1	Determination of the relationship between mechanical properties, ultrastructural
2	changes and intrafibrillar bond formation in corneal UVA/riboflavin cross-linking
3	treatment for keratoconus
4	
5	Shao-Hsuan Chang ¹ , Ashkan Mohammadvali ¹ , Kai-Jung Chen ¹ , You-Ren Ji ³ , Tai-Horng
6	Young ³ , Tsung-Jen Wang ^{4A,4B} , Colin E. Willoughby ^{2A,2B} , Kevin J. Hamill ^{2A} *, Ahmed
7	Elsheikh ^{1,5}
8	
9	¹ School of Engineering, University of Liverpool, United Kingdom
10	^{2A} Department of Eye and Vision Science, University of Liverpool, United Kingdom
11	^{2B} St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
12	³ Institute of Biomedical Engineering, College of Medicine and College of Engineering,
13	National Taiwan University, Taipei, Taiwan
14	^{4A} Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
15	^{4B} Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical
16	University, Taipei, Taiwan

17	⁵ NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS
18	Foundation Trust and UCL Institute of Ophthalmology, United Kingdom
19	
20	* Corresponding Author
21	Email:Kevin.Hamill@liverpool.ac.uk
22	
23	Key words: Corneal Cross-linking, Dresden Protocol, Tensile Mechanical Property, Collagen
24	Fibril, Keratoconus
25	
26	
27	

28 Abstract

29 Purpose

30 UVA/riboflavin induced corneal cross-linking is a common therapeutic approach used to prevent progression in keratoconus. However, there is limited understanding of how changes 31 32 to the mechanical behavior in cross-linked corneas relate to changes in the corneal 33 ultrastructure. The aim of this study was to determine these relationships and, by so doing, 34 provide a reference against which future modifications to cross-linking approaches may be 35 compared. 36 Methods 37 Porcine corneas were treated following the "Dresden" protocol, the current gold standard for 38 clinical treatment, consisting of dropwise application of 0.1% riboflavin in 20% dextran 39 followed by 30 minutes of UVA irradiation. The effect of crosslinking was assessed using 40 uniaxial tensile testing, transmission electron microscopy, and Fourier Transform Infrared Spectroscopy with results compared against corneas treated with each of the treatment 41 42 solution components individually

43 **Results**

44	Data revealed that UVA/riboflavin cross-linked corneas displayed 28±17% increase in the
45	material tangent modulus compared with dextran treatment alone, and altered collagen
46	architecture within the first 300 μm of stromal depth consisting of 5% increase in the
47	thickness of collagen fibrils, no significant changes to interfibrillar spacing, and an 8% to
48	12% decrease in number of fibrils per unit area. Fourier Transform Infrared Spectroscopy
49	confirmed formation of interfibrillar bonds (p=0.012) induced by UVA mediated
50	cross-linking.
51	Conclusions
52	Our data support a model wherein collagen fibril diameter and structural density are
53	fundamental parameters in defining tissue stiffening following UVA/riboflavin corneal
54	cross-linking, and provide benchmarks against which modifications to the Dresden
55	cross-linking protocol can be evaluated.
56	
57	Precis
58	This paper provides the connection between ultrastructural and mechanical properties
59	changes induced by the current gold standard UVA/riboflavin cross-linking protocol. It

60 provides a benchmark against which future protocol modifications can be evaluated.

61 Introduction

Keratoconus is a corneal thinning disease which results in a focally reduced corneal radius of 62 63 curvature, abnormal wavefront aberrations, and a localised reduction in corneal thickness and stiffness, these aberrations lead to a decline in visual function which ultimately may require 64 corneal transplantation¹. Corneal cross-linking with riboflavin and UVA is an established 65 66 treatment for progressive keratoconus and currently is the only therapeutic approach that is capable of significantly altering disease progression² available for many years in Europe, this 67 treatment option has been recently approved by the US Food and Drugs Administration for 68 69 use in United States².. The so-called "Dresden" or "standard" protocol is the current standard 70 approach for corneal cross-linking for keratoconus; consisting of 30 minutes exposure to 71 3mW fluence (5,4 mJ/cm2) following 30 mins soaking in 0.1% riboflavin³. 72 73 The Dresden protocol involves topical dosing of the cornea, following epithelial removal, with 0.1% riboflavin in 20% dextran for 30 minutes, then exposure to ultraviolet light over a 74 30 minute period. This rationale behind this approach is that photo-polymerisation, in the 75

76 presence of the photosensitizer riboflavin, leads to creation of chemical bonds between

