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Abstract 4 

The conventional simulation model used in the prediction of long term infrastructure 5 

development systems such as Public Private Partnership (PPP)-Build Operate Transfer (BOT) 6 

projects assume single probabilistic values for all of the input variables. Traditionally, all the input 7 

risks and uncertainties in Monte Carlo Simulation (MCS) are modelled based on probability 8 

theory. Its result is shown by a probability distribution function (PDF) and a cumulative 9 

distribution function (CDF) which are utilized for analyzing and decision making. In reality, 10 

however, some of the variables are estimated based on the expert judgment and others are derived 11 

from historical data. Further, the parameters’ data of the probability distribution for the simulation 12 

model input are subject to change and difficult to predict. Therefore, a simulation model which is 13 

capable of handling both types of fuzzy and probabilistic input variables is needed and vital. 14 

Recently fuzzy randomness, which is an extension of classical probability theory, provides 15 

additional features and improvements for combining fuzzy and probabilistic data to overcome 16 

aforementioned shortcomings. 17 
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Fuzzy Randomness Monte Carlo Simulation (FR-MCS) technique is a hybrid simulation 18 

method used for risk and uncertainty evaluation. The proposed approach permits any type of risk 19 

and uncertainty in the input values to be explicitly defined prior to the analysis and decision 20 

making. It extends the practical use of the conventional MCS by providing the capability of 21 

choosing between fuzzy sets and probability distributions. This is done to quantify the input risks 22 

and uncertainties in a simulation. A new algorithm for generating fuzzy random variables is 23 

developed as part of the proposed FR-MCS technique based on the α-cut. FR-MCS output results 24 

are represented by fuzzy probability and the decision variables are modelled by fuzzy CDF. The 25 

FR-MCS technique is demonstrated in a PPP-BOT case study. The FR-MCS results are compared 26 

with those obtained from conventional MCS. It is shown that FR-MCS technique facilitates 27 

decision making for both the public and private sectors’ decision makers involved in PPP-BOT 28 

projects. This is done by determining a negotiation bound for negotiable concession items (NCIs) 29 

instead of precise values as are used in conventional MCS’s results. This approach prevents 30 

prolonged and costly negotiations in development phase of PPP-BOT projects by providing more 31 

flexibility for decision makers. Both parties could take advantage of this technique at the 32 

negotiation table. 33 

Introduction 34 

A majority of decision making in real projects takes place in an environment in which the 35 

objective functions, the constraints and the consequences of possible actions are not precisely 36 

known. Moreover, the historical data for long term infrastructure development systems are not 37 

normally available and therefore are not directly determinable. Even the available data from 38 

previous projects cannot be used directly since in general each project is unique. Difficulties arise 39 
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if the available information is limited and is of a fuzzy rather than of a stochastic nature. To use 40 

historical data (pervious projects), expert knowledge must be applied. Expert knowledge is 41 

especially useful in the development phase when insufficient data are available for negotiations 42 

(Attarzadeh, 2007 and 2014). 43 

In order to achieve an appropriate simulation modelling in accordance with the nature of the 44 

underlying input data, it is common to use non-deterministic methods. Typically, there are two 45 

types of uncertainties: randomness due to inherent variability and fuzziness due to imprecision and 46 

lack of knowledge and information. The former type of uncertainty is often referred to as objective, 47 

aleatory and stochastic whereas the latter is often referred to as subjective, imprecise and being a 48 

major source of imprecision in many decision processes. The argument in this paper is that there 49 

is a need for a differentiation between these two types of imprecision modelling. The distinction 50 

between aleatory and imprecise uncertainty plays a particularly important role in the quantitative 51 

risk assessment framework (e.g., MCS) that is applied to complex and long term infrastructure 52 

development systems. 53 

Risk (randomness characteristic) that refers to probabilistic features is expressed by stochastic 54 

models (probability theory and statistical methods) and uncertainty (fuzziness characteristic) that 55 

refers to non-probabilistic, also called possibilistic, features is represented by fuzzy sets (theory of 56 

possibility). In this research for simplicity, the former is called stochastic and the latter is called 57 

fuzzy. 58 

A fuzzy set (Zadeh, 1965) is a non-probabilistic method used in subjective modelling which 59 

overcomes the short comings of the probabilistic methods. Briefly, fuzzy approach is used due to 60 

unique aspects of a project, lack of data and subjectivity. In these circumstances subjective 61 
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judgment and linguistic information obtained from the practitioners of a PPP-BOT project, is often 62 

necessary and leads to non-probabilistic uncertainty modelling, or fuzziness. 63 

The distinction between risk (stochastic) and uncertainty (fuzzy) helps to avoid inappropriate 64 

modelling of the non-deterministic input data, especially when both probabilistic and non-65 

probabilistic components appear simultaneously. Because practical situations of risk computation 66 

often involve both types of vagueness, methods are needed to combine these two modes of 67 

ambiguity representation in the propagation step of simulation. Also, a more vigorous investment 68 

decision method that incorporates both risk and uncertainty in simulation and financial modelling 69 

and evaluation is needed. 70 

In the current risk assessment practice, both types of uncertainties are represented by means of 71 

probability distributions. In other words, to deal quantitatively with imprecision, traditionally the 72 

concepts and techniques of probability theory have been employed. This approach has some 73 

shortcomings to overcome uncertainties in decision makings (Ferrero and Salicone (2002, 2004, 74 

2005, 2006, 2007); Klir and Yuan (1995); Klir et al. (1997)). The conventional simulation 75 

approach presented in the literature review is incapable of fuzzy modelling. Hence, the estimation 76 

and simulation of the project data and decision variables can be unreliable. Therefore, other 77 

theories and computational methods that propagate uncertainty and variability in exposure and risk 78 

assessment are needed. 79 

Having a simulation approach that can deal with stochastic and fuzzy process is fundamental 80 

and crucial in risk analysis process of PPP-BOT projects. This paper proposes FR-MCS technique 81 

as an adequate hybrid simulation method for uncertainty and risk modelling and their propagation 82 

in the simulation model. It presents the procedure regarding risk analysis process and uncertainty 83 

propagation in PPP-BOT projects using non-deterministic approaches. The proposed technique 84 
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generalizes conventional MCS and it can be utilized as an alternative in risk assessment. A 85 

comparison of the two approaches relative to their computational requirements, data requirements 86 

and availability is provided. Determining negotiation bound and maximizing gains within the 87 

bound are the main benefit and advantage of this approach. 88 

The focus of this paper is non-probabilistic features of the simulation input data and the 89 

representation of the uncertainty by fuzzy numbers. This approach leads to better informed 90 

decision making in negotiations for main parties involved in long term infrastructure projects. In 91 

the proposed fuzzy randomness simulation model, random variables and random processes are 92 

utilized to cater for the objective input variables and their assessment. Furthermore, fuzzy variables 93 

and fuzzy inference system (FIS) are utilized to cater for the subjective input variables and their 94 

assessment. Fuzzy probability approach is used to combine these two variables in the simulation 95 

process. Then hybrid probabilistic and possibilistic risk and uncertainty assessment technique is 96 

carried out instead of the conventional probabilistic risk assessment (PRA). This approach 97 

introduces a new concept for the uncertain characterization method that is called uncertainty 98 

modelling. 99 

The negotiation simulation problem, including parameters with undeclared and vague 100 

probabilities, is solved by a combination of stochastic simulation and fuzzy analysis. The 101 

simulation output is then captured in terms of fuzzy probability which denotes success/failure in 102 

the project objectives based on the predetermined criteria. In this context, fuzzy probability 103 

approach provides a powerful tool to combine the observed data and judgmental information. 104 

