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Abstract—We propose to control a local electricity grid, a
“microgrid”, in a decentralized fashion to reduce energy costs by
coordinating the generation and consumption decisions made by
the individual Distributed Energy Resources (DERs) composing
the system. Our control scheme relies on the so-called Alternative
Direction Method of Multipliers or ADMM, the essentials of
which we summarize in the first part of the paper. Then we
describe our models for loads, batteries, solar panels and wires
before investigating different scenarios in which our coordination
scheme may be more beneficial than independent decision-
making. The first scenario demonstrates how our coordinated
control strategy may reduce total expenses under variable tariffs
of energy. Since this first method does not, however, ensure a gain
for each user of the microgrid individually, our second scenario
explores a slightly different control strategy designed to ensure
an individual benefit to each user, at the cost of decreasing the
total benefit.

Index Terms—Smart grids, Micro grids, Energy management,
Load management, Power Flow.

MATHEMATICAL NOTATIONS

• For all (n,m) ∈ Z × N, Jn, n + mK denotes the set of
integers {n, n+ 1, . . . , n+m}.

• N∗ denotes the set of positive integers,
• For all (n,m) ∈ (N∗)

2, Mn,m(R) denotes the set of real
matrices of n rows and m columns.

• For all n ∈ N∗, Φn denotes the lower triangular matrix
whose non-zero elements are all ones.

• For all n ∈ N∗, 0n denotes the zero vector of Rn.
• For all n ∈ N∗, 1n denotes the vector of all ones of Rn.
• For all set E , |E| denotes its cardinal.

I. INTRODUCTION

Increasing costs of energy, proliferation of electrical appli-
ances, and climate change are major drivers that are reshaping
the power generation, distribution, and usage landscape. Infor-
mation and Communication Technologies have already proven
useful to tackle the challenges ahead, leading to the idea of a
Smart Grid. The Smart Grid can bring multiple benefits such
as a more efficient transmission of electricity, better resilience,
lower power costs for consumers, etc.

It will take time before the electrical grid is fully trans-
formed. During that transition period, pilot projects are needed
to demonstrate the effectiveness of upcoming technologies on

a local scale before they may be deployed on a larger scale.
Microgrids, defined as local, interconnected energy systems,
are thus well suited to play this role; typical examples of mi-
crogrids include islands, remote communities, large facilities,
campuses, municipalities, etc. They incorporate Distributed
Energy Resources (DERs), such as power generation, renew-
ables, controllable loads, storage, etc. They can be connected
to the main grid, or be operated in islanded mode. As a single
entity, a microgrid has its own independent control, which
allows testing of advanced control strategies.

It is the role of the Microgrid Energy Management System
(MEMS) to balance energy sourcing and consumption while
minimizing costs and risks of disturbances such as an outage.

Many ideas were suggested already to solve this issue in a
distributed fashion. One of the most widespread is to use the
very general framework of multi-agent systems as it has been
done at the microgrid level in [1] with a market-based control,
or in [2] with an artificial neural network as learning module,
or in [3] with a system of auctions. Multi-agents systems
were also used at the building level [4], [5]. Although the
exact logic of a multi-agent control scheme varies widely from
one author to the other, it may be stated that these schemes
generally suffer from the lack of mathematical convergence
proofs, that translates into lack of guarantees concerning the
solution quality as well as the convergence speed.

Among other methods, multi-level optimization is a promis-
ing solution and has successfully been used at microgrid
level [6] and at building level [7]. Dual decomposition is
also an interesting alternative [8], [9]. Those methods are not
fully distributed in the sense that they still require a central
controller that consolidates the results from, and dispatches
commands to, its subsystems.

In this article, we propose to use the “Alternative Direction
Method of Multipliers” (ADMM), in order to optimize the
energy bill of a microgrid. This method was already used
in order to compute optimal schedule in an electrical net-
work [10] or in [11] for electric vehicles charging. Here, we
show that this method more generally provides a generic way
to coordinate producers and consumers in a microgrid in a
decentralized manner. Contrary to most multi-agent schemes,
the method relies on solid mathematical foundations; and as



opposed to multi-level optimization and dual decomposition,
it is fully distributed and does not imply any centralized
controller anywhere in the system.