77	substrates within the corneal stroma, including between collagens and proteoglycans, and
78	other stromal proteins ³⁻⁵ . The effects of these induced cross-links have been variously
79	reported as increases in tissue stiffness, resistance to enzymatic digestion, changes to
80	ultrastructure and altered swelling behaviour ⁶⁻⁹ . However, these studies have generally
81	evaluated the overall effects of full cross-linking protocol without separating the contribution
82	of individual aspects of the treatment and there are some differences in outcome
83	reported ^{5,6,10,11} .
84	
85	Mashanial managing of high sign discuss and langely demonstrated and she intertwining of
00	Mechanical properties of biological tissues are largely dependent upon the intertwining of
86	collagen fibrils, linked lamina layers and interfibrillar spacing ¹²⁻¹⁴ . Therefore, the efficacy of
86	collagen fibrils, linked lamina layers and interfibrillar spacing ¹²⁻¹⁴ . Therefore, the efficacy of
86 87	collagen fibrils, linked lamina layers and interfibrillar spacing ¹²⁻¹⁴ . Therefore, the efficacy of the Dresden corneal cross-linking protocol is believed to be dependent on changes to the
86 87 88	collagen fibrils, linked lamina layers and interfibrillar spacing ¹²⁻¹⁴ . Therefore, the efficacy of the Dresden corneal cross-linking protocol is believed to be dependent on changes to the mechanical properties of the tissue induced through modifying the characteristics of collagen
86 87 88 89	collagen fibrils, linked lamina layers and interfibrillar spacing ¹²⁻¹⁴ . Therefore, the efficacy of the Dresden corneal cross-linking protocol is believed to be dependent on changes to the mechanical properties of the tissue induced through modifying the characteristics of collagen fibrils within the cornea, and the induction of intrafibrillar bonds, with the overall level of

93	collagen cross-linking effect is predominantly located within anterior stroma but did not
94	specify the parameters that may be involved in determining and defining the amount of the
95	tissue stiffening induced. Indeed, the relationship between the mechanical behaviour of
96	cross-linked cornea and its ultrastructure is poorly explored, and the specific contribution of
97	the dextran within the riboflavin solution has not been reported ^{18,19} .
98	
99	numerous modifications to the Dresden protocol are being trialed in clinical settings therefore
100	defined knowledge of the effect of the current treatment regime is needed to provide a
101	benchmark against which these modifications can be compared and moreover for rationale
102	design of alternative approaches. The present study aimed to improve this understanding by
103	systematically investigating the role of dextran and the effect of riboflavin and UVA
104	cross-linking in inducing mechanical and ultrastructural changes in the porcine cornea.
105	

106 Materials and methods

107 Cross-linking Procedure and Experimental Design

108 Fresh porcine eyes were collected from an abattoir, washed with phosphate-buffered saline (PBS) (Sigma, Dorset, United Kingdom), the central corneas excised and the corneal 109 epithelium removed. To control for inter-animal variation, each cornea was cut into two 110 111 segments in a superior-inferior fashion with one half being used as the test sample and the second for the control treatment (Fig. 1). 112 113 114 The treatment groups were assigned into groups as follows: Group 1 (PBS vs. PBS): 6 115 corneas; each half cornea was topically treated with PBS in 3 minute intervals for 1 hour. 116 used to examine the intrinsic differences between the two segments of each porcine cornea. Group 2 (PBS vs. Riboflavin + PBS): 6 corneas; each corneal segment was topically treated 117 118 in 3-minute intervals for 1 hour with either PBS or 0.1% riboflavin (Sigma) prepared in PBS. Group 3 (PBS vs. Riboflavin + Dextran): As for Group 2, except that the riboflavin was 119 120 prepared in 20% dextran (Sigma). Group 4 (Dextran vs. Riboflavin + Dextran + UVA): 10 121 corneas; one half treated following the conventional Dresden protocol³, the anterior surface

122	of the corneas were treated with 5ml of 0.1% riboflavin in 20% dextran every 3-minutes
123	intervals for 30 minutes, followed by UVA (370nm) illumination at 3 mW/cm ² (Opto XLink,
124	Mehra Eyetech Pvt Ltd, Delhi, India) for a further 30 minutes. Topical dosing of riboflavin
125	with dextran drops was continued every 3 minutes manner during the UVA irradiation (for
126	full cross-linking details following the standard convention, see table 1) ²⁰ . Cross-linked
127	corneas were compared to fellow segments treated with 20% dextran only.
128	
129	Following treatment, the corneal tissues were dissected for mechanical testing and for
130	ultrastructural analysis (Fig 1).
131	

132 Tensile Testing

Corneal stiffness was examined using a uniaxial tensile tester, Instron 3366 machine (Instron Engineering Corp., MA, USA), equipped with a 10N load cell. Two strips (3mm width x 6mm length) cut in the superior-inferior direction at the central cornea were inserted vertically into custom designed clamps and the protocol set to apply a maximum loading stress of 0.125 MPa, slightly above the stress expected under an intraocular pressure of 80

138	mmHg ²¹ . A constant extension of 1 mm/min was applied and the corresponding stress
139	(applied force divided by cross-sectional area) and strain (extension over original length)
140	measured continuously. Five conditioning cycles ²¹ , with four-minute recovery periods
141	between each two cycles, were performed. The tangent modulus (Et), the gradient of a
142	tangent of the stress-strain behavior pattern, was calculated at different stress levels to derive
143	the overall stiffness of the tissue 22,23 .

