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Abstract

We define a general model of stochastically-evolving graphs, namely the Edge-Uniform
Stochastically-Evolving Graphs. In this model, each possible edge of an underlying general static
graph evolves independently being either alive or dead at each discrete time step of evolution
following a (Markovian) stochastic rule. The stochastic rule is identical for each possible edge
and may depend on the past k ≥ 0 observations of the edge’s state. We examine two kinds of
random walks for a single agent taking place in such a dynamic graph: (i) The Random Walk
with a Delay (RWD), where at each step the agent chooses (uniformly at random) an incident
possible edge, i.e., an incident edge in the underlying static graph, and then it waits till the edge
becomes alive to traverse it. (ii) The more natural Random Walk on what is Available (RWA)
where the agent only looks at alive incident edges at each time step and traverses one of them
uniformly at random. Our study is on bounding the cover time, i.e., the expected time until
each node is visited at least once by the agent. For RWD, we provide the first upper bounds for
the cases k = 0, 1 by correlating RWD with a simple random walk on a static graph. Moreover,
we present a modified electrical network theory capturing the k = 0 case and a mixing-time ar-
gument toward an upper bound for the case k = 1. For RWA, we derive the first upper bounds
for the cases k = 0, 1, too, by reducing RWA to an RWD -equivalent walk with a modified de-
lay. Further, we also provide a framework, which is shown to compute the exact value of the
cover time for a general family of stochastically-evolving graphs in exponential time. Finally,
we conduct experiments on the cover time of RWA in Edge-Uniform graphs and compare the
experimental findings with our theoretical bounds.

1 Introduction

In the modern era of Internet, modifications in a network topology can occur extremely frequently
and in a disorderly way. Communication links may fail from time to time, while connections
amongst terminals may appear or disappear intermittently. Thus, classical (static) network theory
fails to capture such ever-changing processes. In an attempt to fill this void, different research
communities have given rise to a variety of theories on dynamic networks. In the context of
algorithms and distributed computing, such networks are usually referred to as temporal graphs
[17]. A temporal graph is represented by a (possibly infinite) sequence of subgraphs of the same
static graph. That is, the graph is evolving over a set of (discrete) time steps under a certain group
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of deterministic or stochastic rules of evolution. Such a rule can be edge- or graph-specific and may
take as input some graph instances observed in previous time steps.

In this paper, we focus on stochastically-evolving temporal graphs. We define a model of
evolution, where there exists a single stochastic rule, which is applied independently to each edge.
Furthermore, our model is general in the sense that the underlying static graph is allowed to be a
general connected graph, i.e., with no further constraints on its topology, and the stochastic rule
can include any finite number of past observations.

Assume now that a single mobile agent is placed on an arbitrary node of a temporal graph
evolving under the aforementioned model. Next, the agent performs a simple random walk; at each
time step, after the graph instance is fixed according to the model, the agent chooses uniformly at
random a node amongst the neighbors of its current node and visits it. The cover time of such
a walk is the expected number of time steps until the agent has visited each node at least once.
Herein, we prove some first bounds on the cover time for a simple random walk as defined above,
mostly via the use of Markovian theory.

Random walks constitute a very important primitive in terms of distributed computing. Exam-
ples include their use in information dissemination [1] and random network structure [4]; also, see
the short survey in [8]. In this work, we consider a single random walk as a fundamental building
block for other more distributed scenarios to follow.

1.1 Related Work

A paper which is very relevant with respect to ours is the one of Clementi, Macci, Monti, Pasquale
and Silvestri [10], where they consider the flooding time in Edge-Markovian dynamic graphs. In
such graphs, each edge independently follows a one-step Markovian rule and their model appears as
a special case of ours (matches our case k = 1). Further work under this Edge-Markovian paradigm
includes [5, 11].

Another work related to our paper is the one of Avin, Koucký and Lotker [3], who define
the notion of a Markovian Evolving Graph, i.e., a temporal graph evolving over a set of graphs
G1, G2, . . . , where the process transits from Gi to Gj with probability pij, and consider random
walk cover times. Note that their approach becomes computationally intractable if applied to our
case; each of the possible edges evolves independently, thence causing the state space to be of size
2m, where m is the number of possible edges in our model.

Clementi, Monti, Pasquale and Silvestri [12] study the broadcast problem, when at each time
step the graph is selected according to the well-known Gn,p model. Also, Yamauchi, Izumi and
Kamei [22] study the rendezvous problem for two agents on a ring, when each edge of the ring
independently appears at every time step with some fixed probability p. Lastly, there exist a few
papers considering random walks on different models of stochastic graphs, e.g., [16, 19, 20], but
without considering the cover time.

In the analysis to follow, we employ several seminal results around the theory of random walks
and Markov chains. For random walks, we base our analysis on the seminal work in [1] and the
electrical network theory presented in [9, 13], while for results regarding the mixing time of a
Markov chain we cite textbooks [15, 18].

1.2 Our Results

We define a general model for stochastically-evolving graphs, where each possible edge evolves
independently, but all of them evolve following the same stochastic rule. Furthermore, the stochastic
rule may take into account the last k states of a given edge. The motivation for such a model lies
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in several practical examples from networking where the existence of an edge in the recent past
means it is likely to exist in the near future, e.g., for telephone or Internet links. In some other
cases, existence may mean that an edge has ”served its purpose” and is now unlikely to appear in
the near future, e.g., due to a high maintenance cost.

Special cases of our model have appeared in previous literature, e.g., in [12, 22] for k = 0 and
in the line of work starting from [10] for k = 1, however they only consider special graph topologies
(like ring and clique). On the other hand, the model we define is general in the sense that no
assumptions, aside from connectivity, are made on the topology of the underlying graph and any
amount of history is allowed into the stochastic rule. Thence, we believe it can be valued as a basis
for more general results to follow capturing search or communication tasks in such dynamic graphs.

We hereby provide the first known upper bounds relative to the cover time of a simple random
walk taking place in such stochastically evolving graphs for k = 0 and k = 1. To do so, we make
use of a simple, yet fairly useful, modified random walk, namely the Random Walk with a Delay
(RWD), where at each time step the agent is choosing uniformly at random from the incident
edges of the static underlying graph and then waits for the chosen edge to become alive in order to
traverse it. Moreover, we consider the natural random walk on such graphs, namely the Random
Walk on What’s Available (RWA), where at each time step the agent only considers the currently
alive incident edges and chooses to traverse one out of them uniformly at random.

For the case k = 0, that is, when each edge appears at each round with a fixed probability p
regardless of history, we prove that the cover time for RWD is upper bounded by CG/p, where
CG is the cover time of a simple random walk on the (static) underlying graph G. The result
can be obtained both by a careful mapping of the RWD walk to its corresponding simple random
walk on the static graph and by generalizing the standard electrical network theory literature in
[9, 13]. Later, we proceed to prove that the cover time for RWA is between CG/(1− (1− p)∆) and
CG/(1− (1− p)δ) where δ (respectively ∆) is the minimum (respectively maximum) degree of the
underlying graph. The main idea here is to reduce RWA to an RWD walk, where at each step the
traversal delay is lower (respectively upper) bounded by (1− (1− p)δ) (respectively (1− (1− p)∆)).

