
Elements of the Theory of Dynamic Networks

The Challenge of Computing in a Highly Dynamic Environment

Othon Michail
Department of Computer Science, University of

Liverpool, Liverpool, UK &
Computer Technology Institute, Patras, Greece

Othon.Michail@liverpool.ac.uk

Paul G. Spirakis
Department of Computer Science, University of

Liverpool, Liverpool, UK &
Computer Technology Institute, Patras, Greece

P.Spirakis@liverpool.ac.uk

A dynamic network is a network that changes with time.
Nature, society, and the modern communications landscape
abound with examples. Molecular interactions, chemical re-
actions, social relationships and interactions in human and
animal populations, transportation networks, mobile wire-
less devices, and robot collectives, form only a small subset
of the systems whose dynamics can be naturally modeled
and analyzed by some sort of dynamic network. Though
many of these systems have always existed, it was not until
recently that the need for a formal treatment that would
consider time as an integral part of the network has been
identified. Computer science is leading this major shift,
mainly driven by the advent of low-cost wireless commu-
nication devices and the development of efficient wireless
communication protocols.

The early years of computing could be characterized as
the era of staticity and of the relatively predictable; central-
ized algorithms for (combinatorial optimization) problems
concerning static instances, as is that of finding a minimum
cost traveling salesman tour in a complete weighted graph,
computability questions in cellular automata, and protocols
for distributed tasks in a static network. Even when changes
were considered, as is the case in fault-tolerant distributed
computing, the dynamics were usually sufficiently slow to be
handled by conservative approaches, in principle too weak
to be useful for highly dynamic systems. An exception is
the area of online algorithms, where the input is not known
in advance and is instead revealed to the algorithm during
its course. Though the original motivation and context of
online algorithms is not related to dynamic networks, the
existing techniques and body of knowledge of the former
may prove very useful in tackling the high unpredictability
inherent in the latter.

In contrast, we are rapidly approaching, if not already
there, the era of dynamicity and of the highly unpredictable.
According to some latest reports, the number of mobile-only
Internet users has already exceeded the number of desktop-
only Internet users and more than 75% of all digital con-
sumers are now using both desktop and mobile platforms to
access the Internet. The Internet of Things, envisioning a
vast number of objects and devices equipped with a variety
of sensors and being connected to the Internet, and smart
cities [37] are becoming a reality (an indicative example is
the recent £40M investment of the UK government on these
technologies). Computer scientists, nanoscientists, and engi-
neers are joining their forces towards the development of pro-
grammable matter, that is, matter that can algorithmically
change its physical properties, and have already produced
the first impressive outcomes, such as programmed DNA
molecules that self-assemble into desired structures [16] and
large collectives of tiny identical robots that orchestrate re-

sembling a single multi-robot organism [39]. Other ambi-
tious long-term applications include molecular computers,
collectives of nanorobots injected into the human circulatory
system for monitoring and treating diseases, or even self-
reproducing and self-healing machines. What all of these
systems have in common, is their characteristic of typically
being highly dynamic both in space and time.

The theoretical and analytic approach, prominent in com-
puter science research from the very beginning, has been
invaluable in modeling real-world systems and problems,
abstracting their essential properties, and answering what
can or cannot be done in ideal, extreme, or average condi-
tions. Its findings have constantly enlightened and reshaped
applied research and it has revealed some of the deepest
and most outstanding models, notions, problems, and the-
orems of modern mathematics, such as the Turing Machine
and Turing’s proof on the Entscheidungsproblem, the P vs.
NP question, the theory of NP-completeness, the four color
theorem, the traveling salesman problem, primality testing,
Lamport’s causality [27], and the FLP impossibility of dis-
tributed consensus [21], to name just a few.

Theory will continue lying at the center of progress in
our science and its necessity towards our understanding of
dynamic networks is already evident. We have reached a
point at which a large gap has been formed between existing
systems and applications on one side and our fundamental
understanding of their underlying principles on the other.
Though theory has already identified some first core ques-
tions and has provided some preliminary answers to them, it
has to run faster in order to bridge the gap and catch up to
practice. What computations can be performed by a collec-
tion of automata, such as nanodevices or even molecules,
that cannot control their own interactions? Even if the
computing entities are powerful devices, like smartphones
or tablets, can they still carry out basic distributed tasks,
such as leader election or counting the size of the system, and
with what algorithmic techniques and under what required
guarantees about the network’s dynamics? Are the tradi-
tional network measures adequate for dynamic networks? If
not, how can we represent and measure basic quantities, like
the speed of information propagation or the diameter, in a
network that changes perpetually? Can we continue prov-
ing rigorous average-case or even worst-case guarantees and
limitations as we have very successfully done for static sys-
tems? How can we design a dynamic network that satisfies
some desired connectivity properties while minimizing some
cost constraints (e.g., associated with the fact that creat-
ing and maintaining a connection does not come for free)?
Which structural and algorithmic properties of static graphs
carry over to temporal graphs (an invaluable abstraction of
dynamic topologies) and which need a radically new per-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/156963968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

spective? All these are questions whose ultimate answers
are to be provided by the theoreticians.

