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Abstract 

An approximate analytical technique for assessing the reliability of a softening Duffing oscillator 

subject to evolutionary stochastic excitation is developed. Specifically, relying on a stochastic 

averaging treatment of the problem the oscillator time-varying survival probability is determined 

in a computationally efficient manner. In comparison with previous techniques that neglect the 

potential unbounded response behavior of the oscillator when the restoring force acquires 

negative values, the herein developed technique readily takes this aspect into account by 

introducing a special form for the oscillator non-stationary response amplitude probability 

density function (PDF). A significant advantage of the technique relates to the fact that it can 

readily handle cases of stochastic excitations that exhibit strong variability in both the intensity 

and the frequency content. Numerical examples include a softening Duffing oscillator under 

evolutionary earthquake excitation, as well as a softening Duffing oscillator with nonlinear 
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damping modeling the nonlinear ship roll motion in beam seas. Comparisons with pertinent 

Monte Carlo simulation data demonstrate the efficiency of the technique.  

1 Introduction 

Assessing the reliability of structural systems has been a persistent challenge in the field of 

engineering dynamics with diverse applications. Clearly, the level of difficulty rises when 

evolutionary stochastic excitation models are considered that exhibit strong variability in both 

the intensity and the frequency content (e.g. Spanos and Kougioumtzoglou 2012, 

Kougioumtzoglou 2013). In this regard, it is often desirable for risk assessment applications to 

estimate the probability (also known as survival probability) that the system response stays 

within a prescribed domain over a given time interval. Several research efforts, ranging from 

purely numerical techniques to approximate analytical methodologies, have focused on 

addressing the aforementioned challenge which is also known in the literature as the first-

passage problem.  

Indicatively, advanced Monte Carlo simulation (MCS) methodologies such as importance 

sampling, subset simulation and line sampling have been developed for reliability assessment 

applications; see Bucher 2011, Au et al. 2007, Au and Beck 2001, Schueller 2004 for some 

indicative references. Note, however, that there are cases of complex systems where MCS can be 

a computationally demanding, or even a prohibitive task; thus, there is a need for developing 

efficient approximate analytical and/or numerical techniques for addressing the first-passage 

problem such as Poisson distribution based approximations (e.g. Vanmarcke 1975, Barbato and 

Conte 2001), probability density evolution schemes (e.g. Li and Chen 2009 ), and stochastic 

averaging/linearization approaches (e.g. Spanos and Kougioumtzoglou 2014a, 2014b]). Further, 

a promising framework for stochastic response determination and reliability assessment of 



structural systems relates to the Wiener path integral (WPI) concept (e.g. Wiener 1921, Feynman 

1948, Chaichian and Demichiev 2001). Recently, a WPI based methodology was developed for 

determining the non-stationary response probability density function (PDF) of 

nonlinear/hysteretic multi-degree-of-freedom-system (MDOF) systems (e.g. Kougioumtzoglou 

and Spanos 2012, 2014a) and of systems comprising fractional derivative elements (Di Matteo et 

al. 2014) Furthermore, a WPI technique was developed in Zhang and Kougioumtzoglou 2014 for 

determining the survival probability and first-passage PDF of nonlinear oscillators in a 

computationally efficient manner. Note in passing that the aforementioned WPI technique should 

not be confused with alternative numerical schemes (commonly referred to as numerical path 

integral schemes) which rely, in essence, on a discrete version of the Chapman-Kolmogorov (C-

K) equation for propagating in time the system response PDF and for determining first-passage 

statistics (e.g. Wehner and Wolfer 1983, Naess and Johnsen 1993, Iourtchenko et al. 2008, Di 

Paola and Santoro 2008, Pirrotta and Santoro 2011, Kougioumtzoglou and Spanos 2013).   

The softening Duffing oscillator is a nonlinear oscillator possessing a linear-plus-cubic 

restoring force so that the spring has a softening characteristic. This oscillator has received 

considerable attention in the literature primarily due to its importance in describing the roll 

motion of a ship model in beam seas (e.g. Spyrou and Thomson 2000, Belenky and Sevastianov 

2007). Note, however, that the softening Duffing oscillator has found applications in diverse 

other fields of engineering dynamics such as structural system vibration isolation (e.g. Fu et al. 

2014), energy harvesting (e.g. Vandewater and Moss 2013) and dynamics of timber structures 

(e.g. Reynolds et al. 2014).   

Further, although several research efforts have focused on studying the oscillator 

response under deterministic excitation (e.g. Szemplinska–Stupnicka 1988, Nayfeh and Sanchez 



1989, Brennan et al. 2008), limited results exist regarding the response analysis of the oscillator 

when it is subjected to stochastic excitation (e.g. Roberts 1986, Roberts and Vasta 2000, Cottone 

et al. 2010). Specifically, most of the results are based on rather heuristic approaches which 

inherently assume stationarity and that the probability the response leaves the stable region is 

extremely small; thus, neglecting important aspects of the analysis such as the possible 

unbounded response behavior when the restoring force acquires negative values. Recently, a 

numerical path integral approach was developed in Kougioumtzoglou and Spanos 2014b for 

determining the survival probability of a softening Duffing oscillator subject to stochastic 

excitation. The unbounded character of the response was rigorously taken into account by 

introducing a special form for the conditional response PDF, while the solution was propagated 

by utilizing a discrete version of the C-K equation. Note, however, that, in general, numerical 

path integral schemes based on discrete versions of the C-K equation can be computationally 

demanding; this is due to the fact that the solution needs to be advanced in short time steps, 

while convolution integrals need to be numerically evaluated at every time step as well.  

In this paper, an efficient approximate analytical technique for determining the survival 

probability of a softening Duffing oscillator subject to evolutionary stochastic excitation is 

developed. Specifically, relying on a stochastic averaging treatment of the problem and 

introducing a special form for the oscillator response PDF, the technique developed in Spanos 

and Kougioumtzoglou 2014b is adapted and generalized herein to account for the special case of 

the softening Duffing oscillator. A significant advantage of the technique is that it can readily 

handle cases of evolutionary stochastic excitation with arbitrary evolutionary power spectrum 

(EPS) forms, even of the non-separable kind. Numerical examples include a softening Duffing 

oscillator under evolutionary earthquake excitation, as well as a softening Duffing oscillator with 



nonlinear damping modeling the nonlinear ship roll motion in beam seas. Comparisons with 

pertinent Monte Carlo simulations demonstrate the reliability of the technique. 

2 Mathematical formulation 

2.1 Softening Duffing oscillator response analysis 

Consider the softening Duffing oscillator whose motion is governed by the equation 

�̈�𝑥 + 2𝜁𝜁0𝜔𝜔0�̇�𝑥 + 𝜔𝜔0
2𝑥𝑥 + 𝜀𝜀𝜔𝜔0

2𝑥𝑥3 = 𝑤𝑤(𝑡𝑡),      𝜀𝜀 < 0,                         (1) 

where a dot over a variable denotes differentiation with respect to time 𝑡𝑡; 𝜀𝜀 denotes a negative 

constant representing the magnitude of the nonlinearity degree; 𝜁𝜁0 is the ratio of critical damping; 

𝜔𝜔0 is the natural frequency corresponding to the linear oscillator (i.e. 𝜀𝜀 = 0) and 𝑤𝑤(𝑡𝑡) represents 

a Gaussian, zero-mean non-stationary stochastic process possessing an evolutionary broad-band 

power spectrum 𝑆𝑆𝑤𝑤(𝜔𝜔, 𝑡𝑡). Examining Eq.(1), it can be readily seen that there exist values of the 

response displacement 𝑥𝑥(𝑡𝑡)  for which the oscillator restoring force 𝐹𝐹(𝑥𝑥) = 𝜔𝜔0
2𝑥𝑥 + 𝜀𝜀𝜔𝜔0