For k = 1, the stochastic rule takes into account the previous (one time step ago) state of
the edge. If an edge was not present, then it becomes alive with probability p, whereas if it was
alive, then it dies with probability q. Let τmix stand for the mixing time of this process. We
prove that the RWD cover time is upper bound by τmix + CG · (p2 + q)/(p2 + pq) by carefully
computing the expected traversal delay at each step after mixing is attained. Moreover, we show
another CG/ξmin upper bound by considering the minimum probability guarantee of existence at
each round, i.e., ξmin = min{p, 1 − q}, and we discuss the trade-off between these two bounds.
Similarly, we show a CG/ξmax lower bound, where ξmax = max{p, 1 − q}. As far as RWA is
concerned, we upper (respectively lower) bound its cover time by CG/(1− (1−ξmin)

δ) (respectively
CG/(1 − (1− ξmax)

∆)) again by a reduction to an RWD -equivalent walk.
Consequently, we demonstrate an exact, exponential-time approach to determine the precise

cover time value for a general setting of stochastically-evolving graphs, including also the edge-
independent model considered in this paper.

Finally, we conduct a series of experiments on calculating the cover time of RWA on several
underlying graphs. We compare our experimental results with the achieved theoretical bounds.

1.3 Outline

In Section 2, we provide preliminary definitions and results regarding important concepts and tools
that we use in later sections. Then, in Section 3, we define our model of stochastically-evolving
graphs in a more rigorous fashion. Afterwards, in Sections 4 and 5, we provide the analysis of our
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cover time bounds when for determining the current state of an edge we take into account its last 0
and 1 states, respectively. In Section 6, we demonstrate an exact approach for determining the cover
time for general stochastically-evolving graphs. Then, in Section 7, we present some experimental
results on RWA cover time and compare them to the corresponding theoretical bounds. Finally, in
Section 8, we cite some concluding remarks.

2 Preliminaries

Let us hereby define a few standard notions related to a simple random walk performed by a single
agent on a simple connected graph G = (V,E). By d(v), we denote the degree, i.e., the number
of neighbors, of a node v ∈ V . A simple random walk is a Markov chain where, for v, u ∈ V , we
set pvu = 1/d(v), if (v, u) ∈ E, and pvu = 0, otherwise. That is, an agent performing the walk
chooses the next node to visit uniformly at random amongst the set of neighbors of its current
node. Given two nodes v, u, the expected time for a random walk starting from v to arrive at
u is called the hitting time from v to u and is denoted by Hvu. The cover time of a random
walk is the expected time until the agent has visited each node of the graph at least once. Let
P stand for the stochastic matrix describing the transition probabilities for a random walk (or, in
general, a discrete-time Markov chain) where pij denotes the probability of transition from node
i to node j, pij ≥ 0 for all i, j and

∑

j pij = 1 for all i. Then, the matrix P t consists of the
transition probabilities to move from one node to another after t time steps and we denote the

corresponding entries as p
(t)
ij . Asymptotically, limt→∞ P t is referred to as the limiting distribution

of P . A stationary distribution for P is a row vector π such that πP = π and
∑

i πi = 1. That
is, π is not altered after an application of P . If every state can be reached from another in a
finite number of steps, i.e., P is irreducible, and the transition probabilities do not exhibit periodic

behavior with respect to time, i.e., gcd{t : p
(t)
ij > 0} = 1, then the stationary distribution is

unique and it matches the limiting distribution; this result is often referred to as the Fundamental
Theorem of Markov chains. The mixing time is the expected number of time steps until a Markov

chain approaches its stationary distribution. Below, let p
(t)
i stand for the i-th row of P t and

tvd(t) = maxi||p
(t)
i − π||= 1

2 maxi
∑

j |p
(t)
ij − πj| stand for the total variation distance of the two

distributions. We say that a Markov chain is ǫ-near to its stationary distribution at time t if
tvd(t) ≤ ǫ. Then, we denote the mixing time by τ(ǫ): the minimum value of t until a Markov chain
is ǫ-near to its stationary distribution. A coupling (Xt, Yt) is a joint stochastic process defined in
a way such that Xt and Yt are copies of the same Markov chain P when viewed marginally, and
once Xt = Yt for some t, then Xt′ = Yt′ for any t′ ≥ t. Also, let Txy stand for the minimum
expected time until the two copies meet, i.e., until Xt = Yt for the first time, when starting from
the initial states X0 = x and Y0 = y. We can now state the following Coupling Lemma correlating
the coupling meeting time to the mixing time:

Lemma 1 (Lemma 4.4 [15]). Given any coupling (Xt, Yt), it holds tvd(t) ≤ maxx,y Pr[Txy ≥ t].
Consequently, if maxx,y Pr[Txy ≥ t] ≤ ǫ, then τ(ǫ) ≤ t.

Furthermore, asymptotically, we need not care about the exact value of the total variation
distance, since, for any ǫ > 0, we can force the chain to be ǫ-near to its stationary distribution after
a multiplicative time of log ǫ−1 steps due to the submultiplicativity of the total variation distance.
Formally, it holds tvd(kt) ≤ (2 · tvd(t))k.

Lemma 2 (Lemma 2.20 [2]). Suppose τ(ǫ0) ≤ t for some Markov chain P and a constant 0 < ǫ0 <
1. Then, for any 0 < ǫ < ǫ0, it holds τ(ǫ) ≤ t log ǫ−1.
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In order to derive lower bounds for RWA, we use the following graph family, commonly known
as lollipop graphs, capturing the maximum cover time for a simple random walk, e.g. see [7, 14].

Definition 1. A lollipop graph Lk
n consists of a clique on k nodes and a path on n − k nodes

connected with a cut-edge, i.e., an edge whose deletion makes the graph disconnected.

3 The Edge-Uniform Evolution Model

Let us define a general model of a dynamically evolving graph. Let G = (V,E) stand for a simple,
connected graph, from now on referred to as the underlying graph of our model. The number of
nodes is given by n = |V |, while the number of edges is denoted by m = |E|. For a node v ∈ V ,
let N(v) = {u : (v, u) ∈ E} stand for the open neighborhood of v and d(v) = |N(v)| for the (static)
degree of v. Note that we make no assumptions regarding the topology of G, besides connectedness.
We refer to the edges of G as the possible edges of our model. We consider evolution over a sequence
of discrete time steps (namely 0, 1, 2, . . .) and denote by G = (G0, G1, G2, . . .) the infinite sequence
of graphs Gt = (Vt, Et), where Vt = V and Et ⊆ E. That is, Gt is the graph appearing at time step
t and each edge e ∈ E is either alive (if e ∈ Et) or dead (if e /∈ Et) at time step t.

Let R stand for a stochastic rule dictating the probability that a given possible edge is alive at
any time step. We apply R at each time step and at each edge independently to determine the set
of currently alive edges, i.e., the rule is uniform with regard to the edges. In other words, let et
stand for a random variable where et = 1, if e is alive at time step t, or et = 0, otherwise. Then,
R determines the value of Pr(et = 1|Ht) where Ht is also determined by R and denotes the history
length, i.e., the values of et−1, et−2, . . ., considered when deciding for the existence of an edge at
time step t. For instance, Ht = ∅ means no history is taken into account, while Ht = {et−1} means
the previous state of e is taken into account when deciding for its current state.

Overall, the aforementioned Edge-Uniform Evolution model (shortly EUE ) is defined by the
parameters G and R. In the following sections, we consider some special cases for R and provide
some first bounds for the cover time of G under this model. Each time step of evolution consists of
two stages: in the first stage, the graph Gt is fixed for time step t following R, while in the second
stage, the agent moves to a node in Nt[v] = {v} ∪ {u ∈ V : (v, u) ∈ Et}. Notice that, since G is
connected, then the cover time under EUE is finite, since R models edge-specific delays.

