
ClassiNet – Predicting Missing Features for
Short-Text Classification

Danushka Bollegala Vincent Atanaso Takanori Maehara
Ken-ichi Kawarabayashi

Abstract
Short and sparse texts such as tweets, search engine snippets, product

reviews, chat messages are abundant on the Web. Classifying such short-
texts into a pre-defined set of categories is a common problem that arises
in various contexts, such as sentiment classification, spam detection, and
information recommendation. The fundamental problem in short-text
classification is feature sparseness – the lack of feature overlap between a
trained model and a test instance to be classified. We propose ClassiNet
– a network of classifiers trained for predicting missing features in a given
instance, to overcome the feature sparseness problem. Using a set of
unlabeled training instances, we first learn binary classifiers as feature
predictors for predicting whether a particular feature occurs in a given
instance. Next, each feature predictor is represented as a vertex vi in
the ClassiNet where a one-to-one correspondence exists between feature
predictors and vertices. The weight of the directed edge eij connecting a
vertex vi to a vertex vj represents the conditional probability that given
vi exists in an instance, vj also exists in the same instance.

We show that ClassiNets generalize word co-occurrence graphs by con-
sidering implicit co-occurrences between features. We extract numerous
features from the trained ClassiNet to overcome feature sparseness. In
particular, for a given instance x, we find similar features from ClassiNet
that did not appear in x, and append those features in the representation
of x. Moreover, we propose a method based on graph propagation to
find features that are indirectly related to a given short-text. We evalu-
ate ClassiNets on several benchmark datasets for short-text classification.
Our experimental results show that by using ClassiNet, we can statisti-
cally significantly improve the accuracy in short-text classification tasks,
without having to use any external resources such as thesauri for finding
related features.

1 Introduction
Short-texts are abundant on the Web and appear in various different formats.
For example, in Twitter, users are constrained to a 140 character upper limit

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/156963989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

when posting their tweets (Kwak et al., 2010). Even when there are no strict up-
per limits, users tend to provide brief answers in QA forums, review sites, SMS,
email, and chat messages (Cong et al., 2008; Thelwall et al., 2010). Unlike
lengthy responses that take time to both compose and to read, short responses
have gained popularity particularly in social media contexts. Considering the
steady growth of mobile devices that are physically restricted to compact key-
boards, which are suboptimal for entering lengthy text inputs, it is safe to predict
that the amount of short-texts will continue to grow in the future. Consider-
ing the importance and the quantity of the short-texts in various web-related
tasks, such as text classification (dos Santos and Gatti, 2014; kun Wang et al.,
2012), and event prediction (Sakaki et al., 2010), it is important to be able to
accurately represent and classify short-texts.

Compared to performing text mining on longer texts (Guan et al., 2009; Su
et al., 2011; Yogatama and Smith, 2014), for which dense and diverse feature
representations can be created relatively easily, handling of shorter texts poses
several challenges. First, the number of features that are actually present in a
short-text will be a small fraction of the set of all features that exist in all of
the train instances. Although this feature sparseness is problematic even for
longer texts, it is critical for shorter texts. In particular, when the diversity
of the feature space increases as with longer n-gram lexical features, (a) the
number of occurrences of a feature in a given instance (i.e., term frequency), as
well as (b) the number of instances in which a particular feature occurs (i.e.,
document frequency), will be small. Therefore, it is difficult to reliably estimate
the salience of a feature in a particular class in supervised learning tasks.

Second, the shorter length means that there is less redundancy in terms of
the features that exist in a short-text. Consequently, most of the related words
of a particular word might be missing in a short-text. For example, consider a
review on iPhone 6 that says “I liked the larger screen size of iPhone 6 compared
to that of its predecessor ”. Although iPhone 6 plus, a product similar to iPhone
6, has also a larger screen compared to its predecessors, this information is
not included in this short review. On the other hand, we might observe such
positive sentiments associated with iPhone 6 plus but not with iPhone 6 in
other train instances, which will result in a high positive score for iPhone 6 plus
in a classifier trained from those train reviews. Unfortunately, we will not be
able to infer that this particular user would also likely be satisfied with iPhone
6 plus, thereby not recommending iPhone 6 plus for this user.

To overcome the above-mentioned challenges encountered when handling
short-texts, we propose a feature expansion method analogous to the query ex-
pansion methods used in information retrieval (IR) (Salton and Buckley, 1983)
to improve the agreement between search queries input by the users and docu-
ments indexed by the search engine (Carpineto and Romano, 2012). We assume
short-texts are already represented using some feature vectors, which we refer
to as instances in this paper. Lexical features such as unigrams or bigrams of
words, part-of-speech (POS) tag sequences, and dependency relations have been
frequently used in prior work on text classification. Our proposed method does
not assume any particular type of features, and can be used with any discrete

2

feature set. First, we train binary classifiers which we call feature predictors
for predicting whether a particular feature vi occurs in a given instance x. For
example, given the previously discussed short review, we would like to predict
whether iPhone 6 plus is likely to occur in this review.

The training instances required to learn feature predictors are automatically
selected from unlabeled texts. Specifically, given a feature vi, we select texts in
which vi occurs as the positive training instances for learning a feature predictor
for vi. On the other hand, negative training instances for learning the feature
predictor for vi are randomly sampled from the unlabeled texts, where vi does
not occur. Using those positive and negative training instances we learn a
binary classifier to predict whether vi occurs in a given instance. Any binary
classification algorithm, such as support vector machines, logistic regression,
naive Bayes classifier etc. can be used for this purpose, and it is not limited to
linear classifiers. We define ClassiNet as a directed weighted graph G(V, E ,W) of
feature predictors, where each vertex vi ∈ V corresponds to a feature predictor.
The directed edge eij ∈ E from vi to vj is assigned the weight 1 ≥ wij ≥ 0,
which is the conditional probability that given vi is predicted for a particular
instance, vj is also predicted for the same instance.

It is noteworthy that we obtain both positive and negative instances for
learning feature predictors from unlabeled data, and do not require any labeled
data for the target task. For example, consider the case that we are creating a
ClassiNet to find missing features in sentiment classification. In this case, the
target task is sentiment classification. However, we do not require any labeled
data for the target task such as sentiment annotated reviews when creating the
ClassiNet that we are subsequently going to use for finding missing features.
Therefore, the training of ClassiNets can be conducted in a purely unsuper-
vised manner, without requiring any manually labeled data for the target task.
Moreover, the decoupling of ClassiNet training from the target task enables us
to use the same ClassiNet to expand feature vectors for different target tasks.
As we discuss later in Section 3.4, ClassiNets can be seen as a generalized ver-
sion of the word co-occurrence graphs that have been well-studied in the NLP
community (Mihalcea and Radev, 2011). However, ClassiNets consider both
explicit as well as implicit co-occurrences of words in some context, whereas
word co-occurrence graphs are limited to explicit co-occurrences.

Given a ClassiNet created from unlabeled data as described above, we pro-
pose several strategies for finding related features for a given instance that do
not occur in the original instance. Specifically, we compare both local feature
expansion methods that consider the nearest neighbours of a particular feature
in an instance (Section 4.1), as well as global feature expansion methods that
propagate the features that exist in an instance over the entire set of vertices
in ClassiNet (Section 4.2). We evaluate the performance of the proposed fea-
ture expansion methods on short-text classification benchmark datasets. Our
experimental results show that the proposed global feature expansion method
significantly outperforms several local feature expansion methods„ and several
sentence-level embedding methods on multiple benchmark datasets proposed for
evaluating short-text classification methods. Considering that (a) ClassiNets

3

can be created using unlabeled data, (b) the same ClassiNet can be used in
principle for predicting features for different target tasks, (c) arbitrary features
could be used in the feature predictors, not limited to lexical features, we believe
that ClassiNets can be applied to a broad-range of machine learning tasks, not
limited to short-text classification.

Our contributions in this paper can be summarised as follows:

• We propose a method for learning a network of feature predictors that can
predict missing features in feature vectors. The proposed network, which
we refer to as the ClassiNet, can be learnt in an unsupervised manner,
without requiring any labeled data for the target task in which we are
going to apply the ClassiNet to expand features (Section 3.2).

• We propose an efficient method to learn ClassiNets from large datasets.
Specifically, we show that the edge-weights of ClassiNets can be computed
efficiently using locality sensitive hashing (Section 3.3).

• Having proposed ClassiNets, we describe its relationship to word co-occurrence
graphs that have a long history in the NLP community. We show that
ClassiNets can be considered as a generalised version of word co-occurrence
graphs (Section 3.4).

• We propose several methods for finding related features for a given in-
stance using the created ClassiNet. In particular, we consider both local
methods (Section 4.1) that consider the nearest neighbours in ClassiNet
of the features that exist in an instance, as well as global methods (Sec-
tion 4.2) that consider all vertices in the ClassiNet.

2 Related Work
Feature sparseness is a common problem that is encountered in various text min-
ing tasks. Two main approaches for overcoming the feature sparseness problem
in short-texts can be identified in the literature: (a) embedding the train/test
instances in a dense, lower-dimensional feature space thereby reducing the num-
ber of zero-valued features in the instances, and (b) predicting the values of the
missing features. Next, we discuss prior work that belong to each of those two
approaches.

An effective technique frequently used in prior work on short-texts to over-
come the feature sparseness problem is to represent the texts in some lower-
dimensional dense space, thereby reducing the feature sparseness. Several meth-
ods have been used to obtain such lower-dimensional representations such as
topic-models (kun Wang et al., 2012; Yan et al., 2013; Yang et al., 2015), cluster-
ing (Dai et al., 2013; Rangrej et al., 2011), and dimensionality reduction (Blitzer
et al., 2006; Pan et al., 2010). Wang et al. (kun Wang et al., 2012) used latent
dirichlet allocation (LDA) to identify features that are useful for identifying a
particular class. Higher weights are assigned to the identified features, thereby

4

increasing their contribution towards the classification decision. However, ap-
plying LDA at sentence-level is problematic because the number of words in a
sentence is much smaller than that in a document. Consequently, Yan et al. (Yan
et al., 2013) proposed the bi-term topic model that models the co-occurrence
patterns between words accumulated over the entire corpus. An alternative
solution that uses an external knowledge-base in the form of a phrase list is
propsed by Yang et al. (Yang et al., 2015) to overcome the feature sparseness
problem when learning topics from short-texts. The phrase list is automatically
extracted from the entire collection of short-texts in a pre-processing step.

Cluster-based methods have been proposed for representing documents to
overcome the feature sparseness problem. First, some clustering algorithm is
used to cluster the documents into a group of clusters. Next, each document
is represented by the clusters to which it belongs. Dai et al. (Dai et al., 2013)
used a hierarchical clustering algorithm with purity control to generate a set
of clusters, and use the similarity between a document and each of the clusters
as augmented features to enrich the document representation. Their method
significantly improves the classification accuracy for short web snippets in a
support vector machine classifier. Feature mismatch is a fundamental prob-
lem in domain adaptation, where we must learn a classifier using labeled data
from a source domain and apply it to predict labels for the test instances in a
different target domain. Pan et al. (Pan et al., 2010) proposed Spectral Fea-
ture Alignment (SFA), a method to overcome the feature mismatch problem in
cross-domain sentiment classification. They created a bi-partite graph between
domain-specific and domain-independent features, and then used a spectral clus-
tering method to obtain a domain-independent lower-dimensional embedding.