The existing literature can be roughly partitioned into
three clearly distinguishable but also closely interrelated sub-
areas: Population Protocols, Powerful Dynamic Distribu-
ted Systems, and Temporal Graphs. The population pro-
tocol model, proposed by Angluin et al. in 2004 [4], was
originally motivated by highly dynamic networks of sim-
ple sensor nodes that cannot control their mobility. As
the work of Angluin back in 1980 [3] that is generally ac-
cepted as a landmark study for distributed computing in
static networks, population protocols could be considered
as the starting point of distributed computing in dynamic
networks. The other main sub-area originates from the 2005
work of O’Dell and Wattenhofer [38], and later the work of
Kuhn, Lynch, and Oshman [25], who reconsidered classical
distributed tasks, like leader election, counting, and informa-
tion dissemination, in a network whose dynamics are cap-
tured by a worst-case temporal graph. In parallel, starting
from the studies of Berman [9] and Kempe et al. [24], an in-
creasing number of groups are interested in investigating the
structural and algorithmic properties of temporal graphs,
which are, roughly speaking, graphs that evolve over time,
with the aim at developing a temporal extension of graph
theory. In what follows, we will have the opportunity to look
deeper into each one of these lines of research. We encour-
age the interested reader to complement his/her reading of
the present article with some of the existing technical intro-
ductory texts [7, 32, 26, 11, 30].

Population Protocols: A Soup of Automata
Imagine a population of nanodevices, interacting randomly
with each other in a well-mixed solution, like a boiling liquid.
Each device has a small memory, whose size does not depend
on the size of the population, and it has no control over its
own mobility, which stems solely from the dynamicity of the
environment. The only things that these devices can do, is to
obtain an input, e.g., by performing a sensing measurement,
to update their local state during an interaction with some
other device (by applying to their local states a common
simple program, called protocol, executed by all the devices),
and to give an output. An interaction may simply occur
when two devices come sufficiently close to each other to
establish some sort of communication.

At this point, the reader may be wondering the same that
Angluin et al. [4, 6] asked themselves: Can such a soup
of automata really compute anything useful? Angluin et al.
proved that actually they can, but not that much, compared
to what one is used to expect from modern computing sys-
tems. First of all, non-trivial terminating computations are
impossible in this model. Indeed, if a node (i.e., a device)
terminates in some execution, then the same local execution
may also result as part of another execution of the same
protocol on a larger population, in which case the node ter-
minates and decides without having heard from all the other
nodes (imagine a node deciding that there is an even num-
ber of nodes with input 1, without knowing all the inputs).
One important consequence of this fundamental inability, is
that, in this model, we cannot sequentially compose proto-
cols, which makes very challenging the development of pro-
tocols for composite tasks. Moreover, we can only hope for
computations that stabilize eventually, in the sense that the
nodes always manage to reach a point at which their out-
puts cannot change any more, even though the nodes cannot
actually tell that this has happened. For example, to (sta-

bly) compute the parity of the 1s in the whole distributed
input, whenever an odd number of nodes have input 1, all
nodes must eventually stabilize their output to 1, and to 0,
otherwise. This is the parity predicate, which is true if and
only if the number of 1s in the input is odd.

But in order to hope for such global computations, we
must also say something about the pattern of interactions
between the nodes. Imagine, for example, that two parts of
the system never influence each other or that some nodes
always interact at inconvenient times. In the first case, the
system consists of two isolated sub-systems and in the second
the environment has the power to enforce some inconvenient
symmetries that the protocol cannot break. So, we have to
restrict ourselves to environments that are “connected” and
“random” enough to not suffer from such inconveniences.
There are two main ways to satisfy this: either by assuming
that the interactions happen in a fair manner, essentially
meaning that they do not forever avoid an always reachable
configuration of the system, or that they happen uniformly
at random from all possible interactions. The former way
is very handy for answering computability questions, while
the latter is usually preferred when one wants to analyze
the running time of a protocol (i.e., the expected number of
interactions until stability). See Figure 1 for an example of
the model in action.

Angluin et al. managed to give an exact characteriza-
tion of the computational capabilities of such systems. They
proved that if the environment is fair, then the devices can
stably compute precisely the semilinear predicates, and that
this is also true for several interesting variations of the model.
But what does this mean exactly? Let us give a simple il-
lustration. Assume that when a device senses its environ-
ment, it either sees an a or a b, and denote by Na and Nb

the total number of as and bs sensed by all the devices,
respectively. Then there is a protocol that, on any pop-
ulation and any combination of sensed inputs, can stably
compute whether at least 1/3 of the nodes have seen an
a. In other words, the predicate which is true whenever
Na ≥ (Na + Nb)/3 ⇔ 2Na −Nb ≥ 0, is stably computable.
The semilinear predicates are precisely those predicates that
can be expressed in the form of a linear combination of in-
put variables compared to a constant, i.e.,

∑k
i=1 γiNi < c

(where the inequality can be of any type, equality inclusive,
and can also be replaced by equivalence modulo an integer
constant µ). So, for example, the characterization tells us
that we can stably compute whether the as are a strict ma-
jority (as in Figure 1), whether the bs have been sensed by
at least 5% of the nodes, or whether the size of the popu-
lation is odd. On the other hand, we cannot compute even
the simplest expressions involving multiplications of input
variables and expressions requiring any form of global iter-
ative sub-computations, such as whether the number of cs
is the product of the number of as and the number of bs or
whether the number of bs is a power of 2. The positive part
of the characterization is constructive, which means that
there is a generic protocol that can be adjusted to compute
any semilinear predicate.