4 Cover Time with Zero-Step History

We hereby analyze the cover time of G under EUE in the special case when no history is taken
into consideration for computing the probability that a given edge is alive at the current time step.
Intuitively, each edge appears with a fixed probability p at every time step independently of the
others. More formally, for all e ∈ E and time steps t, Pr(et = 1) = p ∈ [0, 1].

4.1 Random Walk with a Delay

A first approach toward covering G with a single agent is the following: The agent is randomly
walking G as if all edges were present and, when an edge is not present, it just waits for it to appear
in a following time step. More formally, suppose the agent arrives on a node v ∈ V with (static)
degree d(v) at the second stage of time step t. Then, after the graph is fixed for time step t + 1,
the agent selects a neighbor of v, say u ∈ N(v), uniformly at random, i.e., with probability 1

d(v) . If

(v, u) ∈ Et+1, then the agent moves to u and repeats the above procedure. Otherwise, it remains
on v until the first time step t′ > t+1 such that (v, u) ∈ Et′ and then moves to u. This way, p acts
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as a delay probability, since the agent follows the same random walk it would on a static graph, but
with an expected delay of 1

p time steps at each node. Notice that, in order for such a strategy to
be feasible, each node must maintain knowledge about its neighbors in the underlying graph; not
just the currently alive ones. From now on, we refer to this strategy for the agent as the Random
Walk with a Delay (shortly RWD).

Now, let us upper bound the cover time of RWD by exploiting its strong correlation to a simple
random walk on the underlying graph G via Wald’s Equation (Theorem 3). Below, let CG stand
for the cover time of a simple random walk on the static graph G.

Theorem 3 ([21]). Let X1,X2, . . . ,XN be a sequence of real-valued, independent and identically
distributed random variables where N is a nonnegative integer random variable independent of
the sequence (in other words, a stopping time for the sequence). If each Xi and N have finite
expectations, then it holds

E[X1 +X2 + . . .+XN ] = E[N ] · E[X1]

Theorem 4. For any connected underlying graph G evolving under the zero-step history EUE, the
cover time for RWD is expectedly CG/p.

Proof. Consider a simple random walk, shortly SRW, and an RWD (under the EUE model) taking
place on a given connected graph G. Given that RWD decides on the next node to visit uniformly
at random based on the underlying graph, that is, in exactly the same way SRW does, we use a
coupling argument to enforce RWD and SRW to follow the exact same trajectory, i.e., sequence of
visited nodes.

Then, let the trajectory end when each node in G has been visited at least once and denote by T
the total number of node transitions made by the agent. Such a trajectory under SRW will cover all
nodes in expectedly E[T ] = CG time steps. On the other hand, in the RWD case, for each transition
we have to take into account the delay experienced until the chosen edge becomes available. Let
Di ≥ 1 be a random variable, where 1 ≤ i ≤ T stands for the actual delay corresponding to
node transition i in the trajectory. Then, the expected number of time steps till the trajectory is
realized is given by E[D1+. . .+DT ]. Since the random variables Di are independent and identically
distributed by the edge-uniformity of our model, T is a stopping time for them and all of them have
finite expectations, then by Theorem 3 we get E[D1 + . . . +DT ] = E[T ] ·E[D1] = CG · 1/p.

For an explicit general bound on RWD, it suffices to use CG ≤ 2m(n− 1) proved in [1].

A Modified Electrical Network. Another way to analyze the above procedure is to make use
of a modified version of the standard literature approach of electrical networks and random walks
[9, 13]. This point of view gives us expressions for the hitting time between any two nodes of the
underlying graph. That is, we hereby (in Lemmata 5, 6 and Theorem 7) provide a generalization of
the results given in [9, 13] thus correlating the hitting and commute times of RWD to an electrical
network analog and reaching a conclusion for the cover time similar to the one of Theorem 4.

In particular, given the underlying graph G, we design an electrical network, N(G), with the
same edges as G, but where each edge has a resistance of r = 1

p ohms. Let Hu,v stand for the hitting
time from node u to node v in G, i.e. the expected number of time steps until the agent reaches
v after starting from u and following RWD. Furthermore, let φu,v declare the electrical potential
difference between nodes u and v in N(G) when, for each w ∈ V , we inject d(w) amperes of current
into w and withdraw 2m amperes of current from a single node v. We now upper-bound the cover
time of G under RWD by correlating Hu,v to φu,v.
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Lemma 5. For all u, v ∈ V , Hu,v = φu,v holds.

Proof. Let us denote by Cuw the current flowing between two neighboring nodes u and w. Then,
d(u) =

∑

(u,w)∈E Cuw since at each node the total inward current must match the total outward
current (Kirchhoff’s first law). Moving forward, Cuw = φuw/r = φuw/(1/p) = p · φuw by Ohm’s
law. Finally, φuw = φuv − φwv since the sum of electrical potential differences forming a path is
equal to the total electrical potential difference of the path (Kirchhoff’s second law). Overall, we
can rewrite d(u) =

∑

(u,w)∈E p(φu,v − φw,v) = d(u) · p · φu,v − p
∑

(u,w)∈E φw,v. Rearranging gives

φu,v =
1

p
+

1

d(u)

∑

(u,w)∈E

φw,v.

Regarding the hitting time from u to v, we rewrite it based on the first step:

Hu,v =
1

p
+

1

d(u)

∑

(u,w)∈E

Hw,v

since the first addend represents the expected number of steps for the selected edge to appear due
to RWD, and the second addend stands for the expected time for the rest of the walk.

Wrapping it up, since both formulas above hold for each u ∈ V \ {v}, therefore inducing two
identical linear systems of n equations and n variables, it follows that there exists a unique solution
to both of them and Hu,v = φu,v.

In the lemma below, let Ru,v stand for the effective resistance between u and v, i.e., the electrical
potential difference induced when flowing a current of one ampere from u to v.

Lemma 6. For all u, v ∈ V , Hu,v +Hv,u = 2mRu,v holds.

Proof. Similarly to the definition of φu,v above, one can define φv,u as the electrical potential
difference between v and u when d(w) amperes of current are injected into each node w and 2m
of them are withdrawn from node u. Next, note that changing all currents’ signs leads to a new
network where for the electrical potential difference, namely φ′, it holds φ′

u,v = φv,u. We can now
apply the Superposition Theorem (see Section 13.3 in [6]) and linearly superpose the two networks
implied from φu,v and φ′

u,v creating a new one where 2m amperes are injected into u, 2m amperes
are withdrawn from v and no current is injected or withdrawn at any other node. Let φ′′

u,v stand
for the electrical potential difference between u and v in this last network. By the superposition
argument, we get φ′′

u,v = φu,v + φ′
u,v = φu,v + φv,u, while from Ohm’s law we get φ′′

u,v = 2m · Ru,v.
The proof concludes by combining these two observations and applying Lemma 5.

Theorem 7. For any connected underlying graph G evolving under the zero-step history EUE, the
cover time for RWD is at most 2m(n− 1)/p.

