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Abstract  

 

In vertebrates the early social environment can persistently influence behaviour and social 

competence later in life. However, the molecular mechanisms underlying variation in animal 

social competence are largely unknown. In rats, high-quality maternal care causes an 5 

upregulation of hippocampal glucocorticoid receptors (gr) and reduces offspring stress 

responsiveness. This identifies gr regulation as a candidate mechanism for maintaining 

variation in animal social competence. We tested this hypothesis in a highly-social cichlid 

fish, Neolamprologus pulcher, reared with or without caring parents. We find that the 

molecular pathway translating early social experience into later-life alterations of the stress 10 

axis is homologous across vertebrates: fish reared with parents expressed the glucocorticoid 

receptor gr1 more in the telencephalon. Furthermore, expression levels of the transcription 

factor egr-1 (early growth response 1) were associated with gr1 expression in the 

telencephalon and hypothalamus. When blocking glucocorticoid receptors (GR) with an 

antagonist, mifepristone (RU486), parent-reared individuals showed more socially 15 

appropriate, submissive behaviour when intruding a larger conspecific's territory. 

Remarkably, mifepristone-treated fish were less attacked by owners and had a higher 

likelihood of territory takeover. Our results indicate that early social-environment effects on 

stress axis programming are mediated by an evolutionary conserved molecular pathway, 

which is causally involved in environmentally-induced variation of animal social competence.  20 
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Introduction 25 

Variation in early-life social experience, such as the quality of parental care [1] or natal group 

composition [2,3] can have profound long-term influences on the emotional, cognitive and 

social development of vertebrates, including humans (e.g., [1,3–7]), with ensuing marked 

consequences for Darwinian fitness (reviewed in [8]). In particular, more complex early social 

experiences generally tends to favour the development of improved social competence in 30 

animals, and thereby their performance during social challenges later in life (rev. in [8,9]. 

'Animal social competence' is defined in an evolutionary context, and denotes the ability to 

optimize the expressed social behaviour by a flexible use of social information, thereby 

improving fitness [10]. However, while we have evidence for triggers from the social 

environment, which are responsible for variation in animal social competence (reviewed in 35 

[9]), as yet the neural molecular causes of this variation are not understood. 

 

Indirect evidence suggests that social influences on the programming of the vertebrate stress 

axis may co-vary with both stress responsiveness and social competence. Offspring of 

laboratory rats experiencing high-quality maternal care undergo persistent reprogramming of 40 

their stress axis and exhibit low stress responsiveness later in life [1,4,11]. A number of 

experimental studies reported that more intensive maternal care, for instance caused by the 

presence of several mothers in communally-breeding laboratory mice, does not only reduce 

the susceptibility to stress, but also enhances social competence (rev. in [12]). Feedback from 

the maternal to offspring behaviour is in part caused by a persistent upregulation of 45 

hippocampal glucocorticoid receptor (gr) gene expression in offspring [5,11,13] [note that for 

the glucocorticoid receptor italicised lowercase letters refers to genes (gr or gr1) and capital 

letters (GR or GR1) to gene products throughout]. Hippocampal GRs exert a negative 

feedback on glucocorticoid production, thereby contributing to the termination of stress 

responses and reducing the susceptibility to stress [14]. The expression of gr in the 50 

mammalian hippocampus is itself regulated by the transcription factor early growth response 

1 (egr-1) [15,16], a marker for neuronal activity [17] and plasticity [18].  The egr-1 gene 

codes for a transcription factor, which has been suggested to target later-acting genes 

including genes of the stress axis in the dorsolateral telencephalon of the fish brain (the 

putative homologue of the mammalian hippocampus) [17]. 55 

 

In non-mammalian vertebrates, the corticoid stress axis is similarly organized as in mammals 

(e.g. [19,20]), and the early social environment persistently affects gr expression in the brains 



of birds [21,22] and fish [23,24]. For instance, varying early social experience in the cichlid 

N. pulcher affected total brain expression of the gene gr1, which is homolog to the 60 

mammalian glucocorticoid receptor [25], whereas the expression of the second glucocorticoid 

receptor (gr2) present in N. pulcher was not affected by rearing environment [24]. Because of 

the correlations between maternal care, stress axis programming and social competence in 

laboratory rats, we hypothesized that the regulation of glucocorticoid receptors is a prime 

candidate mechanism causally involved in generating variation of social competence in 65 

vertebrates. Discovering the key components of social competence is crucial in understanding 

how social competence has evolved, is maintained and regulated in social species and how it 

can be modulated during early development.  