Fuzzy randomness simultaneously describes objective and subjective information as a fuzzy set of 105 

possible probabilistic models over some range of imprecision. This generalized uncertainty and 106 

risk model contains fuzziness and randomness as special cases. 107 
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The output of a risk analysis based on the conventional MCS is therefore a probability 108 

distribution (PDF, CDF) of all probable expected returns. This provides the prospective investors 109 

with an incomplete return profile, or risk profile of the project giving all probable outcomes from 110 

the investment decision. Conversely, the output of a risk and uncertainty analysis based on the 111 

hybrid simulation, FR-MCS, is a set or range of probability distribution (PDF, CDF) of all probable 112 

and possible expected returns. This provides the prospective investors with a complete return 113 

profile or risk and uncertainty profile of the project showing all probable and possible outcomes 114 

from the investment decision. 115 

If sufficient information to generate PDFs and CDFs of the parameters as random variables is 116 

not available, but only expert knowledge or scarce data is available to represent the PDF and CDF 117 

of the parameters as fuzzy numbers with appropriate membership function, then fuzzy set theory 118 

can be utilized to treat the uncertainties in these parameters. In the subjective probabilities 119 

approach, there are two cases for possibility risk assessment. In the first case, instead of describing 120 

the parameters of PDFs and CDFs as crisp value, e.g. mean (µ) and standard deviation (σ) for 121 

normal distribution, they can be described as fuzzy numbers. This case is called Alternative 1, 122 

fuzzy randomness. Alternatively, in the context of PPP-BOT projects, fuzzy numbers and 123 

parameters are directly used to address lack of data or subjective issues. This case is called 124 

Alternative 2, pure fuzzy. 125 

The remaining of this paper is organized as follows: firstly, after a discussion on decision 126 

making under uncertainty and risk, the related works in the literature are reviewed. Secondly, 127 

conventional MCS and value at risk are considered. Thirdly, FR-MCS technique is proposed and 128 

studied in detail. A new algorithm is proposed to generate fuzzy random variables. Finally, FR-129 

MCS is applied for decision making under uncertainty and risk in a real case of PPP-BOT project. 130 
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Literature Review 131 

In the previous researches, the risks and uncertainties affecting PPP-BOT projects are not 132 

properly considered. In the literature, probabilistic approach of risk modelling is well established 133 

for risk analysis (Weiler, 1965; Kalos and Whitlock, 1986; Pawlak, 1991; Ahuja et al., 1994; Maio, 134 

1998; Mun, 2006; Vose, 1996 and 2008; Attarzadeh, 2007). However, the recent criticisms of the 135 

probabilistic characterization of uncertainty claim that traditional probability theory is not capable 136 

of capturing subjective uncertainty. Thus, the use of probability theory is not a reasonable approach 137 

to model the uncertainty. In this case, the possibility theory should be considered (Dubois and 138 

Prade, 1988; Pedrycz and Gomide, 1998; Ferrero and Salicone 2002, 2004, 2005, 2006, 2007; Klir 139 

and Yuan, 1995; Klir et al., 1997; Moore et al., 2009; Attarzadeh, 2014). 140 

Most researchers attempt to eliminate or transform one type of uncertainty to another before 141 

performing a simulation. Wonneberger et al. (1995) Dubois and et al. (2004) presented a possibility 142 

to probability transformation. Since fuzzy logic and probability theory reflect different types of 143 

uncertainty, conceptually this transformation is not acceptable (Pedrycz and Gomide, 1998; 144 

Ferrero and Salicone (2002, 2004, 2005, 2006, 2007); Klir and Yuan (1995); Klir et al. (1997)).  145 

Guyonnet et al. (2003) and Baudrit et al. (2005) proposed a hybrid approach for addressing 146 

uncertainty in risk assessment without transforming one type to another which is critiqued by 147 

Sadeghi et al. (2010). There are three main shortcomings on Guyonnet et al. (2003) and Baudrit et 148 

al. (2005)’s approaches. Firstly, the α-cuts of a fuzzy set cannot always be represented by infimum 149 

and supremum values. Secondly, they do not mention why a 5% probability of getting lower and 150 

higher values of the histograms of the α-cuts will generate the Inf and Sup of the output α-cut. 151 

Thirdly, if only random inputs are considered as the extreme case for this model, the result will 152 

not be similar to the traditional MCS approach (Sadeghi et al., 2010). 153 
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Alternatively Sadeghi et al. (2010) proposed a method for dealing with both fuzzy and 154 

probabilistic uncertainty in the input of a simulation model. However, it is not also free from 155 

limitations and shortcomings. A cautious study exposes some features of the approach that need 156 

further modification and improvement. Firstly, they did not provide any method for fuzzy random 157 

generation to produce appropriate sample sets. Secondly, they have used the probability-possibility 158 

transformation method to transform some of the probability distributions in the simulation input 159 

into fuzzy sets. Thirdly, they perform fuzzy arithmetic to calculate the output in the form of fuzzy 160 

set. Fuzzy arithmetic implementation is not easy and straightforward for a complex simulation 161 

such as a PPP-BOT project. 162 

Since, our goal is not to convert probability density functions into membership functions or 163 

vice versa or to use one in place of the other, no proper direct numerical comparisons for the 164 

calculated risk estimates are provided. Further, no attempt to provide such a comparison due to 165 

inherent differences in the definition, meaning and treatment of the uncertainty as utilized in each 166 

method should be made. 167 

As can be seen, varieties of mathematical models have been developed to address risk and 168 

uncertainty modelling. In this paper, fuzzy randomness (Moller and Beer, 2004) is used as an 169 

appropriate approach. The proposed fuzzy randomness simulation of long term infrastructure 170 

projects is a modification of Moller and Beer (2004). Uncertainty of the simulation input data can 171 

be modelled appropriately with the aid of non-probabilistic methods under possibility theory. 172 

Fuzzy set is common non-probabilistic approach for uncertainty modelling. Furthermore, fuzzy 173 

probability which is the focus of this paper is applied properly when risk and uncertainty appear 174 

simultaneously. 175 
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The possibility theory is utilized directly to reflect uncertainties based on the experts 176 

judgments. Fuzzy set theory is used in combination with probabilistic method to generate hybrid 177 

approach for risk and uncertainty assessment studies. Vague probabilistic models for the uncertain 178 

variables are determined with the aid of fuzzy numbers. However, the proposed algorithm for 179 

generating fuzzy random variable and FR-MCS is simpler to implement because it is an interval 180 

analysis based on the α-level sets (α-cuts) of the input fuzzy sets. FR-MCS is carried out for finding 181 

the Inf and Sup values of the output α-cuts intervals. 182 

Monte Carlo Simulation (MCS) Technique 183 

MCS is a method for analyzing risk propagation, where the goal is to study the outcome 184 

variability of a system (Wittwer, 2004). MCS is currently regarded as a powerful technique for 185 

cash flow analysis and its associated problems, especially for long term infrastructure projects. To 186 

do this the conventional PRA technique is carried out. (Reilly, 2005; Dey and Ogunlana, 2004; 187 

Stock and Watson, 2005). Full statistical analysis of outcomes using MCS, incorporating 188 

sensitivity analysis and scenario analysis (worst/best cases), gives a more realistic risk analysis 189 

and representation in terms of range (confidence intervals) of probable outcomes, and provides the 190 

most detailed comparisons. Sensitivity analysis measures the impact on project outcomes of 191 

changing one or more key input values about which there is uncertainty. (Akintoye et al., 2001a, 192 

b, 2003; Grimsey and Lewis, 2005; Stock and Watson, 2005).  193 

Since MCS can only treat its parameters as random variables by using stochastic models, its 194 

main problem is when its parameters are a mixture of stochastic and fuzzy. MCS is unable to 195 

address this situation. Mathematically, random variable X is represented by: 𝑋𝑅.𝑉. = µ + 𝑧 ∗ 𝑆𝐷 196 

where µ is mean, SD is standard deviation; z is the number of SD. A key task in the application of 197 
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MCS is the generation of the appropriate values of the random variables in accordance with the 198 

respective prescribed probability distributions. This can be accomplished systematically for each 199 

variable by first generating a uniformly distributed random number between 0 and 1, and through 200 

an appropriate transformation the corresponding random number with the specified probability 201 

distribution is then obtained (Ang and Tang, 1984). 202 

Value-at-risk 203 

Value-at-risk (VaR) is related to the percentiles of probability distributions and measures the 204 

predicted maximum portfolio loss at a specified probability level over a certain period. 205 