Proof. Consider a spanning tree T of G. An agent, starting from any node, can visit all nodes by
performing an Eulerian tour on the edges of T (crossing each edge twice). This is a feasible way to
cover G and thus the expected time for an agent to finish the above task provides an upper bound
on the cover time. The expected time to cover each edge twice is given by

∑

(u,v)∈ET
(Hu,v +Hv,u)

where ET is the edge-set of T with |ET |= n−1. By Lemma 6, this is equal to 2m
∑

(u,v)∈ET
Ru,v =

2m
∑

(u,v)∈ET

1
p = 2m(n− 1)/p.
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4.2 Random Walk on what’s Available

Random Walk with a Delay does provide a nice connection to electrical network theory. However,
depending on p, there could be long periods of time where the agent is simply standing still on the
same node. Since the walk is random anyway, waiting for an edge to appear may not sound very
wise. Hence, we now analyze the strategy of a Random Walk on what’s Available (shortly RWA).
That is, suppose the agent has just arrived at a node v after the second stage at time step t and
then Et+1 is fixed after the first stage at time step t+1. Now, the agent picks uniformly at random
only amongst the alive edges at time step t+ 1, i.e., with probability 1

dt+1(v)
, where dt+1(v) stands

for the degree of node v in Gt+1. The agent then follows the selected edge to complete the second
stage of time step t+ 1 and repeats the strategy. In a nutshell, the agent keeps moving randomly
on available edges and only remains on the same node if no edge is alive at the current time step.
Below, let δ = minv∈V d(v) and ∆ = maxv∈V d(v).

Theorem 8. For any connected underlying graph G with min-degree δ and max-degree ∆ evolving
under the zero-step history EUE, the cover time for RWA is at least CG/(1− (1−p)∆) and at most
CG/(1 − (1− p)δ).

Proof. Suppose the agent follows RWA and has reached node u ∈ V after time step t. Then, Gt+1

becomes fixed and the agent selects uniformly at random a neighboring edge to move to. Let Muv

(where v ∈ {w ∈ V : (u,w) ∈ E}) stand for a random variable taking value 1 if the agent moves
to node v and 0 otherwise. For k = 1, 2, . . . , d(u) = d, let Ak stand for the event that dt+1(u) = k.
Therefore, Pr(Ak) =

(d
k

)

pk(1− p)d−k is exactly the probability k out of the d edges exist since each
edge exists independently with probability p. Now, let us consider the probability Pr(Muv = 1|Ak):
the probability v will be reached given that k neighbors are present. This is exactly the product
of the probability that v is indeed in the chosen k-tuple (say p1) and the probability that then v
is chosen uniformly at random (say p2) from the k-tuple. p1 =

(d−1
k−1

)

/
(d
k

)

= k
d since the model is

edge-uniform and we can fix v and choose any of the
(d−1
k−1

)

k-tuples with v in them out of the
(d
k

)

total ones. On the other hand, p2 =
1
k by uniformity. Overall, we get Pr(Muv = 1|Ak) = p1 ·p2 =

1
d .

We can now apply the total probability law to calculate

Pr(Muv = 1) =
∑d

k=1 Pr(Muv = 1|Ak) Pr(Ak) =
1
d

∑d
k=1

(d
k

)

pk(1− p)d−k = 1
d (1− (1− p)d)

To conclude, let us reduce RWA to RWD. Indeed, in RWD the equivalent transition probability
is Pr(Muv = 1) = 1

dp, accounting both for the uniform choice and the delay p. Therefore, the
RWA probability can be viewed as 1

dp
′ where p′ = (1− (1− p)d). To achieve edge-uniformity we set

p′ = (1−(1−p)δ) which lower bounds the delay of each edge and finally we can apply the same RWD
analysis by substituting p by p′. Similarly, we can set the upper-bound delay p′′ = (1 − (1 − p)∆)
to lower-bound the cover time. Applying Theorem 4 completes the proof.

The value of δ used to lower-bound the transition probability may be a harsh estimate for general
graphs. However, it becomes quite more accurate in the special case of a d-regular underlying graph
where δ = ∆ = d. To conclude this section, we provide a worst-case lower bound on the cover time
based on similar techniques as above.

Lemma 9. There exists an underlying graph G evolving under the zero-step history EUE such that
the RWA cover time is at least Ω(mn/(1− (1− p)∆)).

Proof. We consider the L
2n/3
n lollipop graph which is known to attain a cover time of Ω(mn) for a

simple random walk [7, 14]. Applying the lower bound from Theorem 8 completes the proof.
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5 Cover Time with One-Step History

We now turn our attention to the case where the current state of an edge affects its next state.
That is, we take into account a history of length one when computing the probability of existence
for each edge independently. A Markovian model for this case was introduced in [10]; see Table 1.
The left side of the table accounts for the current state of an edge, while the top for the next one.
The respective table box provides us with the probability of transition from one state to the other.
Intuitively, another way to refer to this model is as the Birth-Death model: a dead edge becomes
alive with probability p, while an alive edge dies with probability q.

Table 1: Birth-Death chain for a single edge [10]
dead alive

dead 1− p p

alive q 1− q

Let us now consider an underlying graph G evolving under the EUE model where each possible
edge independently follows the aforementioned stochastic rule of evolution. In order to bound the
RWD cover time, we apply a two-step analysis. First, we bound the mixing time of the Markov
chain defined by Table 1 for a single edge and then for the whole graph by considering all m
independent edge processes evolving together. Lastly, we estimate the cover time for a single agent
after each edge has reached the stationary state of Birth-Death.

On the other hand, for RWA, we make use of the ”being alive” probabilities ξmin = min{p, 1−q}
and ξmax = max{p, 1− q} in order to bound the cover time by following a similar argument to the
one in Theorem 8, starting again from an RWD analysis.

5.1 RWD for General (p, q)-Graphs via Mixing

As a first step, let us prove the following upper-bound inequality, which helps us break our analysis
to follow into two separate phases.

Lemma 10. Let τ(ǫ) stand for the mixing time for the whole-graph chain up to some total variation
distance ǫ > 0, Cτ(ǫ) for the expected time to cover all nodes after time step τ(ǫ) and C for the
cover time of G under RWD. Then, C ≤ τ(ǫ) + Cτ(ǫ) holds.

Proof. The upper bound is easy to see since RWD covers a subset V0 ⊆ V until mixing occurs and
then, after the mixing time τ(ǫ), we require RWD to cover the whole node-set V ; including the
already visited V0 nodes. That is, we discard any progress made by the walk during the first τ(ǫ)
time steps and require a full cover to occur afterwards.

The above upper bound discards some walk progress, however, intuitively, this may be negligible
in some cases: if the mixing is rapid, then the cover time Cτ(ǫ) dominates the sum, whereas, if the
mixing is slow, this may mean that edges appear rarely and thence little progress can be made
anyway.

Phase I: Mixing Time. Let P stand for the Birth-Death Markov chain given in Table 1. It is
easy to see that P is irreducible and aperiodic and therefore its limiting distribution matches its
stationary distribution and is unique. We hereby provide a coupling argument to upper-bound the
mixing time of the Birth-Death chain for a single edge. Let Xt, Yt stand for two copies of P , where
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Xt = 1 if the edge is alive at time step t and Xt = 0 otherwise. We need only consider the initial
case X0 6= Y0. For any t ≥ 1, we compute the meeting probability Pr(Xt = Yt|Xt−1 6= Yt−1) =
Pr(Xt = Yt = 1|Xt−1 6= Yt−1) + Pr(Xt = Yt = 0|Xt−1 6= Yt−1) = p(1− q) + q(1− p).

Definition 2. Let p0 = p(1−q)+q(1−p) denote the meeting probability under the above Birth-Death
coupling for a single time step.

We now bound the mixing time of Birth-Death for a single edge.

Lemma 11. The mixing time of Birth-Death for a single edge is O(p−1
0 ).