Now that we know exactly what can be computed in this
setting, we may ask: how fast can it be computed? Angluin
et al. [4] proved that if the interactions happen uniformly
at random, one at a time, then the aforementioned generic
protocol stabilizes in an expected number of O(n2 logn) in-
teractions, where n is the size of the population. Can we
do much better than this? Angluin, Aspnes, and Eisenstat
[5] showed that, if there is a pre-elected unique leader in

(a, b) → (x, y)

(a, y) → (a, x)

(y, x) → (y, y)

(1)

(2)

(3)

(a)

a

a a

a

b b

1

2

3

(b)

x

a a

x

x y4

6 5

(c)

x

a a

x

x x

(d)

b

a a

b

b b

1
2

3

(e)

x

x x

b

b y

4

5
6

(f)

y

y y

b

b y

(g)

Figure 1: A population protocol computing whether the number of as in the input is a strict majority. Initially, each

node is in an input-state a or b. Let Na and Nb denote the initial number of as and bs, respectively. If Na > Nb we

want all nodes to stabilize their output to 1 and to 0 otherwise. (a) The code of the protocol. The possible states are

a, x (red states), b, and y (black states). The output of red states is 1 and the output of black states is 0. Rule (1)

means that when an a interacts with a b, the former becomes x and the latter y (similarly for (2) and (3)). To see

that this protocol is guaranteed to stabilize to a correct output, note that all rules preserve the difference Na − Nb,

and consider the last time (1) occurs (when the smaller of a or b disappears). If Na > Nb, then some nodes remain

in state a, so (2) and (3) compete to change y to x and back. However, (2) eventually wins with probability 1, which

results in only red states present. This stabilizes the population to output 1, since all rules require a black state to

execute. If Na ≤ Nb, then rules (1) and (2) are disabled once the final a is gone. The last occurrence of (1) ensures

at least one y exists, so rule (3) then converts all xs to ys, resulting in only black nodes present, which stabilizes the

population to output 0. (b-d) An example execution where Na > Nb. The time-labeled edges indicate in which step

the corresponding interaction occurs. (c) After 3 steps, all bs have been eliminated. (d) After another 3 steps there

are only reds and the output 1 is stable. (e-g) An example execution where Na < Nb.

the population, the time of computing any semilinear predi-
cate can be reduced to O(n log5 n). A natural next question
was whether this speed-up can still be achieved by electing
a leader instead of assuming it. Doty and Soloveichik [18]
showed recently that it can’t, by proving that an average
of Ω(n2) interactions have to be paid by any protocol that
elects a leader 1.

Despite the indisputable fact that the semilinear pred-
icates constitute a rather small class, this class is by no
means trivially achieved. Actually, it can get much worse
than semilinear, with apparently gentle additional restric-
tions. One such, studied by Chen et al. [13], is to restrict
attention to protocols that never go through a “bottleneck”
transition, meaning one that can only occur via an interac-
tion between states that have low counts (constant) in the
population. Such protocols have the nice property of always
avoiding interactions that have a low probability to occur,
and, thus, are slow. Unfortunately, it turns out that such
protocols cannot count at all, and can only answer existence
questions, asking whether a certain symbol is present or not
in the input. Another, shows up when one tries to totally
avoid the election of a leader, in an attempt to obtain inher-
ently symmetric (i.e., parallel) protocols, that do not rely on
some global symmetry-breaking process, and, thus, are more
efficient and more resilient to faults (e.g., a crash failure of a
processor). Formally defining what it really means to elect a

1Doty and Soloveichik call this a linear-time lower bound, as
they perform their analysis in terms of parallel time, simply
defined as sequential time divided by n. Both ways are al-
most equally used in the recent literature. In this article we
have chosen to give all bounds in terms of sequential time.

leader in a distributed system is quite challenging, as it may
be achieved implicitly and even sometimes in contrast to a
protocol’s intention. To this end, Michail and Spirakis [34]
defined the symmetry of a protocol on a given population
and input, as the minimum multiplicity of a state through-
out an execution, in which the environment is as symmetric
as possible for this protocol in the given setting. Then they
proved that there are predicates, like parity, that cannot be
computed if we require the symmetry of the protocol to be
higher than a constant that depends on the size of the proto-
col. But enough of those weaknesses; let’s see how minimal
additional assumptions can allow the devices to cooperate in
order to achieve collective complexity and enable much more
powerful computations, in spite of the adversarial nature of
the environment.

Beyond Semilinearity
Semilinearity is the price that we pay for minimality: an
amorphous system of computational entities that have only
constant memory and that cannot infer a bound on the time
it takes to hear from all the other entities. Relaxing any
of these properties can dramatically increase the computa-
tional power. If, for example, the nodes are arranged in a
line and the only interactions that can occur are between
neighboring nodes in the line, then it is fairly straightfor-
ward to simulate a Turing machine of linear space. Similar
improvements are possible if the pattern of interactions ad-
heres to some probability distribution. Angluin et al. [4]
showed that, if they happen uniformly at random, then the
nodes can simulate a log-space Turing machine with high
probability (w.h.p.).

The crucial role of memory in this type of systems has
been extensively highlighted and has given some of the most
impressive results in this area. One of the restrictions related
to local memory that was early questioned, was anonymity,
that is, the fact that nodes in the original model do not
have and cannot ever obtain unique identifiers (ids), sim-
ply because there is not enough room in their memory to
store them. However, in practice, it is reasonable to ex-
pect that even nanodevices will have access to ids, as several
existing micro-controllers are set by the factory to store a
unique serial number. Guerraoui and Ruppert [23] studied
such a variant of the original model, and showed that it can
simulate a pointer machine, yielding a computational power
equal to that of a nondeterministic Turing machine of space
O(n logn).