Mathematically, VaR at a probability level 100(1 − θ)% is defined as the value γ such that the 206 

probability that the negative of the investment return will exceed γ is not more than θ: 207 

𝑉𝑎𝑅1−θ(𝑟̃) = 𝑚𝑖𝑛{γ|𝑃(−𝑟̃ > γ) ≤ θ} 208 

where 𝑟̃ denotes the random variable representing the investment return, and −𝑟̃ is associated with 209 

the portfolio loss. (e.g., θ = 0.05, then 100(1 − θ)% = 95% means that decision maker is 210 

interested in the 95% VaR which is the level of the investment losses that will not be exceeded 211 

with probability of more than 5%). 212 

VaR is the difference between the mean value and a multiple of standard deviations. It can be 213 

expressed as deviations from the mean VaR in units of the standard deviation. Every percentile 214 

can be expressed as a sum of the mean of the distribution and the standard deviation scaled by a 215 

multiplier as confidence coefficient indicating the degree of confidence for an individual risk level 216 

(number of standard deviations) with general form: 𝑉𝑎𝑅(1−θ)  = − µ + β𝜎 and in the case of the 217 

normal distribution: 𝑉𝑎𝑅(1−θ)  = − µ +  𝑍1−θ𝜎, where µ is the mean and σ is the standard 218 

deviation of the underlying data distribution, respectively. The number  𝑍1−θ is the 100(1 − θ)th 219 
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percentile of a standard normal distribution (e.g.:  𝑍0.95 corresponding to the 95th percentile is 220 

1.64). 221 

VaR could be generated for a PPP-BOT project from different perspective at a specific 222 

confidence level. VaR in the PPP-BOT projects context, is defined as the minimum expected value 223 

at a given confidence level. Figure 1 presents the cumulative probability for the VaR of a PPP-224 

BOT project with low risks. In the context of PPP-BOT projects, a project manager as a decision 225 

maker is typically interested in two important statistics issues aimed to decision-making: (1) an 226 

arbitrary and subjective quantile, and (2) the probability of exceeding (or not exceeding) a specific 227 

threshold. In most cases, project managers are concerned in finding the probability that a project 228 

will exceed a certain value (a specific threshold) of interest (meet the target on cost or time). At 229 

the given confidence level, (1-θ)%, the value-at-risk (VaR_θ) is shown in Figure 2. VaR∗ is defined 230 

as acceptable threshold value from party’s perspective based on its objective. It represents the 231 

worth of Value-at-Risk at confidence level of 1 − θ∗. θ∗ represents the confidence level at the 232 

point of VaR∗ (See Figure 1). In this case VaRθ is greater than VaR∗. Value-at-risk at a given 233 

confidence level,1 − θ, is computed by integrating  between −∞ and VaRθ equal to θ, and the 234 

confidence level at the point of VaR∗ is obtained by  integrating between −∞ and VaR∗  (See 235 

Figure 2). 236 

A literature review of the current simulation and financial risk evaluation methods shows that 237 

VaR system provides decision criteria with a confidence level. Ye and Tiong (2000) defined the 238 

NPV-at-risk based on the VaR system as a particular NPV generated for a project at some specific 239 

confidence level. Their definition of NPV-at-risk can be used to derive the decision rule: the project 240 

is acceptable with a confidence level of 1-θ if the NPV-at-risk at given confidence is greater than 241 

zero. According to the requirements of decision rules, there are two approaches to investment 242 
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decision making: calculation of NPV at a given confidence level and calculation of a confidence 243 

level at the point of zero NPV. NPV-at-risk at a given confidence θ and the confidence level at the 244 

point of zero NPV can be obtained using percentile analysis on the cumulative distribution function 245 

(CDF). The NPV-at-risk method takes into account all probable returns resulting from various 246 

risks associated with PPP-BOT projects. 247 

The decision rule emerging from the use of this criterion indicates that a PPP-BOT project 248 

investment should be selected for implementation if its indicator at risk (IND-at-risk) as VaR 249 

expected shortfall exceeds an investor defined limit. As can be seen, although VaR analysis has 250 

been successfully performed in previous research projects, it could only take randomness into 251 

account and cannot deal with fuzziness involved. The following sections will address this essential 252 

gap. 253 

Fuzzy Variables/Numbers 254 

Fuzzy set theory introduced by Zadeh (1965) permits the gradual assessment of the membership 255 

of the elements in relation to a set. It provides a suitable basis for relaxing the need for precise 256 

values or bounds. It allows the specification of a smooth transition for elements from belonging to 257 

a set to not belonging to a set. This is described with the aid of a membership function. Membership 258 

values are assigned to the estimation results by subjective assessment. A fuzzy set 𝐴̃ is defined as 259 

follows; Ã = {(x, µA(x)), x ∈ X, 0 ≤ µA(x) ≤ 1 }. Membership function,µA(x), associates each 260 

x ∈ Ã to a real number in the interval [0,1]. µA(x) represents the membership degree of x in set Ã. 261 

The fuzzy set Ã is referred to fuzzy variable x̃ (Moller and Beer, 2004). A fuzzy number is said to 262 

be normal if there is an x ∈ A such that µA(x) = 1 and it is a convex fuzzy subset of the real line 263 

if  µA(λx1 + (1 − λ)x2) ≥ min(µA(x1), µA(x2)), for λ ∈ [0,1]. The definition of fuzzy random 264 
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variables (FRVs) is due to Kwakernaak (1978, 1979); “fuzzy random variables (FRVs) are random 265 

variables whose values are not real, but fuzzy numbers”. Fuzzy numbers are a generalization and 266 

refinement of intervals for representing imprecise parameters. This modelling corresponds to the 267 

theory of fuzzy random variables and to fuzzy probability theory (Kratschmer, 2001; Beer, 2009). 268 

α-level set (α-cut) 269 

α-level set or α-cut is one of the important features of fuzzy set Ã and is useful in processing 270 

fuzzy variables through engineering computation. For fuzzy set Ã, the crisp sets Aαk
=271 

{ x ∈ X, µA(x) ≥ αk } can be extracted for real numbers αk ∈ (0,1]. These crisp sets are called α-272 

level sets. All α-level sets Aαk
 are crisp subsets of the support S(Ã). The support S(Ã) is defined 273 

as: S(Ã) = {𝑥 ∈ ℝ, µA(x) > 0 }. For a convex fuzzy set, its α-level sets are intervals Aαk
=274 

[𝑥𝛼𝑘
𝐿 , 𝑥𝛼𝑘

𝑅 ], see Figure 3. This aids the illustration of the fuzzy set Ã using its α-level sets as follow: 275 