The paper is organized as follow: section II provides an
overview of the optimization method (ADMM), section III
describes the devices that will compose our microgrids and
their mathematical model, and in section IV we finally apply
our method to several illustrative scenarios to demonstrate its
key features and capabilities.

II. FRAMEWORK

This section provides the mathematical background that
underlies the method we use in the sequel to minimize the total
cost of energy in a microgrid over a given horizon of time.
We use the ADMM which has recently been used for this kind
of purpose by Kraning et al. in [10]. Whenever the necessary
mathematical assumptions are met [12], this method may be
used to perform all computations in a distributed fashion.

A. Modelling a District as a Network
Here, for the sake of clarity, we use the same notations as

in the pioneering work of Kraning [10]. We define a network
as a finite set of terminals, T , a finite set of devices, D, and
a finite set of nets, N . Devices are elements of the modelled
microgrid such as batteries, buildings, wires, etc. Nets must
be considered as exchange zones of electrical power between
devices. And lastly, terminals are crossing points which allow
power to move from a device to a net or vice-versa.

Formally, devices are connected to nets by terminals so that
D and N are both partitions of T . For all devices d ∈ D and
for all terminals t ∈ T connected to d, we note t ∈ d (such
that the letter “d” denotes both the device itself and its set of
terminals). In the same way, for all nets n ∈ N and for all
t ∈ T connected to n, we note t ∈ n.

For all terminals t ∈ T , the goal of the method is to
compute the power schedule pt = (pt(1), pt(2), . . . , pt(T ))
over a given horizon of T ∈ N∗ time-steps. This schedule
results from an optimization process taking into account:

• the objective and internal constraints of each individual
device, and

• coupling constraints stating that power exchanged be-
tween devices is conserved.

To shorten notations, for all d ∈ D, the vector pd ∈ RT×|d|

denotes (pt)t∈d and for all n ∈ N , the vector pn ∈ RT×|n|

denotes (pt)t∈n.

B. ADMM Principle
At each iteration k ∈ N∗ of ADMM, each device first

solves an optimization problem including its own objective and
constraints, and an additional term that relates to neighbouring
devices. We refer the reader to [10], [12] for details. The
problem formulation can be summarized by the following
equation for all d ∈ D:

pkd = argmin
pd∈Cd

(
fd(pd) +

ρ

2

∥∥pk−1
d − pd

k−1 − uk−1
d − pd

∥∥2
2

)
(1)

where fd is the local objective function of the device, Cd is its
set of constraints and pd is its power schedule. We also define
pd and ud as the average power imbalance and the incentive
received by the various nets a particular device is connected
to.

From this solution, we extract the schedule of power con-
sumed or produced by terminals of each device for the next
horizon of T time-steps ie. for all d ∈ D, we have

(
pkt
)
t∈d

.
Then, devices communicate their power schedule to the nets
they are connected to, so that all nets n ∈ N can compute
their average power imbalance :

pn
k =

1

|n|
∑
t∈n

pkt ∈ RT (2)

and their local incentive :

uk
n = uk−1

n + pn
k. (3)

Second, nets communicate their average power imbalance
pn and their local incentive un to devices they are connected
to. Intuitively, the role of these two terms is to orientate the
local optimization which will be performed by devices at the
next ADMM step, in order to force nets be conservative power
exchangers: for all n ∈ N , pn = 0T is indeed required at
the end of the optimization process. This ensures the physical
feasibility of the power consumption/production schedule on
the time horizon.

One step of these exchanges is detailed in Figure 1 for a
single net.
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Figure 1. ADMM principle: the net is pictured by a dashed circle ( ) and
terminals are pictured by black dots ( ). Red solid arrows correspond to
the first sub-step (pkd computation and transmission) and blue dashed/dotted
arrows correspond to the second sub-step (average power imbalance and local
incentive computation and transmission) of an ADMM step.