In structural correspondence learning (SCL) (Blitzer et al., 2007, 2006), a set
of features that are common to both source and the target domains, referred to
as pivots, is identified using mutual information with the sentiment label. Next,
linear classifiers that can predict those pivots are learnt from unlabeled reviews.
The weight vectors corresponding to the learnt linear classifiers are arranged as
rows in a matrix, on which subsequently singular value decomposition is applied
to compute a lower-dimensional projection. Feature vectors representing train
source reviews are projected into this lower-dimensional space, in which a binary
sentiment classifier is trained. During test time, feature vectors representing
test target reviews are also projected to the same lower-dimensional space and
the trained binary classifier is used to predict the sentiment labels. However,
domain adaptation methods such as SCL and SFA require data from at least
two (source vs. target) different domains (e.g. reviews on products in different
categories) to overcome the missing feature problem, whereas in this work we
assume the availability of data from one domain only.

Instead of representing documents using lexical features, which often results
in high-dimensional and sparse feature vectors, by embedding documents in
low-dimensional dense spaces we can effectively overcome the feature sparse-
ness problem (dos Santos and Gatti, 2014; Le and Mikolov, 2014; Lu and Li,
2013). These methods jointly learn character-level or word-level embeddings as
well as document-level embeddings (Hill et al., 2016a; Kiros et al., 2015) such

5

that the learnt embeddings capture the similarity constraints satisfied by a col-
lection of short-texts. First, each word in the vocabulary is assigned a fixed
dimensional word vector. We can initialize the word vectors randomly or us-
ing pre-trained word representations. Next, the word vectors are updated such
that we can accurately predict the co-occurrences of words in some context,
such as a window of tokens, a sentence, a paragraph, or a document. Different
loss functions encoding different co-occurrence measures have been proposed for
this purpose (Mikolov et al., 2013; Pennington et al., 2014). As shown later in
Section 6.2, ClassiNets perform competitively against sentence-level embedding
methods on several short-text classification tasks.

A single word can have multiple senses. For example, the word bank could
mean a financial institution or a river bank. Therefore, it is inadequate to rep-
resent different senses of a word using a single embedding (Camacho-Collados
et al., 2015; Hu et al., 2016; Iacobacci et al., 2015a; Johansson and Nieto Piña,
2015; Li and Jurafsky, 2015; Reisinger and Mooney, 2010; Song et al., 2016).
Several solutions have been proposed in the literature to overcome this limita-
tion and learn sense embeddings, which capture the sense related information
of words. For example, Reisinger and Mooney (2010) proposed a method for
learning sense-specific high dimensional distributional vector representations of
words, which was later extended by Huang et al. (2012) using global and local
context to learn multiple sense embeddings for an ambiguous word. Neelakantan
et al. (2014) proposed a multi sense skip-gram (MSSG), an online cluster-based
sense-specific word representations learning method, by extending Skip-Gram
with Negative Sampling (SGNG) (Mikolov et al., 2013). Unlike SGNG, which
updates the gradient of the word vector according to the context, MSSG predicts
the nearest sense first, and then updates the gradient of the sense vector.

Aforementioned methods apply a form of word sense discrimination by clus-
tering a word contexts, before learning sense-specific word embeddings based on
the induced clusters to learn a fixed number of sense embeddings for each word.
In contrast, a nonparametric version of MSSG (NP-MSSG) (Neelakantan et al.,
2014) estimates the number of senses per word and learn the corresponding sense
embeddings. On the other hand, Iacobacci et al. (2015b) used a Word Sense Dis-
ambiguation (WSD) tool to sense annotate a large text corpus and then used an
existing prediction-based word embeddings learning method to learn sense and
word embeddings with the help of sense information obtained from the Babel-
Net (Iacobacci et al., 2015b) sense inventory. Similarly, Camacho-Collados et al.
(2015) used the knowledge in two different lexical resources: WordNet (Miller,
1995) and Wikipedia. They use the contextual information of a particular con-
cept from Wikipedia and WordNet synsets prior to learning two separate vector
representations for each concept.

A single word can be related to multiple different topics, without necessarily
corresponding to different senses of the word. Revisiting our previous example,
we might have a collection of documents about retail banks, commercial banks,
investment banks and central banks. All these different banks are related to the
financial sense of the word bank. However, in a particular task (eg. classifying
documents related to the different types of financial banks), we might require

6

different embeddings for the different topics in which the word bank appears.
Liu et al. (2015a) proposed three methods for learning topical word embeddings,
where they first cluster words into different topics using LDA (Blei et al., 2003)
and then learn word embeddings using SGNS. Liu et al. (2015b) modelled the
interactions among topics, contexts and words using a tensor and obtained top-
ical word embeddings via tensor factorisation. Instead of clustering words prior
to embedding learning, Shi et al. (2017) proposed a method to jointly learn
both words and topics, thereby considering the correlations between multiple
senses of different words that occur in different topics. TopicVec (Li et al.,
2016a) learns vector representations for topics in a document by modelling the
co-occurrence between a target word and a context word considering both words’
word embeddings as well as the topic embedding of the context word.

Our proposed methods for feature expansion using ClassiNet can be seen
as an explicit feature prediction method, whereas methods that learn lower-
dimensional dense embeddings of texts can be seen as implicit feature prediction
methods. For example, if we use lexical features such as unigrams or bigrams
to create a ClassiNet, then the features predicted by that ClassiNet will also
be lexicalised features, which are easier to interpret than dimensions in a la-
tent embedded space. Although for text classification purposes it is sufficient to
represent short-texts in implicit feature spaces, there are numerous tasks that
require explicit interpretable predictions such as query suggestion in information
retrieval (Carpineto and Romano, 2012), reverse dictionary mapping (Hill et al.,
2016b), and hashtag suggestion in social media (Weston et al., 2014). There-
fore, the potential applications of ClassiNets as an explicit feature expansion
method goes beyond short-text classificaion. It would be an interesting future
research direction to combine implicit and explicit feature expansion methods
to construct better representations for texts.

Recently there has been several methods proposed for learning embeddings
(lower-dimensional implicit feature representations) for the vertices of undi-
rected or directed (and weighted) graphs (Li et al., 2016b; Perozzi et al., 2014;
Tang et al., 2015). For example, in language graphs (Tang et al., 2015), the ver-
tices can correspond to words and the weight of the edge between two vertices
represent the strength of the co-occurrences between two words in a corpus.
Alternatively, in a co-author network, the vertices correspond to authors and
the edges represent the number of papers two people have co-authored. Deep-
Walk (Perozzi et al., 2014) performs a random walk over an undirected graph
to generate a pseudo-corpus, which is then used to learn word (vertex) embed-
dings using skip-gram with negative sampling (SGNS) (Mikolov et al., 2013).
Li et al. (Li et al., 2016b) proposed a discriminative version of DeepWalk by
including a discriminative supervised loss that evaluates how well the learnt
vertex embeddings perform on some supervised tasks. Tang et al. (Tang et al.,
2015) used both first-order and second-order co-occurrences in a graph to learn
separate vertex embeddings, which were subsequently concatenated to create
a single vertex embedding. Although in this paper we consider graphs where
vertices correspond to words, the objective of creating ClassiNets is fundamen-
tally different from the above-mentioned vertex embedding methods. In graph

7

(vertex) embedding, we are given a graph and a goal is to learn embeddings
for the vertices such that structural information of the graph is preserved in
the learnt embeddings. On the other hand, in ClassiNets, we learn feature pre-
dictors which can be used to predict whether a particular feature is missing in
a given context. The connection between co-occurrence graphs and ClassiNets
is further discussed in Section 3.4. Moreover, in Section 4, we propose and
evaluate several methods for expanding feature vectors using the ClassiNets we
create, which is not relevant for vertex embedding methods.

3 ClassiNets

3.1 Overview
Our proposed method for classifying short-texts consists of two steps. First,
we create a network of classifiers which we refer to as the ClassiNet in this
paper. In Section 3.2, we describe the details of the method we propose to
create ClassiNets. In Section 4, we describe several methods for using the learnt
ClassiNet to expand feature vectors to overcome the feature sparseness problem.

We define a ClassiNet as a directed weighted graph G(V, E ,W), in which a
vertex vi ∈ V = {v1, . . . , vn} corresponds to a binary classifier (feature predic-
tor) hi that predicts the occurrence of a feature vi in an instance. We assume
that each train/test instance x is already represented by a d-dimensional vector
x = (x1, x2, . . . , xd)>, in which the i-th dimension corresponds to the value xi
of the i-th feature representing the instance x. The label predicted by hi for
an instance x is denoted by hi(x) ∈ {0, 1}. The weight wij associated with the
edge eij connecting the vertex vi to vj represents the conditional probability,
p(hj(x) = 1|hi(x) = 1), that vj is predicted to occur in x, given that vi is also
predicted to occur in x.

Several remarks can be made about the ClassiNets. First, there is a one-
to-one correspondence between the vertices vi in the ClassiNet and the feature
predictors hi. Therefore, a ClassiNet can be seen as a network of binary clas-
sifiers, as is implied by its name. In general, the set of features S that we use
for representing instances x (hence for learning feature predictors), and the set
of vertices V in ClassiNet need not be the same. As we discuss later, vertices in
the ClassiNet are used as expansion features to augment instances x, thereby
overcoming the feature sparseness problem in short-text classification. There-
fore, we are free to select a subset of features from all the features used for
representing instances as the vertices in ClassiNet. For example, we might use
the most frequent features in the train data as vertices in ClassiNet thereby set-
ting V ⊂ S (n < d). Alternatively, we could use all the features in the feature
space of the instances as vertices in the ClassiNet, where we have V = S (and
n = d). In the remainder of the paper, we consider the general case where we
have V ⊆ S (n ≤ d).

Second, as we discuss later in Section 3.2, we do not require labeled data for
the target task when creating ClassiNets. For example, let us consider binary

8

sentiment classification of product reviews as the target task. We might have
both sentiment rated reviews (labeled instances), and reviews without sentiment
ratings (unlabeled instances) at our disposal. We can use both those types of
reviews, and ignore the label information when computing the ClassiNet. This
is particularly attractive for two reasons: (a) obtaining unlabeled instances is
often easier for most tasks compared to obtaining labeled instances, (b) because
a ClassiNet created from a particular corpus is independent of the label infor-
mation unique to a target task, in principle, the same ClassiNet can be used to
expand features for different target tasks. The second property is attractive in
multi-task learning settings, where we must perform different tasks on the same
data. For example, consider the two tasks: (a) predicting whether a given tweet
is positive or negative in sentiment, and (b) predicting whether a given tweet
would get favorited or not. Both those tasks can be seen as binary classification
tasks. We could learn two binary classifiers – one for predicting the sentiment
and the other for predicting whether a tweet would get favorited. However, to
overcome the feature sparseness problem in both those tasks, we can use the
same ClassiNet.