Ã = {(Aαk
, µ(Aαk

)) , µ(Aαk
) = αk ∀αk ∈ (0,1] } , Aαk

⊆ Aαi
 ∀𝛼𝑖, 𝛼𝑘 ∈ (0,1], 𝛼𝑖 ≤ 𝛼𝑘 276 

If the Fuzzy set Ã is convex, each α-level set Aαk
 is a connected interval [𝑥𝛼𝑘

𝐿 , 𝑥𝛼𝑘
𝑅 ] in which: 277 

𝑥𝛼𝑘
𝐿 = 𝑚𝑖𝑛[𝑥 ∈ 𝑋, µA(x) > αk] , 𝑥𝛼𝑘

𝑅 = 𝑚𝑎𝑥[𝑥 ∈ 𝑋, µA(x) > αk]. 278 

In other words, the α-cut of a continuous convex possibility distribution, Ã, may be understood 279 

as the inequality  Ãαk
= {𝑥|𝑝(𝑥 ∈ [𝑥𝛼𝑘

𝐿 , 𝑥𝛼𝑘
𝑅 ]) ≥ 1 − αk}. 280 

 α-level set of each fuzzy input parameter represents a set of values within an interval with 281 

max-min values which is called Supremum-Infimum values corresponding to specific α-level set. 282 

Fuzzy alpha-cut (FAC) technique uses fuzzy set theory to represent uncertainty or imprecision in 283 

the concerned parameters at different level of uncertainties (α-levels). Uncertain parameters are 284 

considered to be fuzzy numbers with some assumed membership functions. There are many types 285 

of functional formulations for the membership functions. Two common used membership 286 
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functions are triangular and trapezoidal functional formulations and corresponding fuzzy 287 

numbers/variables can be represented by the following notations; Triangular fuzzy number 288 

“T.F.N” x̃𝑇𝑟𝑖: 〈𝑎1, 𝑎2, 𝑎3〉, Trapezoidal fuzzy number “Tr.F.N”  x̃𝑇𝑟𝑎𝑝: 〈𝑎1, 𝑎2, 𝑎3, 𝑎4〉. Figure 4 289 

and Figure 5 show parameter x represented as a triangular and trapezoid fuzzy number with support 290 

of A0. The wider the support of the membership function, the higher the uncertainty. The fuzzy set 291 

that contains all elements with a membership of 𝛼 ∈ [0,1] and above is called the α-cut of the 292 

membership function. At a resolution level of α, it will have support of Aα and the higher the value 293 

of α, the higher the confidence in the parameter.  294 

Defining the α-cut, the interval of confidence at level α, T.F.N is characterized as follows: ∀𝛼 ∈295 

(0,1], 𝑎1 ≤ 𝑎2 ≤ 𝑎3. 296 

𝑓(𝑥; 𝑎1, 𝑎2, 𝑎3) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎1

𝑎2 − 𝑎1
,

𝑎3 − 𝑥

𝑎3 − 𝑎2
) , 0) 297 

𝐴𝛼 = [𝑥𝛼
𝐿 , 𝑥𝛼

𝑅] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎3 − 𝑎2)𝛼 + 𝑎3], 298 

Defining the α-cut, the interval of confidence at level α, Tr.F.N is characterized as follows: ∀𝛼 ∈299 

(0,1], 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4. 300 

𝑓(𝑥; 𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎1

𝑎2 − 𝑎1
, 1,

𝑎4 − 𝑥

𝑎4 − 𝑎3
) , 0) 301 

𝐴𝛼 = [𝑥𝛼
𝐿 , 𝑥𝛼

𝑅] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎4 − 𝑎3)𝛼 + 𝑎4],  302 

The proposed FAC method is based on the fuzzy extension principle (Zadeh, 1975a, b, c, d), 303 

which implies that functional relationships can be extended to involve fuzzy arguments and can 304 

be used to map the dependent variable as a fuzzy set. In simple arithmetic operations, this principle 305 

can be used analytically. However, in most practical modelling applications where relationships 306 

involve partial differential equations and other complex structures, the analytical application of 307 

this principle is difficult. Therefore, interval arithmetic is used to carry out the analysis. Interval 308 
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arithmetic is a method of finding lower and upper bounds for the possible values of a result by 309 

performing a computation in a manner which preserves these bounds. 310 

Fuzzy Randomness-Monte Carlo Simulation (FR-MCS) Technique 311 

To address aforementioned shortcomings, this paper proposes a new simulation method, Fuzzy 312 

Randomness-Monte Carlo simulation (FR-MCS) technique. The structure of FR-MCS technique 313 

is demonstrated in Figure 6. Numerical processing of fuzzy probabilities can be realized with a 314 

combination of stochastic and fuzzy analysis. Whilst a probabilistic model is analyzed using a 315 

traditional stochastic approach, the imprecision of the probabilistic model is transferred to the 316 

simulation results via fuzzy analysis. The purpose of proposing FR-MCS is to provide an 317 

alternative approach to the conventional MCS for dealing with uncertainties in the simulation input 318 

including the parameters of the PDFs using fuzzy set theory. This technique can model 319 

uncertainties involved in simulation input effectively, accompanied with random variables and 320 

deterministic input parameters. For instance 𝑦 = 𝑓(𝑥1, . . . , 𝑥𝑚, 𝑥̃1, … , 𝑥̃𝑛−𝑚 ) is a function of 𝑛 321 

variables includes of both types of non-deterministic variables: risky and uncertain variables, 322 

Risky (randomness) variables group: 𝑥1, . . . , 𝑥𝑚, uncertain (fuzziness) variables 323 

group: 𝑥̃1, … , 𝑥̃𝑛−𝑚.  324 

FR-MCS, which is used to combine multiple PDFs and CDFs in risk and uncertainty 325 

calculations, is a means of quantifying uncertainty or variability in a hybrid fuzzy-probabilistic 326 

framework using simulation. The simulation output, based on the conventional MCS, will be 327 

exactly a CDF. On the other hand, FR-MCS is proposed as a general form of MCS technique. The 328 

output of a FR-MCS analysis is a collection of CDFs for each simulation and it results in a bound 329 

of CDFs (CDF series). 330 
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FR-MCS combines MCS (Random Sampling) with the extension principle of fuzzy set theory 331 

(Zadeh, 1975a, b, c, d; Gerla and Scarpati, 1998; Moller and Beer 2004, 2008). FR-MCS utilizes 332 

a combination of probability and possibility theories to include probabilistic and possibilistic 333 

information in the risk analysis model. Fuzzy approach provides the likelihood of occurrence of 334 

each risk value for all the possible risks. The risk value corresponding to a membership value of 335 

1.0 is the most possible/likely risk. Higher uncertainty and variability involved can be seen from 336 

the supports of the membership functions of fuzzy risks generated for various percentiles. The 337 

resulting fuzzy risk has a larger range of possibilities (i.e., the support of the membership function 338 

is larger). Fuzzy calculations take into consideration all possible combinations of parameter values 339 

rather than random sampling. Similar to conventional MCS, the variability in the random variables 340 

of the risk equation (i.e., exposure frequency/probability and consequence) is treated using normal 341 

PDFs and the uncertainty associated with them is treated by using fuzzy numbers for the 342 

parameters of these random variables. That is, the means and the standard deviations of these PDFs 343 

are modelled as fuzzy numbers. Similar to MCS, the independence of the input parameters has 344 

been assumed in generating fuzzy random variables and producing fuzzy randomness; the output 345 

may be overestimated when using fuzzy randomness for a function with dependent input 346 

parameters. Algorithms are required to generate random variables and fuzzy random variables to 347 

implement FR-MCS. In the following section an algorithm is proposed for generating fuzzy 348 

random variables. 349 

FR-MCS technique results in multiple CDF of function y which is called F(y) series. It 350 

considers the spread of CDFs membership functions. Based on the resulted F(y) series, lower 351 

bound, 𝐹(𝑦), as inferior value and upper bound, 𝐹(𝑦), as superior value of CDFs are determined. 352 
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The appropriate membership degree, µ, corresponding to each CDF is then determined. This 353 

procedure is demonstrated in Figure 7. 354 

The FR-MCS produces two CDFs (i.e., one for upper and one for lower bound) for each alpha-355 

cut level except for alpha-cut 1.0 since the lower and the upper bound at alpha-cut 1.0 is the same. 356 

