
HAL Id: hal-01783936
https://hal.archives-ouvertes.fr/hal-01783936

Submitted on 2 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Bridging Web APIs and Linked Data with SPARQL
Micro-Services

Franck Michel, Catherine Faron Zucker, Fabien Gandon

To cite this version:
Franck Michel, Catherine Faron Zucker, Fabien Gandon. Bridging Web APIs and Linked Data with
SPARQL Micro-Services. Extended Semantic Web Conference (ESWC), Jun 2018, Portoroz, Slovenia.
pp.187-191, �10.1007/978-3-319-98192-5_35�. �hal-01783936�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/157499906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01783936
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Bridging Web APIs and Linked Data with
SPARQL Micro-Services

Franck Michel, Catherine Faron-Zucker, and Fabien Gandon

Université Côte d’Azur, Inria, CNRS, I3S (UMR 7271), France
franck.michel@cnrs.fr, faron@i3s.unice.fr, fabien.gandon@inria.fr

Abstract. Web APIs are a prominent source of machine-readable in-
formation that remains insufficiently connected to the Web of Data. To
enable automatic combination of Linked Data (LD) interfaces and Web
APIs, we present the SPARQL Micro-Service architecture. A SPARQL
micro-service is a lightweight SPARQL endpoint that provides access
to a small, resource-centric, virtual graph, while dynamically assigning
stable, dereferenceable URIs to Web API resources that do not have
URIs in the first place. We believe that the emergence of an ecosystem
of SPARQL micro-services could enable LD-based applications to glean
pieces of data from a wealth of distributed, scalable and reliable services
from independent providers. We describe an experimentation where we
dynamically augment biodiversity-related LD resources with data from
Flickr, MusicBrainz and the Macauley scientific media library.

Keywords: Web API, SPARQL, micro-service, Linked Data, JSON-LD

1 Introduction

Web APIs are commonly used to enable HTTP-based, machine-processable ac-
cess to all sorts of data. Similarly, Linked Data (LD) seek the publication of
machine-readable data on the Web while connecting related resources accross
datasets. Several approaches have been proposed to bridge these two worlds,
based on bespoke wrappers, SPARQL extensions or RESTful APIs. Until now
however, several challenges hinder the definition of standard approaches to en-
able automatic reconciliation of LD and Web APIs. Firstly, Web APIs usually
rely on proprietary vocabularies documented in Web pages meant for devel-
opers but hardly machine-readable. Secondly, on-the-fly SPARQL querying of
non-RDF data sources proves to be difficult, as attested by the many works on
SPARQL-based access to legacy databases.

The SPARQL Micro-Service architecture aims to address this issue. The
term micro-service refers to an increasingly popular architectural style where an
application consists of a collection of lightweight, loosely-coupled, fine-grained
services that are deployed independently [2]. They improve applications mod-
ularity thereby speeding up the development, testing and deployment process.
Leveraging these principles may help in the design of modular LD-based ap-
plications structured as a collection of services such as RDF stores, SPARQL



2

endpoints, SPARQL micro-services or other services based on LD REST APIs
for instance. A SPARQL micro-service is a lightweight method to query a Web
API using SPARQL. It provides access to a small RDF graph describing the tar-
geted resources from the data available at the API, while dynamically assigning
dereferenceable URIs to Web API resources that do not have URIs beforehand.

2 SPARQL Micro-Services Principles

A SPARQL micro-service Sµ is a wrapper of a Web API service Sw. It complies
with the SPARQL Query Language and protocol, and accepts a set Argw of
arguments that are specific to Sw. These arguments are passed to Sµ as param-
eters on the HTTP query string, e.g. “http://hostname/sparql?param=value”.
Sµ evaluates a SPARQL query Q against an RDF graph that it builds at run-
time as follows: it invokes the Web API service Sw with the arguments in Argw,
translates the response into RDF triples (in an implementation-dependent man-
ner), evaluates Q against these triples and returns the result to the client.

The semantics of a SPARQL micro-service differs from that of a standard
SPARQL endpoint insofar as the SPARQL protocol treats a service URL as a
black box, i.e. it does not interpret URL parameters. By contrast, a SPARQL
micro-service is a configurable SPARQL endpoint whose arguments delineate the
virtual graph being queried. Thence, each pair (Sµ, Argw) is a standard SPARQL
endpoint. Arguably, other options may be adopted to pass the arguments to Sµ,
that we discuss in details in [1].

Furthermore, bridging Web APIs and LD requires to create stable, deref-
erenceable URIs for Web API resources that are generally identified by mere
proprietary identifiers. This is implemented quite easily with SPARQL micro-
services: once a stable URI scheme is decided, a Web server is set up to handle
look-ups for URIs matching that scheme: for each look-up, it invokes a suitable
SPARQL micro-service along with an appropriate CONSTRUCT or DESCRIBE
query form. Hence, by smartly designing services, we can come up with a con-
sistent ecosystem where some micro-services respond to SPARQL queries while
translating Web API identifiers into URIs that, in turn, are made dereferenceable
by other micro-services.

