC, tso(I0,I1) for TSO, ...). This constraint is defined as a
union of relations that the model guarantees to respect. For each candidate
execution, we build the transitive closure of this new constraint. If it exhibits a
cycle, meaning that an operation happens before itself (which is inconsistent),
the execution is forbidden. Otherwise, it is allowed.

6.1. Cycle Detection

For a given memory model, let R denote the relation that the model has to
respect for memory operations in an execution. R is defined as the union of
subsets of basic relations of the generic model. For example, SC will completely
respect PO, CO, RF and FR. On the other hand, a model like TSO will re-
spect only a subset of PO. Once we know R, we get a way to determine which
instructions must (transitively) happen before another one. To detect an in-
consistent execution, we explore the lists of constraints between instructions. If
these lists exhibit a cycle, it means that according to the model, an instruction
must happen before itself, which is inconsistent.

15

1 rel(R, Begin , End) \ rel(R, Begin , End) <=> true.

2 path(R, Begin , End) \ path(R, Begin , End) <=> true.

3 path(R, Begin , End), rel(R, End , Begin) ==> cycle(R, Begin).

4
5 rel(R, Begin , End) ==> inf(Begin , End) | path(R, Begin , End).

6 path(R, Begin , End), rel(R, End , Next) ==>

7 inf(Begin , Next) | path(R, Begin , Next).

Figure 12: Cycle detection (cycle.pl)

This cycle detection is produced using CHR constraints parameterized by
the relation R. Contrary to the computation of IPO previously mentioned, the
closure can now exhibit cycles, which have to be correctly detected to ensure
termination. Detection rules are illustrated by Figure 12.

We use three CHR constraints declared at line 1 of the figure. The con-
straint rel(R,Begin,End) indicates that instructions Begin and End are ordered
by R. This representation of R(Begin,End) allows to make the cycle detection
generic. The transitive closure of R is progressively computed using a constraint
path(R,Begin,End), which means that there exists a path between Begin and End

(End 6= Begin) composed of edges in R. Finally the constraint cycle(R,Begin)

indicates that starting from the instruction Begin, we found a non trivial path
of constraints R returning to this instruction.

Then, we define the rules that will propagate the constraints ensured by the
model. We also add some rules of simplification and simpagation that will limit
the quantity of generated traces, deleting duplicates and stopping propagation
on traces that have already exhibited a cycle.

The first rules (lines 3 and 4) allow to avoid the explosion of the number
of traces. The first rule of simpagation removes duplicates of the relation R.
Using the same pattern, the rule in line 4 removes paths that have the same
beginning and end. Indeed, if there exists two paths, even different, from an
instruction i1 to an instruction i2, it is not useful to keep this distinction for the
cycle detection. If there exists a cycle using one path, it trivially follows that
there exists another cycle using the other path. This is why we do not need to
keep the entire path inside the CHR constraint path.

The propagation rule at line 5 allows, when we detect a path and an R
constraint that closes this path, to create a new constraint indicating a cycle.
Inside the definition of a model, we add a CHR rule that introduces false

into the store of constraints if a cycle is detected, which allows to stop the
propagation. Indeed, we usually only want to keep allowed executions. Without
this rule, the tool will output all candidate executions, where forbidden ones
reach a store of constraints that contains a cycle.

The next rules are used to propagate path relation between instructions.
The rule on line 8–9 allows to add a new path every time we find a constraint

that makes an existing path grow. In order to optimize the search of paths and
to avoid detecting the same cycle several times, we suppose an arbitrary total

16

1

2 3

4

5

r

r r

r r

Figure 13: Example of graph: a “6” configuration.

order relation over instructions, and denote the fact that instruction i1 is strictly
inferior to i2 with respect to this relation by the Prolog predicate inf(i1,i2).
For example, such a total order relation can be defined as a lexicographic order
on the pairs (thread identifier, instruction identifier). This optimization consists
in adding a new edge in the end of the path only if, according to inf, the new end
node is strictly greater than the beginning of the path. Note that we compute
cycles from all instructions at the same time. By using this optimization, we only
consider paths whose origin is strictly inferior to next instructions. Indeed, we
only need to consider cycles that do not pass multiple times by the same element.
Consequently, we only need to start from the minimal instruction (according to
inf) since in such a cycle, there exists an instruction that is strictly inferior to
any other.

The creation of the beginning of a path (rule on line 7) is allowed under the
same condition. We start a new path only if its origin is inferior to the following
instruction. The soundness of this optimization will be discussed in Section 7.

Consider the graph in the form of a “6” in Figure 13, where we simply use
numbers to label nodes and define the relation r. We assume that inf(Begin, End)

is defined by an integer comparison Begin < End. Let us apply the rules of Fig-
ure 12 on a set of constraints that define the graph:

?- rel(r,5,2), rel(r,2,4), rel(r,4,3), rel(r,1,2), rel(r,3,5).

First, the constraint rel(r,5,2) is added to the store. No rules can be
activated by this constraint (since the guard 5 < 2 of the rule on line 7 of
Figure 12 that creates a path is not valid):

STORE={ rel(r,5,2) }

Adding the constraint rel(r,2,4) activates the propagation rule (line 7 in
Figure 12) that starts a new path and produces a path constraint path(r,2,4).
We cannot continue this path at the moment, so we do not perform other actions:

STORE={ rel(r,5,2),

17

rel(r,2,4),path(r,2,4) }

Adding rel(r,4,3) does not create a new path departure since 4 ≥ 3, but
it can make grow the path path(r,2,4) since 2 < 3. Thus the rule on line 5 in
Figure 12 adds a new constraint path(r,2,3).

