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Abstract  

Kernel adaptive filter (KAF) has been widely utilized for time series prediction due to its online 
adaptation scheme, universal approximation capability and convexity. Nevertheless, KAF’s ability to 
handle temporal tasks is limited, because it is essentially a feed-forward neural network that lacks 
dynamic characteristics. Traditionally, a sliding widow that contains consecutive data points is 
constructed to deal with the temporal dependency between data points at neighboring time steps, but 
the restricted widow length may be incapable of capturing temporal patterns on a larger time scale. To 
manage this issue, a novel sequential learning approach called echo state KRLS (ES-KRLS) algorithm 
is proposed by incorporating a dynamic reservoir into kernel recursive least squares (KRLS) algorithm. 
The reservoir, consisting of a large number of sparsely interconnected hidden units, is treated as a 
temporal function that transforms the history of the time series into a high-dimensional reservoir state 
space. Subsequently, the spatial relationship between the reservoir state and the target output is 
effectively approximated by KRLS algorithm. With the utilization of the fixed reservoir, our novel 
method not only maintains the simplicity of the learning process but also leads to a significant 
improvement in the capability of modeling dynamic systems. Numerical results on benchmark tasks 
demonstrate the excellent performance of the novel method with respect to long-term prediction. 
Finally, an online prognostic method that combines ES-KRLS and a Bayesian technique is developed 
for tracking the health status of a degraded system and predicting remaining useful life (RUL). This 
prognostic method is applied to a turbofan engine degradation dataset to demonstrate its effectiveness.  

Keywords: kernel adaptive filter, reservoir computing, long-term prediction, remaining useful 
life prediction, prognostics  

1. Introduction 

Kernel method provides a unified framework for pattern analysis and nonlinear signal processing, 
and as such they appear in numerous successful applications, including the support vector machine 
[1], kernel principal component analysis [2], and kernel regularization network [3]. The main idea of 
the kernel method is that a nonlinear mapping associated with a Mercer kernel is utilized to transform 
the data from the input space to a high-dimensional feature space with rich representations. However, 
the above-mentioned methods are formulated in a batch form. If the training samples arrive 
sequentially, these offline algorithms have to retrain the approximation model from scratch once a new 
training data is available. This may impose restriction on the applications of these algorithms to online 
scenarios, especially when real-time performance is emphasized. Therefore, a sequential learning 
method that updates the existing model incrementally would be a better choice for handling the data 
that arrives in a flow mode.  

Online kernel-based learning (OKL) [4, 5] provides an alternative to train the model recursively. 
As a subfield of OKL, kernel adaptive filters (KAFs) have gained widespread use because of their 
simple structure, universal approximation capability, and convexity. KAFs are the generalization of 
the well-established linear adaptive filtering algorithms, approximating a nonlinear function by 
reformulating the linear structure in a reproducing kernel Hilbert space (RKHS). The KAF family 
includes the kernel least mean square (KLMS) [6], kernel affine projection algorithm [7], KRLS [8], 
and extended kernel recursive least squares [9] algorithms, to mention a few.    

Although KAF has been widely used for time series prediction, two drawbacks that remain to be 
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solved. The first is the lack of sparseness. At each iteration, KAFs allocate a kernel unit for the new 
data point. Consequently, the network size grows linearly with the number of training samples, leading 
to a continuous increase in computational burden and memory requirements. To control the growth of 
the network, many sparsification techniques have been adopted. The basic idea behind these methods 
is to select only the informative training samples to train the network, according to some criteria, such 
as the approximation linear dependency (ALD) criterion [8], surprise criterion [10], novelty criterion 
[11], or minimum description length criterion [12]. 

The second drawback is that KAF is incapable of capturing temporal characteristics of nonlinear 
dynamic systems [13], because KAF is essentially a single-layer feed-forward neural network (FNN). 
An FNN aims to learn a static mapping where the outputs of the network depend solely on the current 
inputs, thereby neglecting the dependency of data points at neighboring time steps. As a remedy, often 
a fixed-size sliding widow storing consecutive values is constructed to transform the temporal 
correlation into the spatial correlation. Nevertheless, prior knowledge is required in order to select the 
appropriate time embedding dimension such that the latent dynamic characteristics of the systems 
unfold [14]. Apart from FNN, recurrent neural network (RNN) is another artificial neural network 
architecture where hidden units are interconnected. The existence of the recurrence connections 
between units makes RNN a dynamic system. The dynamic behaviors of RNN rely on the history of 
the inputs, and thereby achieve the necessary memory capability. RNN has been proven to be able to 
model any dynamic system with arbitrary precision [15]. The connection weights of RNN are mainly 
trained by different gradient-based algorithms, such as back propagation through time [16], extended 
Kalman filtering [17] and real-time recurrent learning [18]. Unfortunately, these algorithms often 
suffer from slow convergence and create a high computational burden, because the gradients tend to 
vanish or explode rapidly through propagation.  

Aimed at avoiding the difficulty of adapting the connection weights of RNN, echo state network 
(ESN) and liquid state machine provide a new paradigm for RNN, called reservoir computing (RC) 
[19-21]. The RC framework contains a dynamic reservoir, where a large number of hidden units are 
sparsely connected, as well as a linear readout layer. The reservoir is randomly generated and stays 
fixed during the learning process. The reservoir can be considered as a spatiotemporal mapping that 
transforms the history of the inputs into a high-dimensional reservoir state space where the readout 
layer is learned by simple linear regression methods. As a result of its simple and effective learning 
procedure, ESN has become an appealing tool for time series prediction [22-26]. 