For each specific value of y e.g.: y', based on the lower and upper bounds, fuzzy probability of y' 357 

can be calculated and drawn. Also, for each membership degree, lower and upper bound of CDFs 358 

are determined. Consequently, a corresponding fuzzy probability is established which is 359 

represented as a confidence level interval [CLα
L, CLα

R] as demonstrated in Figure 8. For each 360 

specific value of F(y) as a confidence level e.g.: θ, based on the lower and upper bounds, fuzzy 361 

probability of y' can be calculated and drawn. Further, for each membership degree, lower and 362 

upper bound of CDFs are determined. Consequently, a corresponding fuzzy probability is 363 

established which is represented as negotiation interval   ,',' , RL yy  as demonstrated in Figure 9. 364 

Compatible decisions that are made using conventional MCS can be made based on FR-MCS 365 

technique only for the case of pure random variables of simulation input. In the case of pure 366 

probabilistic in the input of FR-MCS technique the result of simulation will be a CDF. As the 367 

number of fuzzy variables in the simulation input is increased, the CDF function in the simulation 368 

output increases in fuzziness Consequently CDF bound is wider. In the case of pure fuzzy random 369 

variables of simulation input, the results are similar with the fuzzy set theory analysis. In this case 370 

the CDF bound is widest. The fuzzy inference mechanism is an applicable technique for this case. 371 

Mamdani and Sugeno are two types of fuzzy inference mechanism (Sivanandam et al., 2007). The 372 

Mamdani style is the most famous type of fuzzy controllers. α-cut levels signify uncertain level 373 

and represent the amount of uncertainty involved. On the contrary, α-confidence levels signify 374 

risky level and represent the amount of risk involved. Thus if the decision maker is optimistic and 375 
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assumes high precision (µ = 1), he works with the cores of the fuzzy intervals, but, if is cautious, 376 

he may choose µ = 0 and use corresponding supports. In the case of in between, a corresponding 377 

value within µ = [0, 1] is chosen by decision maker. 378 

The method of decision making using fuzzy sets is based on the confidence level between 0 379 

and 1 to obtain a range of values for the simulation final output. This range is calculated by finding 380 

the α-cut at the value of 1 minus the confidence level. In this manner, the decision maker can 381 

choose from a range of values (interval) instead of a crisp output which is the result of conventional 382 

MCS. An arbitrary quantile can also be determined using the inverse of the fuzzy CDF. Fuzzy 383 

CDF has the unique feature of representing both fuzzy and probabilistic (uncertainty and risk) in 384 

a single diagram. 385 

Algorithm for generating Fuzzy random variable 386 

The procedure of generating fuzzy random variable is not the same as that for generating 387 

random variable described earlier, in the section Monte Carlo Simulation technique. Current 388 

literature provides some knowledge on specific procedure for generating fuzzy random variable. 389 

Moller and Beer (2004, 2008) proposed a procedure which could be summarized as follows. They 390 

argue that fuzzy variables need to be treated separately. The fuzzy variables (assume n fuzzy 391 

variables), for each alpha-level (alpha cut), form an n-dimensional hypercube. For each point and 392 

vector out of this hypercube Monte Carlo can be performed with the random variables and a CDF 393 

obtained for the result, e.g. a failure probability or some other probability of interest. It is now 394 

needed to select another point out of the hypercube and repeat the Monte Carlo simulation to get 395 

another result. The aim of repeating this analysis is to find those points in the hypercube, which 396 

give max and min final results (e.g. the failure probability). This is called global optimization 397 

(Moller and Beer, 2004, 2008). When some knowledge about simulation function is available, this 398 
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analysis may be significantly simplified. For example, when the simulation function is monotonic 399 

in every direction, then the extreme points are the corners of a hypercube. Only these points need 400 

to be checked for optimization. 401 

In this paper, a modified and simplified procedure is developed for generating fuzzy random 402 

variable. Its procedure is explained in detail for two main types of fuzzy numbers and variables: 403 

triangular fuzzy number T.F.N, x̃𝑇𝑟𝑖: 〈𝑎1, 𝑎2, 𝑎3〉, trapezoidal fuzzy number Tr.F.N, 404 

x̃𝑇𝑟𝑎𝑝: 〈𝑎1, 𝑎2, 𝑎3, 𝑎4〉 in 4 operative steps for a hybrid function of both randomness and fuzziness 405 

type of variables: 𝑦 = 𝑓(𝑥1, … , 𝑥𝑚, 𝑥̃1, … , 𝑥̃𝑛−𝑚 ). Randomness variables group: 𝑥1, … , 𝑥𝑚, which 406 

is characterized by probability distributions, and fuzziness variables group: 𝑥̃1, … , 𝑥̃𝑛−𝑚 which is 407 

represented in terms of possibility distributions (membership function) measuring the degree of 408 

possibility that the linguistic variables are. 409 

Step 1: The membership function is cut horizontally at a finite number of α-levels between 0 and 410 

1, α = {α1, α2, … , α𝑖 , α𝑗 , . . . , α𝑁}. Consequently, for each α-level, an interval (a boundary) of 411 

concerned fuzzy values is achieved. For each α-level of the parameter, the model is run to 412 

determine the minimum and maximum possible values of the concerned output. This information 413 

is then directly used to construct the corresponding membership function (fuzziness) of the output 414 

which is used as a measure of uncertainty. If the output function is monotonic with respect to the 415 

dependent fuzzy variables, the process is rather simple since only two simulations will be enough 416 

for each α-level (one for each boundary in left and right). Otherwise, optimization routines have 417 

to be carried out to determine the minimum and maximum values of the output for each α-level. 418 

This approach is used to model the interested output subject to imprecise boundary conditions and 419 

properties. The α-cut can be repeated for a number of iteration, N. Apply α-level set (α-cut) for a 420 

set of α to a fuzzy number, T.F.N or Tr.F.N (Figure 10). The resulted intervals are varied, when 421 
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the membership function is characterized by convex and concave shape instead of common linear 422 

shape. 423 

Step 2: The boundary and resulted interval corresponding to α-level is demonstrated as follows: 424 

Aα = [𝑥α
𝐿 , 𝑥α

𝑅], The resulted intervals for T.F.N are characterized as follows: 425 

Aα = [𝑥α
𝐿 , 𝑥α

𝑅] = [(𝑎2 − 𝑎1)α + 𝑎1, −(𝑎3 − 𝑎2)α + 𝑎3] , ∀α ∈ (0,1]. 426 

The resulted intervals for Tr.F.N are characterized as follows: 427 

Aα = [𝑥α
𝐿 , 𝑥α

𝑅] = [(𝑎2 − 𝑎1)α + 𝑎1, −(𝑎4 − 𝑎3)α + 𝑎4] , ∀α ∈ (0,1]. 428 

Step 3: Generate random variables from resulted intervals: Aα = [𝑥α
𝐿 , 𝑥α

𝑅], corresponding to each 429 

set of  α- level (α-cut) e.g.: 𝑥α
𝑟 = 𝑥α

𝐿 + 𝑅𝐴𝑁𝐷() ∗ (𝑥α
𝑅 − 𝑥α

𝐿), (This procedure is demonstrated in 430 

Figure 10). 𝑅𝐴𝑁𝐷() is a function to generate random numbers in the interval (0,1), by assuming 431 

a uniform distribution function. These random numbers multiply by the range of resulted intervals. 432 

Having more information, other type of distribution function may apply. 433 

Step 4: Take the resulted values in steps 1, 2 and 3, including the boundary values in left and right 434 

and random variables generated for each α-level, as a set of Fuzzy random variables: 𝐹𝑅𝑉 =435 