STORE={ rel(r,5,2),

rel(r,2,4),path(r,2,4),

rel(r,4,3),path(r,2,3) }

Then, the solver adds the constraint rel(r,1,2). It adds a new path path(r,1,2)

that can be extended with rel(r,2,4), adding the constraint path(r,1,4), that
can in turn be extended with rel(r,4,3), creating path(r,1,3). Note that the
guards are satisfied since 1 < 2, 1 < 4 and 1 < 3 (cf. lines 7–9 in Figure 12).

STORE={ rel(r,5,2),

rel(r,2,4),path(r,2,4),

rel(r,4,3),path(r,2,3),

rel(r,1,2),path(r,1,2),path(r,1,4),path(r,1,3) }

The solver finally adds the last constraint rel(r,3,5). It leads to a new path
path(r,3,5), bringing us to the store:

STORE={ rel(r,5,2),

rel(r,2,4),path(r,2,4),

rel(r,4,3),path(r,2,3),

rel(r,1,2),path(r,1,2),path(r,1,4),path(r,1,3),

rel(r,3,5),path(r,3,5) }

The constraint rel(r,3,5) has already been used to activate the rule of path
creation. It can now be used to extend existing paths. In the store, we have two
paths that can be extended with this constraint: path(r,2,3) and path(r,1,3).
The refined semantics does not give priority to one of them.

If path(r,2,3) is chosen, we create path(r,2,5), which is then used with
rel(r,5,2) to activate the cycle detection, and the algorithm terminates.

If path(r,1,3) is chosen, first we create path(r,1,5), which is now used with
rel(r,5,2) to create a constraint path(r,1,2). The store becomes:

STORE={ rel(r,5,2),

rel(r,2,4),path(r,2,4),

rel(r,4,3),path(r,2,3),

rel(r,1,2),path(r,1,2),path(r,1,4),path(r,1,3),

rel(r,3,5),path(r,3,5),

path(r,1,5),path(r,1,2) }

As path(r,1,2) already exists, the rule of duplicate removal is activated. In most
CHR implementations (including SWI-Prolog, that we use), the oldest added
constraint will be kept, removing the newest (we will detail this in Section 7). As
a result, the new constraint path(r,1,2) is immediately removed from the store,
and for the choice path(r,1,3), the propagation stops, giving the possibility
to the solver to explore the path(r,2,3) constraint as previously detailed (and
terminating with the detection of the cycle).

18

1 :- include(generic_model).

2 :- include(cycle).

3
4 % SC does not consider any fences

5 fence(_,_,_,_) <=> true.

6 % Nor address/data dependency

7 addr(_,_) <=> true.

8 data(_,_) <=> true.

9
10 % If we discover a cycle in SC , it is an incoherency

11 cycle(sc , L) <=> false.

12
13 po(I0,I1) ==> rel(sc, I0, I1).

14 co(I0,I1) ==> rel(sc, I0, I1).

15 rf(I0,I1) ==> rel(sc, I0, I1).

16 fr(I0,I1) ==> rel(sc, I0, I1).

Figure 14: SC Model (sc.pl)

6.2. SC Memory Model

The sequentially consistent memory model is the strongest model. This is
also the easiest to implement with our constraints as we only have to say that
this model respects PO, CO, RF and FR relations. This model is illustrated in
Figure 14. The includes in lines 1 and 2 respectively add the definition of the
generic model and the rules for cycle detection.

For each constraint PO, CO, RF or FR we meet, we add a new constraint
rel/2 corresponding to the SC relation (lines 13–16). Cycle detection rules
will use these constraints to search for cycles in the transitive closure of the
relations guaranteed to be respected by SC. As we previously mentioned, we add
a simplification rule (line 11) that introduces false in the store of constraints
whenever a cycle is detected. It is used to early prune the search tree.

We can notice that, as the SC memory model respects PO, barriers and
data or address dependencies do not bring new information about the order
of execution of instructions. That is why we remove them using simplification
rules (lines 5,7,8), allowing to limit the quantity of redundant constraints in the
store2.

For example, this model detects that the undesirable behavior of the pro-
gram p0 of Figure 1 that allows both threads to read Ω is forbidden by SC, as
illustrated by Figure 15. The execution exhibits a cycle i00, i01, i10, i11, i00, since
PO and FR must be respected by SC.

2This choice, where we add and then explicitly remove constraints, allows to ease the
presentation. An optimized implementation would avoid to generate these constraints for SC.

19

i01 : (ld, y, V0← Ω) i11 : (ld, x, V1← Ω)

i00 : (st, x, 1) i10 : (st, y, 1)

(st, y,Ω)

(st, x,Ω)

po po

co

co

rf

rf

fr

fr

Figure 15: Execution forbidden by the SC model for program p0 of Figure 1

6.3. SC per Location

Let us now focus on weaker models, like those of widespread processor archi-
tectures. A first relation, that exists in most architectures [2], ensures a basic
coherency of code execution on a single ship.

It consists in ensuring, for each core, the coherency of memory accesses to
each memory location [10] (the correct serialization of store instructions to a
memory location). If a core stores v at a location l and then reads v′ at l, then
corresponding stores w and w′ must be realized in this order: w′ cannot happen
before w. Following the formalization of [6], we name this relation sc_per_loc/2.
The verification of its coherency also consists in verifying the absence of cycles
in the relation.

We provide the definition of the corresponding coherency rules in Figure 16.
The relation sc_per_loc is defined as the union of CO, RF, FR and po_loc/2

(lines 13–16). The po_loc relation (lines 10–11) corresponds to the order PO,
but restricted to the operations happening to a same memory location. We
build it using IPO (the transitive closure of PO). The mono-processor coherency
requires that sc_per_loc should be acyclic.