As long as an instance (for example a sentence or a document) is represented
using any bag-of-features (unigrams, bigrams, trigrams, dependency paths, syn-
tactic paths, POS sequences, semantic roles, frames etc.) we can use the pro-
posed method to create a ClassiNet. The first step in creating a ClassiNet is to
learn feature predictors (Section 3.2). The feature predictors use the features
available in an instance to as features to train a binary classifier. Therefore, it
does not matter whether these features are n-grams or more complex types of
features as listed above. The remainder of the steps in the proposed method
(measuring the correlations between feature predictors to build the ClassiNet,
applying feature expansion) use only the learnt feature predictors. Therefore,
our proposed method can be used with any feature representation of instances,
not limiting to lexical n-gram features.

3.2 Learning ClassiNets
Let us assume that we are given a set Du = {x(k)}Nk=1 of unlabeled feature vec-
tors x(k) ∈ Rd representing N short-texts. Given Du we construct a ClassiNet
in two steps: (a) learn feature predictors hi for each vertex vi ∈ V, and (b)
compute the conditional probabilities p(hj(x) = 1|hi(x) = 1) using the labels
predicted by the feature predictors hi and hj for an instance x. As positive
training instances for learning a binary feature predictor for a feature vi, we
randomly select a set D(+)

i ⊂ Du of N (+)
i instances where vi occurs, and remove

vi from those selected instances. Likewise, we randomly select a set D(−)
i ⊂ Du

of N (−)
i instances where vi does not occur. Instances that have few features are

not informative for learning accurate feature predictors. Therefore, we select
instances that have more non-zero features than the average number of non-
zero features in an instance in Du. We found that, on average, there are ca. 15
features in an instance.

9

Table 1: Confusion matrix for the labels predicted by the feature predictors
learnt for two features vi and vj .

hj(x) = 1 hj(x) = 0
hi(x) = 1 M11 M10

hi(x) = 0 M01 M00

Compared to the number of instances containing a particular feature vi in the
dataset, the number of instances that do not contain vi is significantly larger.
Considering that we are randomly sampling negative instances from a larger
set of instances, it is likely that those selected negative instances are not very
informative about why vi is missing in a given instance. In other words, the
randomly sampled negative instances might already be further from the decision
hyperplane, therefore do not provide sufficient specialization in the hypothesis
space. Consequently, it has shown in prior work that use pseudo-negative in-
stances for training classifiers (Bollegala et al., 2007) that it is effective to select
a larger number of pseudo-negative instances than that of positive instances
(i.e., N (+)

i < N
(−)
i). We note that it is possible to set the number of positive

and negative train instances dynamically for each feature vi. For example, some
features might be popular in the dataset resulting in a larger positive sample
than the others. For simplicity, in this paper, we select all instances in which a
particular feature occurs as the positive training instances for that feature, and
select twice that number of negative instances from the remainder of the in-
stances (i.e., N (−)

i = 2N (+)). An extensive study of different sampling methods
and N (−)

i /N
(+)
i ratios is beyond the scope of the current paper.

Once we have selected D(+)
i , and D(−)

i as described above, we train a binary
classifier to predict whether vi occurs in a given instance. We note that any
binary classification algorithm, not limited to linear classifiers, can be used for
this purpose. In our experiments, we use `2 regularized logistic regression for
its simplicity. We tune the regularization coefficient in each feature predictor
using 5-fold cross-validation. Being a probabilistic discriminative classifier, it is
possible to obtain not only the predicted labels but also the class conditional
probabilities from the trained logistic regression classifier. However, we only
require the predicted labels for constructing the edge weights in ClassiNets as
we describe next. Therefore, in theory, we can use even binary classifiers that
do not produce confidence scores for creating ClassiNets, which extends the
applicability of ClassiNets to wider contexts.

Let us denote the label predicted by the feature predictor hi for an instance
x by hi(x) ∈ {0, 1}. For two features vi and vj , we compute the confusion
matrix M shown in Table 1. Here, Mab denotes the number of instances x for
which hi(x) = a and hj(x) = b. In particular, M11 is the number of instances
where both vi and vj are predicted to be co-occurring by the learnt feature
predictors.

10

Given the counts in Table 1, wij is computed as follows:

wij =
M11

M11 +M10
(1)

Several practical issues must be considered when estimating the edge-weights
using (1). First, the set of instances we use for predicting labels when computing
the confusion matrix in Table 1 must contain at least some instances in which
vi or vj occur (i.e., M11 +M10 > 0, and M11 +M01 > 0). Otherwise, even if the
feature predictors hi, hj are accurately learnt, we will still get unreliable sparse
counts for M11 and M10. Therefore, we randomly sample a set of instances
D(i,j) ⊆ Du such that there exist equal numbers of instances containing vi, and
vj .

Let the total number of elements in D(i,j) be d′. We use those d′ instances
when computing the values in the confusion matrix shown in Table 1. We
ensure that there is no overlap between the test instances D(i,j) and the train
instances we use to learn feature predictors. This is important because if the
feature predictors are overfitting we will not get accurate predictions using the
ClassiNet during test time. Using non-overlapping train and test instance sets,
we can check whether the learnt feature predictors are overfitting. Although we
use a ratio of one-third when sampling D(i,j) above, we can use different ratios
for sampling as long as both vi and vj are sufficiently represented in D(i,j).

3.3 Efficient Computation of ClassiNets
ClassiNets can be learnt offline during the training stage, prior to expanding
test instances. Therefore, we are allowed to perform more computationally
intensive processing steps compared to what we are allowed at test time, which
is required to be real-time for most tasks that involve short-texts such as tweet
classification. Nevertheless, we propose several methods to speed-up the the
construction process when the number of vertices n in the ClassiNet grows.

Compared to learning feature predictors for the vertices we use in the ClassiNet,
which is linear in the number of vertices n in the ClassiNet, to compute weights
wij we must consider all pairwise combinations between the vertices in the
ClassiNet. If we assume that the cost of learning a binary classifier for a vertex
to be a constant c and is independent of the feature, then the overall compu-
tational complexity of creating a ClassiNet can be estimated as O(cn+Nn2d).
The first term is simply the complexity of computing n feature predictors at the
constant cost of c. This operation can be easily parallelised because each feature
predictor can be learnt independently of the others. Moreover, it is linear in
the number of vertices in ClassiNet. Therefore, the first term can be ignored in
most practical scenarios.

In cases where computational cost of the linear predictors is non-negligible,
we can use several techniques to speed up this computation. First, we could
resort to more computationally efficient liner classifiers such as the perceptron.
Perceptrons can be trained in an online manner, without having to load the
entire training dataset to the memory. Second, note that only the features vj

11

that co-occur with a particular vertex vi in any train instance will be useful for
predicting the occurrence of vi. Therefore, we can limit the features that we
use in the predictor for vi to be the set of features vj that occur at least once
in the training data. We can efficiently compute such feature co-occurrences by
building an inverted search index. We can further speed up this computation
by resorting to approximate methods where we require a context feature vj to
co-occur a predefined minimum number of times with the target feature vi for
which we must compute a predictor. Setting this cut-off threshold to higher
values will result in smaller, sparser and less noisier feature spaces and speed
up the predictor computation. However, larger cut-off thresholds are likely to
remove important contextual features, thereby decreasing the accuracy of the
feature predictors. The optimal cut-off threshold could be determined using
cross-validation or held-out data.

On the other hand, the second term corresponds to learning edge-weights,
and involves three factors: (a) n2, the number of pairwise comparisons we must
perform between the n vertices in the ClassiNet, (b) N , the maximum number
of instances for which we must predict labels for each pair of feature predictors
when we compute the confusion matrices as shown in Table 1, and (c) d, the
number of features we must consider when computing the label of a predictor.
For example, if we use linear classifiers as feature predictors, during test time
we must compute the inner-product between the weight vector of the classifier
and the feature vector of the instance to be classified, both of which are d-
dimensional. The dimensionality d of the vectors that represent instances will
depend on the type of features we use. For example, if we limit to lexical features
from the short-text, then the number of non-zero features in any given instance
will be small. However, if we use dense features such as word embeddings, then
the number of non-zero features in an instance might be large.

However, the factors (a) and (b) require careful consideration. First, we must
compare all pairs of predictors, which is quadratic in the number of vertices in
the ClassiNet. Second, to obtain the label for an instance we must classify
that instance using the learnt prediction model. For example, in the case of
linear classifiers we must compute the inner-product between two d-dimensional
vectors: feature vector representing the instance to be classified, and the weight
vector corresponding to the feature predictor. For nonliner classifiers such as
the ones that use polynomial kernels, the number of feature combinations can
grow exponentially resulting in slower prediction times for large batches of test
instances.

As a solution to this problem, we first represent each feature predictor hi
by a d′(< d) dimensional vector hi(D(i,j)), where each element corresponds to
the label predicted for a particular instance x ∈ D(i,j). We randomly sample
D(i,j) ⊆ Du following the procedure detailed in Section 3.2, where we include
equal numbers of instances that contain vi, vj , and neither of those two. There-
fore, hi(D(i,j)) ∈ Id′ and Id′ is the d′-dimensional simplex. We name hi(D(i,j))
as the label vector because it is a vector of predicted labels for all the instances
in D(i,j) by hi, the feature predictor learnt for the feature vi. We can explicitly

12

compute the label vector for the i-th feature predictor as follows:

hi(D(i,j)) = (hi(x1), . . . ,hi(xd′))
> (2)

In practice, d′ � N because only a small number of instances in Du will con-
tain vi, or vj , and we select equal proportions of instances that do not contain
both instances. The following theorem states the relationship between neigh-
bouring feature predictors in the original d-dimensional space and the projected
d′-dimensional space.

Theorem 1. Consider two (possibly nonlinear) feature predictors hi(x) = σ(µi
>x),

and hj(x) = σ(µj
>x), parametrized by µi,µj ∈ Rd, and a transformation func-

tion σ(·) ∈ {1, 0}. Let θ(µi,µj) be the angle between µi and µj. The following
relation holds between θ(µi,µj) and the probability of agreement p

(
hi(D(i,j)) = hj(D(i,j))

)
,

θ(µi,µj) = π
(

1− p
(
hi(D(i,j)) = hj(D(i,j))

)1/d′)
.

The proof of Theorem 1 is given below, and follows from the properties of
locality sensitive hashing (LSH) (Andoni and Indyk, 2008; He and Niyogi, 2003;
Indyk and Motwani, 1998).