{𝑥α
𝐿 , 𝑥α

𝑟 , 𝑥α
𝑅}. 436 

Fuzzy probability distribution 437 

Fuzzy probability provides a suitable framework for a realistic modelling of risk and 438 

uncertainty to ensure that both risky and uncertain input data type is appropriately reflected in 439 

computation results. In the framework of fuzzy probability, both the probabilistic and the 440 

possiblistic data can be considered simultaneously and transferred and reflected combinedly and 441 

jointly to the results (Moller and Beer, 2004; Baudrit et al., 2006). 442 
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The processing of fuzzy randomness simulation can be realized with a combination of 443 

stochastic simulation and fuzzy analysis in a nested form. Fuzzy numbers with appropriate 444 

membership function as uncertain variables are input parameters for a fuzzy analysis. With each 445 

set of crisp values and random variables for the simulation input parameters, a traditional stochastic 446 

analysis is performed. The extreme results from the various conventional stochastic computations 447 

and also incorporating the uncertain variables subsequently define the bounds on probability or 448 

fuzzy probabilities respectively. This issue is important for the loss caused by catastrophic risks, 449 

project bankruptcy and negotiation failure. Negotiation failure and bankruptcy probability are 450 

obtained as fuzzy variables. Their range of possible values reflects the non-probabilistic feature of 451 

uncertain variables from the specification of the probabilistic model for the input variables. This 452 

topic is discussed in full by Moller and Beer (2004). For the propagation of probabilistic and 453 

possibilistic uncertainty information, the conventional MCS technique (Kalos & Whitlock, 1986) 454 

can be combined with the extension principle of fuzzy set theory (Zadeh, 1965, 1975a, b, c, d) by 455 

means of the following 3 main steps: 456 

I. Repeat Monte Carlo sampling of the probabilistic variables to process their risk (generating 457 

random variable). 458 

II. Apply fuzzy interval analysis to process the uncertainty connected with the possibilistic 459 

variables. 460 

III. Employ fuzzy probability procedure for joint propagation of probabilistic and possibilistic 461 

uncertainty. 462 

A possibility value α as uncertain level is selected. The generic kth random values for ith 463 

iteration, 𝑥𝑘
𝑖 , 𝑘 = 1, … , 𝑚, are sampled by Monte Carlo from the probabilistic distributions. A 464 

fuzzy set 𝜋𝑙
𝑓
, estimate of possibility distribution for 𝑙𝑡ℎ possibilistic variables 𝑥̃𝑙

𝑖 of 𝑦 = 𝑓(𝑋), 𝑙 =465 



Page | 22 
 

1, … , 𝑛 − 𝑚, is constructed by fuzzy interval analysis according to the assumed α-level. After m 466 

repeated samplings of the probabilistic variables, 𝑥𝑘
𝑖 , the fuzzy set estimates 𝜋𝑙

𝑓
, 𝑙 = 1,2, … , n −467 

m, are combined with those of random values to give an estimate of 𝑦 = 𝑓(𝑋) as a fuzzy random 468 

variable (or random possibility distribution) according to the rules of evidence theory (Shafer, 469 

1976). This is repeated for a number of iteration (i=1,..,N). 470 

The steps of the fuzzy probability distribution procedure are as follows: (Baraldi and Zio, 2008; 471 

Guyonnet et al., 2003) 472 

Step 1: Select a possibility value α and the corresponding cut of the possibility distributions 473 

(𝜋1
𝑓

, … , 𝜋𝑛−𝑚
𝑓

) as intervals of possible values Aα = [𝑥α
𝐿 , 𝑥α

𝑅] of the possibilistic variables 474 

𝑥̃𝑙
𝑖  (𝑥̃1

𝑖 , … , 𝑥̃𝑛−𝑚
𝑖 ). 475 

Step 2: Sample the ith realization of the probabilistic variables 𝑥𝑘
𝑖 (𝑥1

𝑖 , … , 𝑥𝑚
𝑖 ). (Generating random 476 

variable for ith iteration) 477 

Step 3: Interval calculation, compute the supremum and infimum (largest and smallest) values of 478 

𝑦𝑖 = 𝑓(𝑥1
𝑖 , … , 𝑥𝑚

𝑖 , 𝑥̃1
𝑖 , … , 𝑥̃𝑛−𝑚

𝑖  ), denoted by 𝑓𝛼
𝑖 and 𝑓

𝛼

𝑖
, respectively. 479 

Step 4: Return to Step 2 to generate a new realization of the random variables. The above procedure 480 

is repeated for i = 1,2, … , N; at the end of the procedure an ensemble of realizations of fuzzy 481 

intervals is obtained, that is, (𝜋1
𝐹 , … , 𝜋𝑁

𝐹 ). 482 

Step 5: Return to step 1, choose another α-cut and repeat the process for new α-cut; after having 483 

repeated steps 2 to 4 for all the α-cuts of interest, the fuzzy random realization (fuzzy interval) 𝜋𝑖
𝐹  484 

of 𝑦 = 𝑓(𝑋) is obtained as the collection of the values 𝑓𝛼
𝑖 and 𝑓

𝛼

𝑖
. Then, take the extreme values 485 

of 𝑓𝛼
𝑖 and 𝑓

𝛼

𝑖
, found in this step, as lower and upper limits of α-cuts of 𝑦 =486 
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𝑓(𝑥1, … , 𝑥𝑚, 𝑥̃1, … , 𝑥̃𝑛−𝑚 ) and denote them by 𝐹𝛼
𝑖  and 𝐹𝛼

𝑖
.  In other words, 𝜋𝑖

𝐹  is defined by all its 487 

α-cut intervals [𝐹𝛼
𝑖, 𝐹𝛼

𝑖
] (Refer to Figure 12). 488 

Hence, a fuzzy probability distribution function F̃(𝑥) can be formulated as a fuzzy set of 489 

traditional probability distribution function F(𝑥) of random variable X, which is given by: 490 

F̃(x) = {(F(x), µ(F(x))) | X ∈ X̃, µ(F(x)) = µ(X) } 491 

The functional values of F̃(x) are fuzzy variables and possess membership functions. Interval 492 

probabilities Fα(x) = [Fαl(x), Fαr(x)] weighted by the membership degree µ(Fα(x)) that can be 493 

obtained for each α-level. This interval probability contains the probability of all possible states 494 

describing the occurrence of X ∈ X̃. Thus, a fuzzy probability function can be described as a fuzzy 495 

set of interval probabilities. For introducing the F̃(x) in numerical procedures the α-discretization 496 

is applied. This leads to fuzzy functional value for each specified x. 497 

F̃(x) = {
(Fα(x), µ(Fα(x))) | Fα(x) = [Fα l(x), Fα r(x)],

 µ(Fα(x)) = α ∀α ∈ (0,1]
} 498 

Fα r(x) = max F̃(x) , Fα l(x) = min F̃(x) 499 

The fuzzy probability distribution function F̃(x) of X̃ may thus be interpreted as being the set of 500 

the probability distribution functions F(x) of all originals X of X̃ with the membership values 501 

µ(F(x)). This representation is suitable for numerical processing of fuzzy probabilistic variables. 502 

The description of fuzzy probability distribution functions can be realized with the aid of fuzzy 503 

variables for parameters in the probability functions. For instance, if the underlying uncertain 504 

random variable X is assumed to be normal distribution N(𝑚̃, 𝜎̃) with fuzzy expected value 𝑚̃𝑥 =505 

⟨5.5,6.0,6.8⟩ and fuzzy standard deviation 𝜎̃𝑥 = ⟨0.8,1.0,1.1⟩, then fuzzy PDF and fuzzy CDF can 506 

be specified as, 507 
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f̃(x) =
1