3 Implementation and Experimentation

To evaluate this architecture, we have developed a prototype implementation1

depicted in Figure 1, that handles JSON-based Web APIs. It maps a Web API re-
sponse to RDF triples in two steps. First, the response is translated to JSON-LD
by applying a JSON-LD profile. The resulting graph G is stored in an in-memory
triple store. Then, for mapping cases that JSON-LD cannot describe (involving
e.g. string manipulations), a SPARQL INSERT query augments G with triples
based on well-adopted or domain vocabularies. Lastly, Sµ evaluates the client’s

1 https://github.com/frmichel/sparql-micro-service



3

Fig. 1. Example SPARQL micro-service implementation for JSON-based Web APIs.

prefixprefixprefix rdfs: <http ://www.w3.org /2000/01/ rdf -schema#>
prefixprefixprefix owl: <http :// www.w3.org /2002/07/ owl#>
prefixprefixprefix foaf: <http :// xmlns.com/foaf /0.1/ >
prefixprefixprefix schema: <http :// schema.org/>

CONSTRUCTCONSTRUCTCONSTRUCT {
?species

schema:subjectOf ?photo; foaf:depiction ?img; # from Flickr
schema:contentUrl ?audioUrl; # from the Macaulay Library
schema:subjectOf ?page. # from MusicBrainz

} WHEREWHEREWHERE {
SERVICESERVICESERVICE <https :// taxref.mnhn.fr/sparql >

{ ?species a owl:Class; rdfs:label "Delphinus delphis ". }
SERVICESERVICESERVICE <https :// example.org/sparql -ms/flickr/getPhotosByGroupByTag

?group_id =806927 @N20&tags=taxonomy:binomial=Delphinus+delphis >
{ ?photo foaf:depiction ?img. }

SERVICESERVICESERVICE <https :// example.org/sparql -ms/
macaulaylibrary/getAudioByTaxon?name=Delphinus+delphis >

{ [] schema:contentUrl ?audioUrl. }
SERVICESERVICESERVICE <https :// example.org/sparql -ms/

musicbrainz/getSongByName?name=Delphinus+delphis >
{ [] schema:sameAs ?page. } }

Listing 1.1. Querying SPARQL micro-services to enrich a LD resource with data from
Flickr, the Macaulay Library and MusicBrainz.

SPARQL query against G and returns the response following a regular content
negotiation.

Listing 1.1 exemplifies the use of SPARQL micro-services in a biodiversity-
related use case. The query retrieves the URI of a resource representing the
common dolphin (species Delphinus delphis) from a taxonomic register. Then,
it invokes SPARQL micro-services to retrieve additional data from three Web
APIs: photos from the Flickr photography social network2, audio recordings from
the Macaulay Library3 and music tunes from MusicBrainz4. Figure 2 portrays
a snippet of the response to this query in the Turtle syntax, along with photos,
audio recordings pictures and a MusicBrainz Web page.

2 https://www.flickr.org/
3 https://www.macaulaylibrary.org/
4 https://musicbrainz.org/



4

Fig. 2. Snippet of the response to query Q (Listing 1.1) along with snapshots of the
images, audio recordings and Web page whose URLs are part of the response.

4 Future Works

For an ecosystem of SPARQL micro-services to emerge from independent service
providers, two crucial issues shall be tackled. Firstly, to enable services discov-
ery, SPARQL micro-services should provide self-describing metadata such as the
query string parameters or the types of triples generated. In this respect, the
smartAPI metadata specification may be leveraged [4]. Secondly, it should be
possible to retrieve fragments by smaller pieces using a paging mechanism. To
tackle those issues, Triple Patterns Fragments (TPF) expose a self-describing,
uniform interface consisting of metadata and hypermedia controls [3]. A perspec-
tive would be to extend this approach to the case of SPARQL micro-services,
stemming some sort of Graph Pattern Fragment interface, i.e. a generalized TPF
interface able to process regular graph patterns instead of only triple patterns,
but still complying with the TPF metadata and hypermedia controls specifi-
cation. Let us finally mention that we have focused specifically on consuming
Web APIs data with SPARQL, although the principles presented in this work
could apply to other types of APIs. Furthermore, many APIs empower users not
only to read but more importantly to interact with data. Hence, an interesting
perspective would be to think of SPARQL micro-services as a way to support
distributed SPARQL Update over Web APIs, thus eventually contributing to
build an actual read-write Web of Data.

References

1. F. Michel, C. Faron-Zucker, and F. Gandon. SPARQL micro-services: Lightweight
integration of web APIs and linked data. In Proc. of LDOW 2018, 2018.

2. S. Newman. Building Microservices. O’Reilly Media, 2015.
3. R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,

B. De Meester, G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a
Low-cost Knowledge Graph Interface for the Web. J. Web Semantics, 37–38:184–
206, 2016.

4. A. Zaveri, S. Dastgheib, T. Whetzel, R. Verborgh, P. Avillach, G. Korodi, R. Terryn,
K. Jagodnik, P. Assis, C. Wu, and M. Dumontier. smartAPI: Towards a more
intelligent network of Web APIs. In Proc. of 14th ESWC, pages 154–169, 2017.