Proof of Theorem 1
Let us consider the agreement of the feature predictors hi and hj on the k-th
instance xk ∈ D(i,j). The probability of agreement can be written as,

p (hi(xk) = hj(xk)) = 1− p (hi(xk) 6= hj(xk)) . (3)

From the symmetry in the half-plane, the disagreement probability on the right
side in (3) can be written as twice the probability of one parameter vector being
projected positive and the other negative, given by:

p (hi(xk) 6= hj(xk)) = 2p
(
µi
>xk ≥ 0,µj

>xk < 0
)

(4)

However, the vector xk must exist inside the dyhedral angle θ(µi,µj) formed
by the intersection of the two half-panes spanned by µi and µj . Therefore, the
probability in (4) can be estimated as the ratio between angles given by,

p
(
µi
>xk ≥ 0,µj

>xk < 0
)

=
θ(µi,µj)

2π
. (5)

From (3), (4), and (5), we obtain,

p (hi(xk) = hj(xk)) = 1−
θ(µi,µj)

π
. (6)

13

If we assume that the instances in D(i,j) are i.i.d., then the agreement of the
entire two d′-dimensional label vectors can be computed as the product of agree-
ment probabilities of each dimension, given by,

p
(
hi(D(i,j)) = hj(D(i,j))

)
=

d′∏
k=1

p (hi(xk) = hj(xk))

=

(
1−

θ(µi,µj)

π

)d′

. (7)

From (7) it follows that,

θ(µi,µj) = π
(

1− p
(
hi(D(i,j)) = hj(D(i,j))

)1/d′)
Theorem 1 states that we can measure the agreement between labels pre-

dicted by two feature predictors using the angle between their corresponding
parameter vectors. More importantly, Theorem 1 provides us with a heuristic
to approximately find the nearest neighbours of each vertex without having to
compute the confusion matrices for all pairs of vertices in the ClassiNet. We
compute the nearest neighbours for each feature predictor in the d′-dimensional
space. Computation of p

(
hi(D(i,j)) = hj(D(i,j))

)
is closely related to the calcu-

lation of hamming distance between the label vectors hi(D(i,j)) and hj(D(i,j)).
The Point Location in Equal Balls (PLEB) algorithm (Indyk and Motwani,
1998) can be used to compute the hamming distance in an efficient manner. This
algorithm considers random permutations of the bit streams and their sorting to
find the vector with the closest hamming distance (Charikar, 2002). We use the
variant of this algorithm proposed by Ravichandran and Hovy (Ravichandran
et al., 2005) that extends the original algorithm to find the k-nearest neigh-
bours. Specifically, we use this algorithm to find the k-nearest neighbours for
each feature vi, and compute edge-weights wij for each vi and its nearest neigh-
bours vj using the contingency table. Note that although we find the nearest
neighbours using the approximate method described above, the edge-weights
computed between the selected neighbours are precise because they are based
on the confusion matrix.

To estimate the size of the neighbourhood k that we must select in order
to obtain a reliable approximation of the neighbours that we would have in the
original d-dimensional space, we use the following procedure. First, we randomly
select a small number α(� N) of vertices from the trained ClassiNet, and
compute the confusion matrices with each of those α vertices and the remainder
of the vertices in the ClassiNet. We then compute the weights wij of the edges
that connect the selected α vertices to the rest of the vertices in the ClassiNet.
Following this procedure we compute the nearest neighbours of each vertex in
α without using the projection trick described above. Second, we apply the
projection method described above for all the vertices in the ClassiNet, and
compute the nearest neighbours of the α vertices that we selected. We then
compare the overlap between the two sets of neighbourhoods. In our preliminary

14

experiments, we found that setting the neighbourhood size k = 10 to be an
admissible trade-off between the accuracy of the neighbourhood computation
and the speed. Therefore, all experiments described in the paper use edge-
weights computed with this k value.

3.4 ClassiNets vs. Co-occurrence Graphs
Before we describe how to use the trained ClassiNets to classify short-texts,
it is worth discussing the connection between word co-occurrence graphs and
ClassiNets. Representing the association between words using co-occurrence
graphs has a long history in NLP (Mihalcea and Radev, 2011). Word co-
occurrences could be measured using symmetric measures, such as the Pointwise
Mutual Information (PMI), Log-Likelihood Ratio (LLR), or asymmetric mea-
sures such as KL-divergence, or conditional probability (Manning and Schutze,
1999). In a co-occurrence graph, vertices correspond to words, and the weight of
the edge connecting two vertices represents the strength of association between
the corresponding two words. However, in a co-occurrence graph, two words vi
and vj to be connected by an edge, vi and vj must explicitly co-occur within
the same context.

On the other hand, in ClassiNets, we have edges between vertices not only for
the words that co-occur within the same context, but also if they are predicted
for the same instance even though none of those features might actually be
occurring in that instance. For example, for an instance x where xi = xj = 0,
we might still have hi(x) = hj(x) = 1. Therefore, ClassiNets consider implicit
occurrences of features which would not be captured by co-occurrence graphs.
In fact, ClassiNets can be thought to be a generalized version of co-occurrence
graphs that subsumes explicit co-occurrences. To see this, let us define feature
predictors hi and hj as follows:

hi(x) = 1[xi 6= 0] (8)
hj(x) = 1[xj 6= 0] (9)

Here, 1 is the indicator function defined as follows:

1(δ) =

{
1 δ = TRUE
0 δ = FALSE

(10)

Then, M11 in Table 1 can be written as,

M11 =
∑

x∈D(i,j)

1[xi 6= 0]1[xj 6= 0], (11)

which is the number of instances in which both features vi and vj would co-occur.
Therefore, ClassiNet reduces to co-occurrence graphs when the feature predictor
is simply the indicator function for a single feature. However, in general, feature
predictors would consider not just a single feature but a combination (potentially
non-linear) of multiple features, thereby capturing broader information than in
a word co-occurrence graph.

15

4 Feature Expansion
In this Section, we describe several methods to use the ClassiNets created in
Section 3 for predicting missing features in instances, thereby overcoming the
feature sparseness problem. We refer to this operation as feature expansion.
Given a train or a test instance x = (x1, . . . , xd)>, we use the non-zero features,
xi 6= 0 in x and find similar vertices vj ∈ V from the created ClassiNet. In
Section 4.1, we describe local feature expansion methods that consider only the
nearest neighbours of the vertices in the ClassiNet that correspond to non-
zero features in an instance, whereas in Section 4.2 we propose a global feature
expansion method that propagates the original features across the ClassiNet to
predict the related features.

4.1 Local Feature Expansion
Given a ClassiNet, we propose several feature expansion methods that consider
the local neighbourhood of the non-zero features that occur in an instance. We
refer to such methods collectively as local feature expansion methods.

4.1.1 Independent Expansion

The first local feature expansion method we propose expands each feature in
an instance independently of the others. Specifically, we predict whether vi
occurs in a given instance x using the feature predictor hi we trained from
the unlabeled instances. If hi(x) = 1, then we append vi as an expansion
feature to x, otherwise we ignore vi. We repeat this process for all the vertices
vi ∈ V and append the positively predicted vertices to the original instance x.
If the i-th feature xi already appears in x and also predicted by hi(x) then we
set its feature value to xi + hi(x). In the case where we have binary feature
representations we will have xi ∈ {0, 1}. Therefore, in the binary feature setting
if a feature that already exists in an instance is predicted, then it will result in
doubling the feature weight (∵ xi + hi(x) = 1 + 1 = 2). Moreover, instead of
predicting the label, in a probabilistic classifier, such as the logistic regression,
we can use the posterior probability instead of the predicted label as hi(x) to
compute feature values for the expansion features.

4.1.2 Local Path Expansion

This method extends the independent expansion method described in Section 4.1.1
by including all the vertices along the shortest paths that connect predicted fea-
tures to the original features over the ClassiNet. For example, let us assume
that a feature xi = 0 in an instance x. If hi(x) = 1, we will append vi as well as
all the vertices along the shortest paths that connect vi to each feature xj 6= 0
that exists in the instance x. Because all expanded features are connected to
the original non-zero features that exist in the instance via some local path, we
refer to this approach as the local path expansion. By construction, the set of

16

expansion candidates produced by the local path expansion method subsumes
that of the independent expansion method.

4.1.3 All Neighbour Expansion

In this expansion method, first, we use edge-weights to find the k-nearest neigh-
bours of each vertex vi, and connect all the neighbours for each vertex to create
a k-nearest neighbour graph from the trained ClassiNet. The k-nearest neigh-
bour graph that we create from the ClassiNet in this manner is a subgraph of
the ClassiNet. Two vertices vi and vj are connected by an edge in this k-nearest
neighbour graph if and only if vi is among the top k most similar vertices to vj
as well as vj is among the top k most similar vertices to vi. The weights of all
the edges in this k-nearest neighbour graph are set to 1.

Next, for each non-zero feature in an instance x, we use its nearest neigh-
bours as expansion features. This method ignores the absolute values of the
edge-weights in the ClassiNet, and considers only their relative strengths. If
we increase the value of k, we will have a larger set of candidate expansion
features. However, it will also result in considering less relevant features to the
original features. Therefore, there exists a trade-off between the number of ex-
pansion candidates we can use for feature vector expansion, and the relevancy
of the expansion features to the original features. Using development data, we
constructed k-nearest neighbour graphs for varying k values, and found that
k > 4 settings often result in noisy neighbourhoods. Consequently, when using
neighbour expansion, we set k = 4.

4.1.4 Mutual Neighbour Expansion

The mutual neighbour expansion method also uses the same k-nearest neighbour
graph as used by the all neighbour expansion method described in Section 4.1.3.
The mutual neighbour expansion method selects a vertex vj in ClassiNet as an
expansion candidate, if there exists at least two distinct vertices vi, vk in the
ClassiNet for which xi 6= 0, and xk 6= 0 in the instance x to be expanded. This
method can be seen as a conservative version of the all neighbour expansion
method described in Section 4.1.3 because, we would ignore vertices vj that
are nearest neighbours of only a single feature in the original feature vector.
The mutual neighbour expansion method addresses the issue associated with
previously proposed local feature expansion methods, which select expansion
candidates separately for each non-zero feature in the feature vector to be ex-
panded, ignoring the fact that the feature vector represents a single coherent
short-text. However, this conservative expansion candidate selection strategy
of the mutual neighbour expansion method means that we will have a smaller
set of expansion candidates in comparison to, for example, the all neighbour
expansion method.

17

4.2 Global Feature Expansion
The local feature expansion methods described in Section 4.1 consider only the
vertices in the ClassiNet that are directly connected to a feature in an instance as
expansion candidates. Even in the case of local path expansion (Section 4.1.2),
the expansion candidates are limited to the local neighbours of the original
features and the predicted features. Considering that ClassiNet is a directed
graph, we can perform label propagation on ClassiNet to find features that are
not directly connected nor appearing in the local neighbourhood of a feature in
a short-text but still relevant.

For example, assume that Google and Microsoft are not local neighbours in
a ClassiNet. Consequently none of the local neighbour expansion methods will
be able to predict Microsoft as a relevant feature for expanding a short-text
containing Google. However, if Bing, a Web search engine similar to Google,
appears in the local neighbourhood of Google in the ClassiNet, and if we can
propagate from Bing to its parent company Microsoft via the ClassiNet, then
we will be able to predict Microsoft as a relevant feature for Google. The
propagation might be over multiple hops, thereby reaching beyond the local
neighbourhood of a feature.