As we did for the definition of SC, we define an execution with a cycle as a
rejected execution (line 8).

For example, we can consider a sequential program that first writes the value
1 at a memory location x and then reads it. The SC per location relation ensures
that we cannot read the initial value, as illustrated by Figure 17.

We will use this relation as a necessary starting point for every memory
model defined in the next sections.

20

1 :- use_module(library(chr)).

2 :- include(cycle).

3 :- chr_constraint po_loc /2.

4
5 % Uniproc Check : sc per location , acyclicity of

6 % co ∪ rf ∪ fr ∪ po_loc

7
8 cycle(sc_per_loc , L) <=> false.

9
10 ipo(i(N0 ,Id0 ,O0 ,L,V0), i(N1 ,Id1 ,O1 ,L,V1)) ==>

11 po_loc(i(N0,Id0 ,O0,L,V0), i(N1,Id1 ,O1,L,V1)).

12
13 co(I0,I1) ==> rel(sc_per_loc , I0, I1).

14 rf(I0,I1) ==> rel(sc_per_loc , I0, I1).

15 fr(I0,I1) ==> rel(sc_per_loc , I0, I1).

16 po_loc(I0 ,I1) ==> rel(sc_per_loc , I0, I1).

Figure 16: SC per Location model (uniproc.pl)

(ld, x, V0← Ω)

(st, x, 1)

(st, x,Ω)

po-loc

co

rf

fr

Figure 17: Execution forbidden by sc per loc relation when we read a value previously written
by the same thread

21

6.4. TSO and PSO Memory Models

TSO and PSO memory models relax the program order PO for pairs of
instructions that start with a store operation. PSO is weaker than TSO since
TSO relaxes store-load pairs whereas PSO relaxes all pairs starting with a store
instruction. The relation is transitively relaxed, so we build these models using
IPO, as illustrated for TSO in Figure 18 (line 15-16). The idea is that any
created pair preserved program-order (ppo/2) starting with a store instruction
and ending with a load instruction must be immediately removed since this
order is not respected by the model.

To obtain PSO, in order to remove any pair starting with a store instruction,
we need to replace the line 15 with ppo(i(_,_,st,_,_),_) <=> true.

Following [6], we add the reads-from external (rfe/2) relation. Indeed, store
instructions performed by a core use an internal store-buffer. If the core asks
for a value at a location where it has stored a value recently, this buffer is also
a cache. Consequently, such a load instruction cannot be seen by other cores,
and we must not take it into account in the global order of operations [2]. This
relation is created using a Prolog predicate and a guarded CHR rule (lines 9–
10). Two operations are related by an external RF relation if they are related
by RF and they are not performed by the same thread (line 9 in Figure 18).
There exists an rfe (reads-from external) constraint between two instructions,
if there exists an rf constraint between them and if these instructions satisfy
the predicate ext that checks that they have different thread identifiers.

TSO and PSO respect the SC per location relation, so we include this part
of the model in line 1. In these models, barriers are strong so we treat all of
them the same way: we restore PO each time two instructions are ordered by a
barrier (line 18).

Under TSO, the execution of the program p0 forbidden by SC (cf. Figure 15)
is allowed since the po constraints that close the cycle are not kept by TSO,
as illustrated by Figure 19. The program p1 forbids the execution by adding
fences, and we get back the cycle (i00, i01, i10, i11, i00) that forbids the execution
(Figure 20).

7. Termination of the Analysis

This section gives the main principles that ensure the termination of the
different parts of the analysis of a program:

• generation of candidate executions,

• deduction of derived relations,

• cycle detection for the relations defined by the model.

Each of these steps must terminate to ensure global termination.

22

1 :- include(uniproc).

2 :- chr_constraint rfe/2.

3 :- chr_constraint ppo/2.

4
5 % TSO implementation does not need addr and data deps :

6 addr(_,_) <=> true.

7 data(_,_) <=> true.

8
9 ext(i(N0 ,_,_,_,_), i(N1 ,_,_,_,_)) :- \+ N0 = N1.

10 rf(I0,I1) ==> ext(I0,I1) | rfe(I0, I1).

11
12 cycle(tso , L) <=> false.

13
14 % po -WR pairs are not preserved by TSO , so we remove them

15 ppo(i(_,_,st ,_,_), i(_,_,ld ,_,_)) <=> true.

16 ipo(I0 ,I1) ==> ppo(I0 ,I1).

17
18 barrier(I0 ,I1) ==> rel(tso , I0 , I1).

19 ppo(I0 ,I1) ==> rel(tso , I0 , I1).

20 rfe(I0 ,I1) ==> rel(tso , I0 , I1).

21 co(I0,I1) ==> rel(tso , I0, I1).

22 fr(I0,I1) ==> rel(tso , I0, I1).

Figure 18: TSO memory model (tso.pl)

i01 : (ld, y, V0← Ω) i11 : (ld, x, V1← Ω)

i00 : (st, x, 1) i10 : (st, y, 1)

(st, y,Ω)

(st, x,Ω)

co

co

rf

rf

fr

fr

Figure 19: The execution forbidden by the SC model for p0 (Figure 15) is allowed by TSO

23

i01 : (ld, y, V0← Ω) i11 : (ld, x, V1← Ω)

i00 : (st, x, 1) i10 : (st, y, 1)

(st, y,Ω)

(st, x,Ω)

barrier barrier

co

co

rf

rf

fr

fr

Figure 20: In p1, the undesirable execution (cf. Figure 15) is forbidden by TSO

7.1. Generation of Candidate Executions

Figure 6 shows the predicate that produces the generation of candidate ex-
ecutions. The predicate enrich_prog (line 2) consists in a simple visit of the
instructions in order to modify them. We have a finite number of threads and
a finite number of instructions per thread, so the execution terminates. The
termination of compute_pos (line 3) and compute_rel_all_threads (lines 5–6)
is justified in the same way. For the last one however, we must consider all
instructions that follow every given instruction.