Proof. Let Txy denote the meeting time of Xt and Yt, i.e., the first occurrence of a time step t such
that Xt = Yt. We now compute the probability the two chains meet at a specific time step t ≥ 1:

Pr[Txy = t] = Pr(Xt = Yt|Xt−1 6= Yt−1,Xt−2 6= Yt−2, . . . ,X0 6= Y0) =

= Pr(Xt = Yt|Xt−1 6= Yt−1) · Pr(Xt−1 6= Yt−1|Xt−2 6= Yt−2) · . . . · Pr(X1 6= Y1|X0 6= Y0) · Pr(X0 6= Y0) =

= p0 · (1− p0)
t−1

where we make use of the total probability law and the one-step Markovian evolution. Finally, we
accumulate and then bound the probability the meeting time is greater to some time-value t:

Pr[Txy ≤ t] =
t

∑

i=1

Pr[Txy = i] =
t

∑

i=1

p0(1− p0)
i−1 = p0

1− (1− p0)
t

p0
= 1− (1− p0)

t

Then, Pr[Txy > t] = (1 − p0)
t ≤ e−p0t, by applying the inequality 1 − x ≤ e−x for all x ∈ R. By

setting t = c · p−1
0 for some constant c ≥ 1, we get Pr[Txy > c · p−1

0 ] ≤ e−c and apply Lemma 1 to
bound τ(e−c) ≤ c · p−1

0 .

The above result analyzes the mixing time for a single edge of the underlying graph G. In order
to be mathematically accurate, let us extend this to the Markovian process accounting for the
whole graph G. Let Gt, Ht stand for two copies of the Markov chain consisting of m independent
Birth-Death chains; one per edge. Initially, we define a graph G∗ = (V ∗, E∗) such that V ∗ = V
and E∗ ⊆ E; any graph with these properties is fine. We set G0 = G∗ and H0 = G∗ which is a
worst-case starting point since each pair of respective G, H edges has exactly one alive and one
dead edge. To complete the description of our coupling, we enforce that when a pair of respective
edges meets, i.e., when the coupling for a single edge as described in the proof of Lemma 11 becomes
successful, then both edges stop applying the Birth-Death rule and remain at their current state.
Similarly to before, let TG,H stand for the meeting time of the two above defined copies, that is,
the time until all pairs of respective edges have met. Furthermore, let T e

x,y stand for the meeting
time associated with edge e ∈ E.

Lemma 12. The mixing time for any underlying graph G, where each edge independently applies
the Birth-Death rule, is at most O(p−1

0 logm).

Proof. To start with, we calculate the probability the meeting time is bounded by some value t:

Pr[TG,H ≤ t] = Pr[maxe∈E Tx,y ≤ t] = Pr[(T e1
x,y ≤ t) ∧ (T e2

x,y ≤ t) ∧ . . . ∧ (T em
x,y ≤ t)] =

= Pr[Tx,y ≤ t]m = (1− (1− p0)
t)m ≥

≥ 1−m(1− p0)
t ≥ 1−me−p0t

where we successively applied the fact that the edges are independent, Bernoulli’s inequality stating
(1 + x)r ≥ 1 + rx for every r and any x ≥ −1, and the already seen inequality 1− x ≤ e−x.

Moving forward, Pr[TG,H > t] ≤ me−p0t and after setting t = αp−1
0 logm, for some α ≥ 2 we

derive that Pr[TG,H > αp−1
0 logm] ≤ m1−α. Applying Lemma 1 gives τ(m1−α) ≤ αp−1

0 logm.
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Phase II: Cover Time After Mixing. We can now proceed to apply Lemma 10 by computing
the expected time for RWD to cover G after mixing is attained. As before, we use the notation
Cτ(ǫ) to denote the cover time after the whole-graph process has mixed to some distance ǫ > 0 from
its stationary state in time τ(ǫ). The following remark is key in our motivation toward the use of
stationarity.

Fact 1. Let D be a random variable capturing the number of time steps until a possible edge becomes
alive under RWD once the agent selects it for traversal. For any time step t ≥ τ(ǫ), the expected
delay for any single edge traversal e under RWD is the same and equals E[D|et = 1]Pr(et =
1) + E[D|et = 0]Pr(et = 0).

That is, due to the uniformity of our model, all edges behave similarly. Furthermore, after
convergence to stationarity has been achieved, when an agent picks a possible edge for traversal
under RWD, the probability Pr(et = 1) that the edge is alive for any time step t ≥ τ(ǫ) is actually
given by the stationary distribution in a simpler formula and can be regarded independently of the
edge’s previous state(s).

Lemma 13. For any constant 0 < ǫ < 1 and ǫ′ = ǫ·min{p,q}
p+q , it holds that Cτ(ǫ′) ≤ CG ·(1+2ǫ) p2+q

p2+pq .

Proof. We compute the stationary distribution π for the Birth-Death chain P by solving the system
πP = π. Thus, we get π = [ q

p+q ,
p

p+q ].

From now on, we only consider time steps t ≥ τ(ǫ′), i.e., after the chain has mixed, for some

ǫ′ = ǫ · min{p,q}
p+q ∈ (0, 1). We have tvd(t) = 1

2 maxi
∑

j |p
(t)
ij − πj|≤ ǫ′ implying that for any edge

e, we get Pr(et = 1) ≤ (1 + 2ǫ) p
p+q . Similarly, Pr(et = 0) ≤ (1 + 2ǫ) q

p+q . Let us now estimate
the expected delay until the RWD -chosen possible edge at some time step t becomes alive. If the
selected possible edge exists, then the agent moves along it with no delay, i.e., we count 1 step.
Otherwise, if the selected possible edge is currently dead, then the agent waits till the edge becomes
alive. This will expectedly take 1/p time steps due to the Birth-Death chain rule. Overall, the

expected delay is at most 1 · (1 + 2ǫ) p
p+q +

1
p · (1 + 2ǫ) q

p+q = (1 + 2ǫ) p2+q
p2+pq

, where we condition on
the above cases.

Since for any time t ≥ τ(ǫ) and any edge e, we have the same expected delay to traverse an
edge, we can extract a bound for the cover time by considering an electrical network with each

resistance equal to (1 + 2ǫ) p2+q
p2+pq

. Applying Theorem 4 completes the proof.

The following theorem is directly proven by plugging into the inequality of Lemma 10 the
bounds computed in Lemmata 12 and 13.

Theorem 14. For any connected underlying graph G and the Birth-Death rule, the cover time of
RWD is O(p−1

0 logm+ CG · (p2 + q)/(p2 + pq)).

5.2 RWD and RWA for General (p, q)-Graphs via Min-Max

In the previous subsection, we employed a mixing-time argument in order to reduce the final part
of the proof to the zero-step history case. Let us hereby derive another upper bound for the cover
time of RWD (and then extend it for RWA) via a min-max approach. The idea here is to make use
of the ”being alive” probabilities to prove lower and upper bounds for the cover time parameterized
by ξmin = min{p, 1− q} and ξmax = max{p, 1− q}.

Let us consider an RWD walk on a general connected graph G evolving under EUE with a
zero-step history rule dictating Pr(et = 1) = ξmin for any edge e and time step t. We refer to this
walk as the Upper Walk with a Delay, shortly UWD. Respectively, we consider an RWD walk when
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the stochastic rule of evolution is given by Pr(et = 1) = ξmax. We refer to this specific walk as the
Lower Walk with a Delay, shortly LWD. Below, we make use of UWD and LWD in order to bound
the cover time of RWD and RWA in general (p, q)-graphs.