 

Three ingredients are needed to determine the causality of the association between gr 70 

expression levels and social competence in vertebrates in general. First, we need a non-

mammalian model species, in which early life stress effects on behaviour are well-

documented [3,23,26], and which thus allows to test the generalizability of GR function in 

social competence in vertebrates. Second, differences in expression of egr-1 and gr following 

early life stress must be established [15,16,23]. Third, manipulations of the pathway coupled 75 

with quantitative behavioural assays must be carried out as a first step to establish the 

functional role of this candidate pathway. Blocking or enhancing the activity of a specific 

pathway, for example by using pharmacological manipulations, coupled with measurements 

of the resulting phenotype changes, allows to test the functional involvement of physiological 

regulatory pathways [27]. 80 

 

We investigated the mediating role of the GR pathway regulating the variation in social 

competence in the cooperatively-breeding cichlid fish, Neolamprologus pulcher. Individuals 

of this species reared in larger [28] or more complex [3,23,26] social groups show more 

appropriate social behaviours in a variety of social contexts and thus better social competence, 85 

resulting in advantageous outcomes of social interactions such as reduced contest durations 

[26]. We first compared gene expression of fish that had been reared either with (+F) or 

without (–F) parents and a broodcare helper. We analysed the relationship between the 

expression of the glucocorticoid receptor gene gr1 and the transcription factor egr-1, 

proposed to regulate gr expression [16] in two brain areas, the telencephalon and the 90 

hypothalamus. The telencephalon is of interest since in this brain area the putative homologue 

to the mammalian hippocampus is located [29], which in rats was influenced by maternal care 



leading to changes in gr expression [4]. Moreover, both telencephalon and the hypothalamus 

play a key role in the regulation of animal social behaviour [30] and of the hypothalamic-

pituitary-interrenal (HPI) stress axis, the stress axis of fish [31], which is homolog to the 95 

hypothalamus-pituitary-adrenal (HPA) stress axis of mammals [4,11,32]. 

Second, we investigated the causal role of the GR pathway in modulating social competence. 

We compared the social behaviour of blank treated fish (control) and fish treated with 

mifepristone (RU486), a substance which selectively blocks glucocorticoid but not 

mineralocorticoid receptors [33,34] in fish (goldfish, Carassius auratus [35,36]; rainbow 100 

trout, Oncorhynchos mykiss [36], medaka [37] and the lined bristletooth Ctenochaetus striatus 

[38]. We predicted that blocking GRs by mifepristone treatment would increase circulating 

glucocorticoids through impaired negative feedback response (see [35]) thereby increasing 

stress responsiveness of these fish, which should result in impaired social competence ([12]. 

Here we first tested whether early social experience in N. pulcher affects the activity of the 105 

pathway from egr-1 to gr1 similarly to mammals. Second, by pharmacologically blocking the 

GR activity using an antagonist in parent-reared fish, we tested if it is causally involved in the 

variation of social competence.  

 

Methods 110 

Study species  

Neolamprologus pulcher is a cooperatively breeding cichlid endemic to Lake Tanganyika, 

East Africa, living in large family units of up to 25 fish consisting of a dominant breeder pair, 

one or several related or unrelated alloparental brood care helpers and fry from recent broods. 

In the juvenile stage all fish join in brood care, albeit to a different extent [39]. Even after 115 

sexual maturity, which occurs around the age of 10-12 months, many N. pulcher continue to 

serve as helpers. Social groups are organized in a strict, linear hierarchy structured by body 

size [40]. N. pulcher possess a fine-scaled repertoire of affiliative, submissive and aggressive 

social behaviours used to maintain this hierarchy and to solve social conflicts among groups 

members [41]. The contextual expression of these behaviours is strongly affected by the 120 

social environment young experience early in life [3,23,26,28].  

 

Animal husbandry 

Both experiments were done at the 'Ethological Station Hasli' of the Institute of Ecology and 

Evolution (IEE), University of Bern, Switzerland, under licence number 52/12 of Veterinary 125 



Office of the Kanton Bern. All tanks were equipped with a 2 cm sand layer, a biological filter, 

and clay pot halves and PET bottles serving as shelters. The light:dark cycle was set to 13:11 

h with a 10 min dimmed light period in the mornings and evenings, and the water temperature 

was kept at 27 ±1 ºC. Fish were fed 6 days a week (5 days commercial flake food, 1 day 

frozen zooplankton). All fish used in experiments 1 and 2, except those sacrificed for brain 130 

sampling, were integrated in the N. pulcher stock tanks of the IEE at the end of our 

experimental work. 