2𝑥𝑥3 =

𝜔𝜔0
2𝑥𝑥(1 + 𝜀𝜀𝑥𝑥2) reaches zero, and even negative values. Clearly, this may lead to unbounded 

system response, and a special treatment is necessary to account for this behavior. Next, bearing 

this qualitative behavior in mind, and focusing on lightly damped systems (i.e. 𝜁𝜁0 ≪ 1), it can be 

argued (e.g. Spanos and Lutes 1980) that for 𝐹𝐹(𝑥𝑥) = 𝜔𝜔0
2𝑥𝑥(1 + 𝜀𝜀𝑥𝑥2) ≥ 0, or equivalently 𝑥𝑥2 ≥

−1/𝜀𝜀, the oscillator response exhibits a pseudo-harmonic behavior described by the equations  

𝑥𝑥(𝑡𝑡) = 𝑎𝑎cos[𝜔𝜔(𝑎𝑎)𝑡𝑡 + 𝜙𝜙(𝑡𝑡)],         (2) 

and  

�̇�𝑥(𝑡𝑡) = −𝜔𝜔(𝑎𝑎)𝑎𝑎sin[𝜔𝜔(𝑎𝑎)𝑡𝑡 + 𝜙𝜙(𝑡𝑡)].         (3) 

In Eqs.(2-3), 𝜙𝜙 and 𝑎𝑎 represent a slowly varying with time phase and a slowly varying with time 

response amplitude, respectively. Manipulating Eqs.(2-3) yields an expression for the oscillator 

response amplitude; that is, 



𝑎𝑎(𝑡𝑡) = �𝑥𝑥2(𝑡𝑡) +
�̇�𝑥2(𝑡𝑡)
𝜔𝜔(𝑎𝑎) .    (4) 

It is primarily the assumption of light damping that allows a combination of deterministic and 

stochastic averaging to be performed next and to approximate the second-order stochastic 

differential equation (SDE) (Eq.(1)) by a first-order SDE governing the response amplitude 

process 𝑎𝑎 . A more detailed presentation/discussion of the assumptions involved and the 

corresponding assumed pseudo-harmonic behavior of the response process 𝑥𝑥(𝑡𝑡) can be found in 

references (e.g. Spanos and Lutes 1980, Roberts and Spanos1986, Zhu 1996, Kougioumtzoglou 

and Spanos 2009). Next, following a stochastic averaging/linearization approach (e.g. 

Kougioumtzoglou and Spanos 2009, Roberts and Spanos 2003) a linearized version of Eq.(1) 

becomes 

�̈�𝑥 + 2𝜁𝜁0𝜔𝜔0�̇�𝑥 + 𝜔𝜔2(𝑎𝑎)𝑥𝑥 = 𝑤𝑤(𝑡𝑡),     (5) 

where the equivalent natural frequency 𝜔𝜔(𝑎𝑎) is given by the expression 

𝜔𝜔2(𝑎𝑎) =
𝜔𝜔0
2

𝜋𝜋𝑎𝑎
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎 cos𝑐𝑐 + 𝜀𝜀(𝑎𝑎 cos𝑐𝑐)3)
2𝜋𝜋

0
𝑑𝑑𝑐𝑐 = 𝜔𝜔0

2 �1 +
3
4
𝜀𝜀𝑎𝑎2� .   (6) 

Examining Eq.(6) it can be readily seen that the stiffness element of the equivalent linear 

oscillator becomes zero at the critical response amplitude value 𝑎𝑎𝑐𝑐𝑐𝑐 = �−4/(3𝜀𝜀). In this regard, 

the requirement 𝑥𝑥2 ≥ −1/𝜀𝜀  for the oscillator of Eq.(1) to have a bounded response is 

equivalently expressed in the following by the requirement 𝑎𝑎 < 𝑎𝑎𝑐𝑐𝑐𝑐 . Bearing this qualitative 

aspect in mind, a special form for the non-stationary response amplitude PDF  𝑝𝑝(𝑎𝑎, 𝑡𝑡)  is 

introduced next; that is, 

𝑝𝑝(𝑎𝑎, 𝑡𝑡) =
𝑎𝑎
𝑐𝑐(𝑡𝑡)

exp �
−𝑎𝑎2

2𝑐𝑐(𝑡𝑡)
�𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡(𝑎𝑎) + 𝑆𝑆(𝑡𝑡)𝛿𝛿(𝑎𝑎 − 𝑎𝑎∞),        (7) 



where 𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡(𝑎𝑎) = 𝑢𝑢(𝑎𝑎) − 𝑢𝑢(𝑎𝑎 − 𝑎𝑎𝑐𝑐𝑐𝑐) , 𝑢𝑢(. )  denotes the unit step function, 𝑐𝑐(𝑡𝑡)  is a time-

dependent coefficient to be determined, 𝛿𝛿(. ) denotes the Dirac delta function, and 𝑎𝑎∞ represents 

an arbitrary response amplitude value with the property 𝑎𝑎∞ ≫ 𝑎𝑎 ∈ [0,𝑎𝑎𝑐𝑐𝑐𝑐]. Further, the time-

dependent factor 𝑆𝑆(𝑡𝑡)  can be determined by applying the normalization condition 

∫ 𝑝𝑝(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑎𝑎∞
0 = 1; this yields  

𝑆𝑆(𝑡𝑡) = 1 −�
𝑎𝑎
𝑐𝑐(𝑡𝑡)

exp �
−𝑎𝑎2

2𝑐𝑐(𝑡𝑡)
�𝑑𝑑𝑎𝑎

𝑎𝑎𝑐𝑐𝑐𝑐

0
= exp�−

𝑎𝑎𝑐𝑐𝑐𝑐2

2𝑐𝑐(𝑡𝑡)
� .         (8) 

Examining the form of the non-stationary response amplitude PDF of Eq.(7), it can be 

readily seen that it comprises two conceptually different terms. The first one represents a 

truncated Rayleigh PDF for amplitude values in the range [0,𝑎𝑎𝑐𝑐𝑐𝑐], whereas the factor 𝑆𝑆(𝑡𝑡) in the 

second term represents the probability at a specific time instant that the response grows 

unbounded, namely the system response asymptotically approaches infinity. The rationale behind 

the choice of the truncated time-dependent Rayleigh PDF of Eq.(7) relates to the fact that the 

linear oscillator stationary response amplitude PDF is a Rayleigh one (see also [42]). In fact, as it 

was shown in Spanos and Lutes 1980, the non-stationary response amplitude PDF of a linear 

oscillator subject to Gaussian white noise excitation is a time-dependent Rayleigh PDF of the 

form 𝑝𝑝(𝑎𝑎, 𝑡𝑡) = 𝑎𝑎
𝑐𝑐(𝑡𝑡)

exp � −𝑎𝑎
2

2𝑐𝑐(𝑡𝑡)�  with the property lim
𝑡𝑡→∞

𝑝𝑝(𝑎𝑎, 𝑡𝑡) = 𝑎𝑎
𝜎𝜎2
𝑟𝑟𝑥𝑥𝑝𝑝 �− 𝑎𝑎2

2𝜎𝜎2
� ; where 𝜎𝜎2 

represents the linear oscillator stationary response variance. In [40] it was further shown that the 

Rayleigh representation is suitable for nonlinear oscillators also and under evolutionary 

stochastic excitation as well. It is pointed out that a significant difference between adopting a 