145 Transmission electron microscopy

146	Transmission electron microscopy (TEM) was performed as described previously ⁶ . Briefly,
147	the specimens were isolated from the central regions of cornea (Fig 1) and fixed overnight
148	with 2.5% glutaraldehyde (TAAB Laboratories Equipment Ltd, Reading, UK) in 0.1% tannic
149	acid. Thereafter, specimens were dissected into 1mm x 2mm blocks and incubated with 4%
150	osmium (TAAB), followed by serial dehydration through an acetone gradient (30%, 50%,
151	70%, 90%, 100%)(Sigma). Specimens were then infiltrated and embedded in medium resin
152	(TAAB) and ultrathin 70 nm-thickness sections cut using a diamond knife microtome and
153	collected onto 200 mesh copper grids (Ted Pella, Inc., CA, USA). Sections were examined

using a Tecnai G2 spirit BioTWIN Transmission electron microscope (FEI Company, OR,
USA) operated at 120kV and 60k-fold magnification with a CCD camera. Tissues were
sampled at five depth intervals from top of the anterior stroma 0-50µm, 80-150µm,
200-250µm, 300-350µm, 400-450µm.

158

159 Collagen fibrils in longitudinal, frontal and oblique profiles were observed in TEM images; 160 only those in frontal profiles were used for quantitative analysis with analyses performed 161 using Fiji software (National Institutes of Health, Bethesda, MA, USA). Ultrastructural 162 parameters evaluated were; i) mean diameter of collagen fibrils ii) interfibrillar spacing and 163 iii) number of fibrils per unit area. For i) circular spots in frontal profiles were isolated, 164 exported and diameters measured. ii) The calculation of interfibrillar spacing was generated 165 from equation (1) while assuming that the collagen fibrils were evenly distributed.

166
$$\mathbf{R} + \mathbf{D} = \sqrt{A/N} \tag{1}$$

Here R was defined as interfibrillar spacing (nm), D as mean diameter of collagen fibrils
(nm), A as the area of selected zone of measurement (nm²), N as the number of fibrils
(circular spots) within the selected zone. iii) fibrils per unit area was determined by randomly

170	localising a window of fixed unit size (300 x 300 dpi) and the number of circular spots
171	counted.
172	The distribution curve of collagen fibrils was assessed with a bespoke code using MATLAB
173	2016b (The MathWorks Inc., Natick, MA, USA). Original images were converted to binary
174	using adaptive thresholding and a custom designed collagen fibril detection system, using the
175	Circular Hough Transform (CHT) based algorithm ^{24,25} , was established to analyse the radius
176	of circular objects in frontal profiles of TEM images. Distribution curves were generated by
177	plotting the frequency in 2nm increments against fibril radius.
178	
178 179	Fourier Transform Infrared (FTIR) Absorption Spectroscopy
	Fourier Transform Infrared (FTIR) Absorption Spectroscopy Fresh porcine corneas were treated with either PBS, 0.1% riboflavin in 20% dextran or the
179	
179 180	Fresh porcine corneas were treated with either PBS, 0.1% riboflavin in 20% dextran or the
179 180 181	Fresh porcine corneas were treated with either PBS, 0.1% riboflavin in 20% dextran or the full Dresden protocol (6 per group), lyophilized for 3 days, then FTIR spectra measured using
179 180 181 182	Fresh porcine corneas were treated with either PBS, 0.1% riboflavin in 20% dextran or the full Dresden protocol (6 per group), lyophilized for 3 days, then FTIR spectra measured using a Nicolet 6700 FTIR spectrometer (Thermo Scientific, MA, USA) with a attenuated total

186 combination of four spectral intervals [v(C=O) absorption of amide I (1,680–1,630 cm⁻¹), 187 δ (NH₂) absorptions of amide II (1,570–1,515 cm⁻¹), v(C–N) absorptions of amide III (1,350– 188 1,200 cm⁻¹), and v(C–O) absorptions of carbohydrate moieties (1,150–1,000 cm⁻¹)]. Area 189 under the curve at each interval was analyzed using KnowItAll® ID ExpertTM (Bio-Rad, CA, 190 USA).

191

192 Statistical Analysis

193 Results for mechanical, ultrastructural and FTIR spectra analyses are presented as means \pm 194 standard deviation (SD) and statistical significance calculated using one-way analysis of 195 variance (ANOVA) with Turkey's HSD post-hoc tests. The Mann-Whitney U test (two-tailed) 196 was used for analyzing the statistical difference of the distribution curves, and significance 197 differences accepted where p < 0.05.

199 Results

200 UVA/riboflavin treatment and dextran mediated dehydration both contribute to 201 mechanical property changes in corneal cross-linking. 202 In order to isolate the effect of the individual components of UVA/riboflavin crosslinking 203 procedure, uniaxial tensile experiments and transmission electron microscopy were 204 conducted on a set of porcine split into paired comparison groups. To account for 205 inter-animal variability, each cornea was cut in two and one half treated with the treatment 206 and compared against the control (Fig 1), tensile measurements and ultrastructural analyses 207 were performed on the same cornea). Comparison groups were: PBS vs. PBS, riboflavin in 208 PBS vs. PBS, riboflavin in 20% dextran vs. PBS and riboflavin in 20% dextran+UVA vs. 20% dextran (Fig 1). 209