 

Experiment 1: Effects of social experience on gene expression 

Rearing treatment. Details of the rearing procedure are given in [23] and [42]. In brief, ten 135 

breeding pairs, which were 2nd and 3rd generation offspring from N. pulcher wild caught at 

Kasakalawe Point, near Mpulungu, Zambia, produced the experimental broods in ten 200-L 

tanks. Ten days after a breeder pair had produced a clutch, the hatchlings had reached the 

free-swimming stage. On that day, we randomly assigned half of each brood to one of two 

treatments, (i) being either reared with parents, the helper and same age siblings (+F 140 

treatment, n = 10 groups), or (ii) with same age siblings only, without presence of older 

family members (−F treatment, n = 10 groups). Each treatment group was raised in a separate 

100-L compartment of a 200-L tank (mean group size, +F fish: 32.6±3.8 SE; –F fish: 

35.4±5.1 SE). The social experience treatment lasted for 62 days (see experimental timeline in 

Fig. 1A). Afterwards we removed the parents and the helper from the +F treatment and 145 

transferred them back to our laboratory stock tanks. Fish from both treatments were kept in 

100-L compartments under identical conditions for the next 72 ± 2 days.  

 

Tissue sampling. The procedure described is as in [23]. We removed the individuals from 

their home tank on day 134 (± 2 days), measured their length and weighed them before 150 

placing them into a 20-L test tank (30 x 20 cm, 20 cm high) 24 h before brain sampling. We 

divided the test tank into two compartments by an opaque PVC wall and placed the individual 

in an empty compartment of the test tank (balanced between right and left side between 

trials). In the other compartment, we placed a clay pot half serving as shelter in the centre. 

Our aim was to measure the fish baseline gene expression in the brain after 24 hours without 155 

influence of recent social interactions. We used two replicate individuals from each rearing 

group. The sex of these individuals was unknown, as the genital papillae of the fish at this age 

is not yet differentiated. Before brain sampling, we removed the divider and let the individual 

swim freely in the test tank for 20 min before reinstalling the divider again. Then fish was left 



undisturbed for another 10 min, and after the total of 30 minutes, we killed the fish with an 160 

overdose of Tricaine methanesulfonate (MS222; Sandoz, Switzerland). We collected brains 

from fish of both conditions: +F (8 groups, 15 fish) and –F fish (10 groups, 20 individuals), 

for a total of 35 fish. We could use experimental fish from 8 of the original 10 +F rearing 

groups only, because of a procedural mistake during the first two trials. Moreover, in one +F 

group only one replicate individual was sampled because the brood was very small and 165 

individuals were needed for further behavioural experiments (see [42]). We dissected 

telencephalon and hypothalamus from the brain tissue, and placed each sample into a 1.5 ml 

vial with RNAlater (Ambion). Samples in RNA later were left overnight at +6 ºC and then 

moved to -20 ºC for permanent storage.  

 170 

Gene expression. We measured the gene expression of gr1 and egr-1 in the telencephalon and 

hypothalamus of N. pulcher. The expression of the ‘housekeeping’ gene 18S was used as a 

control. Detailed protocols of primers used, RNA sample preparation and qPCR are given in 

the supplementary information (SI). All qPCR samples were run in three replicates.  

 175 

Experiment 2: Blocking of GR1 

Experimental broods. To create the experimental broods, we formed 10 breeder pairs in 

separate 60-L tanks by merging unfamiliar adult males and females haphazardly selected from 

the institute's male and female stock tanks. In this experiment all experimental broods were 

reared with parents. Parents stayed with the clutch for 72 days (10 days until the hatchlings 180 

were free-swimming plus 62 days during the juveniles stage; see experimental timeline, Fig. 

1B). Afterwards the parents were removed and transferred back to the institute's breeding 

stock. During the following 35 ± 2 days (‘neutral phase’), the siblings were kept in 30-L 

compartments under identical, standard housing conditions (see 'Animal husbandry').  

 185 

Immersion. Following the protocol by [43], mifepristone (RU486, Sigma-Aldrich) was 

dissolved in dimethylsulfoxide (DMSO) at 50 mg/mL, then serially diluted in 0.1 M acetic 

acid (1:10), phosphate-buffered saline (1:100), and finally diluted in distilled water for an 

immersion concentration of 400ng/L. Controls were appropriately prepared with diluents 

without mifepristone.  190 

 

Nine days before each social challenge test, two fish from each sibling group were caught, 

measured in length and transferred to perforated plastic isolation containers floating in their 



home aquaria (N=40 fish). Thus the experimental fish had visual and chemical contact with 

their siblings. After 7 days in the isolation containers, fish were exposed to an immersion 195 

treatment. Fish were singly immersed during 48 hours in 2 L of water in glass containers 

containing either 400 ng/L of mifepristone or control water. Each fish was exposed to both 

conditions (mifepristone and control), half of the fish (n=20) received the mifepristone 

treatment first and the other half of the fish (n=20) first received the control treatment. On day 

97, fish underwent the first social challenge test (see below). On day 98 the fish were moved 200 

back to the floating plastic container in their home aquaria, where they remained for another 7 

days until the second 48-h immersion treatment occurred, followed by the second social test 

at day 107. We had decided to keep the fish in the isolation boxes during the 7-day periods 

between treatments to prevent injury of the focal fish. N. pulcher live in closed social groups 

and fish returning after only 1 day into a group would be considered as strangers and might be 205 

attacked heavily.  