One fascinating property of ESN is that a temporal task is converted into a non-temporal task of 
learning a static mapping, because the dynamic reservoir has a fixed recurrent topology and thus only 
the output weights need to be solved. This facilitates the considerable flexibility of designing the 
training criterion. The direct method of training the readout layer is calculating the Moore-Penrose 
pseudo-inverse, which may suffer from ill-posed and over-fitting problems. Hence, regularized 
regression methods such as ridge regression and the lasso method are utilized to obtain the output 
weights of ESNs [27]. To alleviate the detrimental effect of noises and outliers on time series prediction, 
Gaussian process regression is combined with ESN to provide a robust prediction by deriving a 
posterior distribution of the network output [28, 29]. In [22], the readout layer is treated as a linear 
support vector machine that is trained based on the epsilon-sensitive or Huber cost functions, such that 
the robustness to outliers is obtained. In [30], the learning procedure is formulated in a Bayesian 
framework, whereas the commonly used Gaussian distribution is substituted by a Laplace distribution, 
which is more insensitive to outliers. In order to make ESN suitable for online applications, the readout 
layer is traditionally constructed as linear adaptive filters, including the recursive least squares (RLS) 
and least mean square (LMS) [31] algorithms. The online adjustments to the output weight can also 
be conducted by various variants of the Kalman filter [32]. Furthermore, the readout layer is extended 
to a Volterra filter by using the nonlinear structure [33], but the computational complexity expands 
exponentially with the number of hidden units in the reservoir.      

In this paper, a novel ES-KRLS algorithm that incorporates a dynamic reservoir into the KRLS 
algorithm is proposed. With the aid of the reservoir, the time series up to the current time step is 
mapped into a high-dimensional reservoir state space, rather than selected data points. Subsequently, 
another nonlinear mapping associated with a particular Mercer kernel is performed to transform the 
obtained reservoir state into the potentially infinite-dimensional RKHS, where the readout layer is 
constructed to rebuild the desired outputs. As a result of this two-step transformation, both the spatial 
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and temporal dependencies between different data points are fully exploited for model approximation. 
As a matter of fact, the ES-KRLS algorithm is considered as an integration of ESN and KAF, created 
by reformulating the readout layer in RKHS. To avoid performing direct calculation in RKHS, the 
readout layer is expressed in the form of inner products, leading to a radial basis function network 
with more powerful generalization capability. Moreover, the novel method maintains the simplicity of 
the learning procedure and computational efficiency. In view of its excellent performance of dealing 
with temporal problems, ES-KRLS algorithm is implemented for prognostics, which aims to predict 
the fault growth trend and is considered as a long-term prediction task. 

The reminder of this paper is organized as follows. Section 2 introduces online ESN. Section 3 
provides a review of KRLS. Section 4 elaborates on the derivation of ES-KRLS algorithm. Section 5 
presents the experimental results on chaotic time series prediction to demonstrate the feasibility of ES-
KRLS algorithm. A novel prognostic method based on ES-KRLS is developed in Section 6. Section 7 
provides concluding remarks about this research work. 

2. Online echo state network  

2.1 Echo state network 

ESN consists of two basic modules, a dynamic reservoir and a liner readout layer. The reservoir 
is essentially a randomly-initialized discrete-time RNN, and the internal reservoir state at each time 
step is updated by  

 
 1( )i i in ih ν−= +x Wx W u   (1) 

where 1N
i

×∈x  is the internal state, N  is the hidden units in the reservoir, 1N
i

×∈ uu  is the input 
vector fed to the network, ( )h ⋅  is the sigmoid activation function that can be applied element-wise, 

N N×∈W  are the weights of the connections between hidden units in the reservoir, N N
in

×∈ uW  are 
the weights of the connections between the hidden units and the input vector, ν  denotes the input 
scaling parameter that is introduced to adjust the operating region of the reservoir for different tasks. 
A small value for ν  indicates that the reservoir operates around the linear region of the sigmoid 
function and thereby makes the reservoir suitable for a linear regression task. Otherwise, if ν  is large, 
the reservoir exhibits strong nonlinearity and is highly qualified to solve a nonlinear problem. 
 The readout layer is constructed as a linear combination of the internal state and the input vector 
to mimic the target output with the following form 

 state input
i out i out i out id = + =W x W u W ψ   (2) 

where id  is the network output, 1state N
out

×∈W  , 1 Ninput
out

×∈ uW  , [ ]state input
out out out=W W W  are the output 

weights, and [ ; ]i i i=ψ x u  is the augmented input that is the concatenation of the input vector and the 
internal state.  

When ESN is employed to model a nonlinear dynamic system, the reservoir and the readout layer 
serve as distinct roles. Specifically, the reservoir with a sufficient number of hidden units is passively 
driven by the input sequence. Although the initial reservoir state ix  is randomly generated, the input 
signal will gradually dominate the evolution of the reservoir state. This property is called echo state 
property that holds if the spectral radius of W  is less than 1 [34]. Therefore, the reservoir is 
considered as a temporal function that transform the history of the time series into a high-dimensional 
reservoir state space. By contrast, the readout layer is fundamentally a non-temporal function that is 
trained by a simple linear regression method.  
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Fig. 1. The basic architecture of ESN 

2.2 Online training procedure 

When the training samples arrive sequentially, the existing approximation model needs to be 
updated recursively. Given that the reservoir topology is fixed during the learning process, only the 
output weights outW  require online adaption, which indicates that the readout layer acts as a linear 
adaptive filter. The LMS algorithm incrementally adjusts the output weights outW  by minimizing the 
cost function iJ  as follows 

 21
2i iJ e=   (3) 

where ie  is the estimation error. Accordingly, the optimal ,out iW  at the i-th iteration is obtained by 
computing 

 , 1

, , 1

i i out i i

out i out i i i

e d
eη

−

−

= −

= +

W ψ
W W ψ

  (4)                  

where η  is the learning rate. However, the convergence performance of LMS algorithm deteriorates 
quickly due to the eigenvalue spread of the correlation matrix of the reservoir state [20]. In order to 
alleviate the downside effects of this eigenvalue spread, RLS algorithm provides another choice to 
train the output weights. Basically, RLS algorithm aims to minimize the sum of squared estimation 
errors up to the current time, and the corresponding cost function is expressed as       