210

The tangent modulus (Et) versus stress (σ) for each corneal strip was determined and the overall stiffening effect indicated by the ratio of the tangent modulus (Et_{experimental}/Et_{control}). Comparisons concentrated on tangent modulus ratios at a stress of 0.03MPa, which is equivalent to a physiological intraocular pressure (IOP) of around 25mmHg²¹. As expected,

215	no significant differences were observed where both corneal segments were treated
216	identically with PBS, confirming the validity of our intra-eye control system (Et experimental PBS
217	vs. Et _{control PBS} : 1.36 \pm 0.32 vs. 1.43 \pm 0.30 at 0.03MPa, respectively, p = 0.075, Figs 2A and 2B,
218	S1 Table). Riboflavin in PBS treatment also caused no stiffening (riboflavin in PBS
219	1.45±0.15 vs. PBS 1.38±0.17, p = 0.448, Figs 2C, S1 Table). However, the riboflavin in 20%
220	dextran group displayed a 13±9% tangent modulus increase compared to their internal PBS
221	control (riboflavin in dextran: 1.52 ± 0.17 vs. PBS 1.34 ± 0.18 , p = 0.011, Figs 2D, S1 Table).
222	Comparing the effect of the full Dresden crosslinking protocol to the effect of dextran
223	treatment alone, we observed a 28±17% increase in tangent modulus in the Dresden treated
224	corneal segments (riboflavin in dextran + UVA 2.09 \pm 0.17 vs. dextran 1.62 \pm 0.18 p =
225	5.67E-05, Figs 2E, S1 Table).

The differences observed with dextran alone were somewhat surprising however, upon comparing the tissue thicknesses following treatments, we observed statistically significant reduced thicknesses in the dextran treated samples compared with their PBS controls, indicative of dehydration (mean thickness riboflavin in dextran 0.79±0.04 mm, PBS

231	1.05 ± 0.39 mm, p = 1.39×10^{-6})(Fig 2F and S1 Table). Correcting the tangent modulus
232	readings with these thickness measurements removed the apparent dextran effects, whereas
233	residual stiffening effect was still observed in the Dresden protocol treated samples after
234	correction (Fig 2G). Together these data demonstrate that dextran treatment alone causes
235	dehydration and therefore an apparently increased stiffening, whereas UVA exposed
236	riboflavin treated corneas exhibit further increased stiffening beyond that caused by the
237	dextran treatment alone.
238	
239	UVA/riboflavin treatment causes depth dependent changes to collagen fibril
239 240	UVA/riboflavin treatment causes depth dependent changes to collagen fibril ultrastructure.
240	ultrastructure.
240 241	ultrastructure. Next we measured changes to the collagen ultrastructure of specimens, measured at five
240 241 242	ultrastructure. Next we measured changes to the collagen ultrastructure of specimens, measured at five different depth intervals using TEM (S1 Fig, Fig. 2A; representative images at 80-150mm)
240 241 242 243	ultrastructure. Next we measured changes to the collagen ultrastructure of specimens, measured at five different depth intervals using TEM (S1 Fig, Fig. 2A; representative images at 80-150mm) and the obtained images used to determine collagen fibril diameter (Fig 2B), interfibrillar

247	collagen fibrils (Fig 3A), as well as reduced interfibrillar spacing and denser packing at all
248	depth intervals compared to its PBS control (S1 Fig). As dextran also causes loss of tissue
249	hydration we used a mathematical method to correct for dehydration effects, in order to
250	identify the true structural changes ²⁶ . The relationship between thickness (T) and hydration
251	(H) was modelled using the equation $T = 0.2 e^{(0.33 H)}$ which has been shown to be
252	effective for these types of calculation ²⁶ . The reduction in thickness followed an exponential
253	decrease in tissue hydration, which we used to calculate the hydration state of the tissues and
254	therefore calculate swelling factors at each depth interval (S3 Table). Analysis of fibril
255	diameter at each depth interval revealed that although, in the uncorrected data, dextran
256	treatment caused a reduction in the frequency of large collagen fibrils compared to PBS
257	treatment (Figs 3B; 80-150mm, S2 Table and S3 Table), when correction for swelling factors
258	was included, no significant differences were detected (Fig 3B and S2 Fig), indicating that
259	dextran treatment alone has no effect on collagen fibril diameter.

In analyzing the effect of the Dresden UVA/riboflavin crosslinking protocol on corneal
ultrastructure, both segments within our intra-eye comparisons were treated with dextran

263	therefore any residual difference between the internal controlled comparison groups reflected
264	a true effect of the crosslinking procedure. Analysis revealed a small but statistically
265	significant increase in collagen fibril diameter in the cross-linked group at 80-150 μ m (5±2%,
266	p<0.01) and 200-250 μ m depths (6±3%, p<0.01)) with no differences observed at any other
267	depth intervals (Figs 4C and 4D, S2 Fig). No statistical differences in interfibrillar spacing
268	between treatments were observed at any depths (Fig 4E), however the Dresden protocol
269	caused a decrease in the number of fibrils per unit area in the anterior $250\mu m$ of the tissue
270	(0-50μm 6±5%, p<0.05; 80-150μm 11±7%, p<0.01; 200-250μm 11±5%, p<0.01) (F5 and S2
271	Table). Together these data indicate that the UVA crosslinking procedure creates relatively
272	small, depth-localized changes to the collagen ultrastructure.
273	
274	Individual ultrastructural measurements are insufficient to predict mechanical changes.
275	As we had performed the tangent modulus and ultrastructural measurements upon the same
276	eye (Fig 1), we were able to directly compare the values obtained (Fig 5). Note comparisons
277	were made between mechanical outcomes measured at 0.03MPa stress and structural
278	parameters were determined from tissues in relaxed states. Collagen fibril diameter at