 

Social challenge test. On day 97 and 107 (± 2 days) in the morning at 0900-1100 hours, two 

individuals of each of the ten experimental families underwent a staged asymmetric 

competition over a shelter (for details see [23,26]). The morning hours are supposed to be 210 

particularly sensitive to blocking of by mifepristone because of the spontaneous morning rise 

of cortisol occurring in vertebrates [27]. In preparation of a competition trial, a focal 

individual was removed from the immersion treatment and placed into a 20-L test tank (30 x 

20 x 20cm) where it stayed for a 2-h habituation period before testing. Biological half-life of 

mifepristone is 18 hours [44] indicating that GRs should still be blocked after this habituation 215 

period. The test tank was divided into two compartments by an opaque PVC wall. The focal 

individual of the challenge was always assigned the role of the territory intruder and was 

placed in an empty compartment of the test tank (balanced between right and left side 

between trials). A halved clay pot serving as a shelter was placed in the centre of the other 

compartment, which represented the contested resource. This compartment was stocked with 220 

an unfamiliar same-aged, but slightly larger juvenile N. pulcher, which was assigned to 

become shelter owner and the opponent of the focal fish (opponent was 0.129 cm  0.011 cm 

larger than focal fish). Each shelter owner served as opponent for both trials (mifepristone and 

control) of a given focal fish. The shelter owner had been already transferred to the 

experimental tank 24 hours before the onset of a trial, which is sufficiently long for N. pulcher 225 

individuals to occupy a novel shelter and defend it as core of its territory [3,26]. 

 



After the 2-h habituation time, the wall between the compartments was lifted so that the pre-

assigned intruder and the shelter owner could interact. The starting point of the trial was 

defined as the moment when either of the two fish for the first time crossed the previous 230 

border between the two compartments, that is, the line where the PVC divider had been 

before. From that point on the behaviour of the focal individual was recorded for 20 min. The 

observer (CN) was blind to the exposure treatment of the focal fish. Behaviours of both fish 

[submissive display (tail quivering), overt aggression (i.e. aggression with attempted body 

contact, which includes ramming, biting and chasing), restrained aggression (aggression 235 

without attempted body contact, which includes fin spread, approach, head down position and 

opercular spreading), hiding in shelter, locomotion without showing social behaviour)] were 

recorded continuously using the Observer 5.0 software (Noldus, The Netherlands). Twenty 

minutes after the start of the contest, we categorized the focal fish as either the winner or the 

loser of the resource. Fish were classified as winner, if they stayed in or close (< 3 cm) to the 240 

shelter and were not attacked by the other fish. Fish were classified as loser, if they were 

evicted from the vicinity of the shelter and showed submission but no overt aggression 

towards the other fish, or if they stayed close to the water surface (< 5 cm). The contest was 

rated as ‘undecided’ in three cases (1 mifepristone treatment, 2 control treatments) when there 

was no clear winner or loser after 20 min. These three fish were excluded from further 245 

analysis. After the 20 min behavioural recording the two fish were separated by the partition 

and 1 day later the opponent and the focal fish were transferred back to their home tanks. 

 

Data analysis 

We used R 3.0.2 (R Core Development team 2013) for the statistical analyses.  The results of 250 

Experiments 1 and 2 were analysed by fitting general linear mixed models (LMM) with fish 

identity and the identity of experimental groups (family of origin) as random factors in each 

model. In experiment 1 we analysed the effect of treatment (+F or –F) on gene expression.  

For some individuals, gene expression data for one or both genes had to be discarded, because 

the coefficient of variation (CV) of the three replicates run for each individual on each gene 255 

was too large (a CV cut-off of 5% was used for all genes, see SI). This resulted in sample 

sizes of N=27 for egr-1 and gr1 in the telencephalon, and of N=18 for egr-1 and N=27 for gr1 

in the hypothalamus. In experiment 2, we tested the effect of treatment (mifepristone or 

control) on behaviours displayed by intruders and shelter owners. We analysed only the 

behaviours between the start and the end of contest. Contests were considered to be 260 

terminated when the loser retreated to the upper parts of the water column, or a distant corner 



of the tank, or when it did not aim to gain access to the shelter. We analysed behavioural rates 

(behaviour per min) since the duration of these periods varied between trials. Received overt 

aggression (aggression displayed by initial owner of the shelter) was included as covariate in 

the LMM on submissive behaviour, as submissive displays in N. pulcher are often a direct 265 

response to received overt aggression. We ran the models with the command ‘mixed’ of the R 

package ‘afex’ [45]. Error terms were examined for normality by visual inspection of the 

distribution of the residuals, predicted vs. fitted value plots and Quantile-Quantile plots. If 

necessary, we log-transformed the data and/or used boxcox transformations in order to 

achieve a normally distributed error structure. For significance testing of the terms of the 270 

mixed models, the ‘mixed’ function singly removes each term from a model, it compares the 

reduced model to the full model and it calculates type 3 p-values using a Kenward-Roger 

approximation for degrees-of-freedom [45]. Models were fitted with sum contrasts. These are 

orthogonal contrasts, where every level of a factor is compared to the overall factor mean, 

which is represented by the intercept. P-values of post-hoc analyses of significant interactions 275 

were corrected for multiple testing by applying the Benjamini-Hochberg false-discovery rate 

method [46]. 