 2

1
[ ]

i

i j out j
j

J d
=

= −∑ W ψ   (5) 

Hence, the RLS algorithm operates according to the following procedures:  

 

1

1

, 1

, , 1

1

1
/

T
i i i i

i i i i

i i out i i

out i out i i i

T
i i i i i

r
r

e d
e

r

−

−

−

−

−

= +
=
= −

= +

= −

ψ P ψ
k P ψ

W ψ
W W k

P P k k

  (6) 

Compared with LMS algorithm, RLS algorithm achieves a better convergence performance at 
cost of more expensive computation. Despite its linear structure, the readout layer is able to mimic the 
target system with the desired accuracy in many cases. This can be ascribed to the fact that a nonlinear 
mapping is performed by the reservoir to convert the data into a high-dimensional space. Nevertheless, 
there is a tradeoff between the nonlinearity of the mapping and the memory capability with respect to 
the reservoir [35]. Specifically, the more nonlinearity the reservoir exhibits, the less memory capability 
the reservoir achieves. To overcome this drawback, we reconstruct the linear output layer in RKHS. 
In this approach, the reservoir is tuned to perform a temporal mapping, while a kernel-induced 
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mapping focus on the nonlinear and static transformation of the reservoir state. 

3. A review of Kernel recursive least squares algorithm  

Consider the task of learning a mapping : f →  based on a sequence of input-output pairs

1{ , }i
j j jd =u , where  d⊆  is the input space, j ∈u  is the input vector at the j-th time step, and 
jd ∈  is the corresponding target output.   
To begin with, a nonlinear mapping ( )ϕ ⋅  associated with a Mercer kernel is utilized to covert 

the input vector u  into a potentially infinite-dimensional feature space  , i.e., RKHS. A Mercer 
kernel is a continuous, symmetric, and positive definite function :  κ × → . Mercer’s theorem 
ensures that any kernel can be expressed as  

 1 2 1 2
1

( , ) ( ) ( )n n n
n

κ ς φ φ
∞

=

= ∑u u u u   (7) 

where nς  and nφ  are the eigenvalues and the eigenfunctions, respectively. Accordingly, the kernel-
induced mapping : ϕ →  is established as  

 1 1 2 2( ) [ ( ), ( ), ] Tϕ ς φ ς φ=u u u   (8) 
With the utilization of the kernel-induced mapping ( )ϕ ⋅ , a linear model in the feature space can 

be constructed as  
 ( ) ( )T

if ϕ⋅ = ⋅ω   (9) 
where iω  denotes the weight vector in RKHS. Then, the cost function is formulated as  

 
2 2

1
min ( )

i

i
T

j i j i
j

J d ϕ λ
=

= − +∑ω
ω u ω    (10) 

where λ  is the regularization parameter that handles the trade-off between the training error and the 
model complexity. By setting the gradient of J  with respect to iω  to zero, the optimal solution of 
Eq.(10) is obtained as  
 

1T
i i i i i iλ

−
 = + ω Φ I Φ Φ d   (11) 

where iI  is the identity matrix, 1[ , , ]

T
i id d=d , and 1[ ( ), , ( )]i iϕ ϕ=Φ u u . T

i iΦ Φ  in Eq.(11) can 
be calculated by the kernel trick, yielding  

 

1 1 1

2 1 2

1

( , ) ( , )
( , ) ( , )

( , ) ( , )





  



i

iT
i i

i i i

κ κ
κ κ

κ κ

 
 
 =
 
 
 

u u u u
u u u u

Φ Φ

u u u u

  (12) 

 Furthermore, the weight vector iω  can be also expressed in the form of a linear combination of 
the transformed augmented inputs as 

 i i i=ω Φ α   (13) 
where 1[ ]T

i i i iλ −= +α I Φ Φ d . Let 1[ ]T
i i iλ −= +Q I Φ Φ  and we can rewrite iQ  in a recursive form as  

 
1
11

( , )
i i

i T
i i iλ κ

−
−−  

=  
+  

Q h
Q

h u u
  (14) 

where 1 1 1( ) [ ( , ) , , ( , )]

T T
i i i i i iϕ κ κ− −= =h Φ u u u u u . Given that 1i−Q  has already been calculated in the 

previous iteration, the matrix inversion lemma is utilized to update iQ  by  

 1 1 1
10

i i T
i i iT

r− −   
 = + −     −  

Q 0 z
Q z

0
  (15) 

where  
 1i i i−=z Q h   (16) 
 ( , ) T

i i i i ir λ κ= + −u u z h   (17) 
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 Therefore, the expansion coefficient of the weight vector is gained by 
 i i i=α Q d   (18) 
Finally, the approximated function ( )if ⋅  at the i-th iteration can be expressed as  

 
1

( ) ( ) ( ) ( , )
i

T T T j
i i i i i j

j
f ϕ ϕ α κ

=

= = =∑u ω u α Φ u u u   (19) 

where 1 2[ , , , ]

i T
i i i iα α α=α . As is depicted in Fig. 2, KAF yields a single-layer feed-forward neural 

network. Despite its universal approximation capability, KAF are essentially a static function without 
any dynamic characteristics.  
 

 
Fig. 2. The basic architecture of KAF. 