Propagation over ClassiNet can also help to reduce the ambiguity in fea-
ture expansion. For example, consider the sentence “Microsoft and Apple are
competing for the tablet computer market.”. If we do not perform word sense
disambiguation prior to feature expansion, and we expand each feature indepen-
dently of the others, then it is likely that we might incorrectly expand apple by
other types of fruits such as banana or orange. Such phenomena are observed in
prior work on set expansion and is referred to as semantic drift (Kozareva and
Hovy, 2010). However, if we find the expansion candidates jointly, such that
they are relevant to all the features (words) in the sentence, then they must be
relevant to both Microsoft as well as Apple, which encourages other IT compa-
nies, such as Google or Yahoo for example. All local feature expansion methods
described in Section 4.1 except the independent expansion method address this
issue by ranking expansion candidates depending on how well they are related
to all the features in a short-text. Label propagation can solve this ambiguity
problem in a more systematic manner by converging multiple random walks ini-
tiated at different features that exist in a short text. Next, we describe a global
feature expansion method based on propagation over ClassiNet.

First, let us describe the proposed global feature expansion method using
the ClassiNet shown in Figure 6. Here, we consider expanding an instance
x = (x1, x2)> with two non-zero features v1 = x1 and v2 = x2 (x1 6= 0, and
x2 6= 0). We would like to compute the likelihood p(v∗|x) of a vertex v∗ as an
expansion candidate for the instance x. From Figure 6 we see that there are
two possible paths reaching v∗ starting from the original features x1 and x2.
Assuming that the two paths are independent, we compute p(v∗|x) as follows:

p(v∗|x) = p(x1)p(v3|x1)p(v∗|v3) + p(x2)p(v4|x2)p(v∗|v4) (12)

The computation described in Figure 6 can be generalized for an arbitrary

18

v₁=x₁ v₂=x₂

v₃ v₄

v*

Figure 1: Computing the feature value of an expansion feature v∗ for an instance
that has v1 = x1 and v2 = x2 as non-zero features.

ClassiNet G(V, E ,W), and an instance x = (x1, . . . , xd)>. For this purpose,
let us define the set of non-cyclic paths connecting two vertices vi, vj in G
to be Γ(vi, vj). For the example shown in Figure 6 we have the two paths
x1 → v3 → v∗, and x2 → v4 → v∗. We compute the likelihood p(v∗|x) of a
vertex v∗ ∈ V being an expansion candidate of x as follows:

p(v∗|x) =

d∑
k=1

xkp(xk = vk)
∏

(a,b)∈Γ(xk,v∗)

p(b|a)

 (13)

If a feature xk = 0, then the likelihoods corresponding to paths starting from xk
will be ignored in the computation of (13). The prior probabilities of features
p(xk) can be estimated from train data by dividing the number of instances
that contain xk by the total number of instances. Alternatively, we could set
a uniform prior for p(xk) thereby considering all the words that occur in an
instance equally. We follow the latter approach in our experiments.

The sum-product computation over paths can be efficiently computed by
observing that it can be modeled as a label propagation problem over a directed
weighted graph, where an instance x is the initial state vector and the transition
probabilities are given by the weight matrix W. Vertices that can be reached
after q hops are given by

∑q
i=1 Wix. Neighbours that are distantly located

in the ClassiNet are less reliable as expansion candidates. To reduce the noise
due to distant (and potentially irrelevant) vertices during the propagation, we
introduce a damping factor 0 < γ ≤ 1 in the summation,

∑q
i=1 γ

iWix. In
Section 6.4, we experimentally study the effect of the level of damping on the
classification accuracy of short-text classification.

The feature expansion methods we described above are used to predict miss-
ing features for both train and test instances. We expand feature vectors repre-
senting the train/test instances, and assign unique identifiers to the expansion
features, thereby distinguishing between the original features and the expanded

19

features. For example, given the positive sentiment labeled train sentence “I
love dogs”, we can represent it using the feature vector, [(I, 1), (love, 1), (dog,
1)]. Here, we assume that lemmatization has been conducted on the input and
the feature dogs has been converted to its singular form dog. Let us further
assume that from the trained ClassiNet we were able to predict that cat is a
related feature for dog, and the candidate score p(cat|dog) = 0.8. Next, we
add the feature (EXP=cat, 0.8) to the feature vector representing this train
instance, where the prefix EXP= indicates that it is a feature introduced by
the expansion method and not a feature that existed in the original train in-
stance. Distinguishing original vs. expansion features is useful when we would
like to learn different weights for the same feature depending on whether it is
expanded or not. For example, if a particular feature is not very useful as an
expansion feature, it will be assigned a lower weight thereby effectively pruning
that feature out from the model learnt by the classifier.

The first step of learning a ClassiNet is learning the feature predictors. In
this regard, any word embedding learning method can be used for the purpose
of learning feature predictors. Once the feature predictors are learnt, we can
create a ClassiNet in the same manner as we propose in this paper and use
the ClassiNet created to perform feature expansion using local/global feature
expansion methods we propose in the paper. This view of ClassiNets illustrates
the general applicability of the proposed method.

5 A Theoretical Analysis of ClassiNets
Before we empirically evaluate the performance of the proposed ClassiNets for
feature expansion in short-text classification, let us analyze some interesting
properties of ClassiNets. To simplify the analysis, let us assume that we are
using a ClassiNet for learning a linear classifier φ ∈ Rd for a binary clas-
sification task. Specifically, let us assume that we are given a train dataset
{(x(k), y(k))}Nk=1 consisting of N instances, where each train instance k is rep-
resented by a feature vector x(k) ∈ Rd. The binary target label assigned to the
k-th train instance is denoted by y(k) ∈ {1,−1}. For correctly classified train
instances x(k) we have, y(k)φ>x(k) > 0.

We use the trained linear classifier φ, and predict the label ŷ of an unseen
test instance x̂ as follows:

ŷ =

{
1 if φ>x̂ > 0

−1 otherwise
(14)

Let us assume that we have learnt a feature predictor hi that predicts
whether the i-th feature exists in a given instance. As described in Section 3.1,
we can use any classification algorithm to learn the feature predictors. However,
as a concrete case, let us consider linear classifiers in this analysis. In the case
of linear classifiers, we can represent the feature predictor learnt for the i-th
feature by the vector µi. Following the notation introduced in Section 3.1, we

20

can write the feature predictor hi as follows:

hi(x) =

{
1 if µi

>x > 0

−1 otherwise
(15)

In the ClassiNets described in the paper so far, we used the predicted discrete
labels as the values of the predicted features during feature expansion. However,
in this analysis let us consider the more general case where we use the actual
prediction score, µi

>x as the contribution of the feature expansion towards the
i-th feature.

We can construct the expanded feature vector, x∗ ∈ Rd, of the feature
vector x ∈ Rd considering the inner-product between x and each of the feature
predictors µi as in (16).

x∗ = [(x1 + µi
>x), . . . , (xi + µi

>x), . . . , (xd + µd
>x)]> (16)

Here, we denote the i-th dimension of the feature vector x by xi. We can
transform the given train dataset {(x(k), y(k))}Nk=1 by expanding each feature
vector separately using (16), and use the expanded feature vectors to train a
binary linear classifier φ∗. Following (14), we can use φ∗ to predict the label
for a test instance x∗ based on the prediction score given by

φ∗>x∗ =

d∑
i=1

φ∗i
(
xi + µi

>x
)

=

d∑
i=1

φ∗i xi +

d∑
i=1

φ∗iµi
>x

= φ∗>x+ φ∗>Lx (17)
= φ∗> (I + L)x (18)

Here, I ∈ Rd×d is a unit matrix, and L ∈ Rd×d is the matrix formed by arranging
the feature predictors µi in rows. In other words, L = [µ1 . . .µd]>.

The first term in (17) corresponds to classifying the non-expanded (original)
instance x using the classifier trained using the expanded train dataset. The
second term in (17) represents the prediction score due to feature expansion.
From (18) we see that performing feature expansion on a feature vector x is
equivalent to multiplying the matrix (I + L) into x. Therefore, local feature
expansion methods described in Section 4.1 can be seen as projecting the train
feature vectors into the same d-dimensional feature space spanned by the fea-
tures that exist in the train instances. As a special case, we see that when we
do not learn feature predictors we have L = 0, for which (17) reduces to the
prediction score φ∗>x of the binary linear classifier trained using non-expanded
train instances.

5.1 Edge weights of ClassiNets
Recall that, wij the weight of the edge connecting the vertex i to vertex j in a
ClassiNet was defined by (1). In the case of binary linear feature predictors µi

21

and µj we considered in the previous section, let us estimate the value of wij .
Using the indicator function 1 defined by (10), we computeM11 and (M11+M10)
in (1) as follows:

M11 =

N∑
k=1

1[(y(k)x(k)>µi>0) ∧ (y(k)x(k)>µj>0)] (19)

M11 +M10 =

N∑
k=1

1[(y(k)x(k)>µi > 0)] (20)

Let us assume that we sample instances x from the train dataset randomly
according to the distribution p(x). Then the expected counts in M̂11 and M̂10

in (19) and (20) can be expressed using the expected number of the correct
classifications made by the feature predictors µi and µj as follows:

M̂11 = Ep(x)

[
1[(yx>µi > 0) ∧ (yx>µj > 0)]

]
(21)

M̂11 + M̂10 = Ep(x)

[
1[(yx>µi > 0)]

]
(22)

Using the expected counts given by (21) and (22) we can compute the approx-
imate value of the edge weight ŵij as follows:

ŵij =
Ep(x)

[
1[(yx>µi > 0) ∧ (yx>µj > 0)]

]
Ep(x) [1[(yx>µi > 0)]]

(23)

If we have a sufficiently large train dataset, then (23) provides an alter-
native procedure for estimating the edge weights. We could randomly select
samples from the train dataset, predict the features i and j for those samples,
and compute the expectations as ratio counts. We can repeat this procedure
many times to obtain better approximations for the edge weights. Although
this is a theoretically feasible procedure for approximately computing the edge
weights, it can be slow in practice and might require many samples before we
obtain a reliable approximation for the edge weights. Therefore, the edge weight
computation method described in Section 3.3 is more appropriate for practical
purposes.

5.2 Analysis of the Global Feature Expansion Method
We already showed in (18) that local feature expansion methods can be consid-
ered as feature vector transformation methods by a matrix (I + L). However,
an important strength of ClassiNet is that we can propagate the predicted fea-
tures over the network using the global feature expansion method described in
Section 4.2.

Let us denote the edge-weight matrix of the ClassiNet G by W. The (i, j)-
th element of W is denoted by wij . The connection between edge weights wij

and the feature predictors µi and µj is given by (23). In the global feature
expansion method, we repeatedly propagate the predicted features across the
network, which can be seen as a repeated multiplication using γW, where γ is

22

the damping factor described in Section 4.2. Observing this connection, we can
derive the prediction score under the global feature expansion method similar
to (18) as follows:

φ∗>x∗ = φ∗> (I + γW + . . .+ γqWq)x

= φ∗>(I− γW)−1(I− γ(q+1)W(q+1))x (24)

For the summation shown in (24) to hold, and the matrix (I − γW) to be
invertible, for all eigenvalues λr of W we require γ|λr| < 1. This requirement
can be met in practice by a sufficiently small damping factor. For example, we
could set γ = 1/(1 + |λmax||), where |λmax| is the eigenvalue of W with the
maximum absolute value.