279	80-150µm, intrafibril spacing increases, and collagen fibril density decreases each displayed
280	correlation with tangent modulus increases across the test population (diameter; $r^2=0.23$, Fig.
281	5A, spacing $r^2= 0.39$, Fig. 5B, density $r^2=0.52$, Fig. 5C). When percentage change on an
282	individual eye basis was plotted, the none of the individual ultrastructural parameters were
283	independently indicative of the overall tissue stiffness (Fig. 5D). However, when considered
284	in combination, the ultrastructural measurements performed better, with a positive correlation
285	of 0.177 (collagen fibril diameter + fibril density - interfibrillar spacing, Fig. 5E).
286	
287	Fourier Transform Infrared Spectroscopy Reveal the Formation of New Amide Bonds
287 288	Fourier Transform Infrared Spectroscopy Reveal the Formation of New Amide Bonds in Cross-linked Corneas
288	in Cross-linked Corneas
288 289	in Cross-linked Corneas To assess the detailed chemical reactions and the conversion of chemical bonds within the
288 289 290	in Cross-linked Corneas To assess the detailed chemical reactions and the conversion of chemical bonds within the cornea tissue after UVA/riboflavin cross-linking, Fourier Transform Infrared Spectroscopy
288 289 290 291	in Cross-linked Corneas To assess the detailed chemical reactions and the conversion of chemical bonds within the cornea tissue after UVA/riboflavin cross-linking, Fourier Transform Infrared Spectroscopy measurements were performed on corneas treated with either PBS, riboflavin+dextran or

295	vibration (1,150–1,000 cm ⁻¹). The area under each band was calculated, and the deformation
296	vibrations of CH ₂ (1,485–1,360 cm ⁻¹) used as an internal standard to determine the intensity
297	ratios (Fig 6C, S4 Table). These analyses revealed significant increases in the C-O stretch
298	peak, decreased C-N stretch and increased NH ₂ deformation following crosslinking (Fig
299	6C). Plotting the ratio of C-N stretch to NH ₂ deformation suggests that the decrease
300	intensities of amide II infrared absorption bands are likely to be accompanied by an increase
301	in the formation of amide III bonds (riboflavin+dextran+UVA 2.5±0.5 compared to PBS
302	1.7±0.3, and riboflavin+dextran 1.8±0.2 Fig 6D, S4 Table).

304 **Discussion**

305 In this study, we have characterized how corneal mechanical properties relate to 306 ultrastructural changes following Dresden protocol treatment, and identified the contribution 307 of the different components of the protocol to observed effects. Specifically, our data 308 demonstrate that the increases in corneal stiffness measured following Dresden protocol 309 from combination of dextran-mediated dehydration treatment arise along with 310 UVA/riboflavin induced new bond formation and depth-dependent increases in collagen fibril 311 diameter. 312 Tissue stiffness is considered as a combination of the internal geometry of the tissue and the 313 properties of the material itself. Therefore, although our data indicate that almost half of the 314 measured stiffening effect of the Dresden protocol comes from the dextran component of the 315 protocol, these effects can be explained by dehydration effects. However, we did observe an 316 increase in C-O stretching force in the riboflavin in dextran treated corneas compared with 317 controls indicating that dextran does itself induce collagen changes. A potential explanation 318 for these new bonds is that the dextran induced dehydration increases the swelling pressure of tissue and therefore the resistance pressure of proteoglycan matrix^{26,27}, giving rise to 319

320 intermolecular forces. These dextran and dehydration effects could help explain some of the 321 apparently contradictory reports in the literature ^{5,6,10,11}. Interestingly tissue hydration states have been reported to affect the efficacy of cross-linking treatment²⁷, therefore, hydration 322 323 states and the osmolarity of the riboflavin solutions could be important factors to consider in 324 protocol modifications. 325 326 Our FTIR data revealed significant changes in C-O stretching force and conversion rate of 327 amide bonds following the full Dresden protocol. Lysine-based cross-links following 328 UVA/riboflavin cross-linking have previously been postulated but not been found chemically^{3,28} but it has been proposed that cross-links form through endogenous carbonyl 329 groups including imidazole formation²⁹. Our data support a model where the increased 330 331 swelling pressure and the involvement of endogenous carbonyls (allysine) leads to the new bond formation²². This leads to a broader mechanism where UVA/riboflavin induced 332

drive the increased tissue mechanical strength and resistance to dehydration (Fig. 7).

intra-fibril bonds. presenting as thickened collagen fibrils and less dense overall structure and

335

336	It should be noted, however, that the ultrastructural changes we measured do not fully
337	account for the mechanical effects suggesting that collagen fibril diameter and spacing are
338	not the only aspects of stromal biology affected by UVA/riboflavin crosslinking. Effects
339	upon other stromal proteins and particularly the interactions of collagen with proteoglycans,
340	could be contributing to the stiffening. Proteoglycans within the corneal stroma have been
341	proposed to play a pivotal role in regulating the fibril-fibril spacing and
342	hydration-dehydration properties ³⁰ , however, the dehydration induced decrease in interfibril
343	spacing has prevented us from being able to determine the sole effect of cross-linking on
344	proteoglycans within our experimental system.