III. MODELS

Let us now introduce models of devices which will be later
used. Each of them is modelled as an optimization problem
with its own objective and constraints. The battery and the
building models are fully described. For other models, the
main cost fd and the constraints are given.



Table I
MODELS’ PARAMETERS

Name Description Unit Domain
Battery

P+ Maximum power input kW R+∗

P− Maximum power output kW R+∗

b Minimal state of charge kWh R+∗

b Maximal state of charge kWh (b,+∞)

b0 Initial state of charge kWh [b, b]
η+ Charge efficiency — (0, 1]
η− Discharge efficiency — (0, 1]

Grid Connection
Pr,max Maximum output power kW R+

Pp,max Maximum input power kW R+

Γr Electricity resale price e · kWh−1 RT

Γp Electricity purchase price e · kWh−1 RT

Emax Maximum allowed expenses e R
Solar Panel

Pmax Maximum producible power kW
(
R+

)T
Γ

Penalty for non produced
energy e · kWh−1 RT

A. Battery

A battery is a single terminal device whose parameters are
gathered in Table I. Its power schedule p ∈ RT is split into its
positive and negative components p+ = max(0, p) ∈ (R+)

T

and p− = min(0, p) ∈ (R−)
T such that p = p+ + p−.

At iteration k ∈ N∗ of ADMM, the optimization problem
of a battery is:

min
p+,p−

ρ

2

∥∥pk−1 − pn
k−1 − uk−1

n − (p+ + p−)
∥∥2
2(

0T

−P− 1T

)
6

(
p+

p−

)
6

(
P+ 1T

0T

)
(b− b0)1T 6 τ

(
η+ΦT

∣∣∣∣ 1

η−
ΦT

)(
p+

p−

)
6 (b− b0)1T

∀t ∈ J1, T K, p+(t)p−(t) = 0.

(4a)

(4b)

(4c)

(4d)

From this point, ρ ∈ R+ is a mathematical parameter in
e · kWh−2, τ ∈ R+∗ is the time-step of our models expressed
in hours and for single terminal devices, n ∈ N is the net
to which the device is connected through its single terminal.
The value of ρ only influences the convergence speed of the
algorithm and will not be considered further in this paper, both
due to space limitation and because our focus here is on the
application of the ADMM to power grid problems and not on
the internal working of the ADMM itself.

The objective function (1) of the battery reduces to (4a),
which reflects the fact that this device essentially does not
imply any operational cost. The battery has access to pk−1

which is its power schedule of the previous ADMM iteration.
pn

k−1 and uk−1
n are computed by the net the battery is con-

nected to through its single terminal. Constraint (4b) ensures
that the power input and output (p+, p−) are restricted to the
range [0, P+] and [−P−, 0] respectively. Constraint (4c) limits
the state of charge between the minimum and the maximum

allowed states of charge. Finally, constraint (4d) prevents
battery from charging and discharging at the same time (and,
mathematically speaking, is optional).

B. Grid Connection

A grid connection is a single terminal device which is
able to sell and to purchase electricity. Similarly to what was
done for the battery, we introduce p+ = max(0, p) ∈ (R+)

T

and p− = min(0, p) ∈ (R−)
T the purchased power and the

opposite of the produced power.
Its cost function is fd(p

+, p−) = τ [Γrp
− + Γpp

+] and the
constraints are the following: the total expenses are limited
by Emax and the purchase and resale powers are respectively
limited by Pp,max and Pr,max.

C. Wire

A wire is a two-terminal device; their respective power
schedules are denoted by p1 ∈ RT and p2 ∈ RT . We also
use the same subscripts to denote all quantities which come
from the first or the second terminal respectively eg. n1 for
the net to which the first terminal belongs.

The objective function of this device is zero and its con-
straints impose that electricity is carried from a terminal to
the other in a conservative way so p1 + p2 = 0T .

From this point, there are two ways to apprehend a “wire”:
• it can be viewed as a real wire in an electrical network.