4. Echo state kernel recursive least squares algorithm 

4.1 Model formulation  

The computational separation between the reservoir and the readout layer makes it possible to 
incorporate a reservoir into the KRLS algorithm.  
 The readout layer is reformulated as a linear model in RKHS with the following form  

 ( , ) ( ) ( )T
i i i i i i i id g g ϕ= = =x u ψ ω ψ   (20) 

At each iteration, the readout layer is updated recursively by KRLS algorithm. From Eq.(19), we 
can notice that the readout layer is essentially a growing radial basis function network. As a result, the 
computational and memory requirements will increase linearly with the number of training samples. 
In this work, a novel online sparsification technique is employed to make the online temporal learning 
procedure more efficient. Specifically, a subset of training samples are selected to update the structure 
of the network, i.e., add a new kernel unit into the existing network, and the rest of samples are utilized 
to modify the coefficients of the network. By doing so, the growth of the network size can be curbed 
effectively without sacrificing the approximation performance.        

  For sake of clarity, we define 1{ }m
k k== c , where kc  is the center of the k-th kernel unit and m  

is the number of kernel units.   is termed the dictionary and we gradually adds the augmented inputs 
into the dictionary according to a certain rule.    

Based on the idea mentioned above, the cost function can be expressed as  

 
2 2

1
min ( )

i

i
T

j i j i
j

J d ϕ λ
=

= − +∑ω
ω ψ ω   (21) 

where i i i=ω Φ α  and 1 2[ ( ), ( ), , ( )]i mϕ ϕ ϕ=Φ c c c . Eq.(21) can be further written as  

 
2

,
1 1

min ( , )
i

i m
k T

j i k j i B i i
j k

J d α κ λ
= =

= − +∑ ∑α
c ψ α k α   (22) 

where 

 

1 1 1

2 1 2
,

1

( , ) ( , )
( , ) ( , )

( , ) ( , )





  



m

m
B i

m m m

κ κ
κ κ

κ κ

 
 
 =
 
 
 

c c c c
c c c c

k

c c c c
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Let 0
i

J∂
=

∂α
, and the optimal solution of Eq.(22) is obtained as   

 ( ) 1

, , , ,
T

i B i P i P i P i iλ
−

= +k k k k dα    (23) 
where  

 

1 1 1

2 1 2
,

1

( , ) ( , )
( , ) ( , )

( , ) ( , )





  



i

i
P i

m m i

κ κ
κ κ

κ κ

 
 
 =
 
 
 

c ψ c ψ
c ψ c ψ

k

c ψ c ψ

  

Let ( ) 1

, , ,
T

i B i P i P iλ
−

= +Q k k k , and we rewrite iα  as  
 ,i i P i i= Q k dα   (24) 
when a new training data { , }i idψ  arrives at the i-th iteration, it is used to update the coefficients 

of the network at the first step. The inverse matrix iQ  is updated by 

 
1

, 1 1 1
, 1 , 1 1( )

T
P i T

i B i P i iB i iB iBT
iB

λ

−

− − −
− − −

  
= + = +    
    

k
Q k k k Q k k

k
  (25) 

where [ ]1 2( , ), ( , ), , ( , )

T
iB i i m iκ κ κ=k c ψ c ψ c ψ . Eq.(25) is further expressed as 

 1 1
1

11

T
i iB iB i

i i T
iB i iB

− −
−

−

= −
+

Q k k QQ Q
k Q k

  (26) 

Hence, the coefficient vector is recalculated as  
 ,i i P i i= Q k dα   (27) 

where , , 1,P i P i iB−=   k k k , and 1i
i

id
− 

=  
 

d
d . 

Following by the modification of the coefficients of the network, the ALD criterion is adopted to 
determine whether a new kernel unit is allocated to this training sample, which is expressed as  

 1
,( , ) T

i i i iB B i iBκ −Ω = −ψ ψ k k k   (28) 
If iΩ  is larger than a preset constant threshold ε , the augmented input iψ  needs to be added 

into the dictionary  . The inverse matrix iQ  is augmented as 

 
1

, , ,, 1

,( , )

T
P i P i P i iPB i iB

i T T TT
iP P i iP iPiB i i

λ λ

λ λκ

−

−
   

=  +   
        

k k k kk k
Q

k k k kk ψ ψ
  (29) 

where [ ]1 2( , ), ( , ), , ( , )

T
iP i i i iκ κ κ=k ψ ψ ψ ψ ψ ψ . 

Since ( ) 1

, 1 , ,
T

i B i P i P iλ
−

−= +Q k k k  is available, iQ  is updated by   

 1 1
10

i i T
i i iT

r−   
 = + −     −  

Q 0 z
Q z

0
  (30) 

where  

 ,

,

( )

( , ) ( )

T
i i iB P i iP

T T
i i i iP iP i iB P i iPr

λ

λκ λ

= +

= + − +

z Q k k k

ψ ψ k k z k k k
  (31) 

Hence, the coefficient vector iα  is expressed as 

 1
, ,0 1

i i T
i i P i i i i P i i iP ir−   

 = = + −     −   

α z
α Q k d z k d k d   (32) 

where ,
,

P i
P i

iP

 
=  
 

k
k

k
. Accordingly, the dictionary   is updated by { }i= ∪ ψ    
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If iΩ  is less than ε , the dictionary   maintains unchanged and we let  

 i i

i i

=
=

Q Q
α α

  (33) 

To sum up, the proposed ES-KRLS algorithm is summarized in Algorithm 1.  
Since the reservoir stays fixed during the training phase, the temporal task of modelling dynamic 

systems boils down to a non-temporal task of solving a least-square convex problem. As a result of 
the convexity, the proposed method can avoid suffering from local minima and ensures the global 
optimal solution. Conversely, learning with a traditional RNN can be non-convex and the convergence 
behavior cannot be guaranteed. When the gradient-based algorithms are applied to train an RNN, the 
quality of the gradient information deteriorates quickly as time evolves. Hence, the effective 
propagation depth is limited and the long-term memory capability appears to be unachievable. 
Moreover, traditional RNNs belong to batch algorithms and are computationally expensive. This 
means that a traditional RNN is inherently not suitable for sequential learning. In contrast, with the 
ES-KRLS algorithm, the readout layer can be modified recursively once a new sample comes in.  