Understanding the stabilization mechanism of UVA/riboflavin cross-linking is clinically 346 relevant when evaluating modifications to the Dresden protocol and developing optimal 347 protocols or new keratoconus treatments. This study establishes the standards in terms of 348 mechanical, chemical and structure/biological changes induced by the Dresden protocol and 349 350 therefore provides the baseline against which modifications can be judged.

352 Acknowledgments

353	The authors thank Alison Beckett at Biomedical Electronic Microscopy Unit for teaching
354	techniques and preparing materials, and Brendan Geraghty at Biomechanical Engineering
355	Group in the University of Liverpool for help with mechanical settings. SHC performed
356	experiment, analyzed data, developed methodology, prepared figures and wrote manuscript
357	text. AM was involved in data curation and manuscript writing and editing. YRJ collected
358	FTIR data, THY and TJW supervised data acquisition. CEW, KJH and AE provided resources
359	and supervision, were responsible for overall conceptualization, manuscript writing and
360	editing.

363 **References**

- Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of
 keratoconus and normal corneas. *Exp. Eye Res.* Oct 1980;31(4):435-441.
- Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. *Curr. Opin. Ophthalmol.* Aug 2006;17(4):356-360.
- 368 3. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen
 369 crosslinking for the treatment of keratoconus. *Am. J. Ophthalmol.* May
 370 2003;135(5):620-627.
- Brummer G, Littlechild S, McCall S, Zhang Y, Conrad GW. The role of
 nonenzymatic glycation and carbonyls in collagen cross-linking for the treatment
 of keratoconus. *Invest. Ophthalmol. Vis. Sci.* Aug 11 2011;52(9):6363-6369.
- 374 5. Hayes S, Kamma-Lorger CS, Boote C, et al. The effect of riboflavin/UVA collagen
 375 cross-linking therapy on the structure and hydrodynamic behaviour of the
 376 ungulate and rabbit corneal stroma. *PloS one.* 2013;8(1):e52860.
- Akhtar S, Almubrad T, Paladini I, Mencucci R. Keratoconus corneal architecture
 after riboflavin/ultraviolet A cross-linking: ultrastructural studies. *Mol. Vis.*2013;19:1526-1537.
- 380 7. Spoerl E, Wollensak G, Dittert DD, Seiler T. Thermomechanical behavior of
 381 collagen-cross-linked porcine cornea. *Ophthalmologica*. Mar-Apr
 382 2004;218(2):136-140.
- 383 8. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea
 384 against enzymatic digestion. *Curr. Eye Res.* Jul 2004;29(1):35-40.
- Wollensak G, Wilsch M, Spoerl E, Seiler T. Collagen fiber diameter in the rabbit
 cornea after collagen crosslinking by riboflavin/UVA. *Cornea.* Jul
 2004;23(5):503-507.
- Wang X, Huang Y, Jastaneiah S, et al. Protective Effects of Soluble Collagen during
 Ultraviolet-A Crosslinking on Enzyme-Mediated Corneal Ectatic Models. *PloS one.*2015;10(9):e0136999.
- Wollensak G, Aurich H, Pham DT, Wirbelauer C. Hydration behavior of porcine
 cornea crosslinked with riboflavin and ultraviolet A. *J. Cataract Refract. Surg.* Mar
 2007;33(3):516-521.
- **12.** Boote C, Dennis S, Newton RH, Puri H, Meek KM. Collagen fibrils appear more