PDF of the form 𝑝𝑝(𝑎𝑎, 𝑡𝑡) = 𝑎𝑎
𝑐𝑐(𝑡𝑡)

exp � −𝑎𝑎
2

2𝑐𝑐(𝑡𝑡)� in [40] and introducing a PDF form of Eq.(7) in the 

herein developed technique, is that in the former case 𝑐𝑐(𝑡𝑡) accounts for the variance of the non-

stationary response process 𝑥𝑥, whereas in the latter case 𝑐𝑐(𝑡𝑡) is simply a time-varying coefficient 



to be determined. Further, note that for the case where the oscillator is assumed to be initially at 

rest, i.e. 𝑝𝑝(𝑎𝑎0, 𝑡𝑡0 = 0) = 𝛿𝛿(𝑎𝑎0), the amplitude PDF 𝑝𝑝(𝑎𝑎, 𝑡𝑡) values will be concentrated around 

𝑎𝑎 = 0 for the very early part of the oscillation duration, or in other words, lim
𝑡𝑡→0+

𝑐𝑐(𝑡𝑡) = 0 which 

yields  lim
𝑡𝑡→0+

𝑆𝑆(𝑡𝑡) = 0; that is, the probability that the system response will grow unbounded goes 

to zero as 𝑡𝑡 → 0+.  

Next, relying on Eq.(7), it can be argued that an alternative to Eq.(5) equivalent linear 

system is given in the form 

�̈�𝑥 + 2𝜁𝜁0𝜔𝜔0�̇�𝑥 + 𝜔𝜔𝑒𝑒𝑒𝑒2 (𝑡𝑡)𝑥𝑥 = 𝑤𝑤(𝑡𝑡),     (9) 

where the time-dependent stiffness element 𝜔𝜔𝑒𝑒𝑒𝑒2 (𝑡𝑡) is defined as (see also Kougioumtzoglou and 

Spanos 2009, Spanos and Kougioumtzoglou 2014b) 

𝜔𝜔𝑒𝑒𝑒𝑒2 (𝑡𝑡) = 𝐸𝐸[𝜔𝜔2(𝑎𝑎)] = � 𝜔𝜔2(𝑎𝑎)𝑝𝑝(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑎𝑎
∞

0
.     (10) 

Note that taking into account the form of the amplitude PDF of Eq.(7), the time-varying 

equivalent stiffness element of Eq.(10) also has two parts. Specifically, for 𝑎𝑎 ∈ [0,𝑎𝑎𝑐𝑐𝑐𝑐], 𝜔𝜔𝑒𝑒𝑒𝑒2 (𝑡𝑡) 

has a bounded part, i.e. 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡), whereas for  𝑎𝑎 > 𝑎𝑎𝑐𝑐𝑐𝑐  the stiffness element 𝜔𝜔𝑒𝑒𝑒𝑒2 (𝑡𝑡) exhibits 

negative values; thus, yielding negative restoring force values resulting potentially in an 

unbounded system response behavior. In this regard, utilizing Eq.(7) the bounded part 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) 

is determined as 

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) = � 𝜔𝜔2(𝑎𝑎)𝑝𝑝(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑎𝑎

𝑎𝑎𝑐𝑐𝑐𝑐

0
.     (11) 

Analytical determination of the integral in Eq.(11) yields  

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) = 𝜔𝜔0

2 �1 +
3
2
𝜀𝜀𝑐𝑐(𝑡𝑡)(1 − 𝑆𝑆(𝑡𝑡))� .     (12) 



Examining Eq.(12) it can be readily seen that the stiffness element 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) is bounded between 

the values 0  and 𝜔𝜔0
2 . Specifically, assuming that the oscillator is initially at rest yields 

lim
𝑡𝑡→0+

𝑝𝑝(𝑎𝑎, 𝑡𝑡) = 𝛿𝛿(𝑎𝑎0), or in other words, lim
𝑡𝑡→0+

𝑐𝑐(𝑡𝑡) = 0, which yields lim
𝑐𝑐(𝑡𝑡)→0+

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) = 𝜔𝜔0

2. This 

means that for the very early part of the oscillation duration the oscillator features an 

approximately linear restoring force. Further, as time increases and the transient phase progresses, 

the truncated Rayleigh PDF of Eq.(7) broadens as the oscillator exhibits higher amplitude values 

𝑎𝑎(𝑡𝑡). Equivalently, the time-varying coefficient 𝑐𝑐(𝑡𝑡) increases with time, whereas the equivalent 

stiffness part 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) decreases with time. Taking into account Eqs.(7) and (12) it can be readily 

shown that in the extreme case lim
𝑐𝑐(𝑡𝑡)→∞

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) = 0. Thus, the equivalent stiffness part 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵

2 (𝑡𝑡) 

is a non-negative and bounded quantity varying with time between the values 0 and 𝜔𝜔0
2. This is 

in agreement with the fact that 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡) corresponds to amplitude values 𝑎𝑎 ∈ [0,𝑎𝑎𝑐𝑐𝑐𝑐] where the 

oscillator response is assumed to behave in a bounded manner.  

Further, focusing on the case where 𝑎𝑎 ∈ [0,𝑎𝑎𝑐𝑐𝑐𝑐] and based on a stochastic averaging 

approach Eq.(9) can be cast in a first-order SDE governing the evolution in time of the amplitude 

𝑎𝑎(𝑡𝑡); see Spanos and Lutes 1980, Roberts and Spanos 1986, Zhu 1996, Kougioumtzoglou and 

Spanos 2009 for a more detailed presentation. Related to this SDE is the Fokker-Planck (F-P) 

partial differential equation  

𝜕𝜕𝑝𝑝(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1)
𝜕𝜕𝑡𝑡

= −
𝜕𝜕
𝜕𝜕𝑎𝑎

[𝐾𝐾1(𝑎𝑎, 𝑡𝑡)𝑝𝑝] +
1
2
𝜕𝜕2

𝜕𝜕𝑎𝑎2
[𝐾𝐾2(𝑎𝑎, 𝑡𝑡)𝑝𝑝],        (13) 

where 

𝐾𝐾1(𝑎𝑎, 𝑡𝑡) = −𝜁𝜁0𝜔𝜔0𝑎𝑎 +
𝜋𝜋𝑆𝑆�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡), 𝑡𝑡�

2𝑎𝑎𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡)

,         (14) 

and 



𝐾𝐾2(𝑎𝑎, 𝑡𝑡) =
𝜋𝜋𝑆𝑆�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡), 𝑡𝑡�

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡)

.       (15) 

The F-P Eq.(13) governs the evolution in time of the transition PDF 𝑝𝑝(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1)  for 𝑎𝑎 ∈

[0, 𝑎𝑎𝑐𝑐𝑐𝑐] and 𝑎𝑎1 ∈ [0,𝑎𝑎𝑐𝑐𝑐𝑐]. Next, a solution of the associated F-P equation 𝑝𝑝(𝑎𝑎, 𝑡𝑡|𝑎𝑎1 = 0, 𝑡𝑡1 =

0) =  𝑝𝑝(𝑎𝑎, 𝑡𝑡) is attempted in the form of the truncated Rayleigh PDF of Eq.(7). Specifically, 

substituting the truncated Rayleigh PDF into the associated F-P equation, assuming that the 

oscillator is initially at rest (i.e. 𝑝𝑝(𝑎𝑎, 𝑡𝑡 = 0) = 𝛿𝛿(𝑎𝑎)), and manipulating yields the first-order 

nonlinear differential equation 

�̇�𝑐(𝑡𝑡) = −2𝜁𝜁0𝜔𝜔0𝑐𝑐(𝑡𝑡) +
𝜋𝜋𝑆𝑆�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡), 𝑡𝑡�

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡)

,        (16) 

to be solved numerically for the time-varying coefficient 𝑐𝑐(𝑡𝑡). Obviously, once the time-varying 

coefficient 𝑐𝑐(𝑡𝑡) is determined, the time-dependent coefficient 𝑆𝑆(𝑡𝑡) can be evaluated via Eq.(8). 