 

Results 

Experiment 1 280 

To study whether the early social environment (+F / –F) influences the expression of gr1 in 

the telencephalon and the hypothalamus, we analysed the interaction between brain areas and 

social rearing conditions effects on gene expression. These two factors interactively 

influenced the expression of gr1 (LMM, interaction term: F = 6.067, p = 0.020, early rearing: 

F = 2.518, p = 0.133, brain part: F = 1.783, p = 0.193, N = 54, Figure 2A). Post-hoc tests 285 

revealed that the significant interaction was caused by a differential expression of gr1 in the 

telencephalon, with +F fish having a higher expression than –F fish (LMM, F = 7.108, 

adjusted-p = 0.037, N = 27), whereas gr1 expression did not differ in the hypothalamus 

(LMM, F = 0.343, adjusted-p = 0.567, N = 27). Because egr-1 is part of the pathway 

triggering gr1 expression in the hippocampus of rats [16], we tested whether egr-1 expression 290 

predicts gr1 expression across individuals. Egr-1 expression predicted gr1 expression in both 

brain areas (LMM, egr-1 expression: F = 8.522, p = 0.006, brain part: F = 4.585, p = 0.042, 

interaction: F = 3.041, p = 0.090, N = 54, Figure 2B).  

  

Experiment 2 295 



To dissect the functional link between GR activity and social competence, we analysed the 

effects of mifepristone on the social behaviour of parent-reared fish in the social challenge 

test. Focal fish (all assigned to the role of intruders, see ‘Methods’) exposed to mifepristone 

showed more submissive displays relative to the amount of received overt aggression from 

the shelter owner compared to fish of the control treatment as indicated by the significant 300 

interaction term of treatment × received overt aggression (LMM, table 1, figure 3A). There 

was no difference in aggression displayed by a control or a treated intruder, but intruder fish 

treated with mifepristone received less overt aggression from shelter owner (LMM, table 1, 

figure 3B). The likelihood of intruder fish to win the contest and to take over the ownership of 

the shelter was significantly higher when treated with mifepristone (LMM, estimate 305 

7.519±3.675, Chi2= 15.99, p<0.0001, figure 4) than in the control treatment despite the 

initially adverse ownership asymmetry. 

 

Discussion 

Individual variation in the responsiveness of the HPA stress axis to early social experience is 310 

widespread across a diversity of vertebrate taxa [4,21,24,47]. Effects have been reported in 

regions of the telencephalon and the hypothalamus [4,21,23], two brain areas holding many 

nuclei of the social decision making network (SDMN) [30]. Dysregulation of the HPA axis 

can influence life-time glucocorticoid levels, causing impaired social behaviour and neuronal 

dysfunction in the brain [48]. Here we first showed that early social experience affects gr1 315 

expression in the telencephalon but not the hypothalamus. Furthermore we showed that egr-1 

expression in both brain parts predicts the expression of gr1. These results suggest that egr-1 

expression is involved in triggering gr1 expression as previously shown in laboratory rats 

[16,49] and that the effects of the early social environment on stress axis programming are 

mediated by a molecular mechanism that is evolutionary conserved among vertebrates. 320 

Second, we blocked GR signalling to test whether the GR pathway is causally involved in the 

regulation of social behaviour and social competence. We found that short-term blocking of 

GRs causes an improvement of social competence in parent-reared N. pulcher.  

 

Early life has been shown to affect several components of the molecular pathways involved in 325 

the stress axis in a variety of vertebrates. In laboratory rats, the programming of the corticoid 

stress axis of new-born pups depends on the quality of maternal care: if care is poor, offspring 

are more sensitive to stress later in life [4,13]. This effect, which arises through a reduced 

expression of the glucocorticoid receptor (gr) gene through epigenetic modifications, is now 



well understood [16]: lower expression of gr in the hippocampus results in a weaker negative 330 

feedback and thus a delayed termination of stress responses. As gr1 was downregulated in the 

telencephalon of fish reared without older conspecifics in our study, our results suggest that 

the dysregulation of the negative feedback loop of the stress axis under reduced social 