The effect of explicitly allowing to the devices a larger
working memory, was first studied by Chatzigiannakis et al.
[12]. Though for theoretical purposes it is quite reasonable
to stick to memories that do not scale with the size of the sys-
tem, this is quite an excessive requirement for real systems.
Even for a population as large as 2273 nodes, which, by the
way, is a number greater than the current estimates of the
number of atoms in the observable universe, a logarithmic
local memory is for most practical purposes as small as a few
hundreds of cells, while most modern micro-controllers come
with at least 16 KB of RAM. Chatzigiannakis et al. showed
that Θ(log logn) local memory is a threshold, under which
(asymptotically) semilinearity persists and at which the first
non-semilinear predicates become feasible, like computing
whether the multiplicity of an input symbol is a power of
2. They also proved that if the local memories have size
f(n) = Ω(logn), then the computational power is equiva-
lent to that of a nondeterministic Turing machine of space
O(nf(n)) and there is a space hierarchy, essentially meaning
that protocols having access to more memory can compute
more things.

If a moderate increase of local memory is additionally
combined with a guarantee of a uniformly random interac-
tion pattern, then even more fascinating tasks become fea-
sible. Michail [29] showed that, in this case, a pre-elected
unique leader with two n-counters can terminate and still
count an upper bound on the size n of the system w.h.p..
The idea is to have the leader implement two competing
processes, running in parallel. The first process counts the
number of nodes that have been encountered once and the
second process counts the number of nodes that have been
encountered twice. The game ends when the second counter
catches up the first. It can be proved that when this occurs,
the leader will almost surely have already counted at least
half of the nodes. Alistarh and Gelashvili [2] showed that
O(log logn) bits of memory per node are sufficient to elect
a unique leader in an expected number of O(n log3 n) inter-
actions, a great improvement compared to the Ω(n2) lower
bound for the constant-memory case.

Natural Processes and Programmable Matter
Apart from being a model of computing in a highly dynamic
environment, population protocols bear some striking sim-
ilarities to several natural processes. They can be viewed
as an abstraction of “fast-mixing” physical systems, such as
chemical reaction networks, animal populations, and gene
regulatory networks. The strong resemblance of population
protocols to models of interacting molecules in theoretical
chemistry had already been observed by Angluin et al. [4].
Assuming a fixed molecular population size and bi-molecular

reactions, population protocols are formally equivalent to
chemical reaction networks, a formal model of chemistry
in a well-mixed solution, describing how certain species of
molecules within a solution, such as DNA strands, react to
produce new species [17]. An important consequence of this,
is that bounds and characterizations for population proto-
cols, apart from being useful for computer science appli-
cations, usually translate to inherent properties of natural
systems. For example, the “molecular translation” of the
aforementioned Ω(n2) lower bound for leader election [18],
is that it is essentially difficult to generate exact quantities
of molecular species quickly (at least slower than destroying
all molecules of the species, which takes O(n logn) time).
There are even population protocols, like those for comput-
ing an approximate majority, that have been connected to
biological networks [10]. Czyzowicz et al. [15] have recently
studied the relation of population protocols to antagonism of
species, with dynamics modeled by discrete Lotka-Volterra
equations.

Another interesting possibility that was recently highligh-
ted by Michail and Spirakis, is to use population proto-
cols as a model of (algorithmic) distributed network con-
struction and, consequently, as a potential model for pro-
grammable matter able to self-organize in a dynamic envi-
ronment. Michail and Spirakis [35] studied an extension of
population protocols, called network constructors, in which
the devices can additionally establish bonds with each other
(like a molecular bonding mechanism); 2 see Figure 2 for an
example. One of their main results was that such systems
can construct as complex stable networks as those that can
be decided by a centralized algorithm. The idea is to pro-
gram the nodes to organize themselves into a network that
can serve as a memory of size O(n2), which is asymptotically
maximum and can only be achieved by exploiting the pres-
ence or absence of bonds between nodes as the bits of the
memory (if only the nodes’ local space was used, then the
total memory could not exceed O(n)). Then the population
draws a random network and simulates on the distributed
memory a Turing machine that decides whether the network
belongs to the target ones. If yes, the population stabilizes
to it, otherwise the random experiment and the simulation
are repeated. What makes the construction intricate is that
all the sub-routines have to be executed in parallel and po-
tential errors due to this to be corrected by global resets
throughout the course of the protocol. Michail [29] then
studied a more applied version of this model, by adding ge-
ometric constraints (representing physical restrictions), ac-
cording to which the formed network and the allowable in-
teractions must respect the structure of the 2-dimensional
(or 3-dimensional) grid network.

Powerful Dynamic Distributed Systems
As we have seen, population protocols and their variants,
concern some rather specialized computing systems, oper-
ating in fairly extreme conditions. Typical dynamic dis-
tributed systems, usually consist of much more “gifted” de-
vices, like smartphones or tablets, equipped, among other
things, with ids, practically unbounded local memories, pow-
erful processors, and wireless (radio) transceivers.

One of the first formal models for such systems, devel-
oped by O’Dell and Wattenhofer, appeared in 2005 [38],

2A predecessor of this model had served as one of the first
computationally powerful variants of population protocols,
exploiting bond states to simulate an O(n2)-space nondeter-
ministic Turing machine [31].