As a special case where we propagate the features without truncating, we
have q →∞, for which we obtain the prediction score given in (25).

φ∗>x∗ = φ∗>(I− γW)−1x (25)

From (25), we see that, similar to the local feature expansion methods, the global
feature expansion method can also be seen as projecting the input feature vector
x using the matrix (I− γW)−1.

6 Experiments
We create a ClassiNet using 257,306 unlabeled sentences from the Large Movie
Review dataset1. Each word in this dataset is uniquely represented by a vertex
in the ClassiNet. We learn linear predictor for each feature using automati-
cally selected positive (reviews where the target feature appears) and negative
(reviews where the target feature does not appear) training instances. The
ClassiNet created from this dataset contains 489, 000 vertices. This ClassiNet
is used in all the experiments described in the remainder of this paper.

For evaluation purposes we use four binary classification datasets: the Stan-
ford sentiment treebank (TR)2 (903 positive test instances and 903 negative
test instances), movie reviews dataset (MR) (Pang and Lee, 2005) (5331 posi-
tive instances and 5331 negative instances), customer reviews dataset (CR) (Hu
and Liu, 2004) (925 positive instances and 569 negative instances), and subjec-
tivity dataset (SUBJ) (Pang and Lee, 2004) (5000 positive instances and 5000
negative instances). We perform five-fold cross-validation in all datasets, except
in the Stanford sentiment treebank where there exists a pre-defined test and
train split. In each dataset, we use the train portion to learn a binary classifier.
Next, we use the trained ClassiNet to expand the feature vectors for the test
instances. We then measure the classification accuracy of the binary classifier on
the expanded test instances. If high classification accuracies are obtained using
a particular feature expansion method, then that feature expansion method is
considered superior.

1http://ai.stanford.edu/~amaas/data/sentiment/
2http://nlp.stanford.edu/sentiment/treebank.html

23

We use a CPU server containing 48 cores of 2.5GHz Intel Xeon CPU and
512GB RAM in our experiments. The entire training pipeline of training feature
predictors, building the ClassiNet and expanding training instances using Global
feature expansion method takes approximately 1.5 hours. The testing phase is
significantly faster because we can use the created ClassiNet to expand test
instances and use the trained model to make predictions. For example, for the
SUBJ dataset, which is the largest among all datasets used in our experiments,
it takes only 5 minutes to both expand (using Global feature expansion) and
predict (using logistic regression).

6.1 Binary Classification of Short-Texts
Direct evaluation of the features predicted by the ClassiNet is difficult because
there is no gold standard for feature expansion. Instead, we perform an extrinsic
evaluation of the created ClassiNet by using it to expand feature vectors repre-
senting sentences in several binary text classification tasks. If we can observe
any increase (or decrease) in classification accuracy for the target classification
task when we use the features predicted by the ClassiNet, then it can be directly
associated with the effectiveness of the ClassiNet. For the purpose of training
a binary classifier, we represent a sentence by a real-valued vector, in which
elements correspond to the unigrams extracted from that sentence. The feature
values are computed using the tfidf measure. We train a binary logistic regres-
sion model, where the L2 regularisation coefficient is tuned using development
data selected from the Stanford sentiment treebank dataset.

We use classification accuracy, which is defined as the ratio between the
correctly classified test sentences and the total number of test sentences in the
Stanford sentiment treebank. In addition to reporting the overall classification
accuracies, we report classification accuracies separately for the positively la-
beled instances and the negatively labeled sentences. Because this is a binary
classification task, a random classifier would obtain an accuracy of 50%. There
are 903 positive and 908 negative sentiment labeled test sentences in the Stan-
ford sentiment treebank test dataset. Therefore, a baseline that assigns the
majority label would obtain an accuracy of 50.13% on this dataset.

Table 2 compares the sentiment classification accuracies obtained by the
following methods:

No Expansion: This baseline does not perform any feature expansions.
It trains a binary logistic regression classifier using the train sentences, and
applies it to classify sentiment of the test sentences. This baseline demonstrates
the level of performance we would obtain if we had not performed any feature
expansion. It can be seen as a lower-baseline for this task.

Independent Expansion: This method is described in Section 4.1.1.
Local Path Expansion: This method is described in Section 4.1.2.
All neighbour Expansion: This method is described in Section 4.1.3.
Mutual neighbour Expansion: This method is described in Section 4.1.4.
WordNet: Using lexical resources such as thesauri to find related words is

a popular technique used in query expansion (Fang, 2008; Gong et al., 2005).

24

To simulate the performance that we would obtain if we had used an external
resource such as the WordNet to find the expansion candidates, we implement
the following baseline. In the WordNet, words that are semantically related
are grouped into clusters called synsets. For each feature in a test instance, we
search the WordNet for that feature, and use all words listed in synsets for that
feature as its expansion candidates. We consider all synonyms in a synset to be
equally relevant as expansion candidates of a feature.

SCL: Domain adaptation methods attempt to overcome the feature mis-
match between source and target domains by predicting missing features and/or
learning a lower-dimensional embedding common to the two domains. Although
we do not have two domains in our setting, we can still apply domain adapta-
tion methods such as the structural correspondence learning (SCL) proposed
by Blitzer et al. (Blitzer et al., 2006) to predict missing features in a given
short-text. SCL was described in detail in Section 2. Specifically, we train SCL
using the same set of vertices as used by the ClassiNet as pivots. This enables
us to conduct a fair comparison between SCL and methods that use ClassiNet
because the performance between SCL and methods that use ClassiNet can be
directly attributable to the projection method used in SCL and not due to any
differences of the expansion set. We then train linear predictors for those piv-
ots using logistic regression. We arrange the trained linear predictors as rows
in a matrix, on which we subsequently perform singular value decomposition
to obtain a lower-dimensional projection. Following the recommendations in
(Blitzer et al., 2006), we set the dimensionality of the projection to 50. Both
train and test instances are first projected to this lower-dimensional space and
we append the projected features to the original feature vectors. Next, we train
a binary sentiment classifier using logistic regression with `2 regularisation. The
regularisation coefficient is set using a held-out set of review sentences.

FTS: FTS is the frequent term sets method proposed by Man (Man, 2014).
First, co-occurrence and class-orientation relations are defined among features
(terms). Next, terms that are frequent in those relations more than a pre-
defined threshold (support) are selected as expansion candidates. Finally, for
each feature in a short text, the frequent term sets containing this feature are
appended as expansion features to the original feature vector representing the
short-text. FTS can be considered as a method that uses clusters of features
induced from the data instances to overcome the feature sparseness problem.

CBOW: To compare the explicit feature expansion approach used by ClassiNets
against implicit text representation methods, we use pre-trained word embed-
dings to represent a short-text in a lower-dimensional space. Specifically, we cre-
ate 300 dimensional word embeddings using the same corpus used by ClassiNets
to create continuous bag-of-words (CBOW) (Mikolov et al., 2013) embeddings,
and add the word embedding vectors for all the words in a short text to create
a 300 dimensional vector that represents the given short-text.

Global Feature Expansion: This method propagates the original features
across the trained ClassiNet, and is described in Section 4.2. It is the main
method proposed in this paper.

We summarise the classification accuracies obtained with different approaches

25

Table 2: Binary classification accuracies.

Method TR MR CR SUBJ

No Expansion 76.31 73.35 81.54 88.95
Independent Expansion 75.32 74.11 78.19 87.15
Local Path Expansion 76.97 73.73 81.87 88.05
All neighbour Expansion 77.36 72.93 82.55 88.75
Mutual neighbour Expansion 77.13 74.15 80.87 88.95
WordNet 76.58 66.09 79.86 77.95
SCL (Blitzer et al., 2006) 78.02 74.44 81.20 89.25
FTS (Man, 2014) 76.47 66.83 62.41 50.15
CBOW 77.52 73.31 79.87 88.88
Global Feature Expansion 78.30 81.20∗ 83.89∗ 89.70

discussed on the four test datasets in Table 2. For each dataset we indicate the
best performing method using boldface font, whereas an asterisk indicates if the
best performance reported is statistically significantly better than the second
best method on the same dataset according to a two-tailed paired t-test under
0.01 confidence level. From Table 2, we see that the proposed Global Feature
Expansion method obtains the best performance in all four datasets. More-
over, in MR and CR datasets its performance is significantly better than the
second best methods (respectively SCL and All Neigbour Expansion) on
those two datasets .

Among the four local expansion methods, All neighbour Expansion re-
ports the best performance in TR and CR datasets, whereas the Mutual
neighbour Expansion reports the best performance in MR and SUBJ datasets.
Independent Expansion method performs worse than the No Expansion
baseline in TR, CR, and SUBJ datasets indicating that by individually ex-
panding each feature in a short-text we introduce a significant level of noise
into the short-text. This result shows the importance for a feature expansion
methods to consider all the features in an instance when adding related features
to an instance. None of the local feature expansion methods are able to outper-
form the global feature expansion method in any of the datasets. In particular,
in the SUBJ dataset we see that none of the local feature expansion methods
outperform the No Expansion baseline. This result implies that it is not suffi-
cient to simply create a ClassiNet, but it is also important to use an appropriate
feature expansion method on the built ClassiNet to find expansion features to
overcome the feature sparseness problem in short-text classification.

FTS method performs poorly in all our experiments. This indicates that the
frequency of a feature is not a good indicator of its effectiveness as an expansion
candidate. On the other hand, WordNet method that uses synsets as expansion
candidates performs much better than FTS method. Not surprisingly, this

26

result shows that synonyms are useful as expansion candidates. However, a
prerequisite of this approach is the availability of a thesauri that are either
manually or semi-automatically created. Such linguistic resources might not be
available or incomplete for some languages. On the other hand, our proposed
method does not require such linguistic resources.

CBOW and SCL methods perform competitively with the Global Feature
Expansion method in all datasets. Given that both CBOW and SCL are using
word-level embeddings to compute a representation for a short text, this result
shows the effectiveness of word-level embeddings as a method to overcome fea-
ture sparseness in short-text classification tasks. We compare non-compositional
sentence-level embedding methods against the proposed Global Feature Ex-
pansion method later in Section 6.2.

6.2 Comparisons against sentence-level embeddings
An alternative direction for representing short-texts is to project the entire text
directly to a lower-dimensional space, without applying any compositional op-
erators to word-level embeddings. The expectation is that the overlap between
short-texts in the projected space will be higher than that in the original space
such as a bag-of-word representation of a short-text. Skip-thought vectors (Kiros
et al., 2015), FastSent (Hill et al., 2016a), and Paragraph2Vec (Le and Mikolov,
2014) are popular sentence-level embedding methods that have reported state-
of-the-art performance on text classification tasks. In contrast to our proposed
method which explicitly append features to the original feature vectors to over-
come the feature sparseness problem, sentence-level embedding methods can be
seen as an implicit feature representation method.