In this case, we can limit its capacity to a maximum C
expressed in kW;

• or it can be used as a purely financial exchange in a
cooperative network of electricity consumers, assuming
that the underlying physical grid has sufficient capacity
to accommodate all flows that make financial sense. In
this case, C is simply ignored.

D. Solar Panel

A solar panel is a single terminal device whose available
power is defined by the solar irradiance. However, we let it the
possibility to curtail this maximum theoretical production if
necessary. Its objective function is fd(p) = τΓ(p+Pmax) and
the constraints limit the maximum production and curtailment.

The parameter Γ can be viewed as a shortfall (loss of
revenue) for non-produced energy: that is why it is expressed
as a price.

E. Building

A building is a single terminal device whose objective is to
minimize its operational cost under some comfort constraints
such as temperature, CO2 concentration, etc. We use the
building model described in [7]. We present here the main
points of the optimization process: variables of the optimiza-
tion problem are z, which gathers every decision variables of
the building including the power consumption schedule, and
y, which gathers the outputs (temperature, CO2 concentration
and brightness) of the building’s simulation. So there exists
a matrix E such that Ez = p ∈ RT where p is the power
consumption schedule.



In order to solve the problem described in [7], a fixed-point
algorithm is used. Let k ∈ N∗ be the iteration number of
the ADMM process. For each ADMM step, we note l ∈ N∗

the number of the current fixed-point algorithm iteration. We
begin to solve:

min
zk,l

L(τ,Γ)zk,l

+
ρ

2

∥∥pk−1 − pn
k−1 − uk−1

n − Ezk,l
∥∥2
2

z 6 zk,l 6 z

A(yk,l)zk,l 6 b

(5)

where:
• Γ is the electricity price expressed in e · kWh−1,
• L(τ,Γ) is a vector which depends on τ and Γ,
• A(y) is a matrix which depends on y,
• b, z, z are vectors,
• Z is a non-linear operator which simulates zones in the

building. Its inputs are z which is the vector of decision
variables, w which is a given vector of perturbations and
i, which is the initial state of zones. This operator also
includes specific properties of the building so it differs
from one building to another.

and after, we inject the result zk,l:

yk,l+1 = Z(zk,l, w, i).

We can then solve (5) with yk,l+1 and so on until convergence
of the fixed-point algorithm.

IV. SIMULATION SCENARIOS AND RESULTS

A. District and customers

First, let us define a client in our microgrid. A client is
modelled by a net which is connected to all its “equipments”:
eg. in Figure 2, the “orange disc” depicts a client who owns
and manages a building, solar panels and a grid connection.
Moreover, this client is connected to two other clients ( , )
with wires.

B. Scenario 1: Identifying Network Potentialities

Our first purpose is to demonstrate how clients, as a whole,
may save money by coordinating their actions. To do so, let
us consider the network in Figure 2 and its parameters in
Table II. Here, wires are only considered as financial link
between clients as it has been discussed in subsection III-C,
thus C = ∞ (no physical limit is introduced within the
microgrid). Furthermore, the electricity price for internal ex-
changes (meaning, exchanges between two buildings of the
same microgrid through “wires”) is set to 0T ; electricity is
only billed when it enters the microgrid from the outside world
through external grid connections (terminals in Figure 2).

The ADMM parameter ρ is set at 1, the time-step at 20min
and the horizon schedule at 48 h (so T = 144). The simulation
protocol is the following.

• First, clients are considered as independent; a simulation
is performed as if wires were not present, meaning there
is no cooperation between clients. The final bill paid to
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16.14 kWh
e1.84

e7.28
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e7.54

21.34 kWh
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e3.33

32.81 kWh
e3.91

9.70 kWh
e1.02

e0.57
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e1.00
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e1.47

e−4.92
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e−2.01
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29.96 kWh
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23.00 kWh

63.32 kWh
e6.26

e6.26
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e10.44

Figure 2. Network 1. Consumptions/expenses balances of clients alone are
written in green below solid lines. Their consumption/expenses when they
are connected are written in red without compensations for exchanged energy
above dashed lines and with compensations at grid resale price below dashed
lines. “B.” stands for “Building” and “Bat.” for “Battery”.

the grid ie. the cost of purchased electricity minus the
revenue generated by electricity sales, is displayed in
green in Figure 2.