Lemma 15. For any connected underlying graph G and the Birth-Death rule, the cover time of
RWD is at least CG/ξmax and at most CG/ξmin.

Proof. Regarding UWD, one can design a corresponding electrical network where each edge has a
resistance of 1/ξmin capturing the expected delay till any possible edge becomes alive. Applying
Theorem 4, gives an upper bound for the UWD cover time.

Let C ′ stand for the UWD cover time and C stand for the cover time of RWD under the
Birth-Death rule. It now suffices to show C ≤ C ′ to conclude.

In Birth-Death, the expected delay before each edge traversal is either 1/p, in case the possible
edge is dead, or 1/(1 − q), in case the possible edge is alive. In both cases, the expected delay is
upper-bounded by the 1/ξmin delay of UWD and therefore C ≤ C ′ follows since any trajectory
under RWD will take at most as much time as the same trajectory under UWD.

In a similar manner, the cover time of LWD lower bounds the cover time of RWD and, by
applying Theorem 4, we derive a lower bound of CG/ξmax.

Notice that the upper bound in Lemma 15 improves over the one in Theorem 14 for a wide
range of cases, especially if q is really small. For example, when q = Θ(m−k) for some k ≥ 2 and
p = Θ(1), then Lemma 15 gives O(mn) whereas Theorem 14 gives O(mk) since the mixing time
dominates the whole sum. On the other hand, for relatively big values of p and q, e.g., in Ω(1/m),
then mixing is rapid and the upper bound in Theorem 14 proves better.

Let us now turn our attention to the RWA case with the subsequent results.

Theorem 16. For any connected underlying graph G evolving under the Birth-Death rule, the
cover time for RWA is at least CG/(1 − (1− ξmax)

∆) and at most CG/(1− (1− ξmin)
δ).

Proof. Suppose the agent follows RWA with some stochastic rule R of the form Pr(et = 1|Ht)
which incorporates some history Ht when making a decision about an edge at time step t. Let us
now proceed in fashion similar to the proof of Theorem 8. Assume the agent follows RWA and has
reached node u ∈ V after time step t. Then Gt+1 becomes fixed and the agent selects uniformly
at random an alive neighboring node to move to. Let Muv, where v is a neighbor to u, stand for a
random variable taking value 1 if the agent moves to v at time step t+1 and 0 otherwise. For k =
0, 1, 2, . . . , d(u) = d, let Ak(Ht) stand for the event that dt+1 = k given some history Ht about all
incident possible edges of u. We compute Pr(Muv = 1) =

∑d
k=1 Pr(Muv = 1|Ak(Ht)) Pr(Ak(Ht)).

Similarly to the proof of Theorem 8, Pr(Muv = 1|Ak(Ht)) = p1 ·p2 = 1/d where p1 is the probability
v is indeed in the chosen k-tuple (which is k/d) and p2 is the probability it is chosen uniformly
at random from the k-tuple (which is 1/k). Thus, we get Pr(Muv = 1) = 1

d

∑d
k=1 Pr(Ak(Ht)) =

1
d(1− Pr(A0(Ht))) where A0 is the event no edge becomes alive at this time step.

Moving forward, by definition, LWD and UWD both depict zero-step history RWD walks. Let
us denote by LWA and UWA their corresponding RWA walks. Furthermore, let PL (respectively
PU ) be equal to the probability Pr(Muv = 1) under the LWA (respectively UWA) walk. Then,
we can substitute p by ξmax and ξmin respectively in order to apply Theorem 8 and get PL =
1
d(1− (1− ξmax)

d) and PU = 1
d (1− (1− ξmin)

d). In the Birth-Death model, we know (1− ξmax)
d ≤

Pr(A0(H1)) ≤ (1− ξmin)
d since each possible edge becomes alive with probability at least ξmin and

at most ξmax. Thus, it follows PU ≤ Pr(Muv = 1) ≤ PL.
To wrap up, LWA and UWA are viewed as RWD walks with delay probabilities (1−(1−ξmax)

d)
and (1−(1−ξmin)

d), which lower and upper bound the (1−Pr(A0(Ht)) delay probability associated

12



with RWA. Inverting the inequality to account for the delays, we have CL ≤ C ≤ CU for the cover
times. Finally, Theorem 8 gives CL ≥ CG/(1 − (1− ξmax)

∆) and CU ≤ CG/(1 − (1− ξmin)
δ).

Lemma 17. There exists an underlying graph G evolving under the Birth-Death rule such that the
RWA cover time is at least Ω(mn/(1− (1− ξmax)

∆)).

Proof. We consider an RWA walk on L
2n/3
n to get the Ω(mn) term in the cover time [7, 14]. Applying

the lower bound from Theorem 16 completes the proof.

Given the above results, we can derive a general observation correlating the cover time of RWA
with the cover time of a simple random walk on the (static) underlying graph G.

Corollary 1. For any connected underlying graph G evolving under the Birth-Death rule with
ξmin ≥ c · 1

δ , for some constant c > 0, the cover time of RWA is in O(CG).

Proof. By Theorem 16, the RWA cover time is at most CG/(1 − (1− ξmin)
δ). Assume ξmin ≥ c/δ

for some constant c > 0. By applying 1−x ≤ e−x and the restriction on ξmin, we get (1− ξmin)
δ ≤

e−ξmin·δ ≤ e−c. Thus, for the cover time, we get CG/(1− (1− ξmin)
δ) ≤ CG/(1−e−c) ∈ O(CG).

Intuitively, for any (nearly) complete underlying graph with n nodes where δ = Θ(n), the
condition ξmin ∈ Ω(1/n) indicates that, for any time step t, the graph instance Gt has a ”huge”
connected component, since Gt can be viewed as ”lower-bounded” by a G(n, ξmin) Erdős-Rényi
random graph. Given the existence of a ”huge” connected component at each step, an RWA walk
evolves in a similar fashion to the static case, without being significantly affected by the temporal
restrictions.

6 An Exact Approach

So far, we have established upper and lower bounds for the cover time of edge-uniform stochastically-
evolving graphs. Our bounds are based on combining extended results from simple random walk
theory and careful delay estimations. In this section, we describe an approach to determine the
exact cover time for temporal graphs evolving under any stochastic model. Then, we apply this
approach to the already seen zero-step history and one-step history cases of RWA.

The key component of our approach is a Markov chain capturing both phases of evolution:
the graph dynamics and the walk trajectory. In that case, calculating the cover time reduces to
calculating the hitting time to a particular subset of Markov states. Although computationally
intractable for large graphs, such an approach provides the exact cover time value and is hence
practical for smaller graphs.

Suppose we are given an underlying graph G = (V,E) and a set of stochastic rules R capturing
the evolution dynamics of G. That is, R can be seen as a collection of probabilities of transition
from one graph instance to another. We denote by k the (longest) history length taken into account
by the stochastic rules. Like before, let n = |V | stand for the number of nodes and m = |E| for
the number of possible edges of G. We define a Markov chain M with states of the form (H, v, Vc),
where

• H = (H1,H2, . . . ,Hk), is a k-tuple of temporal graph instances, that is, for each i = 1, 2, . . . , k,
Hi is the graph instance present i− 1 time steps before the current one (which is H1)

• v ∈ V (G) is the current position of the agent

13



• Vc ⊆ V (G) is the set of already covered nodes, i.e., the set of nodes which have been visited
at least once by the agent

As described earlier for our edge-uniform model, we assume evolution happens in two phases.
First, the new graph instance is determined according to the rule-set R. Second, the new agent
position is determined based on a random walk on what’s available. In this respect, consider a
state S = (H, v, Vc) and another state S′ = (H ′, v′, V ′

c ) of the described Markov chain M . Let
Pr[S → S′] denote the transition probability from S to S′. We seek to express this probability as
a product of the probabilities for the two phases of evolution. The latter is possible, since, in our
model, the random walk strategy is independent of the graph evolution.