Further, equations similar to Eq.(16) can be derived for the case of the response amplitude 

transition PDF in a straightforward manner. Specifically, following a similar analysis as in 

Spanos and Solomos 1983, the transition amplitude PDF 𝑝𝑝(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1) is sought in the form 

𝑝𝑝(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1) = �𝑝𝑝𝑡𝑡𝑐𝑐
(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1) + 𝑅𝑅(𝑡𝑡, 𝑡𝑡1)𝛿𝛿(𝑎𝑎 − 𝑎𝑎∞),     0 < 𝑎𝑎1 < 𝑎𝑎𝑐𝑐𝑐𝑐

𝛿𝛿(𝑎𝑎 − 𝑎𝑎∞),     𝑎𝑎1 > 𝑎𝑎𝑐𝑐𝑐𝑐
,    (17) 

where  

𝑝𝑝𝑡𝑡𝑐𝑐(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1) =
𝑎𝑎

𝑐𝑐(𝑡𝑡, 𝑡𝑡1) exp�−
𝑎𝑎2 + ℎ2(𝑡𝑡, 𝑡𝑡1)

2𝑐𝑐(𝑡𝑡, 𝑡𝑡1) � 𝐼𝐼0 �
𝑎𝑎ℎ(𝑡𝑡, 𝑡𝑡1)
𝑐𝑐(𝑡𝑡, 𝑡𝑡1) � 𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡

(𝑎𝑎),     (18) 

and 𝑐𝑐(𝑡𝑡, 𝑡𝑡1) and ℎ(𝑡𝑡, 𝑡𝑡1) are time-varying coefficients to be determined. Further, applying the 

normalization condition ∫ 𝑝𝑝(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1)∞
0 𝑑𝑑𝑎𝑎 = 1 yields  the time-varying coefficient 

𝑅𝑅(𝑡𝑡, 𝑡𝑡1) = 1 −� 𝑝𝑝𝑡𝑡𝑐𝑐(𝑎𝑎, 𝑡𝑡|𝑎𝑎1, 𝑡𝑡1)𝑑𝑑𝑎𝑎
𝑎𝑎𝑐𝑐𝑐𝑐

0
,     (19) 



where 𝐼𝐼0(. ) denotes the modified Bessel function of the first kind and of zero order. In a similar 

manner as before, under the condition that 𝑎𝑎 ∈ [0, 𝑎𝑎𝑐𝑐𝑐𝑐]  and 𝑎𝑎1 ∈ [0,𝑎𝑎𝑐𝑐𝑐𝑐]  substituting the 

bounded part of Eq.(17) into Eq. (13) and manipulating yields the first-order differential 

equations (see Spanos and Solomos 1983 for a more detailed derivation) 

𝑑𝑑𝑐𝑐(𝑡𝑡, 𝑡𝑡1)
𝑑𝑑𝑡𝑡

+ 2𝜁𝜁0𝜔𝜔0𝑐𝑐(𝑡𝑡, 𝑡𝑡1) −
𝜋𝜋𝑆𝑆�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡), 𝑡𝑡�

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡)

= 0,     (20) 

and 

𝑑𝑑ℎ(𝑡𝑡, 𝑡𝑡1)
𝑑𝑑𝑡𝑡

+ 𝜁𝜁0𝜔𝜔0ℎ(𝑡𝑡, 𝑡𝑡1) = 0.     (21) 

Eqs.(20-21) are subject to the initial condition 𝑝𝑝(𝑎𝑎2, 𝑡𝑡1|𝑎𝑎1, 𝑡𝑡1) = 𝛿𝛿(𝑎𝑎2 − 𝑎𝑎1) which states that no 

change of state can occur if the transition time is zero.  

 

2.2 Softening Duffing oscillator reliability assessment 

In this section the approach developed in Spanos and Kougioumtzoglou 2014b is adapted and 

generalized herein to account for the special case of the softening Duffing oscillator and to 

determine the oscillator time-dependent survival probability. This is defined as the probability 

𝑃𝑃𝐵𝐵(𝑡𝑡) that the amplitude 𝑎𝑎 stays below the threshold 𝑎𝑎𝑐𝑐𝑐𝑐 over a given time interval [𝑡𝑡0,𝑇𝑇]; that is, 

𝑃𝑃𝑟𝑟𝑐𝑐𝑃𝑃[𝑎𝑎(𝑡𝑡) ≤ 𝑎𝑎𝑐𝑐𝑐𝑐 , 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 [𝑡𝑡0,𝑇𝑇]|𝑎𝑎(𝑡𝑡0)  < 𝑎𝑎𝑐𝑐𝑐𝑐] . In the following, adopting the dicretization 

scheme applied in [11] the time domain is divided into intervals of the form  

[𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ], 𝑖𝑖 = 1,2 … ,𝑀𝑀, 𝑡𝑡0 = 0, 𝑡𝑡𝑀𝑀 = 𝑇𝑇 𝑎𝑎𝑎𝑎𝑑𝑑 𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑖𝑖−1 + 𝑑𝑑𝑇𝑇 𝑇𝑇𝑒𝑒𝑒𝑒(𝑡𝑡𝑖𝑖−1),     (22) 

where 𝑇𝑇𝑒𝑒𝑒𝑒 denotes the equivalent natural period of the oscillator given by 

𝑇𝑇𝑒𝑒𝑒𝑒(𝑡𝑡) =
2𝜋𝜋

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡)
 ,    (23) 



and 𝑑𝑑𝑇𝑇   is a constant to be selected with the property 𝑑𝑑𝑇𝑇  ∈ (0,1]. In the ensuing analysis, the 

survival probability is determined assuming that it is approximately constant over the time 

interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ]. Clearly, for 𝑑𝑑𝑇𝑇 = 1 the time interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖] corresponds to the equivalent 

time-dependent natural period of the oscillator. The choice is justified by the fact that the 

response amplitude 𝑎𝑎 is assumed to be approximately constant over the interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖], owing 

to its slowly varying character with respect to time (see section 2.1). Thus, the survival 

probability 𝑃𝑃𝐵𝐵(𝑇𝑇) is assumed to be constant over [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖] as well. Of course, if higher accuracy 

is required a smaller value for 𝑑𝑑𝑇𝑇 can be chosen. This is especially important for the case of the 

herein considered softening Duffing oscillator. Specifically, taking into account Eq.(12) it can be 

readily seen that for large enough values of the excitation intensity and/or of the nonlinearity 

magnitude, the equivalent time-varying natural frequency 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) decreases significantly, or 

equivalently considering Eq.(23), the natural period 𝑇𝑇𝑒𝑒𝑒𝑒(𝑡𝑡)  increases considerably. Thus, the 

time interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖  ] of Eq.(22) increases substantially yielding potentially unrealistically large 

time intervals where the survival probability 𝑃𝑃𝐵𝐵(𝑇𝑇) is assumed to be constant. This phenomenon 

can be readily mitigated by selecting a small enough value for the coefficient 𝑑𝑑𝑇𝑇. 