• Then, we add wires and run the simulation again; results
are displayed in red above solid lines.

Table II
PARAMETERS FOR SIMULATIONS OF NETWORK #1

Identical devices for all nets
Pp,max = Pr,max 5 kW

Γr

0.14e · kWh−1 from
6:00am to 10:00pm,

0.09e · kWh−1 otherwise
Γp

1
2
Γr

Grid Connections

Emax ∞

Buildings Γ 0T e · kWh−1

Wires C ∞
Net 2

P+ = P− 5 kW
b0 = b 0 kWh

b 15 kWhBattery

η+ = η− 0.95

Net 3

Pmax

Gaussian curve with a pro-
duction peak of 2 kW at
12:00 Noon and a standard
deviation of 3 hours.Solar Panels

Γ
Twice the resale price of a
grid connection.

Net 4
P+ = P− 5 kW
b0 = b 0 kWh

b 10 kWhBattery

η+ = η− 0.95

Pmax

Gaussian curve with a pro-
duction peak of 4 kW at
2:00pm and a standard de-
viation of 3 hours.Solar Panels

Γ
Twice the resale price of a
grid connection.



One can remark that total expenses at the microgrid level
decrease, while the same level of comfort has been guaranteed
to buildings. Solar panels produce the maximum they can in
both simulations because a sharp penalty is applied, so the first
reason of this improvement is due to batteries: alone, clients
with batteries do not use them at their maximum potential
because they have no interest to store electricity which they
do not use within a day. Briefly, they store the energy they need
for an entire day during off-peak hours and they give back this
energy during on-peak hours. But, when clients work together,
batteries store energy for all clients and are then used at their
maximum potential.

The second reason of this improvement is due to the use of
solar energy: when clients are alone, and when solar panels
produce energy they can not consume, they sell it to the
grid at low cost (see Table II, parameter Γp). When they are
connected, this energy can be used by other clients, avoiding
them the need to purchase from the grid at a higher price than
the power resale price.

Let us now consider individual gains. The first cost (in red
above dashed lines in Figure 2) is the direct result of the
optimization process. Here, we notice that the most flexible
clients (that is to say, those with solar panels and/or batteries)
( , ) are not those who earn the most, on the contrary! The
reason is that services they provide (energy storage and/or
solar energy provider) are simply not paid ie. they supply
energy freely to other, less flexible members of the microgrid.

In order to take into account these services, a post-
optimization compensation of the energy exchanged between
clients through wires may be performed. For instance, com-
pensating internal exchanges at price Γr (ie. the same price as
for reselling energy to the external grid) yields the second cost
(in red below dashed lines in Figure 2). As a result, clients
without flexibility now make no or very little gain ( ) and
the benefits is essentially transferred to more flexible players.
This phenomenon is shown in Figure 3.

0% 20% 40% 60% 80% 100%
−5

0

5

Percentage of the resale price of grid connections

C
os

t
(e

)

Client 1 Client 2 Client 3 Client 4

Figure 3. Clients’ expenses according to the valuation of exchanges. Dashed
lines are the results when clients act alone.

For instance, client 4 ( ), who is the most flexible loses
money when it is connected to the network if there are no
compensations and client 1 ( ), who is the least flexible, earns
a lot. On the opposite, if compensations are done at grid resale

price, client 4 earns a lot and client 1 does not earn money
any more.

This example illustrates how make-whole payments may be
used to distribute common benefits, resulting from coordina-
tion, to individual players in such a way that non-negative
individual gains are obtained for all, and flexible clients are
rewarded for their contribution. In this example, this was
achieved by using — quite arbitrarily — the external grid
resell price as an internal price. The upside of this method
is that it simply redistributes the total gain in a fairer way,
without reducing this total. One of its drawbacks is that
it requires potentially complex ex-post financial settlements
involving all players, somehow losing the benefit of using a
fully decentralized control method. We now consider a more
systematic, and distributed way, of reaching the same result.