(b, b, 0) → (b, r, 1)

(r, r, 1) → (r, r, 0)

(b, r, 0) → (b, r, 1)

(a) (b) (c) (d)

Figure 2: (a) A simple optimal protocol that allows the nodes to self-organize into a global star. Blacks eliminate each

other, reds repel, and blacks attract reds. (b) Initially all nodes are black and no active connections exist. (c) After a

while, only 3 blacks have survived each having a set of red neighbors. (d) A unique black has survived, it has attracted

all reds, and all connections between reds have been deactivated. The construction is a stable global star.

just one year after the original paper of Angluin et al. on
population protocols. Their model is, essentially, a gener-
alization of classical networked message-passing distributed
systems, where, instead of a static graph, the underlying net-
work is now represented by an unknown and adversarially
controlled (i.e., worst-case) temporal graph 3. The nodes
are Turing machines with unbounded tapes (it is the pro-
tocol designer’s responsibility to minimize both the actual
space used and the local processing time) that communicate
with other nodes by interchanging messages over a wireless
medium. As is always the case, the worst-case approach has
the benefit that the results hold for all possible dynamic net-
work topologies (of course, between those that make sense)
and not just for some convenient special cases or distribu-
tions. In order to allow for bounded end-to-end communi-
cation, O’Dell and Wattenhofer imposed on the underlying
dynamic network the restriction of being connected at any
instant 4. Such a simplification may sound artificial, as most
real dynamic systems are expected to almost never be con-
nected, still it is very convenient for the purpose of theo-
retical analysis and for establishing some first fundamental
principles. More recent studies that we shall discuss later
on, have developed ways of relaxing this restriction.

O’Dell and Wattenhofer defined their model in terms of
asynchronous communication and studied the token dissem-
ination and routing problems in this setting. In token dis-
semination, a token, i.e., a piece of information, is initially
present on some source node and the goal is to distribute
the token to the entire network and have all nodes termi-
nate when dissemination has successfully completed (e.g.,
when a base station wants to disseminate to all nodes in a
sensor network a global reset signal). In routing, the token
has only to be delivered to a designated destination node.

Five years later, Kuhn, Lynch, and Oshman [25] proposed
a synchronous version of the above model, which substan-
tially simplified thinking and treating dynamic networks for-
mally, and, thus, lead to numerous new insights and direc-
tions. The nodes operate now in lock-step, synchronized
in discrete rounds either by having access to a global clock
or by keeping local clocks synchronized. In every round,
an adversary scheduler (modeling the worst-case nature of

3One way to define a temporal graph D is as a pair (V,A),

where V is a static set of nodes and A : N→
(
V
2

)
a mapping,

such that A(t) is the (possibly empty) set of all edges that
appear at time t (time-edges). Then a temporal path or
journey of D is a path of time-edges using increasing times.
4If the temporal graph of the dynamic network is D =
(V,A), then this means that, for all times t ∈ N, the static
graph G = (V,A(t)) is connected.

the network’s dynamicity) selects a set of edges between the
nodes and every node may communicate with its current
neighbors, as selected by the adversary, usually by broad-
casting a single message to be delivered to all its neighbors.
As in the previous model, the network is revealed to the dis-
tributed algorithms in an online and totally unpredictable
way and the nodes have no a priori knowledge about the
network apart from the guarantee that its instances are con-
nected. Despite the simplicity of the model, even the most
basic distributed tasks no longer seem straightforward. For
example, how can the nodes count the size n of the system
and terminate (i.e., be able to detect that their task has
successfully come to an end)?

To appreciate the difficulties, it is useful to see why a typ-
ical approach for static networks fails in dynamic networks.
In static networks, the stability of paths is an invaluable
implicit guarantee for the rate of global progress. In par-
ticular, if a node u broadcasts a message and every node
that receives the message forwards it to all its neighbors,
then u knows that, in every round, at least one more node
receives the message for the first time. Moreover, if every
node acknowledges the receipt by broadcasting an ack mes-
sage containing its id, then if all nodes forward these acks,
u knows that, in every second round, it must either hear
from a new remote node or all nodes must have already re-
ceived u’s message. The first guarantee is still satisfied in
the dynamic case, because if all nodes that have a piece of
information broadcast it in every round, then connectivity of
the instantaneous topology ensures that at least one of them
will deliver it to a node that has not heard of it yet. How-
ever, the same is not true for the second guarantee. Imagine
a star topology, with u lying on the center and being directly
connected to all other nodes (the peripherals), apart from
one node v that is connected to a peripheral node w but not
directly to u. In round 1, u can learn about the existence
of all nodes but v. Then, in round 2, the topology changes
to a line spanning the nodes, with u lying on the left end-
point, v on the right, and w being the unique neighbor of
v in the line, and remains static forever. As the only nodes
that know about v are the two rightmost nodes of the line,
it will take n− 2 more rounds for u to realize that another
node exists. Given that u does not know any estimate of n
in advance, at first sight it seems that u has no means of
determining how long it should wait. The good news is that
it is still possible to infer such a bound.

Before showing how, let us first extract from the above
discussion two very useful notions for capturing the spread
of influence in a dynamic distributed system. Both are based
on Lamport’s causal influence [27], which formalizes the no-

tion of one node “influencing” another through a chain of
messages (possibly going through other nodes in between).
The first one is the future set of a node u in a given time
interval, containing all nodes that u has influenced in that
interval. The second one is the past set of a node u in a given
time interval, containing all nodes that have influenced u in
the interval. Stated in the new terminology, the above dis-
cussion says that the cardinality of u’s future set increases
by at least one in every round, until it becomes equal to n.
Though, as already highlighted above, the same is not true
for the past set, still there is an alternative and equally use-
ful guarantee on its rate of growth. The size of the past set
of u is an upper bound on the number of rounds required for
u to hear of a new node, i.e., for its past set to increase by
at least one. This is because the set of nodes that know a
new influence for u are initially those nodes not in the past
set of u and, due to connectivity, in every round the former
set increases by at least one, so in a number of rounds at
most equal to the size of u’s past set the whole past set will
know a new influence, u inclusive.