Further, taking into account the discretization of Eq.(22), the survival probability 𝑃𝑃𝐵𝐵(𝑇𝑇) 

is given by the equation  

𝑃𝑃𝐵𝐵(𝑇𝑇 = 𝑡𝑡𝑀𝑀) = �1−𝐹𝐹𝑖𝑖
𝑀𝑀

𝑖𝑖=1
,             (24) 

where 𝐹𝐹𝑖𝑖 is defined as the probability that 𝑎𝑎 will cross the barrier 𝑎𝑎𝑐𝑐𝑐𝑐 in the time interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖], 

given that no crossings have occurred prior to time 𝑡𝑡𝑖𝑖−1. Next, invoking the Markovian property 

for the process 𝑎𝑎 and utilizing the standard definition of conditional probability yields 

                                      𝐹𝐹𝑖𝑖 = 𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃[𝑎𝑎(𝑡𝑡𝑖𝑖)≥𝑎𝑎𝑐𝑐𝑐𝑐 ⋂𝑎𝑎(𝑡𝑡𝑖𝑖−1)≤𝑎𝑎𝑐𝑐𝑐𝑐]
𝑃𝑃𝑐𝑐𝑃𝑃𝑃𝑃[𝑎𝑎(𝑡𝑡𝑖𝑖−1)≤𝑎𝑎𝑐𝑐𝑐𝑐]

= 𝑄𝑄𝑖𝑖−1,𝑖𝑖
𝐻𝐻𝑖𝑖−1

                  (25)  



where 

𝛨𝛨𝑖𝑖−1 = � 𝑝𝑝(𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑑𝑑𝑎𝑎𝑖𝑖−1
𝑎𝑎𝑐𝑐𝑐𝑐

0
,    (26) 

and, by utilizing the relationship 𝑝𝑝(𝑎𝑎1, 𝑡𝑡1;𝑎𝑎2, 𝑡𝑡2) = 𝑝𝑝(𝑎𝑎1, 𝑡𝑡1)𝑝𝑝(𝑎𝑎2, 𝑡𝑡2|𝑎𝑎1, 𝑡𝑡1), 

𝑄𝑄𝑖𝑖−1,𝑖𝑖 = � �� 𝑝𝑝(𝑎𝑎𝑖𝑖, 𝑡𝑡𝑖𝑖|𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑑𝑑𝑎𝑎𝑖𝑖
+∞

𝑎𝑎𝑐𝑐𝑐𝑐
�

𝑎𝑎𝑐𝑐𝑐𝑐

0
𝑝𝑝(𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑑𝑑𝑎𝑎𝑖𝑖−1.     (27) 

Next, taking into account Eqs.(7) and (17), Eqs.(26-27) become  

𝐻𝐻𝑖𝑖−1 = 1 − exp �
𝑎𝑎𝑐𝑐𝑐𝑐2

2𝑐𝑐(𝑡𝑡𝑖𝑖−1)� ,        (28) 

and 

𝑄𝑄𝑖𝑖−1,𝑖𝑖 = � �� �𝑝𝑝𝑡𝑡𝑐𝑐(𝑎𝑎𝑖𝑖, 𝑡𝑡𝑖𝑖|𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)
+∞

𝑎𝑎𝑐𝑐𝑐𝑐

𝑎𝑎𝑐𝑐𝑐𝑐

0

+ 𝑅𝑅(𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖−1)𝛿𝛿(𝑎𝑎𝑖𝑖 − 𝑎𝑎∞)�𝑑𝑑𝑎𝑎𝑖𝑖� 𝑝𝑝(𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑑𝑑𝑎𝑎𝑖𝑖−1,     (29). 

respectively. Taking into account the properties of the Dirac delta function, Eq.(29) becomes 

𝑄𝑄𝑖𝑖−1,𝑖𝑖 = � 𝑅𝑅(𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖−1)
𝑎𝑎𝑐𝑐𝑐𝑐

0
𝑝𝑝(𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑑𝑑𝑎𝑎𝑖𝑖−1,     (30) 

and utilizing Eq.(19) yields  

𝑄𝑄𝑖𝑖−1,𝑖𝑖 = � 𝑝𝑝(𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)
𝑎𝑎𝑐𝑐𝑐𝑐

0
𝑑𝑑𝑎𝑎𝑖𝑖−1

− � �� 𝑝𝑝𝑡𝑡𝑐𝑐(𝑎𝑎𝑖𝑖, 𝑡𝑡𝑖𝑖|𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑑𝑑𝑎𝑎𝑖𝑖
𝑎𝑎𝑐𝑐𝑐𝑐

0
� 𝑝𝑝(𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)

𝑎𝑎𝑐𝑐𝑐𝑐

0
𝑑𝑑𝑎𝑎𝑖𝑖−1.     (31) 

 

Next, considering Eqs.(26), Eq.(31) takes the form 

𝑄𝑄𝑖𝑖−1,𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 − � � 𝑝𝑝𝑡𝑡𝑐𝑐(𝑎𝑎𝑖𝑖, 𝑡𝑡𝑖𝑖|𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑝𝑝(𝑎𝑎𝑖𝑖−1, 𝑡𝑡𝑖𝑖−1)𝑑𝑑𝑎𝑎𝑖𝑖
𝑎𝑎𝑐𝑐𝑐𝑐

0

𝑎𝑎𝑐𝑐𝑐𝑐

0
𝑑𝑑𝑎𝑎𝑖𝑖−1.     (32) 



Relying further on the assumption that 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) follows a slowly varying with time behavior, the 

following approximation over a small time interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖]  is introduced; i.e., 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) =

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡𝑖𝑖−1) for 𝑡𝑡 ∈ [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖]. Next, based on the slowly varying with time behavior of the EPS, 

𝑆𝑆𝑤𝑤(𝜔𝜔, 𝑡𝑡) is also treated as a constant over the interval [𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖]. Further, based on the above 

assumptions, introducing the variable 𝜏𝜏𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1, and applying a first-order Taylor expansion 

around point 𝜏𝜏𝑖𝑖 = 0 , Eqs.(20-21) become (see Spanos and Kougioumtzoglou 2014b for a 

detailed derivation) 

𝑐𝑐(𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖) =
𝜋𝜋𝑆𝑆𝑤𝑤�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡𝑖𝑖−1), 𝑡𝑡𝑖𝑖−1�

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡𝑖𝑖−1) 𝜏𝜏𝑖𝑖,                                (33) 

and 

ℎ(𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖) = 𝑎𝑎𝑖𝑖−1�1 − 2𝜁𝜁0𝜔𝜔0𝜏𝜏𝑖𝑖,                               (34) 

respectively. Furthermore, considering Eqs.(20) and (33) and applying a first-order Taylor 

expansion for the time-varying coefficient 𝑐𝑐𝑖𝑖(𝑡𝑡) around point 𝑡𝑡 = 𝑡𝑡𝑖𝑖−1 yields  

𝑐𝑐(𝑡𝑡𝑖𝑖) = 𝑐𝑐(𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖) + 𝑐𝑐(𝑡𝑡𝑖𝑖−1)(1− 2𝜁𝜁0𝜔𝜔0𝜏𝜏𝑖𝑖).               (35) 

Next, setting 

𝑟𝑟𝑖𝑖2 =
𝑐𝑐(𝑡𝑡𝑖𝑖−1)
𝑐𝑐(𝑡𝑡𝑖𝑖)

(1 − 2𝜁𝜁0𝜔𝜔0𝜏𝜏𝑖𝑖),                                  (36) 

Eq.(35) yields 

𝑐𝑐(𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖) = 𝑐𝑐(𝑡𝑡𝑖𝑖)(1− 𝑟𝑟𝑖𝑖2).                                       (37) 



Further, taking into account Eq.(32) and expanding the Bessel function 𝐼𝐼0(𝑥𝑥) in the form (e.g. 