- closely packed in the prepupillary cornea: optical and biomechanical
 implications. *Invest. Ophthalmol. Vis. Sci.* Jul 2003;44(7):2941-2948.
- 397 13. Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure,
 398 density and mechanical properties in the mesoscale deformation mechanisms of
 399 collagen fibrils. *Journal of the mechanical behavior of biomedical materials.* Dec
 400 2015;52:1-13.
- 401 14. Whitford C, Studer H, Boote C, Meek KM, Elsheikh A. Biomechanical model of the
 402 human cornea: considering shear stiffness and regional variation of collagen
 403 anisotropy and density. *Journal of the mechanical behavior of biomedical*404 *materials.* Feb 2015;42:76-87.
- 405 **15.** Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I.
 406 Principles. *The ocular surface.* Apr 2013;11(2):65-74.
- 407 16. Schumacher S, Mrochen M, Wernli J, Bueeler M, Seiler T. Optimization model for
 408 UV-riboflavin corneal cross-linking. *Invest. Ophthalmol. Vis. Sci.* Feb 16
 409 2012;53(2):762-769.
- 410 17. Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical
 411 evidence of the distribution of cross-links in corneastreated with riboflavin and
 412 ultraviolet A light. *J. Cataract Refract. Surg.* 2006;32(2):279-283.
- 413 18. Seifert J, Hammer CM, Rheinlaender J, et al. Distribution of Young's modulus in
 414 porcine corneas after riboflavin/UVA-induced collagen cross-linking as
 415 measured by atomic force microscopy. *PloS one.* 2014;9(1):e88186.
- 416 19. Choi S, Lee S-C, Lee H-J, et al. Structural response of human corneal and scleral
 417 tissues to collagen cross-linking treatment with riboflavin and ultraviolet A light.
 418 *Lasers in medical science.* 2013;28(5):1289-1296.
- **20.** Randleman JB, Santhiago MR, Kymionis GD, Hafezi F. Corneal Cross-Linking
 (CXL): Standardizing Terminology and Protocol Nomenclature. *J. Refract. Surg.*Nov 1 2017;33(11):727-729.
- 422 21. Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D. Assessment of
 423 corneal biomechanical properties and their variation with age. *Curr. Eye Res.*424 2007;32(1):11-19.
- 425 22. Boyce B, Jones R, Nguyen T, Grazier J. Stress-controlled viscoelastic tensile
 426 response of bovine cornea. *J. Biomech.* 2007;40(11):2367-2376.
- 427 23. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and

428 porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. *J. Cataract*429 *Refract. Surg.* 2003;29(9):1780-1785.

430 24. Atherton TJ, Kerbyson DJ. Size invariant circle detection. *Image and Vision*431 *computing*. 1999;17(11):795-803.

- 432 25. Yuen H, Princen J, Illingworth J, Kittler J. Comparative study of Hough transform
 433 methods for circle finding. *Image and vision computing.* 1990;8(1):71-77.
- 434 26. Hatami-Marbini H, Etebu E, Rahimi A. Swelling pressure and hydration behavior
 435 of porcine corneal stroma. *Curr. Eye Res.* 2013;38(11):1124-1132.
- 436 **27.** Hodson SA. Corneal stromal swelling. *Prog. Retin. Eye Res.* 1997;16(1):99-116.
- 437 28. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. *Exp. Eye Res.*438 1998;66(1):97-103.
- 439 29. McCall AS, Kraft S, Edelhauser HF, et al. Mechanisms of corneal tissue
 440 cross-linking in response to treatment with topical riboflavin and
 441 long-wavelength ultraviolet radiation (UVA). *Invest. Ophthalmol. Vis. Sci.*442 2010;51(1):129-138.
- 443 30. Hahn RA, Birk DE. beta-D xyloside alters dermatan sulfate proteoglycan
 444 synthesis and the organization of the developing avian corneal stroma.
 445 *Development.* 1992;115(2):383-393.
- 446

447

449 Figure legends

450	Fig 1. Experimental scheme. Each cornea was cut into two segments in a superior-inferior
451	fashion. The right-hand segment was used as an experimental segment, while the left-hand
452	segment was used as its corresponding control. Four experimental groups were designed,
453	Group 1: PBS vs. PBS; Group 2: PBS vs. riboflavin+PBS; Group 3: PBS vs.
454	riboflavin+dextran; Group 4: dextran vs. riboflavin+dextran+UVA. After each treatment,
455	specimens were dissected and processed for tensile testing (green hollow rectangle) and TEM
456	(red hollow rectangle). S: superior; I: inferior.

457

Fig 2. The tangent modulus (Et) versus stress (σ) behaviour and ratio of tangent modulus of paired samples. (A) The tangent modulus versus stress behavior of right-hand corneal flaps versus left-hand flaps from 6 are plotted. Both flaps were identically treated by soaking in PBS. The ratio of tangent modulus between (B) PBS versus PBS (n=6), (C) riboflavin in PBS versus PBS (n=6), (D) riboflavin in 20% dextran versus PBS (n=6_, (E) riboflavin in 20% dextran+UVA exposure versus 20% dextran only (n=10). Values from each individual cornea pair tested are indicated by grey lines. Average stiffening ratio ±

465	standard deviation are indicated by the bold line and error bars. The red dash line represented
466	the value of 1; i.e. no difference between paired samples. Gray shaded region in A-E plots
467	represents 0.03MPa. (F) average thickness measurement of each comparison group after
468	treatment. (G) the stiffening ratio at 0.03MPa with and without correction for tissue thickness
469	changes. Values in F and G denote mean \pm standard deviation (SD). * p value of < 0.05, **
470	p<0.01.
471	
472	Fig 3. Transmission electron microscopy (TEM) images of porcine corneas imaged at
473	depth of 80-150µm (A) Representation TEM images of PBS, riboflavin in dextran, and
474	dextran only and riboflavin/dextran/UVA cross-linked corneas. Bar 500nm.An area of 300 x
475	300 dpi (yellow dash-square) is shown at higher magnification in (B) with example of the
476	measurement of the area and density of collagen fibrils.
477	
478	Fig 4. Measurement of ultrastructural parameters and collagen fibril distribution at
479	different depth intervals. (A) Mean collagen fibril diameters of PBS and riboflavin in
480	dextran at each depth interval. (B) Collagen fibril diameter distributions plotted as either