The termination of ops_to_each (lines 8–9) is partially ensured by the afore-
mentioned ideas, but here, we also possibly have backtracking if the accessed
memory location is a Prolog variable. For each memory access, these backtrack-
ings are limited by the number of memory locations (comprising the variables
of VARS and undefined), so we only generate a finite number of branches.

The generated STORES and LOADS are lists of finite lists of instructions. It
follows that permute_stores (line 10) and compute_all_rfs (lines 12) will gen-
erate a limited amount of permutations when they backtrack. The predicate
compute_all_cos (line 11) visits the generated finite list PSTORES, allowing ter-
mination.

7.2. Derivation of Relations

The construction of relations derived from the basic relations of a given
candidate execution can belong to one of two categories:

• renaming of an existing relation,

• relation composition from acyclic relations.

24

The first category is employed for the definition of new memory models.
These are the rules that we can for example see on lines 13–16 in Figure 14,
where we rename po(I0, I1) as rel(sc,I0,I1), and similarly for CO, RF and
FR. These rules trivially terminate since any CHR constraint can activate such
a renaming rule only once. It is, of course, assumed that the model generates
only a finite number of basic relations.

The second category is used to derive, from the original relations of a given
candidate execution, new relations that are acyclic. This is for example the case
for IPO, the transitive closure of PO (Figure 8) that is guaranteed to be acyclic.
This is also the case for the FR relation shown in Figure 7, where the rule
on line 1 can be applied for a finite number of combinations of the initial CO
and RF constraints, while the rule on line 2 is applied a finite number of times
since CO constraints do not comprise cycles and thus the number of successive
store instructions after each given store instruction is also finite. Therefore, the
computation terminates.

7.3. Cycle Detection

The CHR rules we use to detect cycles (cf. Figure 12) is a variant of the
ones defined by Frühwirth in [14] for the computation of the transitive closure
of a relation in a graph, that we optimized for our problem. In our case, we
aim at finding cycles and not computing the entire transitive closure if we can
avoid it. We stop when we find a cycle and, since we add constraints as we
generate relations for the execution we are treating, we can detect a cycle before
having generated the entire set of constraints that corresponds to an execution.
Note however that if the execution does not exhibit cycles, the entire closure is
computed. We also limit the search space using an arbitrary order inf defined
in Section 6.

The termination of the rules proposed by Frühwirth relies on two main as-
sumptions about the underlying CHR implementation. First, it must respect
the refined semantics [13] that orders the activation of the rules (using their
definition order). Second, the simpagation rules must always try to remove the
constraints that have been added the most recently into the store. It avoids for
a new constraint c duplicating c′ to propagate all information that has already
been propagated for c. These two assumptions are respected by most CHR
implementations including SWI-Prolog.

The rules proposed by Frühwirth are the following:

1 path(Begin ,End) \ path(Begin ,End) <=> true.

2 edge(Begin ,End) ==> path(Begin ,End).

3 path(Begin ,End), edge(End ,Next) ==> path(Begin ,Next).

Frühwirth [14, Sec.2.4.1] justifies that this program is terminating. Intuitively,
in this version, if we have a non-trivial cycle n1, n2, . . . , nk, n1 (where all n1, . . . , nk
are different), we will build constraints path(n1,n2), . . . , path(n1,nk), path(n1,n1),
and finally add path(n1,n2) again. As the implementation follows the refined
semantics, the simpagation rule will be activated first and will remove the new

25

1 ppo(i(_,_,st ,_,_), i(_,_,ld ,_,_)) <=> true.

2 ipo(I0 ,I1) ==> ppo(I0 ,I1).

Selective removal

1 ipo(i(N,T,ld ,L,V),I1) ==>

2 ppo(i(N,T,ld ,L,V),I1).

3 ipo(i(N0 ,T0 ,st ,L0 ,V0),i(N1 ,T1 ,st ,L1 ,V1)) ==>

4 ppo(i(N0 ,T0 ,ld ,L0 ,V0),i(N1 ,T1 ,st ,L1 ,V1)).

Selective addition

Figure 21: Two ways to define the subset of a relation

constraint path(n1,n2) and keep the older one, which cannot be used again to
extend the path along the cycle.

Our optimization consists in:

• adding guards to the rules that add new constraints path,

• adding a rule to detect cycles.

The guards obviously do not disrupt termination, they only limit the quan-
tity of paths created at the beginning of the search and the possibilities of path
extension. If the extension of a path that contains a cycle, is allowed by the
guard, guards never prevent the removal of the generated duplicate constraint
since the rule of duplicate removal is applied before extending it again.

The cycle detection rule does not prevent the algorithm from terminating
neither. It only adds a new constraint when a new cycle is found.

8. Evaluation

In this section, we further discuss the soundness of MMFilter and provide
an experimental evaluation of its soundness and performances.

8.1. Correct Constraint Removal

If a relation is only partially preserved by a model, some of the corresponding
constraints must not be considered by the cycle detection. For example, for the
TSO and PSO memory models, we defined a new relation “preserved program-
order” which is a subset of “program-order”. Such a subset can be built in two
different ways: either we only add constraints that must be considered, or we
add all of them and remove on-the-fly those we do not want to consider. We
illustrate these different ways with the definition of ppo for TSO in Figure 21.
The first one adds all constraints, removing those of the form ppo(st,ld), while
the second one only adds the constraints ppo(st,st) and ppo(ld,any).