4.2 Relations to traditional KAFs 

First, when the spectral radius of W  is set to zero, the connections between each unit that make 
the reservoir a dynamic system no longer exist. Therefore, the model will degenerate into a feed-
forward network. Second, both the reservoir and a Mercer kernel are able to transform the data from 
the input space into a high-dimensional space with more abundant representations. In ES-KRLS, the 
fusion of a dynamic reservoir and a Mercer kernel can be interpreted as a multistage kernel, whereby 
both the spatial and temporal information about the original time series is effectively captured.  

However, the major difference between traditional KAFs and ES-KRLS lies in the way they each 
achieve the memory capability for temporal tasks. When applied to modelling a dynamic system, a 
traditional KAF is designed as a time-delay neural network (TDNN). Specifically, a sliding window 
that consists of a finite number of historical inputs is constructed to convert the temporal correlation 
into a static input pattern. In the proposed ES-KRLS, the reservoir is essentially a temporal function 
that maps the time series (up to current time step) into the internal state, without the utilization of the 
time-embedded inputs.  

 

 
Fig. 3. The basic architecture of ES-KRLS algorithm. 

 
Algorithm 1: Echo State Kernel Recursive Least Squares algorithm 

Input: 

Generate a random reservoir ( , , )in νW W ;  

Computation: 

For time 1,2,i =  do 
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A new data point { , }i idu  arrives;  

Update the reservoir state based on 1 1( )i i in ih ν+ += +x Wx W u ; 

If 1i =  

  Let 1{ }= ∪ ψ ;    

Compute 1
1 1 1( ( , ))λ κ −= +Q ψ ψ ; 

Compute 1 1 1d=α Q ;  

else 

  Update iQ  and iα  based on Eq.(26) and Eq.(27), respectively;   

  Compute iΩ  based on Eq.(28); 

  If i εΩ >  

Update iQ  and iα  based on Eq.(30) and Eq.(32), respectively; 

Let { }i= ∪ ψ ; 

else 

Let i i=Q Q  and i i=α α ; 

    End if 

End if 

End for 

5. Performance evaluation  

 In order to verify the feasibility of the proposed ES-KRLS algorithm, we will carry out a series 
of experiments on two classical benchmark tasks. To illustrate the advantages of our methods, we also 
evaluate RLS-ESN [31], support vector echo state machine (SVESM) [22], KRLS, KLMS, extreme 
learning machine (ELM) [36]. For sake of comparison, all experiments were carried out using Matlab 
2013b on a personal desktop with Intel® Core™ i5-3230M (2.6GHz) processor, 8.00GB RAM in 
Windows 7 operation system environment. The entries of the internal weight matrix W  and the input 
weight matrix inW  are sampled from a uniform distribution over [ 0.5,0.5]− . The reservoir 
parameters, including the spectral radius, the number of the hidden units, and the input scaling 
parameter, are tuned such that the performance of RLS-ESN is maximized. In order to demonstrate 
the stability of the generalization performance of the ESN-based methods, the experimental results are 
the averages of 50 different random reservoir initializations. For the ES-KRLS, KRLS, and KLMS 
algorithms, the Gaussian kernel expressed by 2 2

1 2 1 2( , ) exp{ / 2 }κ σ= − −u u u u , where σ  is the 
kernel width is adopted. For ES-KRLS and KRLS, the kernel width and the regularization factor are 
chosen from 3 5 9 12{2 , ,2 } {10 , ,10 }− −×   using the tenfold cross validation strategy.    

5.1 Mackey-Glass time series 

The Mackey-Glass time series has been widely utilized in the literature as a standard benchmark 
task for nonlinear dynamic system modeling, which is generated by a nonlinear time delay differential 
equation with the form  

 ( )( )
1 ( )c

dx ax tbx t
dt x t

δ
δ

−
= +

+ −
  (34) 

where ( )x t  denotes the data point at time step t. The system exhibits the chaotic characteristic when 
the delay time 16.8δ > . The parameter values in Eq.(34) are typically selected as 0.2a = , 0.1b = − , 

10c = , 17δ =  and (0) 1.2x = . A segment of 1000 samples are employed to train the considered 
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models and another segment of 500 samples are employed to evaluate the generalization ability of the 
trained models. With regard to the ESN-based algorithms including RLS-ESN, SVESM and ES-KRLS, 
a network warm-up time of 100 steps is utilized to wash out the initial transient caused by the randomly 
initialized reservoir state.  
 The one-step prediction task is described as using the historical data points 

[ ]( ), , ( 1)i x i x i l= − −u , where l  denotes the embedding dimension, to predict the next point 
( 1)x i + . According to Taken’s theorem [14], the input vector iu  is capable of revealing the dynamic 

characteristics of a chaotic system without ambiguity, if the embedding dimension l  is sufficiently 
large. As for ELM, KRLS and KLMS, l  is set to 10 so as to obtain a sufficient memory capacity. 
Due to the utilization of the reservoir, the ESN-based methods have the capability to remember the 
history of the time series and hence we just set l  to 1. 

In order to make a comprehensive comparison, we are also interested in the multi-step prediction 
that relies on the iteration of the one-step prediction. The estimated outputs are fed back to the trained 
model as the inputs to replace the missing values. The iteration process will persist until the predicted 
value of ( )x i h+  is obtained, where h  represents the prediction horizon. The prediction horizon for 
Mackey-Glass time series is commonly chosen as 84 and 120 [22, 31]. In practical scenarios, the time 
series is possibly corrupted by noises and outliers. Hence, we will also test the performance of different 
models in the presence of noises and outliers. 