𝜎̃√2𝜋
𝑒

−0.5[
(𝑥−𝑚̃𝑥)

𝜎𝑥
]

2

, F̃(x) =
1

𝜎̃√2𝜋
∫ 𝑒

−0.5[
(𝑡−𝑚̃𝑥)

𝜎𝑥
]

2

𝑑𝑡
𝑥

−∞

 508 

and are shown in Figure 11. The functional value of F̃(x) at a specified value x is a fuzzy variable. 509 

For instance, F̃(6) = ⟨0.15,0.5,0.75⟩. All PDFs and CDFs used to describe the variability in a 510 

fuzzy probability model have a certain degree of uncertainty (µ: membership function). 511 

Reliability modelling and evaluation with Fuzzy data 512 

Fuzzy probability can be generalized as is represented in Figure 12. Two ways to fuzzify the 513 

series curves F̃(x) are shown. F(x) and F(x) are upper and lower CDF bounds. F1(x) is the 514 

expected CDF. As a rule, minimization and maximization algorithm can be used for finding Inf 515 

and Sup values of a general model. However, when the simulation model is a simple monotonic 516 

function, as in our study, the Inf and Sup values are identified directly without using minimization 517 

or maximization algorithms. 518 

When it is known which combination of parameters from the alpha-level sets of fuzzy variables 519 

in simulation input leads to the boundary/extremes curves in simulation output, any software can 520 

be utilized to plot the output, fuzzy probability curves, and gray out the area in between. When it 521 

is unknown which combination of parameters leads to the extremes, the best way to get a figure is 522 

to perform FR-MCS over the parameter space and plot curve by curve for the result. Now we 523 

consider the membership function of the series curves F̃(x) as follows. 524 

µ(F(x)) = 0, 𝑖𝑓 F(x) ≤ F(x), µ(F(x)) = 0, 𝑖𝑓 F(x) ≥ F(x) 525 

µ(F(x)) =
F(x)−F(x)

F1(x)−F(x)
, 𝑖𝑓 F(x) ≤ F(x) ≤ F1(x), 526 

µ(F(x)) =
F(x)  − F(x)

F(x) − F1(x)
, 𝑖𝑓 F1(x) ≤ F(x) ≤ F(x) 527 
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and using the α-cuts: 528 

F̃𝛼(x) = [F(x) + (F1(x) − F(x)) 𝛼, F(x) − (F(x) − F1(x)) 𝛼] 529 

In this section it was shown that when an uncertainty is associated with the estimates, the 530 

simulation output function and other related concepts can be modelled using the intervals of 531 

confidence, and fuzzy numbers instead of the probabilistic characterization. The extension 532 

principle, which is one of the most important concepts of fuzzy set theory, is used to conduct 533 

arithmetic operations on interval of confidence and fuzzy numbers. As can be seen the simulation 534 

and financial evaluation method based on the Value-at-risk and uncertainty (VaRaU) approach, 535 

which incorporates both risk and uncertainty analysis using confidence and uncertain levels and 536 

discount rate concept give more equitable results for all parties involved in the PPP-BOT project. 537 

Therefore by these simulation results, negotiations objectives will be promptly obtained. 538 

Illustrative Case Study- MCS vs. FR-MCS 539 

Typically case studies assume deterministic assumption. FR-MCS has been employed to 540 

estimate volatility of parties’ objectives like volatility of investment project value and the impact 541 

of uncertainties on the project cost estimation, contract decision variables/indicators and the 542 

optimal outcomes. This is to simulate cash flows of a PPP-BOT investment project with 543 

appropriate risk and uncertainty models and further to describe fuzzy probability distribution of 544 

cost estimation and returns by iterating large number of simulations. The application of the FR-545 

MCS model for the evaluation of uncertainties including demand uncertainty for a BOT toll road 546 

and bridge project is demonstrated with a realistic case study. To achieve this, a special program 547 

has been developed using MATLAB (The MathWorks, Inc., Natick, Massachusetts). In this study 548 

the focus is on the representation of the uncertainties by fuzzy numbers. Basic input data of the 549 
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project comprises deterministic, uncertain and risky parameters. Uncertain and risky parameters 550 

consist of three components i.e. macroeconomic indicators and indexes, fuzzy-stochastic variables 551 

(FSV) and negotiable concession items (NCIs). Main project data including expected value of 552 

parameters and their distribution or membership function is tabulated in Table 1.  553 

The expected value of parameters is taken from The Toolkit for Public-Private Partnerships in 554 

Roads and Highways provided by the World Bank-PPIAF V1.1 (World Bank, 2009). The 555 

distribution or membership function of parameters is taken based on the expert knowledge through 556 

interview. The fuzzy approach has been used as a measurement of uncertainty, e.g., demand 557 

uncertainty (See Figure 13). The level of uncertainty is represented and considered by membership 558 

value between 0 and 1. The membership function of operating revenue by considering demand 559 

uncertainty is represented in Figure 14. 560 

Figure 15 and Figure 16 represent PDF and CDF of total project costs for the same case resulted 561 

from conventional MCS by considering no uncertainties. The result is just a PDF/CDF that does 562 

not take into account any uncertainty. Consequently by taking a value for probability (θ) in CDF, 563 

it will result in only a deterministic value. Based on this result, as engineering implication, a 564 

decision maker will come to the negotiation table with a deterministic value of the decision 565 

variables. 566 

In this case a total of 1000 iterations are performed to carry out a FR-MCS and generate a 567 

fuzzy CDFs. Figure 17 illustrates three dimensional view of fuzzy CDF for total project costs 568 

(TPC) resulting from the FR-MCS that are generated by MATLAB. Figure 18 and Figure 19 569 

represent the x-y and x-z views of fuzzy CDF resulted in Figure 17 respectively. 570 



Page | 27 
 

The procedure is the same for the decision variables. Figure 20 shows the three dimensional 571 

view of fuzzy CDF for the debt service cover ratio (DSCR) resulting from the FR-MCS. Figure 21 572 

and Figure 22 represent the x-y and x-z views of fuzzy CDF resulted in Figure 20 respectively. 573 

As can be seen, the result of conventional MCS is a CDF which has no uncertainty taken into 574 

account while the result of FR-MCS is fuzzy CDFs and has taken uncertainties into account i.e. 575 

means to take into account the possibility that uncertainty may increase or reduce. As a result, by 576 

taking a specific value of the confidence level in fuzzy CDF, an interval for the decision variable 577 

will be obtained. On the contrary, by the same approach for CDF resulted from MCS, just a 578 

deterministic value will be obtained. Decision makers are more comfortable with an effective 579 

interval (negotiation bound) for NCIs on the negotiation table (Ferrero and Salicone (2002, 2004, 580 

2005, 2006, 2007); Klir and Yuan (1995); Klir et al. (1997)). 581 

Sensitivity analysis of FR-MCS technique 582 

The results of FR-MCS are sensitive to fuzziness of the input variables. In the absence of 583 

fuzziness (pure probability in inputs) the result of FR-MCS is exactly equal to a CDF which is the 584 

same with the results of conventional MCS. In the absence of randomness (pure fuzziness in 585 

inputs) the result of FR-MCS is represented by CDF bound. It can be shown that the fuzziness of 586 

the output expands when the number of fuzzy random variables increases. Reasonably, for smaller 587 

number of fuzzy random variables, the CDF function has less fuzziness, and the CDF bound is 588 

narrower. More detailed discussion was illustrated in Figure 8 and Figure 9. 589 

Decision making based on the generated Fuzzy probability distributions  590 

Similar to the CDF function concluding from conventional MCS (refer to value-at-risk 591 

section), a decision maker can use the fuzzy CDF of the decision variable/indicator in the 592 

simulation output to do decision making on not just probability but also possibility of acquired 593 
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desirable output (i.e. probability and possibility that the decision variable/indicator will be 594 

more/less than a specific amount/value) and probability and possibility of success. Furthermore, it 595 

can be used to find an appropriate contingency value (arbitrary quantile) of project decision 596 

variable/indicator. Figure 23 represents intersecting of x-y view of fuzzy CDF of return on equity 597 