By a simple induction on the number of rounds, we obtain
that the size of u’s past set must be either greater than the
number of the current round or equal to n. This immediately
gives to u a way for knowing when it has heard of all nodes:
keep track of your past set in a list A (e.g., recording nodes’
ids) and of the current round r; if it ever holds that r ≥ |A|,
then A contains all nodes in the system. This idea gives an
O(n)-round distributed algorithm for counting the size of the
system, and, by changing the output and the contents of the
transmitted messages, is also an algorithm for many other
basic distributed tasks, such as information dissemination,
leader election, and computing arbitrary functions on inputs
to the nodes. For these algorithms to work, all nodes must
broadcast in every round all information that they know,
which is not a desired property as it results in transmitting
very large messages, i.e., of size O(n logn).

Kuhn, Lynch, and Oshman also developed an alternative
approach that uses only O(logn) bits per message, a much
more reasonable message overhead for real systems, paying
a linear factor increase in termination time. The idea is as
follows. The nodes have a guess k of the size of the system
and then try to verify whether their guess was a correct
upper bound on n. If it was, then it is possible for the
nodes to terminate knowing the exact value of n, otherwise
they double k and repeat. Assume, for simplicity, that the
verification process is coordinated by a unique leader. What
the leader does is to invite k − 1 other nodes to join its
committee. Each node that is not invited creates its own
committee. As long as the guess is not correct, there must
be at least two committees, and when it becomes correct
for the first time, there will be a single committee (i.e., the
leader’s) containing all nodes. Then it is fairly simple for
the nodes to verify whether there is precisely one committee.
Having a leader coordinate the process is crucial for reducing
the message overhead, as, in this way, the other nodes need
only broadcast the information emanating from the leader.
Fortunately, the leader need not be assumed, but can be
elected in parallel with the above process, without increasing
the size of the messages.

As alluded to above, continuous connectivity was one of
the first assumptions of these models to be questioned. Mich-
ail, Chatzigiannakis, and Spirakis [33] replaced it by more
general conditions of temporal connectivity, i.e., connectivity
satisfied over time. To do this, they introduced metrics to
capture the speed of influence propagation in networks that

are possibly disconnected at all times. These metrics con-
cern properties that do not necessarily hold in every round,
but instead may require several rounds until they are satis-
fied. One such is the connectivity time of a dynamic network,
which is the maximal time that the two parts of any cut of
the network can remain disconnected. Another is the outgo-
ing influence time, which is the maximal time until the state
of a node at a given time (e.g., its initial state) influences
the state of another node. They gave efficient distributed
algorithms for counting and information dissemination, by
exploiting a known upper bound on each of these metrics.

The temporal diameter, a measure of the time required
for influence dissemination, generalizes the standard net-
work diameter, as the latter is unsuitable for dynamic net-
works. It is defined as the minimum integer d for which it
holds that the temporal distance (i.e., the duration of a jour-
ney of minimum arrival time) between every ordered pair of
nodes at any given time is at most d. For an indicative
example, consider a dynamic star in which all peripherals
(u1, u2, . . . , un−2) but two (un−1, un) go to the center one
after the other in a modular way; that is, at any time t ≥ 0,
u[t mod (n−2)]+1 is the center of the star and all the other
nodes are peripherals. Then any message from un−1 to un

needs n−1 steps to be delivered, because un can only get the
message if a node that has already obtained it becomes the
center again. So, the temporal diameter of this network is
n−1 even though its instantaneous diameter is at any given
time just 2. This is a simplified version of a construction
used by Avin, Koucký, and Lotker [8] to show that, in con-
trast to the cover time of a random walk on a static graph,
which is always polynomial in n, the cover time of a random
walk on a temporal graph may be exponential. The diame-
ter is just one of those many network notions that have to
be redefined to take time into account, in order to become
suitable for dynamic networks.

In practice, the network dynamics may not always be to-
tally unpredictable or irregular. The dynamicity patterns of
many real-world systems, such as human interactions and
transportation units, exhibit regularities and are to some
extent predictable. In view of this, some authors considered
network dynamics that are a result of randomness, while
others deterministic network dynamics that are recurrent or
periodic. Clementi et al. [14] studied the speed of informa-
tion dissemination in the following type of edge-markovian
dynamic networks: if an edge exists at time t then, at time
t+1, it disappears with probability q, and if instead the edge
does not exist at time t, then it appears at time t + 1 with
probability p. Flocchini, Mans, and Santoro [22] studied one
type of periodic dynamic networks, called carrier networks,
in which the dynamic network is defined by the periodic
movements of some mobile entities, called carriers. This is a
natural abstraction of several real-world systems like public
transports with fixed timetables, low earth orbiting satellite
systems, and security guards’ tours. They studied the prob-
lem of exploring all nodes of the network by an agent who
can only follow the route of a carrier (like a passenger) and
can switch from one carrier to another.

Structural Properties of Temporal Graphs
Modern dynamic systems and applications, as well as the
theoretical progress in dynamic distributed systems described
so far, led several researchers to the realization that the
underlying topology model of dynamic networks is not a
mere generalization of graphs; rather, it manifests some es-
sentially different structural and algorithmic properties. A

temporal extension of graph theory is already under devel-
opment, with the aim at delivering a concrete set of results,
tools, and techniques for temporal graphs. Graphs have
proved to be an invaluable tool for representing and enabling
the formal treatment of relatively stable networked systems.
There are already strong indications that temporal graphs
will play an equally important role for dynamic networks.

A temporal graph can be thought of as a special case
of labeled graphs, where labels capture some measure of
time, e.g., the precise times or time intervals at which each
connection is available. But is there anything new here?
Can’t we just resort to traditional graph approaches to deal
with this seemingly minor extension? A first indication that
the answer might not be that obvious, is the richness that
emerged from considering labels as colors and trying to solve
conflict-free coloring problems (strongly motivated by real-
world problems, like frequency assignment in cellular net-
works), in the classical and well-studied area of graph col-
oring. Indeed, the main message from existing research on
temporal graphs is that many graph properties and problems
become radically different and usually substantially more
difficult when an extra time dimension is added to them.