Spanos and Kougioumtzoglou 2014b)   

𝐼𝐼0(𝑥𝑥) = �
(𝑥𝑥 2⁄ )2𝑘𝑘

𝑘𝑘!𝛤𝛤(𝑘𝑘 + 1)

∞

𝑘𝑘=0

,                                          (38) 

analytical treatment of the involved double integral of Eq.(32) is possible yielding  

𝑄𝑄𝑖𝑖−1,𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 − (𝐴𝐴0 + �𝐴𝐴𝑛𝑛

𝑁𝑁

𝑛𝑛=1

),                                                 (39) 

where 

𝐴𝐴0 = �1 − exp�−
𝑎𝑎𝑐𝑐𝑐𝑐2

2𝑐𝑐(𝑡𝑡𝑖𝑖)(1 − 𝑟𝑟𝑖𝑖2)���1 − exp �−
𝑎𝑎𝑐𝑐𝑐𝑐2

2𝑐𝑐(𝑡𝑡𝑖𝑖−1)(1 − 𝑟𝑟𝑖𝑖2)��
(1 − 𝑟𝑟𝑖𝑖2),     (40) 

 

𝐴𝐴𝑛𝑛 =
𝑟𝑟𝑖𝑖2𝑛𝑛(1 − 𝑟𝑟𝑖𝑖2)
∏ (𝑚𝑚)2𝑛𝑛
𝑚𝑚=1

𝐿𝐿𝑛𝑛 =
𝑟𝑟𝑖𝑖2𝑛𝑛(1 − 𝑟𝑟𝑖𝑖2)

(𝑎𝑎!)2
𝐿𝐿𝑛𝑛 ,       (41) 

and 

𝐿𝐿𝑛𝑛 = �Γ[1 + 𝑎𝑎, 0] − Γ �1 + 𝑎𝑎,
𝑎𝑎𝑐𝑐𝑐𝑐2

2𝑐𝑐(𝑡𝑡𝑖𝑖−1)(1 − 𝑟𝑟𝑖𝑖2)�� �Γ
[1 + 𝑎𝑎, 0]

− Γ �1 + 𝑎𝑎,
𝑎𝑎𝑐𝑐𝑐𝑐2

2𝑐𝑐(𝑡𝑡𝑖𝑖)(1− 𝑟𝑟𝑖𝑖2)�� .  (42) 

In Eq.(42) Γ[𝛾𝛾, 𝑧𝑧]  represents the incomplete Gamma function defined as Γ[𝛾𝛾, 𝑧𝑧] =

∫ 𝑡𝑡𝛾𝛾−1𝑟𝑟−𝑡𝑡𝑑𝑑𝑡𝑡+∞
𝑧𝑧 . A more detailed presentation of the derivations in this section can be found in 

Spanos and Kougioumtzoglou 2014b.  

Concisely, the developed technique comprises the following steps: 

i. Determination of the time-varying coefficient 𝑐𝑐(𝑡𝑡) via numerical solution of Eq.(16).  



ii. Determination of the bounded equivalent time-varying natural frequency 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) via 

Eq.(12). 

iii. Determination of the effective natural period 𝑇𝑇𝑒𝑒𝑒𝑒(𝑡𝑡) (Eq.(23)) and discretization of the 

time domain via Eq.(22). 

iv. Determination of the parameters 𝐻𝐻𝑖𝑖−1 and 𝑄𝑄𝑖𝑖−1,𝑖𝑖 via Eqs.(28) and (39). 

v. Determination of the survival probability 𝑃𝑃𝐵𝐵(𝑇𝑇) via Eq.(24).  

3  Numerical examples 

3.1 Softening Duffing oscillator under earthquake excitation 

As noted in the introductory section, although the softening Duffing oscillator has been widely 

utilized to model the nonlinear ship rolling motion in beam seas (e.g. Spyrou and Thomson  2000, 

Belenky and Sevastianov 2007), it has also been used in conjunction with structural 

dynamics/earthquake engineering applications such as structural system vibration isolation (e.g. 

Fu et al. 2014), energy harvesting (e.g. Vandewater and Moss 2013) and dynamics of timber 

structures (e.g. Reynolds et al. 2014).  In this regard, the non-separable earthquake excitation 

EPS of the form  

𝑆𝑆𝑤𝑤(𝜔𝜔, 𝑡𝑡) = 𝑆𝑆 �
𝜔𝜔
5𝜋𝜋
�
2
𝑟𝑟𝑥𝑥𝑝𝑝(−0.2𝑡𝑡)𝑡𝑡2𝑟𝑟𝑥𝑥𝑝𝑝 �−�

𝜔𝜔
10𝜋𝜋

�
2
𝑡𝑡� ,     (43) 

is considered in this example. This spectrum, plotted in Fig.(1) for 𝑆𝑆 = 1, comprises some of the 

main characteristics of seismic shaking, such as decreasing of the dominant frequency with time 

(e.g. Sabetta and Pugliese 1996). Further, survival probabilities determined via the herein 

developed approximate technique are compared with pertinent Monte Carlo simulation data 

(10,000 realizations). To this aim, realizations compatible with the EPS of Eq.(43) are generated 

based on a spectral representation approach (e.g. Liang et al. 2007), while a standard fourth-order 

Runge-Kutta scheme is employed for solving the nonlinear equation of motion (Eq.(1)). The 



initial distribution chosen for the response amplitude PDF is the Dirac delta function, i.e., 

𝑝𝑝(𝑎𝑎0, 𝑡𝑡0 = 0) = 𝛿𝛿(𝑎𝑎0), assuming the system is initially at rest. In the ensuing analysis the value 

𝑁𝑁 = 60 is chosen in Eq.(39) for the terms to be included in the expansion. 

In Fig.(2), the bounded equivalent natural frequencies (Eq.(17)) of the oscillators with 

parameter values (𝑆𝑆 = 1,𝜔𝜔0
2 = 𝜋𝜋2, 𝜁𝜁0 = 0.01, 𝜀𝜀 = −1),  (𝑆𝑆 = 1,𝜔𝜔0

2 = 𝜋𝜋2, 𝜁𝜁0 = 0.01, 𝜀𝜀 = −2) , 

and (𝑆𝑆 = 1,𝜔𝜔0
2 = 𝜋𝜋2, 𝜁𝜁0 = 0.01, 𝜀𝜀 = −3) are plotted. In Fig.(3), the equivalent natural periods 

for the above oscillators are plotted, whereas in Fig.(4) the survival probabilities determined by 

Eqs.(24) are plotted for various barrier levels  𝑎𝑎𝑐𝑐𝑐𝑐 = �−4/(3𝜀𝜀); comparisons with MCS (10,000 

realizations) demonstrate a quite satisfactory agreement.  

 

Fig.(1). Non-separable earthquake excitation evolutionary power spectrum 



 

Fig.(2). Bounded equivalent time-varying natural frequency 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) for a softening Duffing 

oscillator (𝑆𝑆 = 1,𝜔𝜔0
2 = 𝜋𝜋2, 𝜁𝜁0 = 0.01) under earthquake excitation 

 

 

Fig.(3) Equivalent natural period 𝑇𝑇𝑒𝑒𝑒𝑒(𝑡𝑡) for a softening Duffing oscillator (𝑆𝑆 = 1,𝜔𝜔0
2 = 𝜋𝜋2, 𝜁𝜁0 =

0.01) under earthquake excitation 



 

Fig.(4). Survival probability for a softening Duffing oscillator (𝑆𝑆 = 1,𝜔𝜔0
2 = 𝜋𝜋2, 𝜁𝜁0 = 0.01,𝑑𝑑𝑇𝑇 =

0.125) under earthquake excitation; comparisons with MCS (10,000 realizations) 

 

 

3.2 Softening Duffing oscillator under sea wave excitation 

Considering the rolling motion of a ship in unidirectional beam waves enables one to 

approximate reasonably the motion as uncoupled with respect to other motions such as sway, 

pitch and heave; see Spyrou and Thomson 2000, Belenky and Sevastianov 2007, Arnold et al. 