It is important to ensure that a constraint that must be removed is never
used by a derivation rule of the model (or the cycle detection) before it is

26

1 mp3t3(V, [T0 ,T1 ,T2]) :-

2 V = [x, m] ,

3 T0 = [(st,x,10),(st,m,1), (ld,m,M2),(ld,x,X2)],

4 T1 = [(ld,m,M0),(ld,x,X0),(st,x,20),(st,m,2)],

5 T2 = [(ld,m,M1),(ld,x,X1),(st,x,30),(st,m,3)].

6
7 mp4t4x1(V, [T0 ,T1 ,T2 ,T3]) :-

8 V = [x, m] ,

9 T0 = [(st,x,10),(st,m,1) ,(ld,m,M3),(ld,x,X3)],

10 T1 = [(ld,m,M0),(ld,x,X0),(st,x,20),(st,m,2)],

11 T2 = [(ld,m,M1),(ld,x,X1),(st,x,30),(st,m,3)].

12 T3 = [(ld,m,M2),(ld,x,X2),(st,x,40),(st,m,4)].

Figure 22: Message passing examples MP3 and MP4

removed. As we use the refined semantics of CHR, rules are applied in their
order of definition. More particularly, when a constraint is added, we have the
guarantee that the rules that can be activated will be applied in the order of the
CHR program. Consequently, a removal rule for a constraint T must be ordered
before any rule that can be activated by T . It ensures that the removal rule will
be first activated, and if the constraint must be removed, it will be done before
it could activate any other rule. In the models we defined, it is the case.

8.2. Testing and Performances

Our goal was to evaluate the following research questions:

(RQ1) Do Herd and MMFilter produce the same results ?

(RQ2) What are the performances of MMFilter compared to Herd ?

For the experimental evaluation of MMFilter, we used program samples from
the test suite of Herd in order to have an oracle. These examples can be found
on the Herd tool webpage at http://virginia.cs.ucl.ac.uk/herd/ (record
“armed cats”).

Regarding (RQ1), on all tested examples, MMFilter produced the same re-
sults as Herd, providing a cross validation of both tools. Our models being
based on those of Herd, our goal is not to verify them but to verify the validity
of the underlying generic solver.

Regarding (RQ2), the execution of MMFilter on these small examples is very
fast and does not allow to precisely evaluate its performances. We created some
additional examples that contain more instructions in order to bring the solvers
to more complex solving tasks. We compare MMFilter running over SWI-Prolog
7.7.4 with Herd 7.47. The hardware used for experiments comprises an Intel
Core i7-6700HQ, 4 physical cores, 2.6GHz, with 16GB of RAM.

Figure 22 presents two examples of some (potentially wrong) message pass-
ing, with 3 and 4 threads (and accordingly, 3 and 4 messages). Each thread

27

http://virginia.cs.ucl.ac.uk/herd/

1 mp3t2(V, [T0 ,T1]) :-

2 V = [x, m],

3 T0 = [(st,x,10),(st,m,1) ,(ld,m,M2),(ld,x,X2),

4 (st ,x,30) ,(st ,m,3)], % send one more

5 T1 = [(ld,m,M0),(ld,x,X0),(st,x,20),(st,m,2),

6 (ld ,m,M1),(ld ,x,X1)]. % receive one more

7
8 mp4t4x4(V, [T0 ,T1 ,T2 ,T3]) :-

9 V = [x0 , x1 , x2 , x3 , m], % now 4 x’s

10 T0 = [(st,x0 ,10),(st,m,1) ,(ld,m,M3) ,(ld,x3,X3)],

11 T1 = [(ld,m,M0) ,(ld,x0,X0),(st,x1 ,20),(st,m,2)],

12 T2 = [(ld,m,M1) ,(ld,x1,X1),(st,x2 ,30),(st,m,3)],

13 T3 = [(ld,m,M2) ,(ld,x2,X2),(st,x3 ,40),(st,m,4)].

14
15 mp4t4x1_forced_4(V, [T0 ,T1 ,T2 ,T3]) :-

16 V = [x, m],

17 % We constrain read values M0 ,...,M3

18 M0 = 1, M1 = 2, M2 = 3, M3 = 4,

19 T0 = [(st,x,10),(st,m,1) ,(ld,m,M3),(ld,x,X3)],

20 T1 = [(ld,m,M0),(ld,x,X0),(st,x,20),(st,m,2)],

21 T2 = [(ld,m,M1),(ld,x,X1),(st,x,30),(st,m,3)],

22 T3 = [(ld,m,M2),(ld,x,X2),(st,x,40),(st,m,4)].

Figure 23: Variants of message passing examples MP3 and MP4

sends and receives (or conversely, receives and sends) one message containing a
message identifier m and a value x. These examples are interesting for perfor-
mance evaluation since the combinatorial complexity is high: they successively
store at several locations (thus, there are a lot of permutations of CO to gener-
ate) and read the same locations.

In order to measure the impact of the number of threads, we have written
variants of these examples with the same number of messages handled by less
threads. For instance, for the mp3t3 example, the variant mp3t2 (cf. Figure 23)
has only two threads, where T0 (resp., T1) sends (resp., receives) two messages
instead of one. Similarly, we have built variants of mp4t4x1 with 3 and 2 threads.

We have also studied some variants of mp4t4x1 with 2, 3, or 4 instances of
the variable x to measure the impact of the number of variables. Figure 23
illustrates the variant mp4t4x4 with 4 variables. Note that we have also studied
equivalent variants for mp3t3 that we do not discuss here since they are executed
very fast by both MMFilter and Herd and do not provide additional evidence
for comparison.