In Table 3, we compare the proposed method against the state-of-the-art
sentence-level embedding methods. We use the published results in (Kiros et al.,
2015) on MR, CR, and SUBJ datasets for Skip-thought, FastSent, and Para-
graph2Vec, without re-training those methods. All three methods are trained
on the Toronto books corpus (Zhu et al., 2015). Performance of these methods
on the TR dataset were not available. As a multiclass classification setting,
we used the TREC question-type classification dataset. In this dataset, each
question is manually classified to 6 question types depending on the information
asked in the question such as abbreviation, entity, description, human, location
and numeric. We use the same classinet as we used in the binary classification
tasks to predict features for 5500 train and 500 test questions. A multiclass
logistic regression classifier is trained on feature vectors with missing features
predicted and tested on the feature vectors for the test questions with missing
features predicted.

Next, we briefly describe the methods compared in Table 3. Skip-thought (Kiros
et al., 2015) is a sequence-to-sequence model that encodes sentences using a Re-
current Neural Network (RNN) with Gated Recurrent Units (GRUs) (Cho et al.,
2014). FastSent (Hill et al., 2016a) is similar to Skip-thought in that both
models predict the words in the next and previous sentences given the current
sentence. However, unlike Skip-though which considers the word-order in a

27

sentence, FastSent models a sentence as a bag-of-words. Paragraph2Vec (Le
and Mikolov, 2014) learns a vector for every short-text (eg. a sentence) in a
corpus jointly with word embeddings for every word in that corpus such that
the word embeddings are shared across all short-texts in the corpus. Sequen-
tial Denoising Autoencoder (SDAE) (Hill et al., 2016a) is an encoder-decoder
model with a Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) unit. We use the SDAE version that uses pre-trained CBOW embeddings
to initialise the word embeddings because of its superior performance over the
SDAE version that uses randomly initialised word embeddings.

We use Convolutional Neural Networks (CNN) for creating sentence-level
embeddings as a baseline. For this purpose, we follow the model architecture
proposed by Kim (2014). Specifically, each word vi in a sentence is represented
by a d-dimensional word embedding vi ∈ Rd, and the word embeddings are
concatenated to create a fixed-length sentence embedding. The maximum length
n of a sentence is used to determine the length of this initial sentence-level
embedding, where sentences with words less than this maximum length are
padded using null vectors. Next, a convolution operator defined by a filter
w ∈ Rhd is applied on windows of consecutive h tokens in sentences to produce
new feature vectors for the sentences. We use several convolutional filters by
varying the window size. Next, max-over-time pooling (Collobert et al., 2011)
is applied on this feature map to select the maximum value corresponding to a
particular feature. This operation produces a sentence-level embedding that is
independent of the length of the sentence. Finally, a fully connected layer with
dropout (Srivastava et al., 2014) and a softmax output unit is applied on top
of this sentence representation that can predict the class label of a sentence.
Pre-trained CBOW embeddings are used in the CNN-based sentence encoder
as well.

From Table 3 we see that the proposed Global Feature Expansion method
obtains best classification accuracies on MR and CR datasets with statistically
significant improvements over the corresponding second-best methods, whereas
Skip-thought reports the best results on the SUBJ and TREC datasets.
However, unlike Skip-thought that is trained for two weeks on a GPU clus-
ter, ClassiNets can be trained in less than 6 hours end-to-end on a single core
CPU. The computational efficiency of ClassiNets is particularly attractive when
continuously classifying large amounts of short-texts such as, for example, sen-
timent classification of tweets coming in as a continuous data stream.

6.3 Qualitative evaluation
In Table 4, we show the expansion candidates predicted by the proposed Global
Feature Expansion method for some randomly selected short-reviews. The
gold standard sentiment labels associated with each short review in the test
dataset are shown within brackets. All the reviews shown in Table 4 are mis-
classified if we had used only the features in the original review. However, by
appending the expansion features found from the ClassiNet, we can correctly
predict the sentiment for those short reviews. From Table 4, we see that many

28

Table 3: Comparison against sentence-level embedding methods.

Method MR CR SUBJ TREC

Skip-thought 76.5 80.1 93.6∗ 92.2
Paragraph2Vec 74.8 78.1 90.5 59.4
FastSent 70.8 78.4 88.7 76.8
SDAE 74.6 78.0 90.8 77.6
CNN 76.1 79.8 89.6 83.4
Global Feature Expansion 81.2∗ 83.89∗ 89.7 88.3

Table 4: Example short-reviews and the features predicted by ClassiNet. The
correct label (+/-) is shown within brackets. All these instances were misclas-
sified when classified using the original features. However, when we use the
features predicted by the ClassiNet all those instances are correctly classified.

Review Predicted features
On its own cinematic terms, it successfully
showcases the passions of both the director
and novelist Byatt. (+)

writer, played, excellent, thriller, story, writ-
ing, subject, script, animation, films, role, sto-
ryline, experience, episode, cinematography.

What Jackson has accomplished here is amaz-
ing on a technical level. (+)

beautiful, perfect, fantastic, good, brilliant,
great, wonderful, excellent, fine, strong.

This is art playing homage to art. (+) cinema, modern, theme, theater, reality, style,
experience, British, drama, documentary, his-
tory, period, acting, cinematography.

About as satisfying and predictable as the fare
at your local drive through. (-)

terrible, ridiculous, annoying, least, horrible,
poor, slow, awful, dull, scary, boring, stupid,
bad, silly.

semantically related features are found by the proposed method.
Figure 2 shows an extract from the ClassiNet we create from the Large

Movie Review dataset. To avoid cluttering of edges, we show only the edges
for a sparse k = 4 mutual neighbour graph created from the original densely
connected ClassiNet. First, for each vertex vi in the ClassiNet we compute its
top k similar vertices according to the edge weights. Next, we connect a vertex vi
to a vertex vj in the k-mutual neighbour graph if vj is among the top k similar
vertices of vi, and vi is among the top k similar vertices of vj . We see that
synonyms, such as awful, and horrible are connected by high weighted edges in
Figure 2. It is interesting to see that antonyms, such as good, and bad are also
among the mutual nearest neighbours because those terms frequently occur in
similar contexts (e.g., good movie vs. bad movie). Moreover, Figure 2 shows the

29

Figure 2: Portion of the created ClassiNet from movie reviews. Vertices denote
features and the edge-weights are shown on arrows.

importance of propagating over the ClassiNet, instead of simply considering the
directly connected vertices as the expansion candidates. For example, although
being highly related features, there is no direct connection from horrible to
boring in the ClassiNet. However, if we consider two-hop connections then we
can find a path through awful.

6.4 Effect of the Damping Factor
To empirically study the effect of the damping factor on the classification ac-
curacy of short-texts under the Global Feature Expansion method, we ran-
domly select 1000 positive and 1000 negative sentiment labeled sentences from
the Large Movie Review dataset as validation data, and evaluate the sentiment
classification accuracy of the Global Feature Expansion method with differ-
ent γ values. The result is shown in Figure 3. Note that smaller γ values will
reduce the propagation than larger γ values, restricting the expansion candi-
dates to a smaller local neighbourhood surrounding the original features. From
Figure 3 we see that initially when increasing γ the classification accuracy in-
creases and reaches a peak at γ = 0.85. This shows that it is indeed important
to find expansion neighbours by propagating over the ClassiNet as done by the
global feature expansion method. However, setting γ > 0.85 results in a drop
of classification accuracy, which is due to distant and potentially irrelevant ex-
pansion candidates. Interestingly, γ = 0.85 has been found to be the optimal
value for different graph-based propagation tasks such as the PageRank (Page
et al., 1999).

30

0.0 0.2 0.4 0.6 0.8 1.0
Damping factor γ

76.8

77.0

77.2

77.4

77.6

77.8

78.0

78.2

78.4

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Figure 3: The effect of the damping factor on the classification accuracy out.

6.5 Number of Expansion Features
In this Section we analyse the number of feature appended to train/test instances
by the different feature expansion methods using a fixed ClassiNet. Recall that
none of the feature expansion methods we proposed has any predefined number
of expansion features. In contrast, the number of expansion features depends on
several factors: (a) the number of features in the original (prior to expansion)
feature vector, (b) the size and the connectivity of the ClassiNet and (c) the
feature expansion method. For example, if a particular feature vector has n
features, which are all present in the ClassiNet, then on average under the All
Neighbour Expansion method, we will append dn number of features to this
instance where d is the out degree of the ClassiNet. More precisely, the actual
number of expansion features will be different from dn due to several reasons.
First, some vertices in ClassiNet might have different numbers of neighbours,
not necessarily equal to the out degree. Second, the out degree considers the
weight of the edges and not simply the different number of vertices connected
via outbound edges. Third, some of the expansion features might already be
in the original feature vector, thereby not increasing the number of features.
Finally, the same expansion feature might be suggested by different vertices,
therefore doubly counting the number of expansion features.

To empirically analyse the number of expansion features, we build a ClassiNet
containing 700 vertices and count the number of features expanded on the SUBJ
train dataset. The out degree d is given by (26).

d =
1

N

∑
i

∑
j∈N (vi)

wij (26)

Here, N is the total number of vertices in the ClassiNet, N (vi) is the set of

31

Figure 4: Out degree distribution of the ClassiNet.

neighbours connected to vi by an out bound link, and wij is the weight of the
edge connecting vertex vi to vj .

Figure 4 shows the degree distribution for the ClassiNet with degree d =
263.35. We see that most vertices are connected to 240 − 300 other vertices
in the ClassiNet. Given that this ClassiNet contains 700 vertices, this is a
tightly connected, dense graph. For each train instance in the SUBJ dataset,
we compute the expansion ration, ratio between the number of features after
and before feature expansion, for the All Neighbour Expansion (Figure 5) and
Global Feature Expansion (Figure 6). We see that the expansion ratio is higher
for the global feature expansion (ca. 25-30) compared to that for all neighbour
expansion (ca. 1.5-2.5). Given that the global feature expansion considers a
broader neighbourhood surrounding the initial features in an instance this is not
surprising. Moreover, it provides an explanation for the superior performance
of the global feature expansion. Although expanding too much using not only
relevant nearby features but also potentially irrelevant broader neighbourhoods
is likely to degrade performance, we see that at the level of expansions done
by the global feature expansion this is not an issue. Therefore, we conclude
that under the global feature expansion method, we do not need to impose any
predefined limitations to the number of expansion features.

7 Conclusion
We proposed ClassiNet, a network of binary classifiers for predicting missing
features to overcome the feature sparseness problem observed in short-text clas-
sification. We select positive and negative training instances for learning the
feature predictors using unlabeled data. In ClassiNets, the weight of the edge

32

Figure 5: All neighbour Expansion.

connecting the vertex vi to vj represents the probability that given vi is pre-
dicted to occur in an instance, vj is also predicted to occur in the same in-
stance. We proposed an efficient method using locality sensitive hashing to
approximately compute the neighbourhood of a vertex, thereby avoiding all-
pair computation of confusion matrices. We propose local and global methods
for feature expansion using ClassiNets. Our experimental results show that the
global feature expansion method significantly improves the classification accu-
racy of a sentence-level sentiment classification tasks outperforming previously
proposed methods such as structural correspondence learning (SCL), and fre-
quent term sets (FTS), Skip-thought vectors, FastSent, and Paragraph2Vec on
multiple datasets. Moreover, close inspection of the expanded feature vectors
show that features that are related to an instance are found as expansion can-
didates for that instance. In the future, we plan to apply ClassiNets to other
tasks that require missing feature prediction such as recommendation systems.