stimulation [4] is conserved across vertebrates. The reason for lower gr1 expression in the 

telencephalon of N. pulcher is still unknown but could possibly be due to epigenetic 335 

modifications as seen in rats [16]. In the hypothalamus, where the gr1 receptor is also part of 

the HPI axis [25,31] gr1 expression did not differ between our treatments. In birds, maternally 

deprived chicks showed lower hypothalamic expression of gr1 compared to non-deprived 

chicks, whereas the expression in the hippocampus and cerebellum was not affected by 

rearing [21]. Furthermore, mineralocorticoid receptors were less expressed in maternally-340 

deprived chicks in the hippocampus. The pattern observed in mammals and fish may thus not 

extend to all vertebrates, at least in its entirety, potentially partly because of different ligand 

specificity of mineralocorticoid and glucocorticoid receptors in mammals and birds [36,50]. 

Our study suggests an evolutionary conserved neural signature for mammals and fish while 

further studies among reptiles and amphibians are warranted to clarify the extent of HPA 345 

conservation across vertebrates.  

 

The expression of the transcription factor egr-1 plays a significant role in activating effector 

genes downstream in mammals [51]. For example, increased expression of egr-1 in the 

hippocampus correlates with the activation of the serum glucocorticoid-inducible kinase 350 

(SGK) gene in rats, a kinase important in the stress response [51]. Egr-1 also regulates gr 

expression in rats [16,51,52]. Postnatal handling increases both egr-1 and gr expression in the 

rat hippocampus [53]. Here we show that in N. pulcher, egr-1 expression predicts expression 

of gr1 in both the telencephalon and the hypothalamus, suggesting that egr-1 also regulates 

the expression of the glucocorticoid receptor in this fish species. Our result thus suggests that 355 

a similar egr1-gr pathway in rats and fish brain is activated under broadly similar 

environmental conditions, although interestingly the tactile stimulation by maternal care 

believed to induce the gr gene expression change in rats [54] is absent in fish brood care.  

 

Our pharmacological manipulation showed that GR signalling influences social competence. 360 

Bernier and colleagues [35] found that blocking GRs with mifepristone influenced the 

negative feedback loop, causing prolonged expression of corticotropin-releasing factor in the 

olfactory bulbs and the telencephalon-preoptic area and resulted in increased cortisol levels. 



Hence, we expected that an altered HPI axis in mifepristone-treated +F fish would reduce 

social competence. However, our results show that this short-term manipulation of GRs had 365 

the opposite effect, as indicated by a higher readiness to show submission after being assigned 

a socially inferior position (intruder), lower received aggression by the dominant opponent 

and a higher likelihood to gain a resource. These results suggest that GR-blocker treated fish 

were more likely to win the contested resource as a consequence of their improved social 

abilities, although they had started as 'designated losers' and were on average slightly smaller 370 

than the initial shelter owner. Thus mifepristone treated fish were more efficient in solving the 

contest than controls. This is the first time that social competence [8,10] has been 

pharmacologically manipulated by directly interfering in the hormonal pathways controlling 

social behaviour. Blocking GRs using mifepristone is also known to attenuate the acute stress 

responses in rats by dampening the ACTH response to a stressor [55] and, as a consequence, 375 

reducing glucocorticoid production [56]. In fish, mifepristone application reduces GR protein 

expression and at the same time leads to a compensatory increase of gr mRNA production in 

rainbow trout [36]. Transcript abundance of the corticotropin-releasing factor is reduced by 

mifepristone treatment, suggesting a decreased HPI axis capacity [36]. Most importantly, and 

similar to rats, it almost entirely abolishes stressor-induced cortisol production and thus stress 380 

responsiveness [36]. We therefore hypothesize that the improvement of appropriate social 

behaviour, and thus social competence of mifepristone treated fish was a direct consequence 

of an attenuated stress response.  

 

Drawing from findings in rats [54], our results suggest that fish from the socially enriched 385 

environment with a higher gr1 expression have a moderate and shorter, “more appropriate”  

stress responsiveness. This prediction is supported by the finding that these parent-reared fish 

have weaker neophobic responses [57]. Therefore, it might seem counterintuitive that 

blocking GR enhanced social competence, mostly likely because their stress responsiveness 

was attenuated [35,36,55,56]. All of these studies, including our own, however, blocked GR 390 

systemically. GR1 does not only occur in the telencephalon and hypothalamus, but in various 

tissues of fish [58] and we assume that mifepristone inhibited GRs in all of these tissues [36]. 