The root mean square error (RMSE) are employed to measure the accuracy performance of the 
h-step prediction using different models, which is given by  

 [ ]2

1

1 ˆRMSE ( ) ( )L
h j

x j h x j h
L =

= + − +∑   (35) 

where L  is the length of the testing sequence and ˆ( )x j h+  represents the h-step prediction value of 
( )x j h+ .  

In the first simulation, the time series used for training and testing are noiseless. The obtained 
results are listed in Table 1. The accuracy performance of the trained models deteriorate considerably 
with the increase of prediction horizon, because the prediction error is accumulated during the iteration 
process. The considered models except KLMS share a similar performance in the term of one-step 
prediction. However, ESN-based approaches exhibit the superiority over the other methods in long-
term prediction. It is noteworthy that the hidden units of ELM are randomly generated and only the 
output weights are trained to optimally fit the target output, which is similar to ESN. Nevertheless, the 
absence of the connections between different units turns ELM into a static reservoir without dynamic 
properties. This is the reason why ELM is unable to obtain the same prediction accuracy as ESN-based 
algorithms. The proposed ES-KRLS achieves a much lower RMSE84 and RMSE120 values than RLS-
ESN and SVESM, because the kernelized version of the output layer improves the nonlinear dynamic 
system modelling ability significantly. In order to demonstrate the convergence behaviors of online 
methods including RLS-ESN, ES-KRLS, KRLS and KLMS, we calculate RMSE in the term of one-
step prediction on the testing set using the models derived from the training set at each iteration and 
the corresponding learning curves are depicted in Fig. 4(a). ES-KRLS converges at a faster rate and 
obtains a lower RMSE1 value than KLMS, KRLS, and ES-KRLS, which implies that the introduction 
of the reservoir facilitates the learning process. From Fig. 4(b), we can notice that compared with ES-
KRLS, the computation time consumed by KRLS at each time step increases at much faster speed. 
This is due to the fact that KRLS generates a continuously growing network, while ES-KRLS curbs 
the growth of the network size effectively (shown in Fig. 4(c)). Instead of allocating a new kernel unit 
to every training sample, the sparisification technique utilized by ES-KRLS selects a subset of training 
data to update the network structure and takes advantage of the remaining useful samples to adjust the 
coefficients of the existing network. In such a case, a tradeoff between the accuracy performance and 
the computational complexity is achieved. 
 

Table 1 Specifications of the employed reservoirs for time series prediction 
Parameter Mackey-Glass Laser 

Spectral radius 0.99 0.99 
Number of hidden units 300 600 
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Input scaling parameter 0.8 0.60 
 

Table 2 Experimental results on noiseless Mackey-Glass time series 
Algorithm RMSE1 RMSE84 RMSE120 Training time (s) 
RLS-ESN 1.845E−4 ± 2.561E−5 2.733E−2 ± 1.536E−2 5.722E−2 ± 4.282E−2  1.731 
SVESM 2.362E−4 ± 3.574E−5 2.238E−2 ± 1.859E−2 3.755E−2 ± 2.588E−2 0.186 
ES-KRLS 8.610E−5 ± 2.520E−5 1.862E−3 ± 1.394E−3  4.207E−3 ± 2.051E−3  3.627 
KRLS 4.153E−4 9.550E−2 1.624E−1 5.725 
KLMS 5.499E−2 2.854E−1 3.288E−1 0.070 
ELM 2.309E−4 9.684E−2 1.784E−1 0.116 
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Fig. 4. Performance comparison between online methods on the one-step prediction task.  
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(a) Learning curves; (b) Computation time curves; (c) Network growth curves. 
 

In the second simulation, we investigate how noises and outliers affects the performance of the 
considered models. Both the training data and the testing data are corrupted by heavy-tailed impulsive 
noises, namely the α-steady noises. The tail parameter and the dispersion parameter of the α-steady 
distribution are set to 1.4 and 0.1, respectively [37]. Fig. 5 depicts the noisy training sequence. Given 
that the value of RMSE is sensitive to the large prediction error caused by outliers, RMSE is calculated 
according to the noiseless time series. As is demonstrated in Table 3, the α-steady noises bring about 
the minimal effect on the performance of ES-KRLS, which may imply the robustness of ES-KRLS to 
outliers and noises. Despite the influence of outliers, the time series generated by ES-KRLS in Fig. 6 
fits the original testing sequence with the satisfactory accuracy.  
 

Table 3 Experimental results on Mackey-Glass time series polluted by alpha-stable noises 
Algorithm RMSE1 RMSE84 RMSE120 Training time (s) 
RLS-ESN 8.816E−2 ± 1.013E−2 2.086E−1 ± 3.299E−2 2.691E−1 ± 6.002E−2  0.971 
SVESM 9.130E−2 ± 9.250E−3 2.392E−1 ± 4.516E−2 3.462E−1 ± 9.786E−2 0.184 
ES-KRLS 1.247E−2 ± 6.147E−4 3.632E−2 ± 3.681E−3  5.279E−2 ± 3.549E−3  3.378 
KRLS 6.148E−2 2.593E−1 3.559E−1 6.328 
KLMS 6.213E−2 3.012E−1 3.126E−1 0.100 
ELM 6.081E−2 2.628E−1 2.891E−1 0.116 
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Fig. 5. The training sequence contaminated by the α-steady noises. 
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Fig. 6. The prediction performance of ES-KRLS on the Mackey-Glass time series with α-steady 
noises. (a) One-step-ahead prediction results; (b) 84-step-ahead prediction results; (c) 120-step-

ahead prediction results.             