2004, Ibrahim et al. 2007 for a detailed presentation of the topic. Further, to take into account the 

viscous and vortex components of roll damping, a nonlinear expression for the damping force of 

the form 𝑀𝑀𝐷𝐷 = 2𝜁𝜁0𝜔𝜔0(�̇�𝜙 + 𝜀𝜀1�̇�𝜙3), 𝜀𝜀1 > 0 , where 𝜙𝜙  is the ship rolling angle, is commonly 

adopted in the literature; indicatively, see also Spanos and Chen 1980, Dalzell 1978, Taylan 

2000, Mamontov and Naess 2009 for some alternative polynomial and other approximations. As 

far as the nonlinear restoring moment is concerned, several approximations exist in the literature 

with the expression 𝑀𝑀𝐷𝐷 = 𝜔𝜔0
2(𝜙𝜙 + 𝜀𝜀2𝜙𝜙3), 𝜀𝜀2 < 0 , being among the most commonly adopted 



choices (e.g. Taylan 1999); see also Senjanovic et al. 2000, Surendran et al. 2007. The 

aforementioned expression, although phenomenological, manages to capture to an adequate 

degree the qualitative behavior and basic physics of nonlinear ship rolling motion under beam 

waves (e.g. Spyrou and Thomson 2000, Belenky and Sevastianov 2007). 

 In this regard, consider next the uncoupled ship roll motion given by the equation  

�̈�𝜙 + 2𝜁𝜁0𝜔𝜔0�̇�𝜙 + 𝜀𝜀12𝜁𝜁0𝜔𝜔0�̇�𝜙3 + 𝜔𝜔0
2𝜙𝜙 + 𝜀𝜀2𝜔𝜔0

2𝜙𝜙3 = 𝑤𝑤(𝑡𝑡), 𝜀𝜀1 > 0, 𝜀𝜀2 < 0,     (44)  

where 𝑤𝑤(𝑡𝑡) represents a Gaussian, zero-mean non-stationary stochastic process possessing an 

evolutionary broad-band power spectrum 𝑆𝑆𝑤𝑤(𝜔𝜔, 𝑡𝑡) of the form  

𝑆𝑆𝑤𝑤(𝜔𝜔, 𝑡𝑡) = |𝑔𝑔(𝑡𝑡)|2|𝐹𝐹𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟(𝜔𝜔)|2𝑆𝑆𝐸𝐸(𝜔𝜔).     (45) 

In Eq.(45) 𝑆𝑆𝐸𝐸(𝜔𝜔) denotes the stationary wave energy spectrum, whereas the function 𝐹𝐹𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟(𝜔𝜔) 

relates the wave energy spectrum to the roll moment excitation spectrum (e.g. Jiang et al. 2000). 

Although, in general, wave energy spectra, such as the Jonswap (e.g. Hasselmann et al. 1976), 

are narrow-band with a distinct peak, it has been shown that the resulting roll moment excitation 

spectrum is significantly more broad-band than the corresponding wave energy spectrum (e.g. 

Senjanovic et al. 2000). This broad-band characteristic of the stationary roll moment excitation 

power spectrum |𝐹𝐹𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟(𝜔𝜔)|2𝑆𝑆𝐸𝐸(𝜔𝜔) is in agreement with the assumptions and justifies to a certain 

extent the applicability of the approach developed in section 2. In the following, the Pierson-

Moskowitz (P-M) spectrum Pierson and Moskowitz 1964, i.e. a special case of the Jonswap 

spectrum of the form  

𝑆𝑆𝐸𝐸(𝜔𝜔) =
𝐴𝐴
𝜔𝜔5 exp �−

𝐵𝐵
𝜔𝜔4� ,     (46) 

is used for the wave energy spectrum 𝑆𝑆𝐸𝐸(𝜔𝜔) , where 𝐴𝐴 = 1 × 10−2𝑔𝑔2,𝐵𝐵 = 120(𝑔𝑔
𝑢𝑢

)4,𝑢𝑢 =

15𝑚𝑚/𝑐𝑐,𝑔𝑔 = 9.8 𝑚𝑚/𝑐𝑐2. As far as the function 𝐹𝐹𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟(𝜔𝜔) is concerned, this is chosen to be of the 

rather general form (e.g. Senjanovic et al. 2000) |𝐹𝐹𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟(𝜔𝜔)|2 = 𝐶𝐶𝜔𝜔4  where the constant 𝐶𝐶  is 



associated with beam sea and oscillator characteristics. In the following, the value 𝐶𝐶 = 3 is used. 

Thus, due to the effect of multiplying Eq.(46) with the term “𝜔𝜔4” the resulting stationary roll 

moment excitation spectrum |𝐹𝐹𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟(𝜔𝜔)|2𝑆𝑆𝐸𝐸(𝜔𝜔)  becomes relatively broad-band as shown in 

Fig.(5).  

 

 

Fig.(5). Stationary roll moment excitation spectrum |𝐹𝐹𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟(𝜔𝜔)|2𝑆𝑆𝐸𝐸(𝜔𝜔) 

 

Further, to demonstrate the versatility of the technique for addressing cases of non-stationary 

excitations, a time-modulating function 𝑔𝑔(𝑡𝑡) of the form  

𝑔𝑔(𝑡𝑡) = �0.2 + 0.8 ∗ �
𝑡𝑡
𝑎𝑎

exp �1 −
𝑡𝑡
𝑎𝑎
��
𝑃𝑃
�
0.5

        (47) 

is utilized next, where 𝑎𝑎 = 20, 𝑃𝑃 = 5. As it is shown in Fig.(6) the function 𝑔𝑔(𝑡𝑡) varies slowly 

with time suggesting a low level of non-stationarity. In Fig.(7) the excitation EPS of Eq.(45) is 

plotted. 



Fig.(6). Time-modulating function 𝑔𝑔(𝑡𝑡) 

 

Fig. (7). Time-modulated roll moment excitation spectrum 

It can be readily seen that the only qualitative difference between Eq.(44) and the 

softening Duffing oscillator of Eq.(1) is the nonlinear damping term; thus, following 

Kougioumtzoglou and Spanos 2009 (see also Spanos and Kougioumtzoglou 2014b) an 

equivalent linear oscillator is given in the form  

�̈�𝑥 + 𝛽𝛽𝑒𝑒𝑒𝑒(𝑡𝑡)�̇�𝑥 + 𝜔𝜔𝑒𝑒𝑒𝑒2 (𝑡𝑡)𝑥𝑥 = 𝑤𝑤(𝑡𝑡),     (48) 



where the time-dependent stiffness element 𝜔𝜔𝑒𝑒𝑒𝑒2 (𝑡𝑡) is given by Eq.(10), and the time-dependent 

damping element 𝛽𝛽𝑒𝑒𝑒𝑒(𝑡𝑡) is given by  

𝛽𝛽𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐸𝐸[𝛽𝛽(𝑎𝑎)] = � 𝛽𝛽(𝑎𝑎)𝑝𝑝(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑎𝑎
∞

0
.     (49) 

  Following a stochastic averaging/linearization treatment (e.g. Spanos and Kougioumtzoglou 

2014b, Kougioumtzoglou and Spanos 2009) 𝛽𝛽(𝑎𝑎) in Eq.(49) is given by 

𝛽𝛽(𝑎𝑎) = 2𝜁𝜁0𝜔𝜔0 −
1

𝜋𝜋𝑎𝑎𝜔𝜔(𝑎𝑎)� 𝑐𝑐𝑖𝑖𝑎𝑎𝑐𝑐(𝜀𝜀12𝜁𝜁0𝜔𝜔0(−𝜔𝜔(𝑎𝑎)𝑎𝑎𝑐𝑐𝑖𝑖𝑎𝑎𝑐𝑐)3 + 𝜔𝜔0
2𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐

2𝜋𝜋

0

+ 𝜔𝜔0
2𝜀𝜀(𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐)3)𝑑𝑑𝑐𝑐 = 2𝜁𝜁0𝜔𝜔0 �1 + 𝜀𝜀1

3
4
𝜔𝜔2(𝑎𝑎)𝑎𝑎2� .                (50) 

 

It can be readily seen that the time-dependent damping element 𝛽𝛽𝑒𝑒𝑒𝑒(𝑡𝑡) depends on 𝛽𝛽(𝑎𝑎) which 

in turn depends on the stiffness element 𝜔𝜔2(𝑎𝑎); thus, following the development in section 2, a 

bounded part 𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) is defined as  

𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) = � 𝛽𝛽(𝑎𝑎)𝑝𝑝(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑎𝑎
𝑎𝑎𝑐𝑐𝑐𝑐

0
.     (51) 

Substituting Eq. (50) into (51), and taking into account Eq.(7) yields  

𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) = 2𝜁𝜁0𝜔𝜔0 �1 − 𝑆𝑆(𝑡𝑡) +
3
4
𝜀𝜀1𝜔𝜔0

2[2𝑐𝑐(𝑡𝑡) − 𝑆𝑆(𝑡𝑡)(2𝑐𝑐(𝑡𝑡) + 𝑎𝑎𝑐𝑐𝑐𝑐2 )]

+
9

16
𝜔𝜔0
2𝜀𝜀1𝜀𝜀2[8𝑐𝑐(𝑡𝑡)2 − 𝑆𝑆(𝑡𝑡)(𝑎𝑎𝑐𝑐𝑐𝑐4 + 4𝑐𝑐(𝑡𝑡)𝑎𝑎𝑐𝑐𝑐𝑐2 + 8𝑐𝑐(𝑡𝑡)2)]� .               (52) 

Further, Eqs. (14), (16), (20), (21), and (36) are updated accordingly (see also Spanos and 

Kougioumtzoglou 2014b, Kougioumtzoglou and Spanos 2009) taking the form 

𝐾𝐾1(𝑎𝑎, 𝑡𝑡) = −
1
2
𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡)𝑎𝑎 +

𝜋𝜋𝑆𝑆�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡), 𝑡𝑡�
2𝑎𝑎𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵

2 (𝑡𝑡)
,         (53) 



�̇�𝑐(𝑡𝑡) = −𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡)𝑐𝑐(𝑡𝑡) +
𝜋𝜋𝑆𝑆�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡), 𝑡𝑡�

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡)

 ,       (54)    

𝑑𝑑𝑐𝑐(𝑡𝑡, 𝑡𝑡1)
𝑑𝑑𝑡𝑡

+ 𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡)𝑐𝑐(𝑡𝑡, 𝑡𝑡1) −
𝜋𝜋𝑆𝑆�𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡), 𝑡𝑡�

𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵
2 (𝑡𝑡)

= 0,     (55) 

𝑑𝑑ℎ(𝑡𝑡, 𝑡𝑡1)
𝑑𝑑𝑡𝑡

+
1
2
𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡)ℎ(𝑡𝑡, 𝑡𝑡1) = 0,     (56) 

and  

𝑟𝑟𝑖𝑖2 =
𝑐𝑐(𝑡𝑡𝑖𝑖−1)
𝑐𝑐(𝑡𝑡𝑖𝑖)

(1 − 𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡𝑖𝑖−1)𝜏𝜏𝑖𝑖),      (57) 

respectively. As in section 3.1 survival probabilities are determined via the herein developed 

approximate technique and are further compared with spectral representation based (e.g. Liang et 

al. 2007) pertinent Monte Carlo simulation data (10,000 realizations). The oscillator is assumed 

to be initially at rest, whereas the value 𝑁𝑁 = 60 is chosen in Eq.(39) for the terms to be included 

in the expansion. In Fig.(8), the bounded equivalent natural frequencies 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡)  of the 

oscillators of Eq.(44) with parameter values (𝜁𝜁0 = 0.01,𝜔𝜔0
2 = 𝜋𝜋2, 𝜀𝜀1 = 0.1, 𝜀𝜀2 = −1) , (𝜁𝜁0 =

0.01,𝜔𝜔0
2 = 𝜋𝜋2, 𝜀𝜀1 = 0.1, 𝜀𝜀2 = −2)  and (𝜁𝜁0 = 0.01,𝜔𝜔0

2 = 𝜋𝜋2, 𝜀𝜀1 = 0.1, 𝜀𝜀2 = −4) are plotted. In 

Fig.(10), the equivalent natural periods for the above oscillators are plotted, whereas in Fig.(11) 

the survival probabilities determined by Eq.(24) are plotted for various barrier levels  𝑎𝑎𝑐𝑐𝑐𝑐 =

�−4/(3𝜀𝜀2) ; comparisons with MCS (10000 realizations) demonstrate a quite satisfactory 

agreement.  

 

 



 

Fig.(8). Bounded equivalent time-varying natural frequency 𝜔𝜔𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) for a softening Duffing 

oscillator with nonlinear damping (𝜁𝜁0 = 0.01,𝜔𝜔0
2 = 𝜋𝜋2, 𝜀𝜀1 = 0.1) under sea wave excitation 

 

 

Fig.(9). Bounded equivalent time-varying damping 𝛽𝛽𝑒𝑒𝑒𝑒,𝐵𝐵(𝑡𝑡) for a softening Duffing oscillator 

with nonlinear damping (𝜁𝜁0 = 0.01,𝜔𝜔0
2 = 𝜋𝜋2, 𝜀𝜀1 = 0.1) under sea wave excitation 

 



 

Fig.(10) Equivalent natural period 𝑇𝑇𝑒𝑒𝑒𝑒(𝑡𝑡) for a softening Duffing oscillator with nonlinear 

damping (𝜁𝜁0 = 0.01,𝜔𝜔0
2 = 𝜋𝜋2, 𝜀𝜀1 = 0.1) under sea wave excitation 

 

Fig.(11). Survival probability for a softening Duffing oscillator with nonlinear damping (𝜁𝜁0 =

0.01,𝜔𝜔0
2 = 𝜋𝜋2, 𝜀𝜀1 = 0.1,𝑑𝑑𝑇𝑇 = 0.125) under sea wave excitation; comparisons with MCS 

(10,000 realizations) 

4 Concluding Remarks 



An approximate analytical technique has been developed for determining the survival probability 

of a softening Duffing oscillator subject to evolutionary stochastic excitation. In the context of 

nonlinear stochastic dynamics, the Duffing oscillator with softening nonlinearity has been so far 

treated in a manner which disregarded important aspects of the analysis, such as the unbounded 

behavior the response process experiences when the restoring force acquires negative values. In 

this paper, introducing a special form for the oscillator non-stationary response amplitude PDF 

and relying on stochastic averaging a rigorous, as well as a computationally efficient, treatment 

of the problem has been provided. A significant advantage of the technique relates to the fact that 

it can readily handle cases of stochastic excitations that exhibit strong variability in both the 

intensity and the frequency content. Numerical examples have included a softening Duffing 

oscillator under evolutionary earthquake excitation, as well as a softening Duffing oscillator with 

nonlinear damping modeling the nonlinear ship roll motion in beam seas. Survival probability 

estimates have been determined for various levels of nonlinearity magnitude and compared with 

pertinent Monte Carlo simulations. 
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