References
Alexandr Andoni and Piotr Indyk. 2008. Near-Optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions. Commun. ACM 51, 1
(2008), 117 – 122.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research 3 (2003), 993–1022.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Biographies, Bolly-
wood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classi-
fication. In ACL 2007. 440–447.

33

Figure 6: Global Feature Expansion.

John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation
with structural correspondence learning. In EMNLP. 120 – 128.

D. Bollegala, Y. Matsuo, and M. Ishizuka. 2007. Measuring semantic similarity
between words using web search engines. In Proc. of WWW ’07. 757–766.

José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. 2015.
NASARI: a Novel Approach to a Semantically-Aware Representation of Items.
In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Denver, Colorado, 567–577. http:
//www.aclweb.org/anthology/N15-1059

Claudio Carpineto and Giovanni Romano. 2012. A Survey of Automatic Query
Expansion in Information Retrieval. Journal of ACL Computing Surveys 44,
1 (2012), 1 – 50.

Moses Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proc. of STOC. 380 – 388.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahadanau, and Yoshua Ben-
gio. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. In Proc. of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation. 103 – 111.

Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuska. 2011. Natural Language Processing (almost)
from Scratch. Journal of Machine Learning Research 12 (2011), 2493 – 2537.

34

Gao Cong, Long Wang, Chin-Yew Lin, Young-In Song, and Yueheng Sun. 2008.
Finding Question-answer Pairs from Online Forums. In Proc. of SIGIR. 467–
474. https://doi.org/10.1145/1390334.1390415

Zichao Dai, Aixin Sun, and Xu-Ying Liu. 2013. CREST: Cluster-based Repre-
sentation Enrichment for Short Text Classification. In Advances in Knowledge
Discovery and Data Mining. 256 – 267.

Cicero dos Santos and Maira Gatti. 2014. Deep Convolutional Neural Networks
for Sentiment Analysis of Short Texts. In Proc. of COLING. 69–78. http:
//www.aclweb.org/anthology/C14-1008

Hui Fang. 2008. A Re-examination of Query Expansion Using Lexical Resources.
In Proc. of ACL. 139–147.

Zhiguo Gong, Chan Wa Cheang, and Leong Hou U. 2005. Web Query Expansion
by WordNet. In Proc. of DEXA. 166 – 175.

Hu Guan, Jinguy Zhou, and Minyi Guo. 2009. A Class-Feature-Centroid Clas-
sifier for Text Categorization. In Proc. of WWW. 201 – 210.

Xiaofei He and Partha Niyogi. 2003. Locality Preserving Projections. In Proc.
of NIPS. 153 – 160.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016a. Learning Disributed
Representations of Sentences from Unlabelled Data. In Proc. of NAACL-HLT.
1367–1377.

Felix Hill, KyungHyun Cho, Anna Korhonen, and Yoshua Bengio. 2016b.
Learning to Understand Phrases by Embedding the Dictionary. Trans-
actions of the Association for Computational Linguistics 4 (2016), 17–30.
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/711

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735 – 1780.

Minqing Hu and Bing Liu. 2004. Mining and Summarizing Customer Reviews.
In KDD 2004. 168–177.

Wenpeng Hu, Jiajun Zhang, and Nan Zheng. 2016. Different Contexts Lead
to Different Word Embeddings. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers.
The COLING 2016 Organizing Committee, Osaka, Japan, 762–771. http:
//aclweb.org/anthology/C16-1073

Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng.
2012. Improving Word Representations via Global Context and Multiple
Word Prototypes. In ACL’12. 873 – 882.

35

Ignacio Iacobacci, Mohammed Taher Pilehvar, and Roberto Navigli. 2015a.
SenseEmbed: Learning Sense Embeddings for Word and Relational Similarty.
In Proc. of ACL. 95–105.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli. 2015b.
SensEmbed: Learning Sense Embeddings for Word and Relational Similarity.
In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, 95–105. http://www.aclweb.org/anthology/
P15-1010

Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: to-
wards removing the curse of dimensionality. In Proc. of STOC. 604 – 613.

Richard Johansson and Luis Nieto Piña. 2015. Embedding a Semantic Network
in a Word Space. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Denver, Colorado,
1428–1433. http://www.aclweb.org/anthology/N15-1164

Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational Linguistics,
Doha, Qatar, 1746–1751. http://www.aclweb.org/anthology/D14-1181

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio
Torralba, Raquel Urtasun, and Sanja Fidler. 2015. Skip-Thought Vectors. In
Proc. of Advances in Neural Information Processing Systems (NIPS). 3276–
3284.

Zornista Kozareva and Eduard Hovy. 2010. Not All Seeds Are Equal: Measuring
the Quality of Text Mining Seeds. In Proc. of NAACL-HLT. 618 – 626.

Bing kun Wang, Yong feng Huang, Wan xia Yang, and Xing Li. 2012. Short
text classification based on strong feature thesaurus. Journal of Zhejiang
University-SCIENCE C (Computers and Electronics) 13, 9 (2012), 649 – 659.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a Social Network or a News Media?. In Proc. of WWW. 591–600.
https://doi.org/10.1145/1772690.1772751

Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In Proc. of ICML. 1188 – 1196.

Jiwei Li and Dan Jurafsky. 2015. Do Multi-Sense Embeddings Improve Nat-
ural Language Understanding?. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Association for Com-
putational Linguistics, Lisbon, Portugal, 1722–1732. http://aclweb.org/
anthology/D15-1200

36

Juzheng Li, Jun Zhu, and Bo Zhang. 2016b. Discriminative Deep Random
Walk for Network Classification. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics, Berlin, Germany, 1004–
1013. http://www.aclweb.org/anthology/P16-1095

Shaohua Li, Tat-Seng Chua, Jun Zhu, and Chunyan Miao. 2016a. Generative
Topic Embedding: a Continuous Representation of Documents. In Proc. of
ACL. 666–675.

Pengfei Liu, Xipeng Qiu, and Xuangjing Huang. 2015b. Learning Context-
Sensitive Word Embeddings with Neural Tensor Skip-Gram Model. In Proc.
of IJCAI. 1284–1290.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. 2015a. Topical Word
Embeddings. In Proc. of AAAI. 2418–2424.

Zhengdong Lu and Hang Li. 2013. A Deep Architecture for Matching Short
Texts. In Proc. of NIPS. 1367 – 1375.

Yuan Man. 2014. Feature Extension for Short Text Categorization Using Fre-
quent Term Sets. In Proc. Int’l Conf. on Information Technology and Quan-
titative Management. 663 – 670.

Christopher D. Manning and Hinrich Schutze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, Massachusetts.

Rada Mihalcea and Dragomir Radev. 2011. Graph-based Natural Language Pro-
cessing and Information Retrieval. Cambridge University Press.

Tomas Mikolov, Kai Chen, and Jeffrey Dean. 2013. Efficient estimation of
word representation in vector space, In Proc. of International Conference on
Learning Representations. CoRR.

George A. Miller. 1995. WordNet: A Lexical Database for English. Commun.
ACM 38, 11 (November 1995), 39 – 41.

Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCal-
lum. 2014. Efficient Non-parametric Estimation of Multiple Embeddings per
Word in Vector Space. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, 1059–1069. https://www.youtube.com/
watch?v=EeBj4TyW8B8&feature=youtu.be

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report
SIDL-WP-1999-0120. Stanford InfoLab.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen.
2010. Cross-Domain Sentiment Classification via Spectral Feature Alignment.
In Proc. of WWW. 751 – 760.

37

Bo Pang and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis
Using Subjectivity Summarization Based on Minimum Cuts. In Proceedings
of the ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales. In ACL 2005. 115–124.

Jeffery Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
global vectors for word representation. In Proc. of EMNLP. 1532 – 1543.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: On-
line Learning of Social Representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD ’14). ACM, New York, NY, USA, 701–710. https://doi.org/10.
1145/2623330.2623732

Aniket Rangrej, Sayali Kulkarni, and Ashish V. Tendulkar. 2011. Comparative
Study of Clustering Techniques for Short Text Documents. In Proc. of WWW.
111 – 112.

Deepak Ravichandran, Patrick Pantel, and Eduard Hovy. 2005. Randomized
algorithms and NLP: using locality sensitive hash functions for high speed
noun clustering. In ACL’05. 622 – 629.

Joseph Reisinger and Raymond J. Mooney. 2010. Multi-Prototype Vector-Space
Models of Word Meaning. In Proc. of HLT-NAACL. 109–117.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake Shakes
Twitter Uers: Real-time Event Detection by Social Sensors. In Proc. of
WWW. 851–860.

G. Salton and C. Buckley. 1983. Introduction to Modern Information Retreival.
McGraw-Hill Book Company.

Bei Shi, Wai Lam, Shoaib Jameel, Steven Schockaert, and Kwun Ping Lai. 2017.
Jointly Learning Word Embeddings and Latent Topics. In Proc. of SIGIR.
375–384.

Linfeng Song, Zhiguo Wang, Haitao Mi, and Daniel Gildea. 2016. Sense Em-
bedding Learning for Word Sense Induction. arXiv (2016).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Network
from Overfitting. Journal of Machine Learning Research 15 (2014), 1929 –
1958.

Jiang Su, Jelber Sayyad-Shirabad, and Stan Matwin. 2011. Large Scale Text
Classification using Semi-supervised Multinomial Naive Bayes. In Proc. of
ICML.

38

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In Proc. of the
24th International Conference on World Wide Web. 1067–1077.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvind Kappas.
2010. Sentiment strength detection in short informal text. Journal of the
American Society for Information Science and Technology 61, 12 (December
2010), 2544 – 2558.

Jason Weston, Sumit Chopra, and Keith Adams. 2014. #TagSpace: Seman-
tic Embeddings from Hashtags. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, 1822–1827. http://www.aclweb.
org/anthology/D14-1194

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. 2013. A Biterm
Topic Model for Short Texts. In Proc. of WWW. 1445 – 1456.

Shansong Yang, Weiming Lu, Dezhi Yang, Liang Yao, and Baogang Wei. 2015.
Short Text Understanding by Leveraging Knowledge into Topic Model. In
Proc. of NAACL-HLT. Association for Computational Linguistics, 1232–
1237.

Dani Yogatama and Noah A. Smith. 2014. Making the Most of Bag of Words:
Sentence Regularization with Alternating Direction Method of Multipliers. In
Proc. of ICML. 656 – 664.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urta-
sun, Antonio Torralba, and Sanja Fidler. 2015. Aligning Books and Movies:
Towards Story-like Visual Explanations by Watching Movies and Reading
Books. In arXiv preprint arXiv:1506.06724.

39