This was first highlighted by Kempe, Kleinberg, and Ku-
mar [24] in a minimal special case of temporal graphs, in
which every edge is available only once. They proved that, in
such temporal graphs, the classical formulation of Menger’s
theorem 5 is violated if applied to journeys and the com-
putation of the number of node-disjoint s-z paths becomes
NP-complete. A reformulation of Menger’s theorem which
is valid for all temporal graphs was recently achieved by
Mertzios et al. [28].

The algorithmic problems of temporal graphs can be di-
vided into two main types, depending on the algorithm’s
knowledge about the future evolution of the graph. Online
algorithms have no knowledge about the future, while offline
algorithms know the full evolution of the graph in advance.

An example of an online centralized problem on temporal
graphs is k-token dissemination, which asks to disseminate
to all nodes as fast as possible, k tokens that are initially
assigned to some of the nodes. The only restriction on the
algorithm’s knowledge is that it has to make its selection of
tokens to be forwarded without knowing the edges selected
by the adversary in the current round. Kuhn, Lynch, and
Oshman [25] showed by a potential function argument that
any such deterministic centralized algorithm for the problem
in continuously connected temporal graphs requires at least
Ω(n log k) rounds to complete in the worst case (their cor-
responding distributed upper bound, by the algorithm de-
scribed in the previous section, is O(nk)). This lower bound
was further improved to Ω(nk/ logn) by Dutta et al. [19],
via the probabilistic method.

Even though offline centralized algorithms do not suffer
from the unpredictability that characterizes dynamic net-
work problems, still offline temporal versions of standard
graph problems can be substantially more difficult to solve.
One such example, studied by Michail and Spirakis [36], is
the problem of exploring the nodes of a temporal graph as
soon as possible. Though, in the static case, the decision
version of the problem can be solved in linear time and the
optimization version (known as Graphic TSP) can be sat-
isfactorily approximated, in the temporal case the decision
version becomes NP-complete and there exists some con-

5Menger’s theorem states that the maximum number of
node-disjoint s-z paths is equal to the minimum number
of nodes whose removal separates node s from node z.

stant c > 0 such that the optimum solution cannot be ap-
proximated within cn (meaning that we cannot find a so-
lution which is at most cn times worse than the optimum),
unless P = NP (things do not become any better, even if
all instances are connected [36, 20]).

Mertzios et al. [28] also studied the problem of designing a
cost-efficient temporal graph, given some requirements that
the graph should meet. Briefly, we are provided with an
underlying graph G and we are asked to assign labels to its
edges so that the resulting temporal graph minimizes some
parameter (related to the cost of making an edge available)
while satisfying some connectivity constraint. Other authors
have considered random temporal graphs, a succinctly rep-
resentable model, in which the labels are chosen according
to some probability distribution [1].

The Future
Do we really know how to compute in highly dynamic en-
vironments, how to represent and measure their core prop-
erties, or even how to efficiently solve centralized computa-
tional problems concerning them? Despite the considerable
recent progress that we discussed in this article, the answer
is: not yet. We are on the road to a unified theory of dy-
namic networks, but not yet there.

Though it is still quite early to anticipate the full range of
potential applications, there is already strong evidence that
there is room for the development of a rich theory. As is
always the case, the groundwork will be laid by our ability
to identify and formulate radically new problems and not
just by studying adjusted versions of existing ones. Real
dynamic systems is the natural place to look for such prob-
lems. Still, the existing literature has already identified some
first challenging research directions and technical problems
whose further investigation has the potential to push for-
ward the area.

First, is there a general rule underlying the complexity in-
crease of a network problem when that problem is extended
in time? Moreover, most natural applications require an al-
gorithm to operate on a dynamic network without knowing
or being able to accurately predict the future evolution of
the network. It might be the case that the right treatment of
such settings is via online algorithms and analysis, however
little effort has been devoted to this. We saw that there is
a natural reformulation of Menger’s theorem for temporal
graphs. It would be very valuable to check the validity of
many other fundamental results of graph theory, like Ku-
ratowski’s planarity theorem or Mantel’s beautiful theorem
on the existence of triangles. Another critical issue has to
do with a long-standing problem in distributed computing
theory: there is practically a different model for each setting
and usually slight modifications of a model result in totally
different formal properties. This multiplicity is expected to
be even more intense in dynamic networks, due to the al-
most inexhaustible variety of different dynamicity patterns.
Therefore, if possible, a unification of models for distributed
computing in dynamic networks would be more than valu-
able. There is also a great need for progress in programming
and verification of programmable matter protocols, proba-
bly the only sub-area of dynamic networks in which theory
has grown faster than systems. We need many more real
collectives of tiny devices, in order to identify which assump-
tions actually make sense and are worth studying and which
would never show up in a real system and have to be aban-
doned. Finally, we should seriously take into account the
recent advances in learning and statistical learning in par-

ticular, as a rich source of powerful methods for a system
to learn and, thus, be able to predict to some extent the
pattern of the dynamic network and to adapt its algorithms
in order to cope with the new conditions more effectively.

References
[1] E. C. Akrida, L. G ↪asieniec, G. B. Mertzios, and P. G.

Spirakis. Ephemeral networks with random
availability of links: The case of fast networks. J.
Parallel Distrib. Comput., 87:109–120, 2016.

[2] D. Alistarh and R. Gelashvili. Polylogarithmic-time
leader election in population protocols. In Proceedings
of ICALP, 479–491, 2015.