In rats, systemic mifepristone treatment enhances synaptic plasticity (in rat hippocampi) [59], 

increases neuronal activation in the medial prefrontal cortex and ventral subiculum [55], but 

decreased activity in specific regions of the hippocampus and central amygdala [55]. 395 

Furthermore, mifepristone increased GR density in the amygdala and frontal cortex of rats, 

but reduced it in the hypothalamus [60]. Blocking GRs might also have altered the function of 



mineralocorticoid receptors in the brain, which have a much higher affinity for 

glucocorticoids than GRs, and play an important role in the appreciation of stressors and 

orchestrating of stress responses [61]. The balance between the density of mineralocorticoid 400 

and glucocorticoid receptors ensures the dynamic function of the HPA axis [62]. Thus our 

mifepristone treatment may have affected several brain regions besides the hippocampus 

through different mechanisms, and these multiple effects may jointly have induced an 

improvement of social abilities in our fish.  

 405 

The link between early environment, GR activity and social competence, as demonstrated by 

our manipulations, can have important consequences for stress responsiveness. Particularly in 

social, group-living species, it is crucial to respond quickly and flexibly to a variety of social 

challenges and opportunities by appropriate behavioural responses [8]. Our results suggest 

that this can be achieved by a short-term reduction of GR activity.  On the other hand, animals 410 

with experimentally blocked GR activity failed to mount a full acute stress response [36,56], 

which in face of certain social stressors (e.g. parent-offspring interaction, social defeat, 

isolation) may also hamper their fitness [63]. This would be even more detrimental under 

conditions of prolonged chronic stress causing increased baseline glucocorticoid (GC) levels 

and a dampened acute stress response [64], which is why a long-term blocking of GR activity 415 

leading to a generally overreactive stress axis should not be expected to occur under natural 

conditions. In conclusion, our results indicate that the influence of early social environment 

on stress responsiveness and regulation of the GR pathway can have far reaching 

consequences influencing individual fitness and social dynamics in group-living animals. 
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Table 1: Results of Experiment 2. Linear mixed models testing the effect of treatment 

(mifepristone or blank) on submissive displays and total aggression by intruders (restrained 

and overt), and on overt aggression received by intruders from owners. Received overt 

aggression was also included as covariate in the LMM on submissive displays. P-values <0.05 

are highlighted in bold.  645 

 

Factors Estimate±SE F p N 

Submissive displays: 

   

37 

Treatment 0.111±0.045 5.672 0.028 

 Received overt aggression -0.014±0.011 1.362 0.252 

 Received overt aggression x 

Treatment 0.031±0.009 9.900 0.005 

 Intruder total aggression: 

   

37 

Treatment 0.012±0.021 0.316 0.581 

 Received overt aggression: 

   

37 

Treatment -0.021±0.008 7.369 0.014   

  



Figure legends 

 

Figure 1: Timeline of (A) experiment 1 and (B) experiment 2. Both experiment started when 650 

brood was free swimming (day 0), 10 days after spawning. In experiment 1, half of the clutch  

was reared for 62 days with parents a helper and same aged siblings (+F), and the other half 

of the clutch was reared with same aged siblings only (−F; ‘experience phase’). During the 

following ‘neutral phase’ (72 days) all fish were kept only with siblings. In experiment 2, all 

clutches were reared with parents for 62 days (‘rearing phase’). Immersions in either 655 

mifepristone or control solution (in balanced order) started on days 95 and 105 and lasted for 

2 days. The social challenges (contest over shelter) started 2 hours after the end of the 

immersions, on days 97 and 107. 

 

Figure 2: (A) Brain gene expression of gr1 in telencephalon and hypothalamus; means±SE are 660 

shown; asterisk indicates significant difference. (B) Egr-1 expression as a predictor of gr1 

expression in two brain areas, telencephalon (open triangles, grey line) and the hypothalamus 

(filled rectangles, black line). 

 

Figure 3: (A) Rate of intruder submission (min-1) relative to the overt aggression received 665 

from the initial shelter owner (min-1). (B) Rate of overt aggression the intruder fish received 

from the initial shelter owner (min-1). Filled circles and oblique line represent mifepristone 

(mif) treatment; open circles and horizontal line represent control (con) treatment. Figures 

display means±SE. Asterisk indicates significant difference. 

 670 

Figure 4: Number of fish in the control (con) and mifepristone (mif) treatment either winning 

(grey bars) or losing (black bars) the interaction in the social challenge test and 

winning/losing the access to the shelter. 
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Sample preparation and qPCR 

 15 

Primers for qPCR 

We measured the gene expression of egr-1 and gr1 in the hypothalamus and in the 

telencephalon of N. pulcher. We used the gene 18S as a control or ' housekeeping' gene. 

Primers for gr1 were the same as used in [1], while 18S primers were the same as used in  [2]. 

Primers for egr-1 were designed from the genome of N. brichardi 20 

(http://cichlid.umd.edu/cichlidlabs/kocherlab/bouillabase.html) using the A. burtoni sequence 

as a search template (NCBI database ID number: AY493348.1, for-

CGGCGATATATCCTAAAATC; rev-TCCCATGCCTATAAACACT ). 