For the graph dynamics, let Pr[H
R
−→ H ′] stand for the probability to move from a history-tuple

H to another history-tuple H ′ under the rules of evolution in R. Note that, for i = 1, 2, . . . , k−1, it
must hold H ′

i+1 = Hi in order to properly maintain history, otherwise the probability becomes zero.
On the other hand, for valid transitions, the probability reduces to Pr[H ′

1|(H1,H2, . . . ,Hk)], which
is exactly the probability that H ′

1 becomes the new instance given the history H = (H1,H2, . . . ,Hk)
of past instances (and any such probability is either given directly or implied by R).

For the second phase, i.e., the random walk on what’s available, we denote by Pr[v
Hj
−→ v′] the

probability of moving from v to v′ on some graph instance Hj . Since, the random walk strategy is
only based on the current instance, we can derive a general expression for this probability, which
is independent of the graph dynamics R. Below, let NHj

(v) stand for the set of neighbors of v in
graph instance Hj. If {v, v′} 6∈ E(G), that is, if there is no possible edge between v and v′, then

for any temporal graph instance Hj, it holds Pr[v
Hj
−→ v′] = 0. The probability is also zero for

all graph instances Hj where the possible edge is not alive, i.e., {v, v′} 6∈ E(Hj). In contrast, if

{v, v′} ∈ E(Hj), then Pr[v
Hj
−→ v′] = |NHj

(v)|−1, since the agent chooses a destination uniformly
at random out of the currently alive ones. Finally, if v = v′, then the agent remains still, with
probability 1, only if there exist no alive incident edges. We summarize the above facts in the
following equation:

Pr[v
Hj
−→ v′] =











1 , if NHj
(v) = ∅ and v′ = v

|NHj
(v)|−1 , if v′ ∈ NHj

(v)

0 , otherwise

(1)

Overall, we combine the two phases in M and introduce the following transition probabilities.

• If |Vc|< n:

Pr[(H, v, Vc) → (H ′, v′, V ′
c )] =



















Pr[H
R
−→ H ′] · Pr[v

H′

1−−→ v′] , if v′ ∈ V ′
c and V ′

c = Vc

Pr[H
R
−→ H ′] · Pr[v

H′

1−−→ v′] , if v′ 6= v, v′ 6∈ V ′
c and V ′

c = Vc ∪ {v′}

0 , otherwise

• If |Vc|= n:

Pr[(H, v, Vc) → (H ′, v′, V ′
c )] =

®

1 , if H = H ′, v = v′, Vc = V ′
c

0 , otherwise

For |Vc|< n, notice that only two cases may have a non-zero probability with respect to the
growth of Vc. If the newly visited node v′ is already covered, then V ′

c must be identical to Vc since
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no new nodes are covered during this transition. Further, if a new node v′ is not yet covered, then
V ′
c is updated to include it as well as all the covered nodes in Vc.
For |Vc|= n, the idea is that once such a state has been reached, and so all nodes are covered,

then there is no need for further exploration. Therefore, such a state can be made absorbing. In
this respect, let us denote the set of these states as Γ = {(H, v, Vc) ∈ M : |Vc|= n}.

Definition 3. Let ECT(G,R) be the problem of determining the exact value of the cover time for
an RWA on a graph G stochastically evolving under rule-set R.

Theorem 18. Assume all probabilities of the form Pr[H
R
−→ H ′] used in M are exact reals

and known a priori. Then, for any underlying graph G and stochastic rule-set R, it holds that
ECT(G,R) ∈ EXPTIME.

Proof. For each temporal graph instance, Hi, in the worst case, there exist 2m possibilities, since
each of the m possible edges is either alive or dead at a graph instance. For the whole history H,
the number of possibilities becomes (2m)k = 2k·m by taking the product of k such terms. There
are n possibilities for the walker’s position v. Finally, for each v ∈ V (G), we only allow states such
that v ∈ Vc. Therefore, since we fix v, there are up to n − 1 nodes to be included or not in Vc

leading to a total of O(2n−1) possibilities for Vc. Taking everything into account, M has a total of
O(2k·m+n−1n) states.

Let Hs,Γ stand for the hitting time of Γ when starting from a state s ∈ M . Assuming exact real
arithmetic, we can compute all such hitting times by solving the following system (Theorem 1.3.5
[18]):

®

Hs,Γ = 0 ,∀s ∈ Γ

Hs,Γ = 1 +
∑

s′ 6∈Γ Pr[s → s′] ·Hs′,Γ ,∀s 6∈ Γ

Let C stand for the cover time of an RWA on G evolving under R. By definition, the cover time
is the expected time till all nodes are covered, regardless of the position of the walker at that time.
Consider the set S = {(H, v, {v}) ∈ M : v ∈ V (G)} of start positions for the agent as depicted
in M . Then, it follows C = maxs∈S Hs,Γ, where we take the worst-case hitting time to a state
in Γ over any starting position of the agent. In terms of time complexity, computing C requires
computing all values Hs,Γ, for every s ∈ S. To do so, one must solve the above linear system of
size O(2k·m+n−1n), which can be done in time exponential to input parameters n,m and k.

It’s noteworthy to remark that this approach is general in the sense that there are no assumptions
on the graph evolution rule-set R besides it being stochastic, i.e., describing the probability of
transition from each graph instance to another given some history of length k. In this regard,
Theorem 18 captures both the case of Markovian Evolving Graphs [3] and the case of Edge-Uniform
Graphs considered in this paper. We now proceed and show how the aforementioned general
approach applies to the zero-step and one-step history cases of Edge-Uniform Graphs. To do so,
we calculate the corresponding graph-dynamics probabilities. The random walk probabilities are
given in Equation 1.

RWA on Edge-Uniform Graphs (Zero-Step History). Based on the general model, we
rewrite the transition probabilities for the special case when RWA takes place on an edge-uniform
graph without taking into account any memory, i.e., the same case as in Section 4. Notice that,
since past instances are not considered in this case, the history-tuple reduces to a single graph
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instance H. We rewrite the transition probabilities, for the case |Vc|< n, as follows:

Pr[(H, v, Vc) → (H, v′, V ′
c )] =















Pr[H ′|H] · Pr[v
H′

−→ v′] , if v′ ∈ V ′
c and V ′

c = Vc

Pr[H ′|H] · Pr[v
H′

−→ v′] , if v′ 6= v, v′ 6∈ V ′
c and V ′

c = Vc ∪ {v′}

0 , otherwise

Let α stand for the number of edges alive in H ′. Since there is no dependence on history and
each edge appears independently with probability p, we get Pr[H ′|H] = Pr[H ′] = pα · (1− p)m−α.

RWA on Edge-Uniform Graphs (One-Step History). We hereby rewrite the transition
probabilities for a Markov chain capturing an RWA taking place on an edge-uniform graph where,
at each time step, the current graph instance is taken into account to generate the next one. This
case is related to the results in Section 5. Due to the history inclusion, the transition probabilities
become more involved than those seen for the zero-history case. Again, we consider the non-
absorbing states, where |Vc|< n.