[3] D. Angluin. Local and global properties in networks of
processors. In Proceedings of STOC, 82–93, 1980.

[4] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and
R. Peralta. Computation in networks of passively
mobile finite-state sensors. In Proceedings of PODC,
290–299, 2004. Also in Distributed Computing, 2006.

[5] D. Angluin, J. Aspnes, and D. Eisenstat. Fast
computation by population protocols with a leader.
Distributed Computing, 21(3):183–199, 2008.

[6] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert.
The computational power of population protocols.
Distributed Computing, 20(4):279–304, 2007.

[7] J. Aspnes and E. Ruppert. An introduction to
population protocols. In Middleware for Network
Eccentric and Mobile Applications, 97–120. 2009.

[8] C. Avin, M. Koucký, and Z. Lotker. How to explore a
fast-changing world (cover time of a simple random
walk on evolving graphs). In Proceedings of ICALP,
121–132, 2008.

[9] K. A. Berman. Vulnerability of scheduled networks
and a generalization of Menger’s theorem. Networks,
28(3):125–134, 1996.

[10] L. Cardelli. Morphisms of reaction networks that
couple structure to function. BMC systems biology,
8(1):84, 2014.

[11] A. Casteigts, P. Flocchini, W. Quattrociocchi, and
N. Santoro. Time-varying graphs and dynamic
networks. IJPEDS, 27(5):387–408, 2012.

[12] I. Chatzigiannakis, O. Michail, S. Nikolaou,
A. Pavlogiannis, and P. G. Spirakis. Passively mobile
communicating machines that use restricted space.
Theor. Comput. Sci., 412(46):6469–6483, 2011.

[13] H.-L. Chen, R. Cummings, D. Doty, and
D. Soloveichik. Speed faults in computation by
chemical reaction networks. In Proceedings of DISC,
16–30, 2014. Also in Distributed Computing, 2015.

[14] A. E. Clementi, C. Macci, A. Monti, F. Pasquale, and
R. Silvestri. Flooding time in edge-markovian dynamic
graphs. In Proceedings of PODC, 213–222, 2008.

[15] J. Czyzowicz, L. G ↪asieniec, A. Kosowski, E. Kranakis,
P. G. Spirakis, and P. Uznański. On convergence and
threshold properties of discrete lotka-volterra
population protocols. In Proceedings of ICALP,
393–405. 2015.

[16] D. Doty. Theory of algorithmic self-assembly.
Commun. ACM, 55:78–88, 2012.

[17] D. Doty. Timing in chemical reaction networks. In
Proceedings of SODA, 772–784, 2014.

[18] D. Doty and D. Soloveichik. Stable leader election in
population protocols requires linear time. In
Proceedings of DISC, 602–616, 2015.

[19] C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun,
and E. Viola. On the complexity of information
spreading in dynamic networks. In Proceedings of
SODA, 717–736, 2013.

[20] T. Erlebach, M. Hoffmann, and F. Kammer. On
temporal graph exploration. In Proceedings of ICALP,
444–455, 2015.

[21] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, 1985.

[22] P. Flocchini, B. Mans, and N. Santoro. On the
exploration of time-varying networks. Theoretical
Computer Science, 469:53–68, 2013.

[23] R. Guerraoui and E. Ruppert. Names trump malice:
Tiny mobile agents can tolerate byzantine failures. In
Proceedings of ICALP, 484–495, 2009.

[24] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity
and inference problems for temporal networks. In
Proceedings of STOC, 504–513, 2000.

[25] F. Kuhn, N. Lynch, and R. Oshman. Distributed
computation in dynamic networks. In Proceedings of
STOC, 513–522, 2010.

[26] F. Kuhn and R. Oshman. Dynamic networks: models
and algorithms. SIGACT News, 42:82–96, 2011.

[27] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[28] G. B. Mertzios, O. Michail, I. Chatzigiannakis, and
P. G. Spirakis. Temporal network optimization subject
to connectivity constraints. In Proceedings of ICALP,
657–668, 2013.

[29] O. Michail. Terminating distributed construction of
shapes and patterns in a fair solution of automata. In
Proceedings of PODC, 37–46, 2015.

[30] O. Michail. An introduction to temporal graphs: An
algorithmic perspective. Internet Mathematics,
12(4):239–280, 2016.

[31] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
Mediated population protocols. Theoretical Computer
Science, 412(22):2434–2450, 2011.

[32] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
New Models for Population Protocols. N. A. Lynch
(Ed). Morgan & Claypool, 2011.

[33] O. Michail, I. Chatzigiannakis, and P. G. Spirakis.
Causality, influence, and computation in possibly
disconnected synchronous dynamic networks. J.
Parallel Distrib. Comput., 74(1):2016–2026, 2014.

[34] O. Michail and P. G. Spirakis. How many cooks spoil
the soup? In Proceedings of SIROCCO, 3–18, 2016.

[35] O. Michail and P. G. Spirakis. Simple and efficient
local codes for distributed stable network construction.
Distributed Computing, 29(3):207–237, 2016.

[36] O. Michail and P. G. Spirakis. Traveling salesman
problems in temporal graphs. Theoretical Computer
Science, 634:1–23, 2016.

[37] G. Mone. The new smart cities. Commun. ACM,
58(7):20–21, June 2015.

[38] R. O’Dell and R. Wattenhofer. Information
dissemination in highly dynamic graphs. In
Proceedings of DIALM-POMC, 104–110, 2005.

[39] M. Rubenstein, A. Cornejo, and R. Nagpal.
Programmable self-assembly in a thousand-robot
swarm. Science, 345(6198):795–799, 2014.