Finally, we have tested the generation of executions for expected read values.
For example, the program mp4t4x1_forced illustrated in Figure 23 expects that
the message passing is sequenced so that T1 (resp., T2, T3, T0) receives the
message sent by T0 (resp., T1, T2, T3). Therefore, we use the Prolog variables M0,
M1, M2 and M3 to constrain the values read from m. For Herd, we use the option

28

Example #threads Model #executions Herd MMFilter

MP3

2

Generic 147 456 1.2s 3.7s
PSO 188 3.8s 1.1s
TSO 92 3.8s 0.7s
SC 72 5.5s 0.7s

3

Generic 147 456 1.2s 3.7s
PSO 2 258 3.7s 6.4s
TSO 800 3.8s 3.2s
SC 678 5.2s 3.3s

MP4

2

Generic 225 000 000 1 405s 6 394s
PSO 1 600 6 245s 25s
TSO 589 6 245s 12s
SC 407 > 2h 11s

3

Generic 225 000 000 1 219s 6 221s
PSO 49 305 5 883s 559s
TSO 11 971 5 913s 154s
SC 9 123 > 2h 139s

4

Generic 225 000 000 1 206s 5 885s
PSO 516 030 5 696s 2 782s
TSO 96 498 5 775s 735s
SC 81 882 > 2h 726s

Figure 24: Performance evaluation results for Herd and MMFilter for MP3, MP4 and their
variants with a different number of threads

speedcheck that allows to generate only executions respecting a constraint on
some variables in the program. In this case, it is applied for the values read for
the variable m. Again, we do not present the results for the variants of mp3t3

that are executed too fast to be relevant.
The goal is to determine all allowed executions for a given program. For each

example, we analyze the program with different memory models. We indicate
the number of executions allowed by the model. The number indicated for the
generic model corresponds to the number of candidate executions. We set a
timeout to two hours of computation.

Figure 24 illustrates the results of tests for Herd and MMFilter for the mes-
sage passing on the variants having a different number of threads. We note that
when the combinatorial complexity is particularly strong, MMFilter is faster,
particularly when the execution is heavily constrained. The stronger the model
is, the faster MMFilter runs, while Herd reacts in the opposite way. This is
mainly due to the fact that Herd generates all candidate executions and en-
tirely propagates the relations between the instructions, while MMFilter prunes
entire execution subtrees as soon as it finds a cycle, even in an incompletely
generated candidate execution. Consequently, a stronger model increases the
chances to have a more aggressive pruning for MMFilter, while it requires more

29

#Variables x Model #executions (%) Herd MMFilter

1

Generic 225 000 000 (100.%) 1 206s 5 885s
PSO 516 030 (0.23%) 5 696s 2 782s
TSO 96 498 (0.04%) 5 775s 735s
SC 81 882 (0.04%) > 2h 726s

2

Generic 11 520 000 (100.%) 97s 273s
PSO 105 368 (0.91%) 310s 648s
TSO 27 350 (0.23%) 315s 192s
SC 24 842 (0.22%) 469s 166s

3

Generic 1 080 000 (100.%) 17s 25s
PSO 24 684 (2.28%) 37s 109s
TSO 9 036 (0.83%) 38s 50s
SC 8 285 (0.77%) 50s 45s

4

Generic 240 000 (100.%) 6s 6s
PSO 11 444 (4.77%) 12s 36s
TSO 5 256 (2.19%) 12s 24s
SC 4 893 (2.04%) 15s 22s

Figure 25: Performance evaluation results for Herd and MMFilter for MP4 and its variants
with a different number of x variables

computation for Herd. On the other hand, the generation of candidate execu-
tions is longer for MMFilter and faster for Herd since the corresponding model
is weaker.

Similarly, for programs with less threads, there are more operations in each
thread, that leads to more PO constraints (and consequently, preserved-PO) on
the load and store operations. Again, it increases the chances for early pruning
in MMFilter while requiring more computation for Herd.

Figure 25 illustrates the results of tests for the variants of the MP4 message
passing program with different numbers of variables. Here, we can see that,
compared to MMFilter, Herd behaves better as the number of variables grows.
The main reason is the fact that the example with a greater number of variables
has less dependencies between the read and written values: instead of having
a long story about one variable, we have independent short stories about dif-
ferent variables. So for a bigger number of variables, we have less constraints
and, consequently, a greater rate of allowed executions with respect to the total
number of candidate executions (the rate is indicated in parentheses). For ex-
ample, for MP4 with one variable, the number of allowed executions for PSO is
about 0.23% of the number of candidate executions, whereas it is about 4.77%
with 4 variables. That means that, with a constant number of operations, the
pruning in MMFilter becomes less efficient with respect to Herd as the number
of variables grows. We can also notice that the number of candidate executions
heavily decreases.

Figure 26 illustrates the results for the variants of the MP4 message passing

30

Constrained M variables Model #executions Herd MMFilter

None

Generic 225 000 000 1 206s 5 885s
PSO 516 030 5 696s 2 782s
TSO 96 498 5 775s 735s
SC 81 882 > 2h 726s

M0

Generic 45 000 000 269s 1 141s
PSO 158 018 1 156s 860s
TSO 18 092 1 170s 162s
SC 17 812 1 816s 159s

M0+M1

Generic 9 000 000 78s 230s
PSO 17 997 250s 121s
TSO 660 252s 12s
SC 658 381s 11s

M0+M1+M2

Generic 1 800 000 37s 46s
PSO 1 218 71s 11s
TSO 10 71s 2s
SC 10 97s 2s

All

Generic 360 000 29s 9s
PSO 279 35s 4s
TSO 1 36s 2s
SC 1 41s 2s

Figure 26: Performance evaluation results for Herd and MMFilter for MP4 and its variants
with a different number of constrained values read for the m variable

program with a different number of constrained values read from m. Note that
the choice of values being constrained can slightly affect the number of allowed
executions. Here, we use one possible choice. Again, the more the executions
are constrained, the faster MMFilter is compared to Herd.