C. Scenario 2: Ensuring Gain

In order to ensure a gain for everybody, a technical solution
can be found: introducing constraints. Here are the main steps
of the method:

• As it has been done in scenario 1, each client is first
optimized independently with the ADMM by “deleting”
wires. These results are written in green in Figure 4.

• Next, the entire microgrid (with wires) is optimized
with the ADMM and we use the parameter Emax of
grid connections in order to restrict clients’ expenses to
expenses they reach alone. So, the grid connection of
the first client ( ) can not spend more than e7.54, the
one of the second ( ) can not spend more than e3.91,
etc. Results of this optimization are written in blue above
dashed lines in Figure 4. Results with post-optimization
compensations for the energy exchanged through wires
at grid connections resale price are written in blue below
dashed lines.
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e7.87
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Figure 4. Network 1 bis: here expenses of grid connections have been
limited with their parameter Emax. Results in green below solid lines
are for clients alone. In blue, above dashed lines, results without post-
optimization compensations for exchanged energy and below dashed lines
with compensations at grid resale price. “B.” stands for for “Building” and
“Bat.” for “Battery”.



We can first check that financial constraints have been
respected: each client does not spend more than if it were
alone. Second, we notice that even if financial constraints have
been added, the problem still has a solution because the “free-
for-all” solution, which has been found at the first step of the
process, exists and does not violate the new constraints. In
fact, the solution found with the connected optimization, as
before, can not be globally worse.

But, even if a solution exists, it is sub-optimal compared
with the one found without financial restrictions: e7.87 against
e6.26 previously reached. This is the cost to ensure gain for
every client with this technical solution: adding constraints that
enforce a certain “fairness” unfortunately degrades the global
optimum.

V. CONCLUSION

The above simulations were performed to illustrate the
flexibility of the ADMM and its ability to perform:

• fully decentralized control of an electricity microgrid,
• on a wide variety of test cases,
• using a method with solid mathematical foundations
The first feature, full decentralization, is seen as beneficial

since decentralized approaches scale up well, and are more
resilient than centralized methods based on a single controller.

The second feature, genericity, is important because large-
scale deployment of smart grid technologies calls for generic
control schemes that may be applied to a wide range of
situations without local fine-tuning. We showed how a generic
optimization method without any preset specific decision rules,
applied to a wide range of situations, and may uncover gain
opportunities as varied as:

• using a player’s batteries for the benefit of other members
of the microgrid;

• reselling power internally rather than to the external grid
to benefit from a price gap between buy- and resell-prices;

• deferring load in time to better match times of high solar
generation;

• coordinating local loads to overcome a common capacity
limit on a wire (or, similarly, a limited contracted power).

The third feature, being based on solid mathematical theory,
paves the way for fully automated control methods that will
provide guaranteed functionality and, again, have the potential
to scale up without failures.

The key assumption that allows such a dynamic man-
agement of microgrids is the availability of flexible devices
such as batteries and thermal storages (here built-in inside
the models used to manage entire buildings). When such
devices are available, optimization methods make it possible to
coordinate all members of a microgrid so as to generate global
financial gains; and this paper also discussed how these global
gains may translate into guaranteed benefits for individual
players, at the cost of degrading the global optimum.

This work may be extended in several ways. First, bet-
ter methods to ensure individual gains may be suggested,
especially if such methods lead to a lower degradation of

social gains or provide provably sound economic incentives for
investment in flexible devices such as batteries, solar panels,
electric vehicles with deferrable charging, etc. Second, only
the point of view of the end-user was taken into account in
this work; it is thus important to study how other players,
such as suppliers and Distribution System Operators (DSOs),
would fit into our framework, and adapt to the new behaviour
of their loads when these loads start exchanging power in a
bilateral way. Finally, and assuming a much better modelling
of the underlying physics of power systems, this work could be
extended to the management of low-level physical constraints
on the electricity grid such as voltage and current constraints.
These improvements are left as matter for future research.
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