 

Sample preparation 25 

RNA extraction was done from hypothalamus and telencephalon, for each brain part 

separately, using the Qiagen miRNeasy micro kit. We chose this kit, because the samples 

were very small and yielded low amounts of RNA. The protocol was modified to avoid 

sampling miRNAs. To make sure to get an end product free of DNA we carried out an 

DNAse treatment. In brief, we placed the brain tissue in a 1.5 ml Eppendorf tube with 200 µl 30 

of QIAzol lysis reagent (Qiagen), homogenized it and added further 500 µl of QIAzol lysis 

reagent. After that we placed the tube on the benchtop at room temperature (RT) for 5 min, 

after which we added 140 µl of chloroform, we shook the sample for 1 minute, and left it for 

15 min (RT) and centrifuged it at 12 000 g at 4ºC for 20 min. After centrifugation we moved 

http://cichlid.umd.edu/cichlidlabs/kocherlab/bouillabase.html


the upper aqueous phase to a new clean Eppendorf tube, added 140 µl chloroform, shook the  35 

sample for 1 minute and centrifuged it at 12 000 g at 4ºC for 20 min for a second phase 

separation step. After centrifugation we moved again the upper aqueous phase to a new clean 

Eppendorf tube, added 250 µl of 70% Ethanol, mixed the sample thoroughly, and pipetted the 

whole sample onto a RNeasy MinElute spin column (SC, Qiagen). Then we centrifuged the 

SC at 10 000 rpm for 30 s (RT) and discarded the flow-through. After this we carried out an 40 

DNAse treatment by pipetting 350 µl of buffer RWT (prepared with isopropanol, Qiagen) 

onto the spin column, centrifuged the column (10 000 rpm, 30 s, RT), discarded the flow-

through, pipetted 80 µl of DNase I incubation mix (10 µl DNase stock solution + 70 µl Buffer 

RDD, Qiagen) onto the SC and left the tube at RT for 15 min. After the DNAse treatment we 

pipetted 500 µl of Buffer RWT onto the SC, centrifuged it (10 000 rpm, 30 s, RT), reapplied 45 

the flow-through onto the SC, centrifuged the SC (10 000 rpm, 30 s, RT) and discarded the 

flow-through. Then we pipetted 500 µl buffer RPE (Qiagen) onto the SC, centrifuged the SC 

(10 000 rpm, 30 s, RT) and discarded the flow-through. To collect total RNA instead of 

miRNA we pipetted 500 µl of 80% Ethanol onto the SC, left the tube 5 min at RT and then 

centrifuged the SC (10 000 rpm, 30 s, RT) and discarded the flow-through. We repeated this 50 

step once. After the ethanol wash we placed the SC into a new 2 ml collection tube, 

centrifuged it (15 000 rpm, 5 min, RT) with the lid open, removed the SC and placed in into a 

final 1.5 ml collection tube, added 14 µl of RNase free water (Qiagen) to the SC and 

centrifuged the SC (15 000 rpm, 1 min, RT) to elute the RNA. At the end we checked the 

RNA concentration and sample composition with a Nanodrop microvolume 55 

spectrophotometer.  

 

We carried out reverse transcription using the same amount of RNA from each sample (200 

ng RNA from hypothalamus and 304 ng RNA from telencephalon) using a standard 

Superscript protocol (Invitrogen). To confirm the expression of each gene and success of RT, 60 

we used a small amount of cDNA from random samples form both treatments in a PCR using 

both genes and visualised it using an electrophoretic gel. To determine amplification 

efficiency, the absence of primer dimmers and the specificity of amplification for each primer 

pair, we run qPCR experiments and melting curves (50 to 90 Celsius) using standard curves 

consisting of 5 x 10-fold dilutions (of pooled samples) in duplicates (Aubin-Horth et al., 65 

2012). We prepared the primers (Eurofins) and 5 µl of sample cDNA on a 384-well plate 

(axigen) by using an epmotion liquid handler (Eppendorf) which is used for quantitative real-

time PCR experiments following the scaled-down version of the Quantitect SYBRGreen PCR 



kit manufacturer’s protocol (Qiagen) using a 384-well plate qRT-PCR machine (Light Cycler, 

Roche).  We run each sample (from each individual) for hypothalamus and telencephalon in 70 

triplicate for a given gene together with no primers and no template controls. To verify that 

only a single amplified product was present and that no primer dimers were produced, we also 

performed a melting curve on each replicate. We calculated the coefficient of variation (CV) 

of the three replicates and use a CV cut-off of 5% for all genes. The CV value is used for 

checking the repeatability and precision of the qPCR assay. Using the expression of a control 75 

gene (18S) [3], we calculated the relative gene expression for each individual / brain region 

combination.   
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