(EIRR) resulted from FR-MCS with hurdle rate. The hurdle rate or minimum acceptable rate of 598 

return (MARR) is defined as the minimum rate of return required on a project to cover costs and 599 

profit. It indicates the probability that the rate of return on equity will not be less than hurdle rate, 600 

14%. This probability is in the form of a fuzzy set, as shown in Figure 23. The Level Rank 601 

defuzzification method (Moller and Beer, 2004) is used to convert the output fuzzy variable into a 602 

crisp value. By defuzzifying the output in Figure 23, it can be stated the probability that the rate 603 

of return on equity will not be less than hurdle rate, 14%, is around 79.5% (=1-20.5%). 604 

The arbitrary quantile in a Fuzzy CDF is represented as a fuzzy set. Figure 24 illustrates 605 

intersecting of x-y view of fuzzy CDF of return on equity (EIRR) resulted from FR-MCS with 606 

specific confidence levels, 0.10 and 0.50, to find the appropriate contingency values (arbitrary 607 

quantile). It represents the 10th and 50th quantile of return on equity (EIRR). By defuzzifying the 608 

outputs in Figure 24, it can be stated that with 10% and 50% probability the rate of return on equity 609 

are around 17.10% and 15.20% respectively which are much greater than hurdle rate, 14%. 610 

As can be seen, the FR-MCS technique and obtained fuzzy CDF have improved decision 611 

making based on the conventional MCS by incorporating the uncertainties involved in the project. 612 

FR-MCS helps and facilitates decision makers to come up with negotiation interval for negotiable 613 

concession items (NCIs) that takes players’ characteristics into account. 614 
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Conclusion Remarks 615 

Probability theory has been successfully used in modelling random variables; however, this is 616 

insufficient for modelling imprecise information. Currently, the most popular method to carry out 617 

the PRA is MCS and its analysis. Typically the data required to conduct the conventional MCS is 618 

not readily available or it is too costly to collect the required data. However, available data can be 619 

utilized through other mathematical tools such as fuzzy set theory. Thus, it is risk analysts 620 

responsibility to investigate, gather and efficiently include all the existing information using the 621 

most appropriate methods and mathematical tools.  622 

This paper introduced a new approach to simulation techniques under risk and uncertainty, 623 

which is termed FR-MCS technique. The aim of this development is for a generalization of the 624 

conventional MCS to make decisions based on the hybrid simulation approach of randomness and 625 

fuzziness of input parameters. The basic requirement of FR-MCS is to be able to randomly produce 626 

random/fuzzy/crisp number in simulation procedure. Consequently, determine inferior and 627 

superior of output values of simulation function by using fuzzy probability (fuzzy CDF). The 628 

proposed methodology has been introduced to integrate fuzzy set theory into PRA studies. α-cut 629 

method is used to perform algorithm for generating fuzzy random variable and to implement FR-630 

MCS. Practically, given enough iterations of FR-MCS technique, it will produce a sufficiently 631 

small error. 632 

The main idea proposed here is to utilize subjective probabilities, i.e. available information to 633 

represent the uncertain variable as a fuzzy number, and produce outputs which reflect all variable 634 

and uncertain information (i.e., uncertainty due to randomness, imprecision or due to both). In this 635 

approach, random variables parameters are treated as fuzzy numbers (Alternative 1). Alternatively, 636 

by using subjective approach, random variables are treated as pure fuzzy numbers (Alternative 2). 637 
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For cases where the necessity of conventional MCS and its analysis is justified but necessary 638 

information to conduct this analysis does not exit, the new approach proposed in this paper can be 639 

conducted as an alternative to conventional MCS. The proposed FR-MCS technique allows fuzzy 640 

and probabilistic uncertainty to be considered simultaneously for the risk analysis of PPP-BOT 641 

projects. Depending on the project’s host country, the decision maker can adjust the conservative 642 

nature of FR-MCS using lower percentiles of risks and uncertainties. As for FR-MCS, the decision 643 

making will be based on the intervals while in MCS the decision making is based on the 644 

deterministic values. This advantage facilitates decision making of long term infrastructure 645 

projects.  646 

The proposed technique is applied to a BOT toll road and bridge case, whose data requirements 647 

are comparatively less difficult or easier to obtain. The membership functions of the parameters of 648 

the fuzzy random variables can be formed using imprecise, vague information or expert judgment. 649 

Thus, application of the FR-MCS approach to risk assessment problems instead of conventional 650 

MCS approaches may be more realistic for many PPP-BOT cases and may provide decision 651 

makers with sufficient information for decision making. The results of conventional MCS and its 652 

analysis cannot easily be compared with fuzzy probability results of FR-MCS. It is not 653 

straightforward. Extensions of possibilistic concepts to various situations of reliability evaluation 654 

expand these results in the PPP-BOT context. 655 
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Tables 851 

Table 1 Basic input data of the case study 852 

Input data Expected 

Value 

Distribution/Membership function 

Macroeconomic indicators and indexes   

Project Economic life, project life cycle (yrs) 40 Deterministic 

Costs regime during construction - <0.1,0.3,0.5,0.1> 

Escalation rate during construction/inflation rate during 

operation period (%) 

4 Log Normal distribution, LnN(4,1) 

Amortization period (yrs) 20 Deterministic 

Tax rate (%) 30 Deterministic 

Gov. discount rate (%) 8.16 Deterministic 

Cost of debt (%) 5.25 Deterministic 

Cost of equity (hurdle rate) (%) 14 Deterministic 

Loan Interest rate (%) 7.5 Deterministic 

Loan repayment period/debt maturity (yrs) 10 Deterministic 

Annual growth rate of unit price (%) 5 Normal distribution, N(5,1) 

Annual growth rate of quantity of demand (%) 5 Normal distribution, N(5,1) 

Cost of finance coefficient for Pre concession period costs 

calculation 

0.05 Deterministic 

Cost of tender coefficient for Pre concession period costs 

calculation 

0.05 Deterministic 

Annual revenue coefficient for O&M calculation 0.07 Deterministic 
Increasing rate of annual growth rate of unit price (%) 10 Normal distribution, N(10,1) 

Expected Base Cost coefficient for Asset value calculation 

at transfer date 

0.1 Normal distribution, N(0.1,0.01) 

Fuzzy-Stochastic Variables (FSV)   

Total project costs (M$) 170 Normal distribution, N(170,25) 

Operation and maintenance costs (M$/year) 1.8907 Normal distribution, N(1.8907,0.25) 

Annual growth rate of O&M costs (%) 5 Normal distribution, N(5,1) 

Initial daily traffic (vehicles/day) 20,000 Fuzzy variable: Tr.F.N, 〈19,178, 20,000, 

20,000, 20,822〉 
Quantity of demand (vehicle per year) 7,300,000 Fuzzy variable: Tr.F.N, 〈7,000,000, 

7,300,000, 7,300,000, 7,600,000〉 
Operating revenue (M$/year) 27.01 Fuzzy variable: Tr.F.N, 〈25.9, 27.01, 

27.01, 28.12〉 
Pre concession period (yrs) 2 Log Normal distribution, LnN(2,0.5) 

Negotiable concession items (NCIs)   

Construction period (yrs) 4  

Operation period (yrs) 21  

Concession period (yrs) 25  

Unit price of services (service in first year of operation) ($) 3.7  

Debt, Equity (%) 40%,30%  

Government subsidy/contribution, grant fraction, Royalty 30%  
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