5.2 Laser time series  

In this example, the data is generated by a far-infrared laser in a chaotic state, which is available 
from the Santa Fe time-series competition [38]. The laser time series is particularly difficult to predict 
because of its chaotic dynamics and the fact that only three intensity collapses occur in the data set [8]. 
The training sequence contains 1000 data points (see Fig. 7), and the subsequent 100 data points are 
employed to verify the feasibility of the trained models. The data is first normalized into the closed 
interval [0,1] . The embedded dimension l  for the ESN-based methods and the other ones are set to 
1 and 40, respectively. After the learning process, the trained models continue to run autonomously 
for another 100 steps.   

The successive prediction values generated by ES-KRLS are displayed in Fig. 8. It can be seen 
that ES-KRLS is successful in predicting a breakdown event that occurs around the 1070-th step. The 
winning entry achieved a normalized mean squared error (NMSE-the mean squared error divided by 
the variance of the target values) of 0.028 by utilizing a TDNN [39]. The numerical results listed in 
Table 4 demonstrate ES-KRLS is superior to the other models considered. It is noteworthy that KRLS 
and ELM outperform RLS-ESN and SVESM in this experiment. This can be explained by the fact that 
the task of predicting the laser time series iteratively requires both a long-term memory ability and 
highly nonlinear mapping, because the laser time series changes dramatically over time. However, 
traditional ESNs with a linear output layer fail to solve the dilemma between long-term memory ability 
and the strong nonlinearity.  
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Fig. 7. The laser time series for training. 
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Fig. 8. The prediction performance of ES-KRLS on the laser time series. 

 
Table 4 Experimental results on laser time series. 

Algorithm NMSE Training time (s) 
RLS-ESN 4.446E−1 ± 2.013E−1 4.323 
SVESM 3.549E−1 ± 1.650E−1 0.279 
ES-KRLS 9.267E−3 ± 1.019E−3 2.374 
KRLS 3.731E−2 3.519 
KLMS 4.144E−1 0.187 
ELM 2.560E−2 0.328 

 

6. Applications 

Prognostics focus on predicting the fault growth trend of a degraded system, which plays a crucial 
role in mission scheduling and maintenance decision-making [40-42]. Prognostic methods are mainly 
classified into two categories, namely data-driven and model-based methods. Model-based approaches 
are rooted in the prior knowledge about the underlying failure mechanism. Considering that accurate 
mathematical models of the complex engineered systems can be unavailable, the practical application 
of model-based approaches is limited. Data-driven methods provide a viable alternative, inferring the 
hidden health state of a system from the sensory data directly. Artificial neural network (ANN) is one 
of the most widely used tools for prognostics and health management. In [43-45], ANNs are employed 
to build the direct mapping relationship between the degradation signals, which are directly collected 
from the system or extracted from raw sensory data, and RUL. ANNs can also be used to model the 
degradation process of an equipment and extrapolate the degradation signals until the predicted value 
reaches a predefined threshold, whereby RUL is achieved as the time interval between the current time 
and the failure time [46-48]. In addition, similarity-based approaches for RUL prediction match the 
degradation pattern of a testing instance to the reference degradation patterns and RUL is derived from 
the matched training instances [49-51]. Most of these methods require abundant run-to-failure data so 
as to produce accurate RUL predictions. However, run-to-failure data are possibly unavailable in many 
practical scenarios. Moreover, the evolution of the health state of a system is subject to system inherent 
uncertainties and variations in operational conditions. Hence, it is necessary to develop a fault growth 
model that can adapt to performance degradation over service time.  

In this paper, a failure propagation model equipped with an online adaption scheme is developed 
for machine condition prediction. A linear regression method is first used to convert multi-dimensional 
sensory data into a one-dimensional health index (HI) that indicates the health state of a system. Then, 
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a state space model that learns the evolution of the HI of the system is constructed. The state model 
represented by ES-KRLS can be updated recursively using the new observed information. A Bayesian 
technique is employed to estimate the current health state of the monitored system. Further, the future 
health states are predicted by keep the state transition function running iteratively.  

6.1 Construction of Health index 

In order to quantify the degradation level of an aging mechanical system, a HI that is defined in 
the closed interval [0,1]  is constructed. A linear model is utilized to convert the multi-dimensional 
sensory data 1[ , , ]

k
i i iy y=y  collected at the i-th time step into a noisy HI iz , which is expressed as  

 T
i iz = Ty   (36) 

where 1 k×∈T   is the transformation vector. To achieve this linear model, a training dataset should 
be prepared in advance. The sensory data collected at the beginning and the end of an engineered 
system’s life are stored in two matrices 1

1
D k×∈Y   and 0

0
D k×∈Y  , respectively. Hence, the 

transformation vector T  can be obtained by      
 1( )T T−=T Y Y Y Z   (37) 

where 1 0[ ; ]=Y Y Y , 1 0[ ; ]=S Z Z , 1 1
1

D ×∈Z   is a unity vector, and 0 1
0

D ×∈Z   is a zero vector.  
Once the transformation vector T  is available, the health status of the degraded system can be 

effectively characterized by converting the online monitoring data into a noisy HI based on Eq.(36). 
The HI of a system is assumed to range between 1 and 0 throughout the whole service life. Specifically, 
a machine starts from a healthy state with an HI value of 1, and continues to run until a failure occurs, 
which lead to the value for HI reaching 0.    

6.2 Representation of degradation process using state-space model 

Due to the utilization of the noisy measurement data, a Bayesian estimation technique is required 
to track the health condition of a system. For this purpose, a state-space model is used to characterize 
the degradation process of the system, which is expressed as follows:  

 1State model : ( )i i is s −= + ωF   (38) 
 Measurement model : i i iz s= + υ   (39) 

where is  is the actual health state of the system, iω  is the process noise, iυ  is the measurement 
noise, and ( )⋅F  is the state transition function denoted by ES-KRLS algorithm. 