To sum up, our experimental evaluation shows that MMFilter produces the
same results as Herd for examples of its test suite. Regarding performances,
as MMFilter is designed to immediately reject forbidden executions, it brings
the benefit to early prune the search tree without completely generating each
execution. This is particularly beneficial for strong memory models, for example
TSO and SC, or when the executions are already constrained by other conditions
(e.g. on read values or sequences of instruction in the same thread), while
weaker models like PSO prevent aggressive early pruning. Herd is faster for
weak models, where the early pruning cannot be really aggressive.

9. Conclusion and Future Work

We have presented MMFilter, an original CHR-based solver for detection
of admissible executions of a given program with respect to a given memory
model, and illustrated it for SC, TSO and PSO models. The ARM model

31

is also available. It is suitable for a rigorous exhaustive analysis of program
executions of small programs that becomes intractable for bigger ones due to
the combinatorial explosion of the number of executions. We have presented
several optimizations and evaluated the proposed tool on several benchmark
programs. The results show that MMFilter can be relatively efficient, especially
for strong memory models.

We think that seeing memory models as constraints over executions is well
adapted. The design of such a solver is convenient and pragmatic. The gen-
eration of basic executions and cycle detection rely on careful optimizations
in order to be more efficient and to ensure on-the-fly filtering of constraints.
The proposed approach makes the definition of specific models from the generic
one very practical and relatively straightforward. In particular, it does not be-
come very hard even when the model becomes more complicated, like ARM
for example. CHR provide an easy way to express constraints about execution
of programs, they have also been used for detection of incorrect behaviors in
imperative program analysis in [12].

Moreover, the use of a well-established mechanism of constraint specification
and solving, like Prolog and CHR, brings the benefit of years of optimization
and debugging to handle the considered problem without having to re-develop
constraint resolution. We do not claim that our implementation of this problem
is most efficient. Dedicated tools like [6] could be faster since they are special-
ized for a precise problem and can implement a solving engine without being
as generic as CHR. But such dedicated tools are harder to develop as they po-
tentially require a new optimized code that has to be carefully developed and
debugged.

Future work includes experiments with other memory models, particularly
the different variations of the ARM memory model and the GPU memory mod-
els. It would also be interesting to further optimize the solver by making the
cycle detection more efficient or by enabling the constraint solving earlier. For
this purpose, using CHR rule priorities [17] could be a promising direction.

10. Acknowledgements

This work was partially supported by a grant from CPER DATA and the
project VESSEDIA, which has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
731453. The authors thank the anonymous referees for their very helpful com-
ments.

Bibliography

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer Society, 29(12):66–76, 1996. doi: 10.1109/2.
546611.

32

[2] J. Alglave. A Shared Memory Poetics. PhD thesis, Université Paris
VII - Denis Diderot, 2010. URL http://www0.cs.ucl.ac.uk/staff/j.

alglave/these.pdf.

[3] J. Alglave and L. Maranget. The diy7 tool suite. http://diy.inria.fr/,
2011 – 2017.

[4] J. Alglave, A. C. J. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and
F. Z. Nardelli. The semantics of Power and ARM multiprocessor machine
code. In Proceedings of the POPL 2009 Workshop on Declarative Aspects
of Multicore Programming, DAMP 2009, Savannah, GA, USA, January
20, 2009, pages 13–24. ACM, 2009. doi: 10.1145/1481839.1481842.

[5] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl. Don’t sit on the fence
– a static analysis approach to automatic fence insertion. In Computer
Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,
pages 508–524. Springer, 2014. doi: 10.1007/978-3-319-08867-9 33.

[6] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, sim-
ulation, testing, and data mining for weak memory. ACM Trans. Program.
Lang. Syst., 36(2):7:1–7:74, 2014. doi: 10.1145/2627752.

[7] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 55–66. ACM, 2011. doi: 10.1145/
1926385.1926394.

[8] H. Boehm and S. V. Adve. Foundations of the C++ concurrency memory
model. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2008, Tucson, AZ, USA, June
7-13, 2008, pages 68–78. ACM, 2008. doi: 10.1145/1375581.1375591.

[9] G. Boudol and G. Petri. Relaxed memory models: An operational
approach. In Proceedings of the 36th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2009, Savan-
nah, GA, USA, January 21-23, 2009, pages 392–403. ACM, 2009. doi:
10.1145/1480881.1480930.

[10] J. F. Cantin, M. H. Lipasti, and J. E. Smith. The complexity of verifying
memory coherence and consistency. IEEE Trans. Parallel Distrib. Syst., 16
(7):663–671, 2005. doi: 10.1109/TPDS.2005.86.

[11] F. Dabrowski and D. Pichardie. A certified data race analysis for a Java-like
language. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
Theorem Proving in Higher Order Logics, 22nd International Conference,

33

http://www0.cs.ucl.ac.uk/staff/j.alglave/these.pdf
http://www0.cs.ucl.ac.uk/staff/j.alglave/these.pdf
http://diy.inria.fr/

TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, vol-
ume 5674 of Lecture Notes in computer Science, pages 212–227. Springer,
2009. doi: 10.1007/978-3-642-03359-9 16.

[12] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Program
verification using Constraint Handling Rules and array constraint gener-
alizations. In Second International Workshop on Verification and Pro-
gram Transformation, VPT 2014, part of the Vienna Summer of Logic
2014 and co-located with the 26th International Conference on Computer
Aided Verification, CAV 2014, July 17-18, 2014, Vienna, Austria, vol-
ume 28 of EPiC Series in Computing, pages 3–18. EasyChair. URL
http://www.easychair.org/publications/?page=735874241.