Pr[((H1,H2), v, Vc) → ((H ′
1,H

′
2), v

′, V ′
c )] =



















Pr[(H1,H2) → (H ′
1,H

′
2)] · Pr[v

H′

1−−→ v′] , if v′ ∈ V ′
c and V ′

c = Vc

Pr[(H1,H2) → (H ′
1,H

′
2)] · Pr[v

H′

1−−→ v′] , if v′ 6∈ V ′
c and V ′

c = Vc ∪ {v′}

0 , otherwise

If H ′
2 6= H1, i.e., if it does not hold that, for each e ∈ G, e ∈ H ′

2 if and only if e ∈ H1, then
Pr[(H1,H2) → (H ′

1,H
′
2)] = 0, otherwise the history is not properly maintained. On the other

hand, if H ′
2 = H1, then Pr[(H1,H2) → (H ′

1,H
′
2)] = Pr[(H1,H2) → (H ′

1,H1)] = Pr[H ′
1|H1]. To

derive an expression for the latter, we need to consider all edge (mis)matches between H ′
1 and H1,

and properly apply the Birth-Death rule (Table 1). Below, we denote by D(H) = E(G) \ E(H)
the set of possible edges of G, which are dead at instance H. Let c00 = |D(H1) ∩ D(H ′

1)|, c01 =
|D(H1) ∩ E(H ′

1)|, c10 = |E(H1) ∩D(H ′
1)| and c11 = |E(H1) ∩ E(H ′

1)|. Each of the c00 edges was
dead in H1 and remained dead in H ′

1, with probability 1 − p. Similarly, each of the c01 edges was
dead in H1 and became alive in H ′

1, with probability p. Also, each of the c10 edges was alive in H1

and died in H ′
1, with probability q. Finally, each of the c11 edges was alive in H1 and remained

alive in H ′
1, with probability 1 − q. Overall, due to the edge-independence of the model, we get

Pr[H ′
1|H1] = (1− p)c00 · pc01 · qc10 · (1− q)c11 .

7 Experimental Results

In this section, we discuss some experimental results to complement our previously-established
theoretical bounds. We simulate an RWA taking place in graphs evolving under the Birth-Death
model (Table 1). We provide an experimental estimation of the value of the cover time for such
a walk. To do so, for each specific graph and values p, q considered, we repeat the experiment a
large number of times, e.g., 1000 times. In the first experiment, we start from a graph instance
with no alive edges. At each step, after the graph evolves according to Birth-Death, the walker
picks uniformly at random an incident alive edge to traverse. The process continues till all nodes
are visited at least once. Each next experiment commences with the last graph instance of the
previous experiment as its first instance.

We construct underlying graphs in the following fashion: given a natural number n, we ini-
tially construct a path of n nodes, namely v1, v2, . . . , vn. Afterward, for each two distinct nodes vi
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Table 2: Experimental Results for Complete Graphs (randomThreshold = 1.0)

Size p q Experimental Cover Time Lower Bound Upper Bound

10 1.0 0.0 26 26 26

10 0.3 0.5 27 27 28

10 0.1 0.5 38 26 42

10 0.05 0.5 61 27 73

10 0.01 0.5 278 27 312

10 0.001 0.5 2802 27 3012

10 0.001 0.99 2861 312 3012

100 1.0 0.0 541 541 541

100 0.1 0.99 547 526 834

100 0.1 0.999 554 522 5535

100 0.01 0.999 830 826 5524

100 0.005 0.999 1311 1326 5503

200 1.0 0.0 1184 1184 1184

200 0.1 0.5 1250 1202 1202

200 0.02 0.9 1277 1180 1201

200 0.005 0.9 1832 1223 1937

200 0.001 0.995 6436 1873 6547

and vj , we add an edge {vi, vj} with probability equal to a randomThreshold parameter. For
instance, randomThreshold = 0 means the graph remains a path. On the other hand, for
randomThreshold = 1, the graph becomes a clique.

In Tables 2 and 3, we display the average cover time, rounding it to the nearest natural number,
computed in some indicative experiments for randomThreshold equal to 1.0 and 0.5, respectively.
Consequently, we provide estimates for a lower and an upper bound on the temporal cover time. In
this respect, we experimentally compute a value for the cover time of a simple random walk in the
underlying graph, i.e., the static cover time. Then, we plug in this value in place of CG to apply
the bounds given in Theorem 16 based on ξmin = min{p, 1 − q} and ξmax = max{p, 1 − q}. The
case p = 1.0 and q = 0.0 corresponds to the static cover time of the underlying graph, since every
graph instance will be the same as the underlying graph after 1-2 steps. Notice that, since our
bounds correspond to expected values and are based on an experimental estimation of the static
cover time, it may be the case sometimes that the experimental temporal cover time is slightly
outside one of the two bounds.

The results confirm Corollary 1 in the sense that, for large values of p, 1 − q, the cover times
computed are either equal or only slightly differ from the static cover time estimation. On the other
hand, only when, e.g., p approaches the value 1/δ, do we see the experimental cover time starting
to significantly diverge from the static one. Furthermore, the cover times computed appear to be
roughly within their corresponding lower and upper bounds. In terms of accuracy, the experimental
cover time seems to lie nearer to the bound affected by the value of p, rather than the one affected
by 1− q.
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Table 3: Experimental Results for Randomly-Produced Graphs (randomThreshold = 0.5)

Size δ ∆ p q Experimental Cover Time Lower Bound Upper Bound

10 4 8 1.0 0.0 31 31 31

10 3 7 0.5 0.5 38 38 43

10 5 8 0.2 0.5 37 30 45

10 4 8 0.1 0.8 64 42 101

10 2 6 0.05 0.9 162 75 359

10 4 6 0.01 0.9 614 62 736

100 36 62 1.0 0.0 532 532 532

100 42 64 0.09 0.9 554 545 558

100 40 61 0.02 0.95 823 575 992

100 40 63 0.01 0.95 1348 584 1695

200 79 116 1.0 0.0 1225 1225 1225

200 84 123 0.1 0.8 1285 1216 1216

200 76 123 0.01 0.9 1875 1215 2275

200 79 120 0.005 0.99 3069 1747 3743

200 78 116 0.001 0.995 12472 2756 16185

8 Conclusions

We defined the general Edge-Uniform Evolution model for a stochastically-evolving graph, where
a single stochastic rule is applied, but to each edge independently, and provided lower and upper
bounds for the cover time of two random walks taking place on such a graph.

Our results can directly be extended for any history length considered by the stochastic rule;
even non-Markovian stochastic rules could be approximated using a long-enough window of Marko-
vian history. Of course, if we wish to take into account the last k states of a possible edge, when
making a decision about its next state, then we need to consider 2k possible states, thus making
some tasks computationally intractable for large k. On the other hand, the min-max guarantee is
easier to deal with for any value of k, since we only care about the minimum and the maximum
”being alive” probabilities.

Our model seems to be on the opposite end of the Markovian evolving graph model introduced
in [3]. There, the evolution of possible edges directly depends on the family of graphs selected as
possible instances. Thus, a new research direction we suggest is to devise another model of partial
edge-dependency. That is, we would wish the stochastic rule for one edge to depend on a proper
subset of the edge-set; neither on no other edge nor on every other edge. Such a model may prove
interesting in terms of community-partitioned networks or other block-defined graphs.
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