Given the dynamic system defined in Eq.(38) and Eq.(39), the state estimation is achieved using 
particle filtering (PF), whereby an approximation to the posterior state possibility distribution function 
(PDF) 1:( | )i ip s z  is obtained. To be specific, a set of samples (or particles) 1{ }n N

i ns =  with associated 
weights 1{ }n N

i nw = are used to approximate posterior PDF 1:( | )i ip s z  as follows: 

 1:
1

( | ) ( )
N

n n
i i i i i

n
p s z w s sδ

=

≈ −∑   (40) 

where N  is the number of particles, and ( )δ ⋅  is the Dirac function. The weight n
iw  can be updated 

iteratively by 
 1 ( | )n n n

i i i iw w p z s−≈   (41) 

6.3 RUL prediction procedure 

The detailed procedure for RUL prediction is described as follows: 
Step 1: The new observation data iy  is converted into the HI iz  via Eq.(36).    
Step 2: The weights is updated by Eq.(41), and the actual health state of the monitored system at 

the i-th time step is estimated as 

 
1

N
n n

i i i
n

s w s
=

≈ ∑   (42) 

The resampling strategy is then adopted to avoid the degeneracy problem.    
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Step 3: A new input-output pair 1{ , }i is s−   is used to update the state transition function in Eq.(38) 
according to Algorithm 1. 

Step 4: A multistep-ahead machine condition prediction is carried out by making one-step-ahead 
prediction successively. Concretely, the predicted value is fed back to the state transition function 

( )⋅F  as the input for another step prediction, as shown below: 
 1ˆ ˆ( )i p i ps s+ + −= F   (43) 

When the predicted state reaches the predefined failure threshold, the RUL is estimated as  
 RULi ft i= −   (44) 

where ft  is the predicted failure time.  
 

 
Fig. 9. The schematic of the novel online prognostic method. 

6.4 A Case study in a turbofan engine degradation dataset  

In order to verify the feasibility of the proposed prognostic method, a turbofan engine degradation 
dataset generated by Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) is used 
[52]. C-MAPSS is a highly detailed, component-level engine model and a schematic of the turbofan 
engine is depicted in Fig. 10. Each engine unit is represented by a multivariate time series and the data 
for each flight cycle contain the unit ID, operating cycle index, 3 values that indicates the operational 
settings and 21 sensor measurements contaminated by high level of unknown noises. Each engine unit 
operates under six different operational conditions and starts with different level of initial wear caused 
by manufacturing and assembly variations. The failure threshold is unknown for the users.   
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Fig. 10. A schematic of the turbofan engine. 

 
In this work, the 7 sensors, including T24, T30, T50, P30, Ps30, phi and BPR, are selected [49]. 

The measurement data are normalized into the closed interval [ 1,1]− . Six different transformation 
vector associated with each operational condition are trained. The sensory data that locate in different 
condition regimes are converted into the HI using the corresponding linear model. Fig. 13 provides an 
illustration of the selected sensor signals and the constructed HI under multiple operating conditions. 
We can notice that large fluctuation in the sensor signals caused by variations in operational conditions 
overwhelms the influence of performance degradation. By contract, the constructed HI shows a clear 
trend over time and is thereby capable of providing a better characterization of the degradation process 
of the turbofan engine. 

Fig. 14 depicts the HI estimation results produced by the proposed method. Given a state-space-
based degradation model and the noisy HI, the health status is estimated by PF at each operational 
cycle. The estimated HI is then used to update the state transition function. It is seen that the trained 
model is able to track the evolution of the health status of the monitored engines. For comparison, the 
state transition function is learned by different algorithms and the experimental results are provided in 
Table 5. We can notice that the estimation performance of ES-KRLS is better than those of the other 
methods. The RUL prediction results generated by the proposed method are depicted in Fig. 15. When 
the engine units experience the end of service life, the predicted RUL gradually converges to the actual 
RUL. This can be attributed to the fact that the online adaption scheme keep the degradation model 
incorporating new observed information.         
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Fig. 13. The selected sensor signals and the constructed HI for engine no. 1. 
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Fig. 14. The HI estimation results produced by the proposed method. (a) Engine unit no. 4;  
(b) Engine unit no. 6; (c) engine unit no. 9.   

 
Table 5 Performance comparison on HI estimation 
Unit number Algorithms RMSE 

4 

RLS-ESN 0.0932 
ES-KRLS 0.0859 
SVESM 0.0952 
KRLS 0.0932 
ELM 0.0887 

 

6 

RLS-ESN 0.0948 
ES-KRLS 0.0837 
SVESM 0.1082 
KRLS 0.1057 
ELM 0.0902 

 

9 

RLS-ESN 0.0872 
ES-KRLS 0.0797 
SVESM 0.0906 
KRLS 0.0860 
ELM 0.0849 
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Fig. 15. The RUL prediction results produced by the proposed method. (a) Engine unit no. 4; 
(b) Engine unit no. 6; (c) Engine unit no. 9. 

 

7. Conclusion 

In this paper, we propose a novel ES-KRLS algorithm which bridges the gap between ESN and 
KAF. Compared with traditional ESNs, ES-KRLS reconstructs the output layer in RKHS by utilizing 
a kernel-induced nonlinear mapping. As a variant of KAFs, ES-KRLS is able to deal with the temporal 
dependencies between different data points efficiently due to the utilization of the dynamic reservoir. 
The fixed topology of the reservoir also facilitates the training procedure. Experiments on benchmark 
tasks demonstrates the superiority of ES-KRLS algorithm over traditional KAFs, especially in long-
term prediction.  

In addition, a state space model that captures dynamic characteristics of the degradation process 
of a system is constructed for health state estimation and RUL prediction. The state transition function 
represented by ES-KRLS can be updated iteratively using the new observed information. A case study 
in a degradation dataset illustrates that the online adaption scheme enables the degradation model to 
adapt to performance degradation of the monitored machine and variations in operational conditions.  
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