[13] G. J. Duck, P. J. Stuckey, M. J. G. de la Banda, and C. Holzbaur.
The refined operational semantics of Constraint Handling Rules. In
Logic Programming, 20th International Conference, ICLP 2004, Saint-
Malo, France, September 6-10, 2004, Proceedings, volume 3132 of Lec-
ture Notes in Computer Science, pages 90–104. Springer, 2004. doi:
10.1007/978-3-540-27775-0 7.

[14] T. Frühwirth. Constraint Handling Rules. Cambridge University Press,
2009. ISBN 9780521877763.

[15] T. Frühwirth. Theory and practice of Constraint Handling Rules. The Jour-
nal of Logic Programming, 37:95 – 138, 1998. doi: 10.1016/S0743-1066(98)
10005-5.

[16] M. He, V. Vafeiadis, S. Qin, and J. F. Ferreira. Reasoning about fences and
relaxed atomics. In 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2016, Heraklion, Crete,
Greece, February 17-19, 2016, pages 520–527. IEEE Computer Society,
2016. doi: 10.1109/PDP.2016.103.

[17] L. D. Koninck, T. Schrijvers, and B. Demoen. User-definable rule priorities
for CHR. In Proceedings of the 9th International ACM SIGPLAN Confer-
ence on Principles and Practice of Declarative Programming, July 14-16,
2007, Wroclaw, Poland, pages 25–36, 2007. doi: 10.1145/1273920.1273924.

[18] L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess program. IEEE Trans. Comput., 28(9):690–691, 1979.
doi: 10.1109/TC.1979.1675439.

[19] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005, pages 378–391. ACM, 2005. doi: 10.1145/1040305.
1040336.

34

http://www.easychair.org/publications/?page=735874241

[20] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem:
Reusable engineering of real-world semantics. In Proceedings of the 19th
ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 175–188, 2014. doi:
10.1145/2628136.2628143.

[21] S. Owens. Reasoning about the implementation of concurrency abstrac-
tions on x86-TSO. In 24th European Conference on Object-Oriented Pro-
gramming, ECOOP 2010, Maribor, Slovenia, June 21-25, 2010. Proceed-
ings, volume 6183 of Lecture Notes in Computer Science, pages 478–503.
Springer, 2010. doi: 10.1007/978-3-642-14107-2 23.

[22] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: practical static
race detection for C. ACM Trans. Program. Lang. Syst., 33(1):3:1–3:55,
2011. doi: 10.1145/1889997.1890000.

[23] V. A. Saraswat. Concurrent constraint-based memory machines: A frame-
work for Java memory models. In Advances in Computer Science - ASIAN
2004, Higher-Level Decision Making, 9th Asian Computing Science Con-
ference, Chiang Mai, Thailand, December 8-10, 2004, Proceedings, volume
3321 of Lecture Notes in Computer Science, pages 494–508. Springer, 2004.
doi: 10.1007/978-3-540-30502-6 36.

[24] V. A. Saraswat, R. Jagadeesan, M. M. Michael, and C. von Praun. A theory
of memory models. In Proceedings of the 12th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2007, San
Jose, California, USA, March 14-17, 2007, pages 161–172. ACM, 2007.
doi: 10.1145/1229428.1229469.

[25] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understand-
ing POWER multiprocessors. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2011, San Jose, CA, USA, June 4-8, 2011, pages 175–186. ACM, 2011.
doi: 10.1145/1993498.1993520.

[26] T. Schrijvers. JmmSolve: A generative Java memory model implemented
in Prolog and CHR. In Logic Programming, 20th International Conference,
ICLP 2004, Saint-Malo, France, September 6-10, 2004, Proceedings, vol-
ume 3132 of Lecture Notes in Computer Science, pages 475–476. Springer,
2004. doi: 10.1007/978-3-540-27775-0 45.

[27] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-
TSO: a rigorous and usable programmer’s model for x86 multiprocessors.
Commun. ACM, 53(7):89–97, 2010. doi: 10.1145/1785414.1785443.

[28] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak memory
with ghosts, protocols, and separation. In A. P. Black and T. D. Millstein,
editors, Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA 2014,

35

part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages
691–707. ACM, 2014. doi: 10.1145/2660193.2660243.

[29] V. Vafeiadis and C. Narayan. Relaxed separation logic: a program logic
for C11 concurrency. In Proceedings of the 2013 ACM SIGPLAN In-
ternational Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapo-
lis, IN, USA, October 26-31, 2013, pages 867–884. ACM, 2013. doi:
10.1145/2509136.2509532.

[30] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Z.
Nardelli. Common compiler optimisations are invalid in the C11 mem-
ory model and what we can do about it. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 209–220,
2015. doi: 10.1145/2676726.2676995.

36

	Introduction
	Related Work
	Axiomatic Approaches to Execution Generation
	Program Logics
	Weak Memory Models and Sequential Consistency

	MMFilter on a Use-case
	Background and Definitions
	Constraint Handling Rules
	Considered Language
	Basic Relations

	Generic Model
	Extraction of PO and Dependencies
	Generation of CO and RF
	Derivation of IPO, FR and RMW Atomicity
	Derivation of Barrier Constraints

	Specific Models
	Cycle Detection
	SC Memory Model
	SC per Location
	TSO and PSO Memory Models

	Termination of the Analysis
	Generation of Candidate Executions
	Derivation of Relations
	Cycle Detection

	Evaluation
	Correct Constraint Removal
	Testing and Performances

	Conclusion and Future Work
	Acknowledgements