481	uncorrected values from of riboflavin in dextran group (top panel, black filled squares), or
482	corrected for dehydration (top panel, gray squares) or its corresponding PBS control (middle
483	panel, blue filled squares). Traces are shown overlaid in bottom panels. Grey filled
484	background added to aid visualization. (C) Collagen fibril diameter distribution curve of
485	cross-linking group (green boxes) and its dextran control (black boxes) at each depth interval.
486	(D) Relative collagen fibril diameter, (E) relative interfibrillar spacing, (F) relative collagen
487	density of cross-linking group relative to its dextran group at each depth interval. Values are
488	plotted as mean±SD from n=6 (A and B) or n=10 (C, D, E and F). Asterisks denote
489	significant differences from control groups with * p < 0.05, ** p<0.01.

Fig 5. Correlation between ultrastructural parameters and tangent modulus. Tangent 491 modulus at 0.03MPa versus (A) collagen fibril diameter, (B) interfibrillar spacing and (C) 492 collagen 493 fibril density. Black boxes; dextran treated green boxes; eyes, Riboflavin+UVA+Dextran treated eyes, (D) percentage change in tangent modulus versus 494 percentage change in each ultrastructural parameter. Each box represents the measurements 495 from one eye for either fibril diameter (red), interfirbil distance (orange) or fibril density 496

497 (yellow). (E) Percentage change in tangent modulus plotted against the cumulative effects of
498 percentage change in fibril diameter+interfibril spacing-fibril density. Each box represents
499 one eye. Green line; linear line of best fit. Red dotted line; 100% correlation.

500

Fig 6. Absorption FTIR spectra of porcine corneas following cross-linking treatments. (A) Representative FTIR spectra of corneas treated with PBS (bottom, gray), riboflavin+dextran (middle, black) or riboflavin+dextran+UVA (top, green). (B) Regions where the characteristic bands are located shown at higher magnification and regions of interest indicated: Amide I (1,680–1,630 cm⁻¹), Amide II (1570-1515 cm⁻¹), Amide III (1,350–1,200 cm⁻¹), and CO absorption band (1,150–1,000 cm⁻¹). (C) Relative intensity ratio of each characteristic band and (D) conversion rate of amide II to amide III.

509 Fig 7. Proposed model of UVA/riboflavin cross-linking with the presence of dextran. The 510 black solid circle, blue solid line, green solid line and red solid line represent the collagen 511 molecules, proteoglycans, original cross-links formed between collagen molecules and 512 additional cross-links induced by UVA/riboflavin cross-linking treatment, respectively.

514	Supplementary Information Legends.
515	S1 Fig.Transmission electron microscopy (TEM) images of porcine corneas imaged at
516	different depth intervals following PBS, dextran and/or UVA/riboflavin treatment.
517	Representative TEM images of PBS (A), Riboflavin+PBS (B), Riboflavin+Dextran (C), or
518	Riboflavin+Dextran+UVA (D) and their corresponding controls at five depth intervals of
519	0-50µm, 80-150µm, 200-250µm, 300-350µm, 400-450µm.
520	
521	S2 Fig. Collagen radius distribution of each treatment group at each depth intervals. The
522	distribution of control segments (blue); (A) PBS, (D) PBS, (G) PBS, and (K) Dextran, and
523	the experimental segments (orange) (B) PBS, (E) Riboflaivin+PBS, (H) Ribflavin+Dextran,
524	and (L) Riboflaivn+Dextran+UVA. Dashed lines represent trend curves. The overlapped
525	curves (C, F, I, J, M) were used for detecting the shifting of distribution in radius between
526	control and experimental segments. The data were obtained at five depth intervals of 0-50 μ m,
527	80-150 μ m, 200-250 μ m, 300-350 μ m, 400-450 μ m. <i>p</i> value of < 0.05 is indicated by an
528	asterisk compared with its internal control.

530 S1 Table. Summary of the average thickness and stiffening ratio at 0.03MPa of each group 531 before and after thickness correction. Values denote mean \pm standard deviation (SD). *p* value 532 of < 0.05 is indicated by an asterisk compared with its control. Red asterisks indicate increase 533 compared with control, green represents decrease. 534 S2 Table. Mean diameter, interfibrillar spacing, and density of collagen fibrils of corneal 535 536 segments at different depth intervals following PBS, dextran and/or UVA/riboflavin 537 treatment. Values denote mean \pm standard deviation (SD). *p* value of < 0.05 is indicated by an 538 asterisk compared with its control. Red asterisks indicate increase compared with control, 539 green represents decrease. 540 S3 Table. Summary of area ratio corresponding to indicatged characteristic bands in FTIR 541 spectra. Values denote mean \pm standard deviation (SD). *p* value of < 0.05 is indicated by an 542 asterisk compared with its control. Red asterisks indicate increase compared with control, 543 green represents decrease. 544

- 546 S4 Table. Parameters (decreased percentage, hydration loss percentage, remaining hydration
- 547 percentage and swelling factor) used in correction of the collagen fibril radius distribution
- 548 curves.
- 549